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ABSTRACT

Both mobile and egocentric videos contain much larger mo-
tion than broadcast videos. To estimate the quality of videos
with huge motion, the temporal pooling strategy should be
adaptive to the specific content. Existing methods focus more
on the values and variations of frame quality scores and ignore
the masking effect of motion. In this paper, a temporal pool-
ing strategy using a visibility measure is proposed to estimate
the quality of videos containing large motion, where the im-
perceivable details during motion are not considered. We then
introduce a strategy to measure the influence of measured vis-
ibility on pooling and design a subjective test to gather data
for the strategy by synthetically creating shaky videos. Our
pooling method is demonstrated to be more effective than ex-
isting strategies at pooling frame scores estimated by different
image quality metrics.

Index Terms— visibility, temporal pooling, video quality

1. INTRODUCTION

Currently, multimedia such as mobile videos [1], egocentric
videos [2], drone videos [3] and crowd-sourced interactive
live streaming [4], contain much larger motion than broad-
cast video streaming, which strongly affects the perception
of distortions in the videos. We categorize all these types of
videos with heavy motion to be large motion videos (LMVs).
For example, broadcast videos are often recorded by stably-
mounted cameras that are static or contain low-speed motion.
In contrast, egocentric videos are recorded by wearable cam-
eras that follow human body movements with high and ran-
dom speed. Outdoor live streaming is often quite shaky when
it is captured using hand-held cameras.

A common strategy to estimate video quality has two
steps. First, an objective image quality metric is used to
measure the spatial quality score of individual video frames.
Then, a temporal pooling method is applied to combine all
frame quality scores over time to get a single video-level
score. This strategy has been demonstrated to be an effective
way to estimate video quality [5, 6]. In this paper, we focus
on the temporal pooling step.

The mapping from frame-level scores to a video-level
score should be adaptive to the type of videos whose quality
is to be evaluated. If the video has little motion, an emphasis

on motion is unnecessary and a typical pooling strategy [7]
can be applied. If the video is a LMV, the imperceivable
details during motion should not be considered when we
interpret frame-level quality scores.

The visibility of quality degradations during motion has
been studied from two perspectives. The first is the window of
visibility proposed in [8], that represents human visual spatio-
temporal contrast sensitivity function (STCSF). The spatial
details of the image are invisible outside of the window. The
boundary of the window is decided by the perceivable contrast
threshold of STCSF. Another perspective is motion sharpen-
ing [9–11] in which the blurred images looks sharper when
they moves fast. However, the effect has not been thoroughly
described using a theoretical model.

Most current temporal pooling metrics do not consider the
influence of motion so they are not suitable to measure the
quality of LMVs. For example, the Minkowski pooling [7]
emphasizes the influence from low quality frames. A hys-
teresis model [12] emphasizes the memory effects for human
observer. In [13], the temporal pooling strategy considers the
influence of the temporal gradients of quality scores. One
model that considers the influence of motion is the human vi-
sual speed model proposed in [14]. It considers global and
local speed of the frame in pooling, but it is only evaluated on
television video sequences.

Our contribution in this paper is to provide an adap-
tive temporal pooling mechanism to estimate the quality of
LMVs. We use weighted average pooling strategy that uses
the function of visibility as the pooling weight to combine
frame quality scores. The method can be expressed as

Q =

∑
i λ(Vi) · qi∑

i λ(Vi)
, (1)

where qi and Vi are the spatial quality and visibility of frame
i, respectively, and Q is the video quality score. λ(·) is the
function that models how visibility influences the pooling of
Qi. We propose a visibility measure which computes the pro-
portion of frame details that are visible under a given motion
based on the window of visibility [8, 15], and systematically
measure the function λ(·) based on subjective data.

There are four potential scenarios in which our temporal
pooling strategy can be applied. First, we can compare the
overall blurriness of videos that are captured by multiple dif-
ferent shaky cameras at the same time. Second, videos with



motion editing can be compared relative to the original ver-
sion. One example is video stabilization in which blur is more
visible after stabilization. Third, videos with post-processing
can be compared relative to the original. One example is
video illumination enhancement that may add newly gener-
ated artifacts into frames. The artifacts may be imperceivable
due to the masking effect of motion.

In this paper, a temporal pooling strategy using a visibil-
ity measure is proposed to estimate the quality of LMVs. The
video quality is computed as the weighted average of frame
quality scores, where the weights are the function λ(·) of vis-
ibility. We propose and illustrate our visibility measure for
individual frames under a given motion in Section 2. Then
we introduce the strategy to measure the function λ(·), and
describe the method to gather video quality data for the strat-
egy in Section 3. In Section 4, we implement a subjective
test to gather subjective video quality scores to measure the
function λ(·). The subjective data is also used to validate our
visibility pooling strategy and to compare our method with
other existing temporal pooling methods. The results show
that our method provides the best performance.

2. VISIBILITY MEASUREMENT

In this section, we propose a visibility measurement devel-
oped based on the window of visibility [8, 15]. We overview
the theory of window of visibility and define a measure of
visibility to be the proportion of visible frame details.

2.1. Overview of the Window of Visibility

The basic idea of the window of visibility is that there ex-
ists a spatio-temporal window outside which the contrast is
invisible [8, 15]. Let the x-coordinate be spatial frequency
(cycles/degree) and y-coordinate be temporal frequency (Hz).
The positive frequency part of the window is the triangle with
three vertices, (0, 0), (u0, 0) and (0, w0), where u0 is spatial
frequency limit and w0 is temporal frequency limit.

According to the relationship between window limit u0,
w0 and display luminance I in [15], u0 is saturated at around
50 cycles/deg at I = 7cd/m2, and w0 has a linear relation-
ship with display luminance log10(I). We approximate as
w0 = 15 · log10(I) + 35 Hz.

Consider the motion function of a line: m(x, t) = δ(x −
rt), where x is the position, t is the time, and r is the speed.
The transformed moving line in the spatio-temporal domain
is determined by f(u,w) = δ(w + ru), where u and w are
spatial and temporal frequency, respectively. Figure 1 shows
the window of visibility (u0, w0). The dashed line is the part
of f(u,w) outside the window of visibility that cannot be per-
ceived. See more details in [15].

Fig. 1: Green: the window of visibility (u0, w0) boundary.
Red: spatio-temporal content of u in which the solid line is
visible, and the dashed line is invisible

2.2. Proposed Method

Based on the idea of the window of visibility, we measure the
visibility to be the proportion of the overall power spectrum
that is inside the window of visibility. The visibility value in
an image patch is calculated as the summation of the fraction
of energy of all spatial frequencies weighted by their visible
proportion inside the window of visibility. The visibility for
an image is then a spatially pooled average from all image
patches.

Given an image patch with speed v (where all bold font
parameters indicate a vector variable), we have a fixed win-
dow of visibility represented as (u0, w0). Let u be one spatial
frequency in the image patch. We consider only the part of u
parallel to v that influences the visibility. Then the temporal
frequency w for u is calculated as w = u ·v. The u in Figure
1 is ‖u‖ cos θ, where ‖u‖ is the length of u and θ is the angle
between u and v.

We compute the fraction of energy, P (u) for spatial fre-
quency component u, in the image patch to be

P (u) =
M(u)∫
u
M(u)

, (2)

where M(u) is the magnitude of the spatial power spectrum
at u. Not all spatial frequencies u will be visible because
some lie out of the window of visibility.

The proportion of spatio-temporal content at u inside the
window of visibility is the weight ω(u) for energy fraction
P (u), calculated as

ω(u) =
L(u,w)√
u2 + w2

, (3)

whereL(u,w) is the length of the visible part shown in Figure
1, and

√
u2 + w2 is the total length. The visibility of image

patch q in frame i is then calculated as

Viq =

∫
u

ω(u)P (u). (4)

The visibility of frame i is spatially pooled from 31× 31



patches overlapped by 15 pixels:

Vi =
1

Nq

∑
q

Viq , (5)

where q is the patch index, Nq is the total number of patches.
The measured Vi is not very sensitive to the chosen patch size
and the spatial pooling method. Note in our actual implemen-
tation, speed refers to the viewing angular velocity, which is
dependent on viewing distance.

3. STRATEGY TO MEASURE λ(·)

In this section, we introduce a strategy of measuring the func-
tion λ(·) in Equation 1. This function describes the influence
of visibility on the pooling of spatial quality scores. To obtain
the objective and subjective quality scores to estimate λ(·),
we introduce our data gathering strategy along with its moti-
vation.

3.1. Estimate Function λ(·)

The function λ(·) can be measured using D (D > 1) test
video sequences that share the same visibility but have a dif-
ferent spatial quality in the temporal domain.

To measure the λ(·), we can rewrite Equation 1 as

Q′ = qTλ(V ), (6)

where the scaled video quality Q′ =
∑

i λVi · Q. Let K be
the number of frames; the λ(V ) and q are both K×1 vectors
that represent spatial quality and the function λ(·) of visibility
V , respectively. To get the solution of λ(V ), we construct
the case that D different videos have the same visibility with
different quality Q′

1, Q
′
2, . . . , Q

′
D. The least square solution

λ(V̂ ) for λ(V ) in Equation 6 is

λ(V̂ )
T

=


q1

T

q2
T

...
qD

T


† 

Q′
1

Q′
2

...
Q′

D

 , (7)

where † is the Moore-Penrose pseudo-inverse. If the D se-
quences have known subjective quality scores, then we can
estimate their frame quality scores and compute λ(V̂ ).

3.2. Strategy Motivation

To measure the λ(·), D video sequences with same visibility
but different spatial quality in the temporal domain need to be
synthetically created, and then their subjective and objective
quality need to be measured.

To ensure the D video sequences have the same visibility,
we need to control the motion in each video. To create such
videos, we can move a cropping window in a high-quality

image to create the desired motion, and add synthetic motion
blur to create frames with different spatial quality.

To gather the subjective quality, we need human observers
to be able to compare the D synthetic videos. The typical
strategy is to apply different amounts of one synthetic distor-
tion into different videos, and determine the minimum differ-
ences between these synthetic videos that can be perceived by
human observers. One method to apply this strategy into our
case is to add the same amount of blur into all frames in one
video, and add different amounts for different videos. How-
ever, the motion differences between videos would have to
be quite large to maintain the same visibility, so that motion
would have significant influence on the subjective evaluation.
Another method is to add temporally sinusoidal blur into one
video, and temporally shift the blur curve to create the other
D − 1 videos. This method does not require large variations
in the amount of motion for different videos. In our imple-
mentation, we use the second method.

To gather the objective quality scores of video frames, we
need to use one image quality metric. λ(·) could be measured
differently when using different image quality metrics, since
they may have inconsistent scales for measuring the same
quality degradation. In this paper, we only use frame scores
estimated by one image quality metric, LVI [2], to measure
λ(·), and we test the result using other image quality met-
rics. The goal is to demonstrate a consistent design that can
be effective for temporal pooling of any quality metric. LVI
measures the relative quality between images with overlap-
ping but not necessarily pixel-aligned content, and it has been
demonstrated to be effective at providing a consistent measure
for blur [2, 16].

3.3. Data Gathering Strategy

To measure λ(·), we want to create a set of videos, Γ, that has
different spatial quality but the same visibility in the temporal
domain.

Before introducing the strategy to create Γ, we first intro-
duce the notations for motion, blur and visibility. Let Aj , Bj ,
Pj be the motion profile, blur profile and visibility profile, re-
spectively, where j is the profile index. The profile describes
the pixel shifts (profile Aj), the blur kernel size (profile Bj)
and the visibility (profile Pj) temporally for each frame in a
video.

Assume we have a blur profile B0 and a visibility profile
P0 where P0 ∝ −B0. If B0 is temporally shifted to B′

0 while
P0 is maintained, there would be less masking effect for B′

0.
Figure 2 shows the comparison between B0, B′

0 and P0 in
which 1 − P0 = c · B0 with c to be a constant parameter.
As a temporal shift is introduced into B0 to B′

0, the overlap
between B′

0 and 1− P0 becomes smaller so that more blurry
frames would have higher visibility.

To create videos with temporally-shifted quality, we shift
the phase of the temporal quality curve in the frequency do-



0 20 40 60 80 100 120 140 160

time

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
v
a
lu

e

scaled B0

scaled B ′

0

1−P0

Fig. 2: Comparison between Blur profile B0, B′
0 and visibil-

ity profile 1− P0

main. Assume we have a motion profile A0 with blur profile
B0 and visibility profile P0. By shifting B0 in the frequency
domain with phase 0.125π, 0.25π, 0.375π, 0.5π, we get blur
profiles B1, B2, B3 and B4. The motion profile A0 is then
edited to become A′

j , for j = 0, 1, 2, 3, 4, so that the video
visibility profile is constant, P0. Γ is formed with videos cre-
ated by (Bj , A

′
j), for j = 0, 1, 2, 3, 4. The goal is to demon-

strate the decrease of visibility has a masking effect on frame
blurriness so that the perceived video quality increases.

4. SUBJECTIVE TEST

In this section, we describe our subjective test using syn-
thetic shaky videos. The test results are then used to estimate
the function λ(·) using method described in Section 3.1. Fi-
nally, our pooling strategy is demonstrated to perform the best
when compared to different temporal pooling methods across
a range of existing image quality metrics.

4.1. Test Video Sets

To create synthetic videos, we start with 4 high-resolution
images corresponding to test sets Γj , where j = 0, 1, 2, 3.
Videos are created by moving the cropping window in the
original image using the strategy described in Section 3.3.

To synthetically create Γj , we first create a motion pro-
file Aj that extracts the motion from an actual captured shaky
video α. Assume we want Aj to be in the frequency range
from a Hz to b Hz. We first find the peak frequency Fpeak

from a Hz to b Hz in the motion frequency spectrum of α and
apply a Gaussian window centered around Fpeak to get the
motion information to create Aj . Second, we compute blur
Bj based on the motion Aj in which the size of the average
blur filter is proportional to the pixel displacement. The vis-
ibility is then computed as Pj(t) = max(0, 1 − c · Bj(t)),
where t is the time instance, c is a constant parameter, Pj(t)
and Bj(t) are the visibility and the blur kernel size at time t.

Γ1 and Γ2 are created with frequency range between 1 and
2 Hz, and the frequency range for Γ3 and Γ4 are between 2
and 3 Hz. Each test set has five videos with blur phase shift
0, 0.125π, 0.25π, 0.375π, 0.5π. All test videos with their
corresponding reference videos and the video that is used to
compute motion profiles are available at [17].
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Fig. 3: Subjective scores (0: best quality in each test set)

4.2. Test Setup

Our subjective test method is paired comparison. All pairs
of comparisons are videos in the same set Γj . A pair of test
videos is presented one after another on a monitor (DELL
U2718Q) that has resolution 3840×2160. The video is pre-
sented at the center of the screen with resolution 1920×1080.
The background is gray at 128. Each test video is 5 seconds
with frame rate 30 frames/second. Since the calculation of
the visibility relies on the viewing distance, it is fixed to be
3.2 times the height of the display. Each of the 20 test par-
ticipants are asked to choose in which video can you perceive
more spatial details.

4.3. Subjective Test Results

The relative subjective qualities are estimated using the
Bradley-Terry Model [18]. The test results are shown in
Figure 3 where the best quality is 0 for each test content.
The subjective results indicates that a larger phase difference
between visibility and blur introduces more perceived quality
degradations for a human observer in all four test contents.
This demonstrates that our measure for visibility does have
a masking effect on the perception of blurriness; low quality
frames have little influence when they have low visibility.

One additional comment about content differences is that
content 1 and 2 show greater quality differences between
videos with phase shift 0 and 0.5π than content 3 and 4. One
reason is that content 1 and 2 have lower-frequency motion
than do content 3 and 4. Content 1 has much greater quality
difference between videos with phase shift 0 and 0.5π than
other contents, because it contains a higher proportion of re-
gions with high spatial frequencies that enable the differences
to be more perceivable.

4.4. Estimating λ(·)

We estimate the function λ(·) using the method illustrated in
Section 3.1. We apply the subjective results from the 4 con-
tents to estimate λ(·), and choose the estimated model us-
ing content 1 because it achieves the highest PLCC between
λ(V̂ ) and λ(V ) among the 4 contents.

The temporal weighting vector λ(V̂ ) is calculated by
Equation 7, where Q is the subjective quality scores of the
5 test videos of content 1. Vector q is estimated by LVI [2].



Fig. 4: Comparison between λ(V ) and estimated λ(V̂ )
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Fig. 5: Function λ(·) in Equation 1: x-axis is measured visi-
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Figure 4 shows the comparison between λ(V ) and the esti-
mated weighting vector λ(V̂ ). We fit function λ(·) using the
logistic function.

f(x) = (t0 − t1)/(1 + exp (−(x− t2)/|t3|)) + t1 (8)

Then we normalize the values after mapping, where the max-
imum value and minimum value for normalization is f(1)
and f(0). The estimated λ(·) shown in Figure 5 maps mea-
sured visibility to pooling weight with fitted parameters t0 =
0.26, t1 = −1.25, t2 = 0.95, t3 = −0.05. Our measure for
visibility is shown to have an nonlinear relationship with the
pooling weight in Figure 5.

4.5. Evaluating Overall Method

The other three test video contents are used as validation for
our pooling strategy. We compare our method with existing
pooling strategies: average pooling, percentile pooling (70th),
Minkowski pooling (p=2), speed pooling [14], temporal vari-
ation pooling [13], and hysteresis pooling [12]. In our imple-
mentation, the relative speed is zero in speed pooling, since
all our test videos only contain global motion. In addition, we
only consider the global temporal pooling method in [13] and
set the distortion value to be the negative quality value plus
the maximum quality value of the quality metric. To test the
generality for different image quality metrics, we estimate the
frame quality using two full-reference (FR) methods (SSIM
[19], [20]), two no-reference (NR) methods (BRISQUE [21],
NIQE [22]) and one mutual reference method (LVI [2]). All
quality scores are normalized to be between 0 to 1 using the
minimum and maximum values in [23].

Table 1 shows the Pearson linear correlation coefficient
(PLCC) and Spearman rank-order correlation coefficient
(SROCC) between the subjective video quality scores and
the objective temporal pooling scores using different im-
age quality metrics. For all three test contents, our pooling
method shows the best overall performance.

Our method can achieve high PLCC and SROCC for two
reasons. First, because of the limited number of test samples,
PLCC and SROCC mainly measure if the method correctly
ranks the video quality. Second, the subjective test and our
proposed method are both specifically designed for the mask-
ing effect on perceived blurriness due to motion.

The results also show that our method can generalize
across different contents. Our method incorporates the influ-
ence of content since our estimation of visibility computes
spatio-temporal information in a single frame. In addition,
we model the relationship λ(·) between visibility and pool-
ing weight based on gathered subjective data that has better
cross-content performance than considering λ(·) to be linear.

Our method is not successful when pooling BRISQUE
and NIQE in content 2. BRISQUE and NIQE do not pro-
vide a consistent measure when the same amount of blur is
added into pixel-shifted content. The test videos in content
2 are produced with greater frame-to-frame pixel shifts than
content 3 and 4, so the BRISQUE and NIQE scores of content
2 are not as robust as in other contents.

Speed pooling has the second performance among all. It
computes temporal weights based on motion, but their model
parameters are only evaluated on videos with low-speed mo-
tion. The other 5 methods are not suitable for our situation.
They pool the video quality using only frame scores. How-
ever, our videos are created to have similar frames scores with
different visual qualities, so these methods are not capturing
all the relevant information.

5. CONCLUSIONS

In this paper, we propose a temporal pooling strategy built on
a measurement of visibility that is more effective at estimat-
ing the perceived blurriness of LMVs than existing pooling
strategies. The visibility measure is proposed based on the
window of visibility theory to compute the fraction of vis-
ible details within a single frame under a given motion. A
systematic subjective test is implemented to demonstrate the
masking effect on motion blur using our visibility measure.
The subjective video scores are also used to estimate the in-
fluence of visibility on the pooling of frame quality scores.
The test results indicate that our pooling strategy is more suit-
able for LMVs and can be effectively applied to pool quality
scores estimated by different types of image quality metrics.
The future work is to investigate the video quality assessment
at the application level, for example, egocentric video quality
comparison and motion-edited video quality evaluation.



Content 2
Pooling method SSIM VSNR LVI BRISQUE NIQE

average 0.75(0.7) 0.86(0.7) 0.74(0.7) 0.49(0.3) 0.84(0.6)
percentile 0.83(0.6) 0.99(0.9) 0.86(0.6) -0.91(-0.9) 0.71(0.4)

Minkowski 0.7(0.6) 0.84(0.7) 0.78(0.7) 0.66(0.7) 0.82(0.5)
speed [14] 0.94(0.9) 0.97(0.9) 0.94(0.9) 0.76(0.8) 0.95(0.9)

variation [13] -0.59(-0.4) 0.94(1.0) 0.41(0.5) 0.68(0.4) 0.76(0.9)
hysteresis [12] 0.57(0.6) 0.87(0.9) 0.62(0.7) 0.86(0.9) 0.59(0.7)

visibility 0.99(1.0) 0.98(1.0) 0.99(1.0) 0.64(0.6) 0.81(0.7)
Content 3

Pooling method SSIM VSNR LVI BRISQUE NIQE
average -0.46(0.1) -0.74(-0.7) 0.04(0.1) -0.58(-0.3) -0.2(0.0)

percentile -0.09(0.1) 0.72(0.7) -0.3(0.0) -0.77(-0.9) 0.05(0.3)
Minkowski -0.51(-0.4) -0.96(-0.9) 0.1(0.1) -0.55(-0.3) -0.2(0.0)
speed [14] 0.80(1.0) 0.51(0.7) 0.65(0.6) -0.27(-0.1) 0.41(0.2)

variation [13] -0.54(-0.6) -0.74(-0.7) -0.0(0.1) -0.57(-0.3) -0.23(0.0)
hysteresis [12] 0.82(0.7) -0.38(-0.3) 0.37(0.3) 0.36(0.5) 0.61(0.5)

visibility 0.98(1.0) 0.96(1.0) 0.97(1.0) 0.99(1.0) 0.98(1.0)
Content 4

Pooling method SSIM VSNR LVI BRISQUE NIQE
average 0.22(0.0) 0.29(0.0) 0.69(0.5) -0.03(-0.3) -0.51(-0.4)

percentile 0.55(0.3) 0.87(0.8) 0.78(0.7) -0.84(-0.9) -0.72(-0.9)
Minkowski 0.04(0.0) 0.07(0.0) 0.46(0.1) 0.09(-0.3) -0.46(-0.3)
speed [14] 0.85(0.9) 0.72(0.6) 0.89(0.9) 0.44(0.3) 0.49(0.3)

variation [13] 0.17(0.0) 0.29(0.0) 0.71(0.7) -0.09(-0.4) -0.64(-0.4)
hysteresis [12] 0.79(0.6) 0.5(0.1) 0.59(0.3) 0.39(0.1) 0.7(0.4)

visibility 0.99(1.0) 0.98(1.0) 0.98(1.0) 0.97(0.9) 0.98(1.0)

Table 1: PLCC (SROCC) between objective pooling scores
and subjective scores.
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