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Abstract

Understanding the quality of a face image can be useful
for improving the performance of automated face match-
ing systems. With the increasing number of face quality es-
timators (QEs) being proposed recently, it is important to
have systematic methods to evaluate and compare the per-
formance of these QEs. In this paper, we describe two exist-
ing strategies for evaluating face QEs, and propose several
new approaches. Our new approaches focus on targeted QE
evaluation using carefully constructed image datasets. We
show that these strategies lead to important insights about
the effectiveness of existing face QEs.

1. Introduction

Quality estimation is an integral component of systems
for processing images and videos [11]. While conventional
quality focuses on perceptual quality, for specific tasks,
many more things can affect quality (e.g., the capture, and
post-processing, the environment, background, and light-
ing). Input images that have bad quality will likely result
in poor performance or an unverifiable result.

In this paper, we focus on the task of face recognition,
or face matching, and consider how to rigorously evaluate
the effectiveness of a QE for its use in a real system. To
actually improve system performance, a face QE needs to
be accurate and create actionable and interpretable output
scores. If a QE computes a particular score, how should
that score be interpreted and what action should be taken?

Perceptual QEs are primarily evaluated by computing the
correlation between the computed quality score and subjec-
tive ground truth from human viewers. Evaluation methods
to prove the effectiveness of QEs for other non-perceptual
tasks, however, are still being defined. QEs for fingerprint
images have been evaluated using Error vs. Reject (EvR)
curves [8]. Face QEs have subsequently also been evalu-
ated using EvR [19, 18] as well as performance curves for
Best, Medium, and Worst (BMW) subsets[12]. A QE for
person re-identification (re-id) [2] has also been evaluated
using both EvR and BMW.

None of the current evaluation methods for face QEs in-
form about when a QE is not effective so that its design can
be improved. They all modify a collection of data accord-
ing to the QE scores and compute overall performance on
the remaining data. Therefore, we propose new evaluation
strategies for face-matching QEs that move beyond evalua-
tion strategies of “how well does my QE work on an existing
dataset”. Our proposed evaluation strategies are designed to
be explanatory and to explore QE effectiveness at evaluat-
ing the impact of a specific aspect of face quality.

Note that methods to evaluate QE performance are dis-
tinct from methods to evaluate the task performance itself.
The latter is typically evaluated using accuracy on a fixed
dataset like LFW [13] or IJB-C [15], with accuracy mea-
sured using true positive rate (TPR) for a chosen false pos-
itive rate (FPR). In addition, considering interpretability of
the output scores of a QE allows appropriate action to be
taken based on a particular output score. This is not the
same as the current research thrust of interpretable machine
learning algorithms.

In this paper, we describe both existing methods and new
methods to evaluate QE performance for the task of face
matching for identification, verification, or recognition. In
particular, we seek where a QE fails rather than where it
succeeds, to obtain insights of when a QE is effective or
not. Section 2 describes the six quality estimators we con-
sider in this paper, all of which take a single input image
and output a quality score. Section 3 explores the existing
evaluation protocols and some insights that can be obtained
by applying them to the six QEs. We also provide an upper
bound for these protocols to understand how much further
improvement may be possible for a face QE. Morover, this
section offers a caution about how implementation mistakes
could affect the correctness of these evaluations.

Next, in Section 4 we propose new evaluation protocols
that are designed to target two potential weaknesses in ex-
isting face QEs. The first test explores consistent and inter-
pretable scores given distorted or perturbed images, while
the second test explores robustness to two face alignment
strategies. These two evaluations are only examplars, since
a wide range of additional protocols can be envisioned using



these principles.

2. Quality Estimators

2.1. QEs Designed For Face Matching

Three recent no-reference learning based approaches for
face image quality estimation considered here are FaceQNet
[12], SER-FIQ [19] and SDD-FIQA [18].

FaceQNet [12] is a supervised approach proposed to cor-
relate the quality of a face image to its expected accuracy
for face recognition. It employs a BioLab-ICAO framework
to create image quality ground-truths such that the quality
score is related to the ICAO compliance level. State-of-the-
art deep learning frameworks are then trained to predict im-
age quality scores.

In contrast, SER-FIQ [19] is an unsupervised approach
that uses feature vector robustness to assign a quality score
to face images. Here, face images are passed several times
through a recognition network like ArcFace with dropout
[6] enabled. Dropout introduces randomness into the fea-
ture vectors generated for a given image. The SER-FIQ
quality score of a face image is the Euclidean distance be-
tween the different feature vectors. A lower variation is as-
signed a higher SER-FIQ score. Because SER-FIQ requires
an underlying network, the training details regarding this
network are necessary for interpreting the results.

SDD-FIQA [18] is another unsupervised approach for
face image quality estimation. It relies on the same ba-
sic principles used to design recent learning-based face
recognition systems, namely that a high-quality face image
should be similar to its intra-class samples and dissimilar
to its inter-class samples. For each face image, SDD-FIQA
first computes a similarity distribution distance, using the
Wasserstein Distance, between its intra-class and inter-class
distributions. This distance is used as a ground-truth to train
a regression network. Similar to SER-FIQ, SDD-FIQA re-
lies on an underlying recognition network to create intra-
class and inter-class distributions that help generate qual-
ity scores. In addition, SDD-FIQA also depends on a fixed
database to define the intra-class and inter-class members
used to create its ground truth.

Both SER-FIQ and SDD-FIQA rely on an underlying
face recognition network to generate their quality scores,
specifically ArcFace [6] with a ResNet [10] backbone
trained on MS1-MV2 [9] dataset. To ensure fair evalua-
tion and create some separation between the QEs and the
matching system, for our face matcher, we use ArcFace
[6] with MobileFaceNet [3] as the backbone trained on the
MS1-MV1 dataset [5]. This change in network backbones
and training dataset reduces dependencies between the face
matching system and the QEs.

2.2. QEs Designed For Perceptual Quality
We also consider three conventional no-reference image

quality estimators: BRISQUE [16], NIQE [17], and PIQUE
[20]. These QEs are designed to assess perceptual, not task-
related quality. For example, they consider the question “do
people think this image has high quality?” Including these
in our experiments provides a useful contrast to illustrate
how effective face QEs are in the domain of face matching.

Both BRISQUE and NIQE use statistical features to
quantify the naturalness of an image. A distinction between
the two is that BRISQUE is trained with collection of nat-
ural and distorted images, whereas NIQE is solely trained
with a collection of natural images. PIQUE1 does not re-
quire training, but instead extracts block-based spatial fea-
tures to decide whether distortion is present.

3. Evaluation Protocols

In this section, we present two protocols that have been
previously used to evaluate face matching QEs. For the first
protocol we also describe a warning about its implementa-
tion details.

We evaluate all experiments in this section using the IJB-
C dataset [15], specifically using only the image subset of
IJB-C that contains 17,474 images of 3,464 subjects. We
detect faces in these images using the MTCNN detector [21]
and then align them using similarity transformations before
applying the ArcFace [6] face matcher. All quality scores
are estimated on the aligned IJB-C face images.

3.1. Error Versus Reject (EvR) Protocol
This experiment characterizes whether a quality measure

can effectively rank images by their usefulness and poten-
tial reliability to a system. In this experiment, we rank-order
the query images according to each QE. We reject a fraction
of query images based on each QE, and evaluate the per-
formance on the dataset with those query images removed.
Note that this is an evaluation protocol, and may not be
something that is implemented in a real system. However,
as a protocol, it allows us to observe both how well the QE
orders low-quality images (by reading from the left of the
plot), as well as how well it orders high-quality images (by
reading from the right of the plot). This protocol was in-
troduced by [8] and has been extensively used to evaluate
biometric and face quality measures [8, 14, 7, 1, 19].

Figure 1 shows the results from applying this protocol to
the IJB-C database. This uses over 33 million image pairs
and 6 QEs. We see that all face-based QEs (solid lines)
perform relatively well. Performance, in terms of FNMR,
improves dramatically when only 5% of the images in the

1PIQUE is the name created by the authors, but the method has recently
been referred to as PIQE.



Figure 1: EvR on the full set of pairs from IJB-C image
dataset.

dataset are rejected. SER-FIQ performs best of the three
face QEs for the high-quality images (right portion of plot),
and FaceQNet also begins to outperform SDD-FIQA in this
region. However, the perceptual QEs fare less well in this
protocol. BRISQUE performs best, and the performance
with NIQE actually degrades, except for the high-quality
region where more than 90% of low-quality images are
dropped. PIQUE performs reasonably well to begin with,
but its performance begins to suffer when between 60-90%
of query images are discarded.

In addition, Figure 1 shows the Ideal case, where images
are dropped from the comparison based on a plausible best-
case scenario. For every subject/identity, we compute the
cosine similarity between all their images. The average of
these similarities describes how closely each image of this
subject is in the feature space, relative to other images of the
same subject. Images are then dropped according to these
average similarity scores.

It is notable that the performance with the Ideal case is
extremely good when only 10% of the worst images are
dropped from the dataset. This implies that there are ac-
tually quite few low-quality images in the IJB-C image
dataset, and that overall dataset performance is governed
by a small fraction of low-quality images.

This protocol requires using the exhaustive set of all pos-
sible pairs of images to obtain an accurate evaluation. We
demonstrate this with the following experiment. We sample
2500 images at random from the 17,474 images in IJB-C
and create all possible pairs among these 2500 images. We
evaluate the EvR protocol for both SER-FIQ and BRISQUE
using this subset. Results are shown in Figure 2(a). We re-
peat the experiment with a different sample of 2500 images
to obtain the results in Figure 2(b). Both results lead to quite
different conclusions, and neither are similar to the perfor-
mance demonstrated in Figure 1.

Therefore, it is critical when evaluating the EvR proto-
col to use the exhaustive set of pairs in a dataset to obtain an
accurate assessment. Unfortunately, this can be prohibitive.
The next commonly implemented protocol reduces the re-
quired number of pairs significantly.

(a) Run 1 (b) Run 2

Figure 2: EvR using random subset of pairs (out of 330
million pairs) leads to incorrect estimation of performance

3.2. Best-Middle-Worst (BMW) Protocol

A second commonly used protocol to evaluate face-
based QE performance we term the “Best-Middle-Worst”
(BMW) performance protocol. In this protocol, we parti-
tion a dataset into three sets based on the quality score, and
then demonstrate that the subsets (ideally) create ordered
performance. This protocol has been used in Face Q-NET,
NIST fingerprint quality. Relative to the EvR protocol, this
protocol requires the use of fewer pairs, because it only con-
siders pairs within each partition.

There are two ways to gain insights from the results of
this protocol for performance analysis. The first is to com-
pare how well all QEs do for their best, middle, and worst
partitions. The second is to compare, for a given QE, its
best, middle, and worst partitions.

Figure 3 shows the performance of the best and worst
subsets, when each subset is chosen according to a partic-
ular QE. Performance for the Ideal case (defined above) is
also shown. For the subset of images chosen as Best, for
each QE, which is shown in Figure 3(a), we see that both
SER-FIQ and SDD-FIQA perform well across all FPR val-
ues, although SER-FIQ outperforms SDD-FIQA at the low-
est FPRs. FaceQNet performs quite well for FPRs greater
than 10−5. Among the three perceptual QEs, BRISQUE
performs reasonably well at choosing the Best subset, and
actually outperforms SDD-FIQA and FaceQNet for the
lowest FPRs. The worst performer is NIQE.

Considering Figure 3(b), which shows the performance
on the subsets that each QE selects as Worst, we see that
SDD-FIQA is most effective, since its chosen Worst sub-
set has the worst performance across the range. Both
BRISQUE and PIQUE perform reasonably well, outper-
forming FaceQNet for the lowest FPRs. The worst per-
former is NIQE.

It is more difficult to meaningfully compare the perfor-
mance across QEs for the middle portion of this protocol,
because the expected performance of this subset should nei-
ther be good nor bad. These results are omitted. Instead, to
view the performance of the Middle subset in context, it
is useful to compare performance across Best, Middle, and
Worst for each QE separately. This is shown in Figure 4 for
the three face QEs, and allows us to observe how well each



(a) Best 33%

(b) Worst 33%

Figure 3: BMW: matching performance on (a) Best, (b)
Worst subsets, across QEs

QE does in rank ordering images of best and worst quality.
In Figure 4(a), we see again that SER-FIQ is highly

effective at separating the best and worst images in the
dataset, with the Middle subset having slightly worse per-
formance than the Best subset. Figure 4(b) demonstrates
that SDD-FIQA is very effective at separating the Best from
the Worst, but at the lowest FPRs its Middle subset actu-
ally has better performance than its Best subset. Figure 4(c)
shows that FaceQNet does partition the sets relatively well,
within itself, but the performance of all subsets is signifi-
cantly less distinct than for the other two face QEs.

Chen et al. [2] proposed a modification on the ba-
sic BMW protocol, in the context of the task of person
re-identification (re-id). Instead of explicitly considering
matching performance on each subset, they evaluate the ro-
bustness of each subset to further degradations. In particu-
lar, they show that the images in the best partition are more
robust to JPEG compression than those in the Middle or
Worst partitions, which could lead to application in real sys-
tem by adjusting compression without compromising task
performance. However, as the image of interest (face image
in our case) gets smaller, the implication of this evaluation
protocol diminishes.

4. Targeted Testing Strategies

In this section, we describe two new evaluation proto-
cols, that serve as examples for a more targeted testing strat-

(a) SER-FIQ

(b) SDD-FIQA

(c) FaceQNet

Figure 4: BMW: matching performance on Best, Middle,
and Worst subsets for three face QEs

egy for face QEs. These new evaluation protocols are es-
sential because the current ones do not provide insights or
information about where a QE is not providing a meaning-
ful score. Our new methods are designed to determine if
a QE is robust to explainable changes to the input image.
A similar strategy has been applied to evaluate perceptual
QEs in [4]. Here, we consider the impact of perturbations
like blur, noise, and JPEG compression, as well as robust-
ness to two different face alignment strategies. We do this
by evaluating each QE over carefully constructed subsets of
face images.

4.1. Adding Targeted Perturbations

We begin by investigating how robust a QE is when
comparing face images under different perturbation types,
across a range of different subjects. Specifically, we con-
sider the binary classification question – can a QE con-
sistently predict when performance degradation happens
across multiple perturbations and across multiple subjects?

We consider 9 types of synthetic perturbations, as de-
tailed and illustrated in Figure 5. We randomly select 100
subjects from the IJB-C image dataset and apply multiple
levels of each perturbation. Each of the perturbed images,



Figure 5: Perturbations used: original, Gaussian noise, salt
& pepper noise (snp), speckle noise, occlusion, blur, bright-
ening, darkening, colored border, JPEG compression (from
left to right)

Figure 6: ROC curve predicting performance degradation

as well as the original image, is then associated with two
performance-related metrics. The first is TPR @ FPR=1e-3
when comparing to every other face image in IJB-C dataset.
The second is the cosine similarity between the perturbed
image and the original image in feature space, which de-
scribes how much the perturbed image deviates from the
original in feature space. The targeted test explores whether
a QE reflects this difference.

To characterize the effectiveness of each quality metric
regarding whether face-matching performance will degrade
(i.e., meaningful degradation), we use an ROC curve. The
results are shown in Figure 6 for each QE considered. We
can see that SER-FIQ outperforms all other QEs, although
SDD-FIQA performs slightly better for the lower FPR. In-
terestingly, FaceQNet performs worst on this evaluation.
PIQUE performs strongly, due to its robustness at accu-
rately predicting perceptual quality given perturbations.

To further explore the performance of the QEs across
perturbation types and subjects, we explore the cosine sim-
ilarity and quality scores for all perturbed images. Figure
7 shows two sample scatterplots, one for SER-FIQ with
randomly imposed color borders, and one for FaceQNet
with JPEG perturbation. Each point corresponds to one per-
turbed image, and we highlight the images of three subjects
with unique color markers. Figure 7-(a) shows that SER-
FIQ is highly responsive to color changes in the borders
of the images. It predicts a strong quality difference even
though the face matcher creates little deviation in the co-
sine similarity. This is known as False Differentiation (FD)
[4], where a QE predicts different quality even when the
actual performance is unchanged. Further, for FaceQNet

the quality score with JPEG varies little despite significant
changes in the cosine similarity. This is known as a False
Tie (FT), where a QE predicts similar quality even when the
actual quality varies significantly. These two situations can
be problematic when an application uses a QE score to take
action, but the score does not reflect actual recognition per-
formance. Note that these targeted tests identify a weakness
even in a QE that performed well using the EvR evaluation
protocol.

(a) SER-FIQ with color border (b) FaceQNet with JPEG

Figure 7: Quality score vs. cosine similarity

4.2. Robustness To Face Alignment Methods

To achieve face matching in a compete system, images
are first processed a face detector and detected faces aligned
before being processed by a matching step. Here, we con-
sider the question: can a QE characterize the impact of
different face alignment methods on face matching perfor-
mance? We align 175 randomly selected images from the
LFW [13] dataset using two different alignment strategies.
One uses the cosine rule and aligns the face so the eye
landmarks are horizontal, and the other uses a similarity
transformation. We ensure that only the alignment strat-
egy varies; in both cases, we use MTCNN face detector to
detect faces and landmarks and use ArcFace with a Mo-
bileFaceNet backbone as our face matcher. The goal is to
examine if the QE scores reflect face matcher performance.

Figure 8 shows results for the two alignment strategies
on the randomly selected images from the LFW dataset
[13], for both SER-FIQ and BRISQUE. The y-axis is the
difference between the QE scores of the two alignments,
and the x-axis is the cosine similarity between the two.
BRISQUE does a poor job predicting the impact of align-
ment, which is not surprising as it is not designed for face
matching. In contrast, SER-FIQ does reasonably well, with
scores that increase as the similarity decreases. However,
if one were to fit a nonlinear monotonic curve to this data,
there would still be significant fitting error, indicating that
this QE could be more effective in this application.

5. Concluding Discussion

In this paper, we reviewed existing evaluation protocols,
such as EvR and BMW, for determining the effectiveness



(a) SER-FIQ (b) BRISQUE

Figure 8: Comparison between two face alignment strate-
gies: change in QE score vs. cosine similarity

of face QEs. We demonstrated an upper bound (ideal case)
for each evaluation protocol, and delineated requirements
for achieving a rigorous comparison. When proven effec-
tive, a QE can be used for real world applications such as
prioritizing available resources to more reliable images, or
increasing human involvement on less reliable images.

However, showing good results in traditional evalua-
tion protocols (e.g., EvR) does not guarantee effectiveness
across meaningful application scenarios. Our proposed tar-
geted tests expose weaknesses even in reasonably effective
QEs, and thus are an important component of evaluating
QEs. Further, this paper has only scratched the surface of
the range of possible targeted testing. There are many ex-
periments can be done to evaluate the robustness of a QE in
different scenarios.

A good quality estimator should handle multiple tasks; in
particular, face matching requires detection, alignment, and
recognition. Most QEs are only designed for and evaluated
on one of these tasks, and the existing face QEs assume an
already detected and aligned face. Further work is required
to develop a QE that is effective across all these tasks.
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