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ABSTRACT

Video analytics systems designed for computer vision
tasks use deep learning models that rely on high-quality input
data to maximize performance. However, in a real-world
system, these inputs are often compressed using video codecs
such as HEVC. Video compression degrades the quality of the
inputs, thereby degrading the performance of these models.
Region-of-interest (ROI) coding enables bits to be allocated to
improve performance; however, the method to select regions
should be computationally simple since it must occur during
or before the video is compressed and transmitted for further
processing. In this paper, we propose a task-aware quad-tree
(TA-QT) partitioning and quantization method to achieve
ROI coding for HEVC and other video coding standards. TA-
QT uses a lightweight edge-based model to guide task-aware
video encoding to improve end-stage video analytics (ESVA)
performance while reducing both bit-rate and encoding time.
We demonstrate the effectiveness of our approach in terms of
(a) the performance of the ESVA on compressed inputs, (b)
transmission bit-rates, and (c) encoding time.

Index Terms— Video analytics, computer vision, deep
learning, HEVC, HM, video compression, task-aware

1. INTRODUCTION

With the advancements in machine learning, many video an-
alytics systems employ deep neural networks for computer
vision tasks. These approaches perform extremely well in
most scenarios provided a large number of high-quality data
samples (ground-truth) are available for training. When these
models are deployed in real-world systems with bandwidth
constraints, they must operate on compressed inputs. Video
codecs like HEVC [1] are used to compress the input video
data on the edge which is then transmitted, decoded, and fi-
nally used by the end-stage video analytics (ESVA). While
compression is required in a video analytics system to reduce
the required transmission bandwidth, it can degrade the per-
formance of the ESVA and incur significant processing time.

The bandwidth utilized in a practical video analytics sys-
tem depends on the degree of compression used. In an ideal
case, the ESVA of such a system (e.g., object detection, seg-
mentation, or tracking) would perform perfectly with minimal
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bandwidth requirements. Although, these analytics are robust
to some degree of compression, severe compression can ham-
per the performance of these task. Video analytics perfor-
mance has been shown to degrade as the compression on the
input data increases, for tasks such as object detection, seg-
mentation, depth estimation [2], pedestrian detection [3], and
person re-identification [4]. We also demonstrate here similar
results for pedestrian and face detection by compressing the
inputs using the reference implementation of HEVC, HM [5].

Deep learning models deployed in video analytics sys-
tems are task-specific. They learn to focus on task-related re-
gions in the input which can be verified using class activation
heatmaps [6]. Hence, task-aware video encoding approaches
are well-suited for practical video analytics. These video en-
coding procedures ensure task-specific regions of the input
have higher quality, do not degrade the ESVA performance,
and reduce bit-rate by severely compressing other regions un-
related to the task. Approaches proposed in [7] and [8] gener-
ate task-aware encodings using perceptual quality metrics like
PSNR and SSIM. More recent approaches [9–11] use class-
activation heat maps [6] from complex fully-trained deep neu-
ral networks to achieve the same.

Unlike previous approaches to task-aware video encod-
ing, modifying the frame partitioning used during encoding
can lead to a simpler yet effective solution. For example, in
HM, a recursive quad-tree (QT) partitioning scheme is used to
decompose the frame into smaller blocks called Coding Units
(CUs) until a QT that optimizes rate-distortion is obtained.
Due to its recursive nature, it constitutes a major portion of
the encoding time. Each CU is then quantized using a fixed
Quantization Parameter (QP) that determines the degree of
compression and also affects the partitioning structure. In our
work, we refer to HM’s frame partitioning and quantization
scheme as HM-QT. HM-QT affects the ESVA performance
and encoding bit-rate, as demonstrated in our experiments.

In this paper, we propose a Task-Aware Quad-Tree (TA-
QT) partitioning and quantization strategy that replaces HM-
QT. Figure 1 demonstrates our overall approach in the con-
text of a practical video analytics system. TA-QT uses pre-
dictions from lightweight edge-based task-specific networks
[12], [13] to generate task-aware QTs in a non-recursive man-
ner. The CU partitioning structure in TA-QT is task-aware
i.e., CUs in regions relevant to the task undergo finer parti-
tioning while CUs in other regions remain unpartitioned. In
addition to this, TA-QT varies the quantization for CUs to en-



Fig. 1. Overview of a practical video analytics system; Our proposed TA-QT component is highlighted in yellow.

sure that task-specific regions always have higher quality and
the other task unrelated regions are compressed more. TA-
QT’s non-recursive task-aware frame partitioning and quanti-
zation helps improve the ESVA performance, save transmis-
sion bit-rate and reduce the video encoding time.

In comparison to the task-aware approaches mentioned
earlier, TA-QT has the following advantages: it relies on a
lightweight network that is computationally less expensive
than using class activation heat maps produced using a sophis-
ticated fully trained network; its partitioning does not require
recursion and is independent of QP; it can be used for both
intra and inter-frame encoding; it can easily be incorporated
into systems performing other ESVA tasks like segmentation
and for upcoming video encoding standards like VVC [14].

In the upcoming sections, we first describe our approach
and its efficacy. Next, we discuss the impact of frame parti-
tioning and quantization during encoding on the ESVA perfor-
mance. Finally, we present experiments for face and pedes-
trian detection that demonstrate TA-QT outperforms HM-QT
in terms of ESVA performance, bit-rate, and encoding time.

2. BACKGROUND

HEVC prescribes an exhaustive and recursive QT frame par-
titioning procedure to optimize the rate distortion trade-off.
The detailed procedure of partitioning the frame into QTs of
Coding Units (CUs), Prediction Units (PUs) and Transform
Units (TUs) is described in [1].

In the HM implementation, CUs are recursively parti-
tioned and a QT that best optimizes the rate distortion is
selected. Next, each CU is quantized based on a fixed QP
(range 0 − 51). We infer from [1] that larger CUs allow for
better compression while smaller CUs improve quality. Thus,
in HM, the recursive partitioning is repeated for each frame
such that at lower QPs, CUs are partitioned finely all the way
down to a size of 8x8 to obtain better quality. As the QP in-
creases, the larger 64x64 CUs that are not partitioned become
more abundant to achieve better compression. HM supports
adapting the QP across frames, but not across individual CUs.

Several approaches [15–17] have been designed with
the goal to replicate HM-QT’s partitioning more efficiently.
However, they focus solely on reducing the complexity of the
partitioning procedure and encoding time, and they do not
consider a subsequent ESVA task after the encoding process.

3. TA-QT PARTITIONING AND QUANTIZATION

Our proposed TA-QT approach generates a recursion-free
task-aware QT for each frame using predictions from lightweight
edge-based networks. These networks are selected such that
they perform the same task as the ESVA with significantly
fewer parameters. TA-QT follows the partitioning principles
prescribed by HEVC [1] to generate task-dependent QTs. It
also assigns task-aware quantization. With these changes,
TA-QT creates task-aware bit-streams that improve ESVA
performance, save transmission bit-rate, and reduce overall
encoding time in video analytics systems.

The CU partitioning for TA-QT is designed to allocate the
most bits to the regions that contain objects, the least number
of bits to background regions that contain no objects, and an
intermediate number of bits to the contextual regions imme-
diately surrounding an object. The latter is motivated by the
observation that these contextual regions improve ESVA per-
formance [18]. As such, TA-QT assigns small CU sizes in
task-dependent regions, medium CU sizes in contextual re-
gions, and large CU sizes in the background regions. Simi-
larly, QPs are assigned based on CU size. The small CUs in
task-specific regions are assigned lower QPs, and larger CUs
are assigned larger QPs. Table 1 summarizes the assignment
of CU size and QP based on content inside each region.

Region Object Context Background
CU Size 8× 8 16× 16, 32× 32 64× 64
QP Range (18-26) (26-38) (42-51)

Table 1. Assignment of CU size and QP based on region

TA-QT also uses the task-aware CU partitions to create
task-aware PU and TU partitions by leveraging the fact that
they have the same root node [1]. Hence, it can also be ap-
plied for inter-frame encoding where the motion vectors and
prediction residuals are estimated only in task-aware regions.

Figure 2 illustrates the partitioning and quantization of
TA-QT and HM-QT on a frame from the KITTI test set. It is
clear from these figures that TA-QT’s partitioning and quanti-
zation is task-aware unlike HM-QT’s i.e., finer CU partitions
only lie in pedestrian regions and these are encoded with a
much higher quality. The other regions not relevant to the
task experience severe blocking artifacts due to unpartitioned
CUs that experience a higher degree of compression.



(a) HEVC-QT
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Fig. 2. Comparison of HM-QT and TA-QT on a cropped
frame from the KITTI dataset.

Thus, in practical video analytics systems, TA-QT achieves
better compression in comparison to HM-QT as follows:

• Finer 8x8 CUs occur in task-aware regions and are quan-
tized with lower QPs (18-26) for better quality. This im-
proves the ESVA performance;

• 16x16 and 32x32 CUs occur in regions with contextual in-
formation. These are not as important as the task-specific
regions and are quantized with slightly higher QPs (26-38)
to achieve a balance between quality and compression;

• 64x64 CUs occur in regions not relevant to the task. They
are quantized with the highest QPs (42-51) to achieve a
significant reduction in bit-rate;

• TA-QT produces more 64x64 CUs; these do not require
partitioning, which also reduces encoding time.

4. EXPERIMENTS

In this section, we first explore the impact of CU partitioning
and quantization on the ESVA performance. Next, we com-
pare TA-QT and HM-QT in terms of Mean Average Precision
(mAP) of the ESVA, encoding bit-rate, and encoding time.

4.1. Experimental Setup
4.1.1. Datasets

We consider pedestrian and face detection as ESVA tasks
to demonstrate TA-QT. For pedestrian detection we use the
KITTI dataset [19], and for face detection we use IJB-C [20].
The KITTI test set containing 30 video sequences is used to
evaluate inter-frame encoding while the IJB-C dataset with
272, 366 images is used to evaluate intra-frame encoding.

4.1.2. Edge-Based Models

TA-QT generates ROI partitions using predictions from edge-
based models. These models are selected to be computa-
tionally lighter, faster and perform the same task as that
of the ESVA networks. For pedestrian detection, we use a

Lightweight Pedestrian Detector (LPD) from [13]. For face
detection, we use RetinaFace-MobileNet0.25 from [12].

The models used have fewer than 3 million parameters
compared to over 25 million parameters for their ESVA coun-
terparts. With fewer parameters, their performance suffers
at higher prediction confidence thresholds; difficult ROIs are
missed which results in them being compressed more than
desired. This degrades the ESVA performance. To ensure no
ROIs are missed, we lower the prediction thresholds for these
models. This does increase the required transmission bit-rate
due to false positives, but it improves overall performance.

4.1.3. TA-QT and HM-QT Encoding

We encode the KITTI and IJB-C dataset with TA-QT and
HM-QT at different bit-rates (QPs). In both cases, we use the
HM reference software. For HM-QT, we encode the datasets
with HM at fixed QPs in the range of 18-51. For TA-QT, we
modify the HM encoder to accept task-aware partitions gen-
erated from the lightweight network predictions. In addition,
four fixed QPs for each CU size are specified while encod-
ing. With these changes, TA-QT creates a task-aware video
encoding using the procedure specified in Section 3.

4.1.4. End-Stage Video Analytics (ESVA)

We apply Yolov4 [21] (27.3M parameters) for pedestrian de-
tection and RetinaFace - ResNet50 [22] (29.3M parameters)
for face detection. Yolov4 is trained on the uncompressed
KITTI training set, and tested on compressed versions of the
KITTI test set. Similarly, RetinaFace-ResNet50 is trained on
WiderFace [23] and tested on compressed versions of IJB-C.

4.2. Effects of Video Compression and Frame Partitions
Although previous results have been presented on the effects
of video compression on learning tasks, the effects of frame
partitioning on these tasks has not been evaluated. Here, we
demonstrate how both compression and frame partitioning af-
fect the performance of the ESVA.

In this experiment, KITTI sequences are encoded with
HM at different fixed QPs and different fixed CU sizes.
Yolov4’s mAP% on these encoded KITTI test sets is shown
in Figure 3. We see that as compression increases with larger
QP, the ESVA performance decreases because the frame qual-
ity degrades. Comparing the different points at each QP in
Figure 3 shows the effect of varying the CU partition size. At
lower QPs, we can reduce the bit-rate without affecting the
mAP%, while at the higher QPs, the mAP% can be markedly
improved by modifying the CU partitioning.

4.3. TA-QT vs HM-QT
Here, we provide experimental evidence that TA-QT outper-
forms HM-QT in terms of ESVA mAP%, transmission bit-
rate, and encoding time, making it more viable in practice.

Figure 4 shows the ESVA performance on the TA-QT and
HM-QT encoded test sets at different bit-rates. Inter-frame



Fig. 3. Pedestrian detection performance of Yolov4 on KITTI
for encodings with fixed QPs and fixed CU partition sizes.

encoding results are shown in Figure 4(a) for pedestrian de-
tection on the KITTI test set, while Figure 4(b) shows the
intra-frame encoding results for face detection on IJB-C.

(a) TA-QT vs. HM-QT; inter-frame encoding on KITTI.

(b) TA-QT vs. HM-QT; intra-frame encoding on IJB-C.

Fig. 4. mAP% vs Bit-rate comparison

The green curve indicates a upper-bound on the perfor-
mance that could be achieved by the ESVA if TA-QT were to
use ground-truth regions from the testsets instead of relying
on network predictions. Compared to HM-QT (pink curve),
there is significant room for ROI-encoding to improve.

The orange curves indicate performance when a light-
weight detector is used identify task-specific regions for TA-

QT, and the blue curves correspond to a more computationally-
complex detector. The dashed lines indicate when these
models operate at a typical detection threshold of 0.5 Inter-
section Over Union (IOU), and the solid lines indicate a lower
threshold of 0.25. Particularly for the inter-frame encoding on
KITTI, using a lower threshold improves performance. This
is because at a higher threshold, difficult ROIs are missed and
therefore compressed heavily, affecting overall performance.
At a lower threshold, more ROIs are identified and overall
ESVA performance is improved. Note that both the detectors
perform noticeably better than HM-QT, but neither achieve
the upper-bound performance, particularly for lower bit-rates.
Using a computationally-complex detector is similar to pre-
vious work in this domain, but is impractical due to the
increased complexity at the encoder. Therefore, our approach
of using lightweight models at the edge is preferred.

Tables 2(a) and 2(b) compare the approaches in terms of
the minimum bit-rate required to achieve a specific mAP %
for each task and the corresponding average encoding time.
We see that TA-QT achieves significant bit-rate savings while
reducing encoding time even with the added requirement of
extracting predictions from a lightweight network.

KITTI, Inter-Encoding

map % Min. Bit-rate (Mbps) Avg. Encoding Time (s)
TA-QT HM-QT TA-QT HM-QT

55 5.38 >11.21 868.24 1421.36
50 2.05 2.71 736.23 1260.33
45 1.02 1.26 656.66 1145.32
40 0.64 0.82 608.43 995.43
35 0.36 0.57 574.33 961.12

(a) TA-QT (LPD @ 0.25) vs HM-QT

IJB-C, Intra-Encoding

mAP % Min. Bit-rate (Mbps) Avg. Encoding Time (s)
TA-QT HM-QT TA-QT HM-QT

65 5.42 >8.3 7.63 15
62.5 1.95 3.12 6.48 12.42
60 1.01 1.58 5.72 9.86

57.5 0.76 0.87 4.46 7.63
55 0.57 0.61 3.98 6.02

(b) TA-QT (MobileNet0.25 @ 0.25) vs HM-QT

Table 2. Comparison of Min. Bit-rate and Avg. Encoding
time to achieve specific mAP % on ESVA.

5. CONCLUSIONS

In this paper, we proposed a novel task-aware partitioning and
quantization scheme in TA-QT that can be incorporated in
practical video analytics systems. TA-QT is free from recur-
sion and independent of QP, unlike HM-QT. Furthermore, it
can be easily adapted for newer video coding standards like
VVC and for other ESVA tasks like tracking. In our experi-
ments, we showed that TA-QT outperforms HM-QT in terms
of ESVA performance, bit-rate savings, and encoding time.
However, improvements are possible in ROI selection, as seen
by the fact that using the ground-truths for partitioning further
improves the bit-rate versus mAP trade-off. Predicting CU
QPs based on bandwidth availability and utilizing inter-frame
CU partitions are other areas where TA-QT can be improved.
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