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ABSTRACT

The quality of images or videos that suffer from exposure
distortions can be enhanced using histogram equalization or
retinex methods. However, the relationship between the vi-
sual quality and the degree of enhancement is an inverted
U-shaped function with a peak point, and many existing
methods have parameters that have no clear relationship with
image quality. We introduce a controllable illumination en-
hancement system, where the degree of enhancement can be
adjusted using a single parameter. We then propose an over-
enhancement measure, Lightness Order Measure (LOM),
which quantifies the unnaturalness based on a local inversion
of lightness order. We explore the relationship between the
peak point and LOM in a subjective test. The results indicate
that LOM reduces content dependency compared to existing
methods. Our subjective test also evaluates the image quality
of our enhancement, and demonstrates the effectiveness of
our method.

Index Terms— image enhancement, illumination, over-
enhancement, image quality, subjective test

1. INTRODUCTION

Images or videos suffer from exposure distortions when the
camera sensor is not exposed to the proper amount of light [1].
Exposure distortions are often caused by bad environmental
lighting or bad capture angles, which are often spatially in-
consistent within an image. To improve the quality of images
with exposure distortions, many different types of enhance-
ment methods [2–4] have been proposed and widely used to
edit the illumination within an image.

This relationship between enhancement and image visual
quality can be described as a concave function with a peak
point. We consider the peak point as the optimal degree of
enhancement, defined as the optimal point (OP). The con-
cave relationship is produced by three aspects, contrast, ex-
posure level and newly generated artifacts introduced by en-
hancement operations. First, image quality is a concave func-
tion of contrast. According to the results from image quality
database TID2013 [5], when the synthetic contrast manipula-
tion is applied to an image, there exists a peak point of quality
corresponding to its best contrast. Second, the exposure level

change also has a concave relationship with image quality [1],
and its best point corresponds to the exposure level at which
the image is well-exposed, not either under-exposed or over-
exposed. Third, enhancement operations often generate new
artifacts, such as color shift or loss, noise amplification, struc-
ture modification or unnaturalness [6]. The combined visual
effect of newly generated artifacts and contrast change can
also be described as a concave function of image quality.

The concave function of enhancement is content depen-
dent, in that the OP varies for different content. One un-
solved problem is how to define the OP for different images
and characterize the concave function. Our solution is to en-
hance the image different amounts, and then characterize the
concave curve including the OP using a content-independent
over-enhancement measure.

To investigate the concave relationship and to define the
OP of enhancement, we select First-Person images or video
frames captured by wearable cameras as our image sources in
this paper. See Figure 1 for examples. These images cover a
wide range of amount of exposure distortions captured in dif-
ferent environments, and contain other types of quality degra-
dations simultaneously [7, 8].

In this paper, we propose a controllable illumination en-
hancement method for which the degree of enhancement
can be adjusted using a single parameter. Many existing en-
hancement methods including histogram equalization [2, 9],
retinex methods [3, 4] and others [10–13] have no clear rela-
tionship between their parameters and image quality. How-
ever, our single parameter has a concave relationship with
image quality. In our method, we model under-exposure
and over-exposure differently to assign under-exposed and
over-exposed probabilities for each pixel. We then design
a system that applies logarithmic mapping in the identified
under-exposed pixels with boundary-artifact compensation.
Our mapping uses the assigned under-exposed probabilities,
the artifact compensation weights and the single adjustment
parameter together to calculate mapping coefficients. We
also propose an over-enhancement measure, Lightness Order
Measure (LOM) to quantify the unnaturalness in the en-
hanced image. We consider the unnaturalness to be related to
the inversion of relative lightness order between neighboring
pixels, and which is influenced by both the proportion of
inversions and the inversion magnitude.
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Fig. 1: First-Person images with exposure distortions

Fig. 2: Illumination enhancement block diagram

In Section 2, we describe and illustrate the three major
parts in our system of controllable illumination enhancement:
under-exposed map and over-exposed map, boundary penal-
ization, logarithmic mapping. We then illustrate our proposed
over-enhancement measure, LOM, in Section 3. Section 4 im-
plements a subjective test to explore the relationship between
LOM and image subjective quality after enhancement, and
demonstrates the effectiveness of LOM and our illumination
enhancement method.

2. CONTROLLABLE ILLUMINATION
ENHANCEMENT

In this section, we propose a controllable illumination en-
hancement method that allows a single parameter to adjust the
degree of enhancement. Our enhancement system has 3 ma-
jor parts: under-exposure and over-exposure map, boundary
penalization and logarithmic mapping. We separately model
the under-exposed and over-exposed map based on an over-
exposure model in [10]. Our logarithmic mapping takes into
account the under-exposed map values and boundary-artifact
compensation weights, and the single adjustment parameter β
to assign mapping coefficients for each pixel.

Figure 2 shows the block diagram of our method. First, an
under-exposed map and an over-exposed map are calculated
for the input image. Then, the image is partitioned into either
under-exposed or over-exposed regions. Third, a logarithmic
mapping is applied to the under-exposed regions with penal-
ization to compensate for the boundary artifacts. Finally, our
proposed Lightness Order Measure (LOM) quantifies the un-
naturalness of the output image, illustrated in Section 3. De-
tails for each step are explained next.
Under-exposed map and Over-exposed map: We create
an under-exposed map and an over-exposed map separately
for an image considering both pixel saturation and intensity.
Pixel saturation is affected similarly by both under-exposure
and over-exposure, in that low saturation pixels are perceived
to be close to gray, and therefore are indistinguishable from

each other [14]. A well-exposed pixel, on the other hand, has
color that can be correctly perceived. However, pixel inten-
sity is affected differently. Over-exposed pixels often have
high intensity, while under-exposed pixels have low intensity.

Based on the over-exposure detection model proposed in
[10], we model both the under-exposed mapMu and the over-
exposed map Mo in L∗a∗b∗ space as

Mu = 0.5 tanh (δ(Lut − (
√
a2 + b2 +G(L))) + 0.5 (1)

Mo = 0.5 tanh (δ(Lot − (
√
a2 + b2 −G(L))) + 0.5 (2)

where L, a and b are rescaled pixel values (from 0 to 255) of
L*, a* and b*. For a fixedL, when saturation drops,

√
a2 + b2

will decrease. G(·) is a 15×15 Gaussian filter with σ = 3.
The range of Mu and Mo is from 0 to 1, corresponding to the
probability of a pixel to be under-exposed or over-exposed,
respectively. We set Lut = 255 and Lot = 0 so that Mu and
Mo are both 0.5 when the pixel has intensity and saturation
that are half of their entire range. δ controls how fast Mu and
Mo increase or decrease with L or

√
a2 + b2, and is exper-

imentally set to be 1/60. Figure 3 shows an example image
with its under-exposed map and over-exposed map.
Boundary penalization: The image is partitioned into under-
exposed regions Ru (Mu > Mo) and over-exposed regions
Ro (Mu < Mo). To eliminate the artifacts near the boundary
of Ru and Ro after enhancement, we introduce a boundary
penalization weighting function ω(x, y), where (x, y) is pixel
location. We first compute the Euclidean distance between
pixels to its closest partitioning edges between Ro and Ru,
and normalize it to get distance map D. Then ω(x, y) is cal-
culated as

ω(x, y) =
log(D(x, y)(p− 1) + 1)

log (p)
, (3)

where p is a constant, and experimentally set to be 10.
Logarithmic mapping: To enhance the illumination of the
under-exposed regions, we use the logarithm mapping func-
tion

L′(x, y) =
log(L(x, y) ∗ (γ(x, y)− 1) + 1)

log(γ(x, y))
, (4)

where L′(x, y) and L(x, y) are luminance values in L∗a∗b∗

space for the enhanced image and the original image, respec-
tively. γ(x, y) is the mapping coefficient, calculated as

γ(x, y) = 1 +Mu(x, y) ∗ ω(x, y) ∗ β, (5)

where β is the control parameter that can adjust the amount
of enhancement. We finally convert the image back to RGB
space using the mapped luminance L′ and original a∗, b∗.
Figure 4 shows an example image, extracted from video
“Alin, Day1” in [15], enhanced to 7 different amounts by
adjusting β.
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Fig. 3: (a) original image (b) under-exposed mapMu (c) over-
exposed map Mo
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Fig. 4: (a) original image (b) β = 2 (c) β = 4 (d) β = 8 (e)
β = 16 (f) β = 24

3. OVER-ENHANCEMENT MEASURE

In this section, we propose an over-enhancement measure, the
Lightness Order Measure (LOM), to quantify the unnatural-
ness after enhancement, and we compare it with two existing
metrics, SMO [16] and LOE [17].

The principle of our Lightness Order Measure (LOM) is
to measure when the relative lightness order of pixels in the
image is reversed. Relative Lightness order [17] refers to the
pixel intensity order of the image, represented as I(x1, y1) >
I(x2, y2), where (x1, y1) and (x2, y2) are two different pixel
locations. The relative lightness order of an image should be
preserved to keep its naturalness.

There are two existing over-enhancement measures, SMO
and LOE. SMO measures the image structure change; it quan-
tifies the difference of gradients, standard deviation and en-
tropy between the original image and the enhanced image.
LOE measures the change of lightness order globally in the
image; it compares every two pixels and calculates how many
pairs are reversed. All three measures compare the original
image to the enhanced image.

LOM shows advantages compared to SMO and LOE.
Compared to SMO, LOM does not use content-dependent
information, so it is subject to less influence from different
contents. Compared to LOE, LOM considers the relative
lightness order locally and quantifies the magnitude of the
inversion; hence it improves the computational efficiency.

To compute LOM, let the original image be i1 and the
enhanced image be i2 in luminance domain. First, the lo-
cal mean filter is both applied to i1 and i2 with window size
31× 31, and the filtered luminance images are f1 and f2, re-
spectively. Second, we calculate the difference image d1 =
f1 − i1 and d2 = f2 − i2. Third, we quantify the LOM as

image 1 image 2 image 3

image 4 image 5 image 6

Fig. 5: Test images: (1) Pu = 0.35 (2) Pu = 0.57 (3) Pu =
0.58 (4) Pu = 0.76 (5) Pu = 0.76 (6) Pu = 0.82

(6)
LOM =

1

H ·W
∑
x

∑
y

|(d2(x, y)− d1(x, y))

· sign(d2(x, y))− sign(d1(x, y))
2

|,

where H and W are image height and width. Larger values
for LOM indicate greater unnaturalness.

4. EXPERIMENTS AND RESULTS

In this section, we implement a subjective test with two
phases. The first phase explores subjective quality of en-
hanced images with different values of LOM. It also assesses
the performance LOM, SMO and LOE to characterize the
OP of the concave quality curve for different contents. The
second phase evaluates the subjective quality of images en-
hanced by prior existing methods and ours. Both phases are
used to test the effectiveness of our enhancement method with
over-enhancement measure, LOM.

Test sources are 6 video frames captured by a wearable
camera Pivothead (1080p30fps), shown in Figure 5. The test
images are ordered using the percentage of partitioned under-
exposed regions Pu. Each test image is enhanced by our pro-
posed method using 9 different values of β, and by five ex-
isting enhancement methods, LDR [18], CVC [19], WAHE
[9], SRIE [4], Low-light enhancement using camera response
model (LLCRM) [20]. Examples of enhanced images using
five methods and ours are shown in Figure 6, where the orig-
inal image is 6 in Figure 5.

The subjective test has two phases. The first phase finds
the best enhanced image for a given content from a set of 9
versions enhanced with different β. The second phase uses
the best enhanced image found in the first phase to compare
five existing enhancement methods with ours.

Our test method is paired comparison. Each pair of en-
hanced images of the same content is presented side by side
on a 4k monitor (DELL P2415Q), and the right-side image is
horizontally flipped. The monitor resolution is 3840×2160.
The image is symmetrically cropped to be 1900×1080. Each
of the 20 subjects are asked to indicate which image is percep-
tually better in terms of illumination, noise, naturalness, color
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Fig. 6: Example enhanced images: (a) LDR (b) CVC (c)
WAHE (d) SRIE (e) LLCRM (f) ours

and incorrect textures. The subjective image quality is calcu-
lated from the paired comparison results using the Bradley-
Terry Model [21]. The calculated subjective scores are all
relative; the best quality score is set to be 0.

The results in Figure 7 show that each of LOM, SMO and
LOE has a concave relationship with subjective image qual-
ity, and the concave curve varies for different contents. The
comparison between Figure 7(a), 7(b) and 7(c) indicates that
our LOM reduces content-dependency compared to SMO and
LOE. The overlap between concave curves of different con-
tents in Figure 7(a) is much greater than in Figure 7(b) and (c).
For example in Figure 7(b), the best version of image 6 has
an SMO of 5.5, but this is larger than the SMO of all versions
of the other 5 images, including their worst quality versions.
In Figure 7(c), the comparisons between the best version of
image 5 with LOE 440 and images 2, 3, 4, 6, and between the
best version of image 6 with LOE 358 and images 2, 4 show
the same situations as mentioned for Figure 7(b). This means
SMO and LOE are unsuited for use to find the best degree of
enhancement when applied to different contents. In contrast,
Figure 7(a) shows a better set of concave curves; the LOM of
all versions of one image are neither smaller or larger than the
LOM value of the best version of another image.

Visual quality of an enhanced image is influenced by both
illumination and naturalness. For example, image 6 has the
highest Pu and its best version has the largest LOM com-
pared to the other 5. The reason is that image 6 is heavily
under-exposed, so the illumination improvement has a larger
influence than unnaturalness.

Table I shows the results of subjective quality of images
enhanced by the five enhancement methods and ours, and in-
dicates that our method shows more balanced performance
considering image quality and computational efficiency. The
results of subjective scores show that the overall performance
of the 6 methods can be listed from the best to the worst as
SRIE, ours, WAHE, LDR, CVC, LLCRM. LLCRM is applied
for low-light image enhancement, so it performs much worse
when Pu is small for images 1 to 4 compared to other meth-
ods. LDR, CVC and WAHE focus on contrast enhancement,
they all have relatively unbalanced performance compared to
SRIE and ours. For example, their performance is worse for
image 6 with Pu = 0.82 than images 1, 2, 3 with Pu < 0.6.
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Fig. 7: Subjective quality of enhanced images with (a) LOM
(b) SMO (c) LOE

image LDR CVC WAHE SRIE LLCRM ours
1 0.68 0.28 0.68 0 2.37 0.44
2 0.82 0.95 0 0.13 3.95 0.39
3 1.45 0.69 1.75 0 2.78 0.51
4 1.91 1.15 1.23 0.47 2.54 0
5 1.05 1.65 2.19 0 0.53 1.01
6 3.00 3.65 2.46 0.73 2.18 0

time(s) 0.42 4.88 0.41 89.84 1.74 1.81

Table I: Negative subjective quality (“0” indicates the best)
and average processing time of the 6 enhancement methods

SRIE and our method show the best or at least the 3rd perfor-
mance for different contents. However, the processing time
for SRIE is more than 50 times longer than the other five
methods. Because SRIE uses an iterative optimization strat-
egy, and the optimization time significantly depends on the
content. Overall, the performance of our method is more bal-
anced for contents that cover a range of Pu from 0.35 to 0.82.

5. CONCLUSIONS

In this paper, we propose a controllable enhancement illumi-
nation method that allows the degree of enhancement to be
adjusted using a single parameter. We then propose an over-
enhancement measure, LOM, to evaluate the unnaturalness of
enhanced images. Our results of subjective test indicates the
effectiveness of our enhancement method and LOM. Remain-
ing issues for future work are how to improve the illumina-
tion within over-exposed regions simultaneously and how to
design an objective measure for image quality after enhance-
ment that provides a consistent evaluation for both different
contents and enhancement methods [6].
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