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Abstract—Although turkey production is important in the
United States, few studies have focused on turkey welfare,
partly because of the lack of non-invasive and automated
techniques for detecting changes in turkey welfare. Disease can
pose major threats to turkey welfare and human health. In this
paper, we propose a novel approach for detecting and tracking
turkeys in video as the first steps to monitor turkey welfare. A
self-trained object detection model is used to identify turkeys
in each frame of the video, and a modified object tracker is
used to predict the location of each turkey in the next frame.
Hand-crafted features are developed to better handle occlusion
and to improve tracking accuracy. Our method demonstrates
promising results when evaluated on a turkey video dataset in
terms of precision, success, and size consistency.
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I. INTRODUCTION

Turkey is a significant source of meat poultry in the
United States. There has yet been little research examin-
ing turkey welfare in spite of the significance of turkey
production. Disease is a main challenge for turkey produc-
tion, which may cause subclinical infections that cannot
be visually observed by animal caretakers. However, re-
searchers have shown that even subclinical illness that cause
inflammation and welfare concerns can be detected using
bird motion in video recordings [1]. As poultry production
increases worldwide, there is a need for accurate, objective,
and automated monitoring of animal welfare on commercial
farms to safeguard animal welfare and detect disease issues
earlier.

The increasing availability of high quality, cost effective
consumer grade cameras enables continuous monitoring
of turkey welfare by creating a permanent record for re-
searchers. However, given the large amount of data collected,
it is not feasible for a trained analyst to manually review and
annotate all video sequences. Leveraging recent advances in
computer vision, we aim to develop video analytics solutions
to monitor turkey behavior change and to identify subclinical
illness caused by heat stress and infection. As the first steps
to monitor turkey welfare from video recordings, we propose
to develop methods to identify and track individual turkeys
in each frame of a video in this work. Our method uses
a combination of an object tracker and a detector based
on the recent success of a discriminative correlation filter
(CSRDCF) [2] and the YOLO detector [3]. The contribution

of our work is reflected in the following aspects: (1) a novel
turkey tracking system, (2) incorporating domain knowledge
to improve tracker accuracy, and (3) a new evaluation metric
to measure bounding box size consistency. Details of the
proposed method are discussed in Section III, followed by
experimental results in Section IV.

II. RELATED WORK

A. Object Tracking

Object tracking aims to track an object or a set of objects
in a sequence of frames [4]. Correlation filter trackers have
shown good performances on various benchmark datasets.
Examples of correlation filter trackers include Kernelized
Correlation Filter Tracker (KCF) [5], Discriminative Corre-
lation Filter Tracker with Channel and Spatial Reliability
(CSRDCF) [2], and Spatially Regularized Correlation Filter
Tracker (SRDCF) [6]. Correlation filter trackers use adaptive
learning filters to get response maps with the estimated
target patches [4]. A new target location is determined by
the location of the maximum response. A correlation filter
tracker is efficient because it takes advantage of the Fourier
domain compared to using time domain convolution [5]. It
has been shown that CSRDCF outperforms other trackers in
noisy environments on the OTB2015 dataset [7]. CSRDCF
introduced a spatial reliability map and channel reliability
weights to constrain filter learning which enlarged the search
region and improved tracking accuracy of non-rectangular
objects [2].

B. Object Detection

Object detection is often used in video analytics to detect
objects of interest in each frame of a video sequence
[8]. It has been shown that fusing object detection with
object tracking can improve the tracker’s success when a
long period of occlusion occurs [9]. State-of-the-art object
detectors include R-CNN [10], Fast R-CNN [11], and YOLO
[12]. R-CNN and Fast R-CNN extract many region proposals
from an input image. Features are extracted from each region
through a large convolutional neural network and used to
assign a class label to each region. YOLO looks at the entire
image and detects objects by dividing it into smaller regions.
Region Proposal Networks, e.g., R-CNN and Fast R-CNN,
require a longer time to generate detection results because an
image is examined many times to generate different regions.



Figure 1: Overview of proposed system to track and detect
individual turkey in each frame of the video.

YOLO generates detection results more quickly because it
evaluates the entire image using a single neural network. In
this paper, we choose to use YOLOv3 [3], third generation
of YOLO, because it is efficient, accurate, and easy to
implement. In the rest of this paper, we will call it YOLO
for conciseness.

C. Monitoring Poultry Welfare using Computer Vision

Recently, computer vision has been applied to different
tasks related with maintaining poultry wellness. The authors
in [13] proposed a method for detecting a malfunctioning
feeding system or drinking line in a broiler house. An auto-
matic approach for detecting broiler lameness was proposed
in [14]. Although these works contributed to improving
broiler wellness, they do not target turkey welfare specif-
ically and do not detect the health-related issues that we are
interested in. Analyzing turkey behavior and interactions is
crucial for understanding turkey welfare, but none of these
previous works accomplished this task.

III. METHODS

Our method consists of an object tracker and detector
as illustrated in Fig. 1. The object tracker is based on
CSRDCF [2], and the object detector is based on YOLO
[3]. The detector is applied to the first frame of the video to
determine the total number of turkeys (N ) in the scene, and
it assigns a unique ID to each turkey. We then initialize N
separate trackers with the predicted bounding boxes from the
detector. In subsequent frames, each tracker is updated per
frame and outputs a predicted bounding box for each turkey.
For every third frame, we apply the detector to update the
bounding boxes.

If occlusion occurs, we find the turkeys that are isolated
and assign updated bounding boxes to them based on the
detector’s output. For turkeys that are either partially or
fully occluded, we keep their previous bounding boxes by
assuming motion consistency across consecutive frames. If
there is no occlusion, we assign new bounding boxes to all
detected turkeys. In addition, we use the HSV color space
information to determine if there is occlusion in a given

frame. Since all turkeys are white in our videos, we use color
to perform foreground background segmentation to separate
the turkeys from the background. After obtaining bounding
boxes for each turkey from the tracker, the detector, or both,
we compare them to bounding boxes from the previous
frame and decide whether the final bounding boxes should
be updated. If the bounding box moves too much between
consecutive frames, we keep the previous bounding box
based on a fixed threshold. Based on the decision, we re-
initialize each tracker with the updated bounding boxes.

A. CSRDCF Tracker

CSRDCF uses channel and spatial reliability for filter
learning. Correlation responses of different feature channels
are computed, and a spatial reliability map is constructed to
predict pixels in the search region that likely belong to the
target [2]. Channel weights are also assigned to each channel
to indicate the discriminative power of an individual feature
channel. Different features contribute differently to the fi-
nal correlation response based on their channel reliability
weights. We modified the default CSRDCF tracker parame-
ters by lowering the filter and weights learning rate. Without
lowering the learning rates, trackers often lose targets when
turkeys get close to the feeding station, which indicates that
the filters are too adaptive for our data. We want the trackers
to focus on the turkeys instead of background objects such
as the feeder and drinker. We lowered the filter learning rate
from 0.02 to 0.004 and lowered the learning rate of channel
reliability weights from 0.02 to 0.005. By lowering the
learning rates, the trackers are more stable when occlusion
occurs or when turkeys move rapidly.

B. YOLO Detector

YOLO divides the entire image into S × S grids and
predicts a number of bounding boxes for each grid. Non
maximum suppression (NMS) is then applied to eliminate
overlapping bounding boxes with an intersection over union
value greater than a set threshold. The feature extractor in
YOLO consists of 53 convolutional layers called Darknet-
53 [3]. Authors of [3] provide convolutional weights that are
pretrained on ImageNet [15].

IV. EXPERIMENTAL RESULTS

We use precision, success, and size-consistency to evalu-
ate and compare the performance of four methods on our
video data: (1) our method that combines the modified
CSRDCF tracker with YOLO, (2) a modified CSRDCF
tracker only, (3) a default CSRDCF tracker with YOLO,
and (4) a default CSRDCF tracker only. Bounding box
information is stored in the format (x, y, w, h), where (x, y)
is the center of the bounding box and (w, h) is the width
and height of the bounding box. The four metric values are
normalized by the resolution of the video.
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Figure 2: Evaluation Results for (a) Precison, (b) Success, and (c) Size-Consistency

A. Dataset

The dataset is composed of long video sequences taken by
SONY Camcorders CX405 cameras at 30FPS. All videos are
taken by researchers in the Department of Animal Sciences
at Purdue University. Videos are taken from a small room
containing five turkeys with feeding and water stations using
an overhead camera placed on the ceiling. The turkeys used
in our experiments are all white commercial turkeys that
have been raised to 20 weeks of age. Turkeys are free
to move around the room. The goal is to observe turkey
behavior from these video sequences to identity potential
welfare issues.

Our customized turkey detector is trained using images
extracted from a 2-minute video sequence. We manually
labeled bounding boxes for all turkeys in 480 frames ex-
tracted from the training video sequence. The set of frames
is divided into 90% training and 10% validation. The model
is trained on a single NVIDIA TITAN Xp GPU with learning
rate set to 0.001. The testing video is a 3-minute video
sequence recorded from the same room with the same setting
as the training data.

B. Precision

Precision is used to measure how well our method per-
forms in predicting the center of each turkey. We adopted
a similar approach to [4]. First, we compute the Euclidean
distance between the predicted bounding box and the ground
truth bounding box as:

di =
√

(xp − xg)2 + (yp − yg)2 , (1)

where (xp, yp) corresponds to the center of predicted bound-
ing box and (xg, yg) corresponds to the center of ground
truth bounding box. We then introduce an indicator function
Θi, which is assigned a value of 1 if di < dth where dth is
the precision threshold. The precision threshold represents
the normalized distance between centers of bounding boxes.
For each turkey, we sum the number of frames over N
total frames, whose spatial difference with the ground truth
bounding box is within the precision threshold. We then

divide the sum by N and multiply by 100 to compute
precision as a percentage.

Since trackers may lose targets and YOLO detector might
not be able to detect all present turkeys, we keep track of
precision for each turkey separately and compute the average
precision score at the end. We expect a higher precision
score from our method at low thresholds compared to other
techniques. From Fig. 2a, we observe that combining the
YOLO detector with our modified CSRDCF tracker outper-
forms the other methods in our dataset. By comparing the
curves of the modified CSRDCF and the original CSRDCF,
we see that changing the parameters greatly increases pre-
cision at lower thresholds. Also, incorporating the YOLO
detector significantly increases precision as shown in Fig. 2a.

C. Success

During tracking, the predicted bounding boxes may cap-
ture more background information than desired even if
the center of each tracked object is accurate. Therefore,
a measurement is needed to tell us how well our method
captures pixels corresponding to each turkey. Similar to
precision, we adopted and modified the method proposed
by [4]. First, we compute the intersection over union (IOU)
between the predicted and the ground truth bounding boxes
as:

αi =
|bp

⋂
bg|

|bp
⋃
bg|

, (2)

where bp is the predicted bounding box and bg is the ground
truth bounding box. Similar to precision, success for each
turkey is computed as the total number of frames over N
frames where αi is greater than αth. αth ranges between 0
and 1, with 1 representing the perfect overlap with ground
truth bounding boxes. The success score is then computed
similarly to the precision score by dividing the total number
of frames that satisfied the condition by N and multiplying
by 100. Finally, we compute the average success score for
the five turkeys in the scene.

The higher the success rate is, the better our prediction
aligns with the ground truth. The goal is to achieve high



success rates at high success thresholds. From Fig. 2b,
we see that YOLO combined with the modified CSRDCF
tracker shows the best performance. By comparing YOLO
with the modified tracker and YOLO with the default tracker,
we see that object detection greatly increases the success
rate. Furthermore, comparing the performance of the default
tracker to the modified tracker we observe that lowering the
learning rate increases the success rate at higher thresholds
for our application.

D. Size-Consistency

In addition to success rate, we also include a measure of
size consistency between the predicted bounding boxes and
the ground truth. When trackers lose targets, the bounding
boxes can become very small or large. However, the centers
of those boxes might not be too far off from the actual
centers of the turkeys. A predicted bounding box can have
a good precision and success score, which means its center
is not far from the ground truth center and the predicted
bounding box has significant overlap with the ground truth.
To further verify that the predicted bounding box does not
contain undesired background pixels, we propose a new
metric which computes the size difference between the
predicted bounding box and the ground truth bounding box
as:

ci = |wp ∗ hp − wg ∗ hg|, (3)

where (wp, hp) is the width and height of the prediction
and (wg, hg) is the width and height of the ground truth
bounding box. Consistency is computed in the same manner
as success other than the definition of the threshold αth.
The threshold represents the normalized spatial average area
difference of the bounding boxes.

We would like to have high consistency scores at low
consistency thresholds, which means the sizes of predicted
boxes are spatially consistent. From Fig. 2c, we see that
YOLO combined with the modified tracker outperforms the
other methods at lower thresholds, which is more desirable
for our task. By comparing the curves, we see that YOLO
greatly increases the consistency at lower thresholds while
the modified tracker slightly increases consistency.

V. CONCLUSION

In this paper, we introduced a novel approach for detecting
and tracking turkeys from video recordings. We fine-tuned
the YOLOv3 detector by training on turkey videos from our
collected data and modified the parameters of the CSRDCF
tracker to adapt to our data. Our method is evaluated on a
turkey video which shows promising results in terms of ac-
curacy and consistency. However, there are several assump-
tions made while implementing our system. We assumed
that turkeys do not move much between two consecutive
frames. We also assumed that the detection results on the
first frame of the video are accurate so that we can use them
to initialize the trackers. Developing an automatic method

for monitoring turkey welfare can greatly reduce the need
for human observers, which is label intensive and error
prone. Our initial results will allow us to analyze turkey
behavior and interactions such as identifying aggressive or
abnormal behaviors, which can indicate negative impact by
environmental factors or diseases.
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