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Abstract—An image quality estimator (QE) can be used to
improve the performance of a system, but only if its scores
are easily interpretable. In this paper, we present software,
entitled ”Stress Testing Image Quality Estimators (STIQE)” that
systematically explores the performance of a QE, with the goal of
enabling users to interpret the QE’s scores. Our software allows
consistent and reproducible benchmarks of new QEs as they are
developed, so the most effective QE for an application can be
chosen. We demonstrate that results produced by the software
provide new insights into hidden aspects of existing QEs.

I. INTRODUCTION

For an image quality estimator (QE) to be useful in any
application, the scores it produces must be interpretable. A
user must be able to take one or two QE scores and draw
correct conclusions about the visual quality of the associated
image(s). Recently, a three-stage testing framework has been
proposed to evaluate how well image and video QEs perform
[1]. The first stage requires no subjective testing and instead
relies on black-box computational tests [2]. Computational
resources are applied to compute QE scores across a variety of
scenarios, to identify situations in which the QE is inadequate.
The second stage consists of small-scale targeted pairwise
subjective tests designed to expose weaknesses in a QE [3],
[4]. Finally the third-stage explores so-called specification-
based subjective tests (SBSTs) [5], [6], [7], [8], [9], namely
subjective tests designed to evaluate whether a QE performs
according to its specifications. Statistical analysis [5] of how
well a QE performs on pre-existing SBSTs has essentially
become mandatory for a new QE. Moreover, there are publicly
available software to analyze SBSTs, including IVQUEST [10]
and the software at [11].

Because significant time and energy are necessary to create
new subjective data, the existing subjective data [5], [6], [7],
[8], [9] is reused repeatedly. Unfortunately, this extensive
use quickly limits its effectiveness for statistical performance
evaluation, due to overuse. Moreover, most existing subjec-
tive databases have been created with specific distortions
that rely on (often hidden) assumptions. For example. JPEG
compression artifacts almost always lie on regular 8x8-block
boundaries. Therefore, while SBSTs are critical and we need
to continue to expand the richness of the data available, relying
on them exclusively is problematic.

Objective methods to assess the efficacy of QEs have been
proposed [2]; however with the exception of [12], they are
rarely incorporated in recent publications on new image QEs.
Therefore, in this paper, we present a software package, written
in Python, that enables researchers to easily incorporate an
objective testing strategy into their design workflow 1. Because

1 A link of the software is provided in:
https://engineering.purdue.edu/VADL/software/QoMEX16/STIQE.zip

TABLE I. SUMMARY OF FR AND NR QES CONSIDERED.

Runtime (sec/image)
QE Type 512 1024 2048
ADM [13] FR 0.146 .062 2.7
FSIM [14] FR 0.34 0.54 1.44
MAD [6] FR 1.52 6.3 29.2
PSNR FR 0.036 0.108 0.4
PSNR-HVS-M [15] FR 2.17 8.9 35
SSIM [16] FR 0.046 0.14 0.66
BIQI [17] NR 0.68 1.06 1.58
BRISQUE [18] NR 0.24 0.49 1.5
CORNIA [19] NR 3.5 4.2 7.8
IL-NIQE [20] NR 9.8 9.8 9.85
NIQE [21] NR 0.3 1.1 5.02

MATLAB functions can be run by this Python program,
the public availability of software will provide consistent
evaluation, reports, and comparisons, enabling meaningful
benchmarks of QE performance. This software can also assist
in comparing among multiple QEs to understand which will
provide the best performance for a given application.

The software stress-tests an image QE, with the goal of
providing answers to three questions about how the QE scores
can be interpreted. These questions are discussed below in
Section II. In addition, we demonstrate the power of the
software by presenting its results for evaluating 6 full-reference
(FR) and 5 no-reference (NR) QEs, which are summarized in
Table I along with their relative execution time for three image
resolutions.

We begin in Section II defining the questions considered by
the software to assist in interpreting a QE’s scores. The overall
software system is described in Section III, including how
distorted images are created. Section IV describes our experi-
ments using the software. Finally, Sections V–VIII describe the
procedures of the software to address the questions in Section
II, including examples that explore existing weaknesses in
recent QEs.

II. INTERPRETING A QE’S SCORES

For a QE to be useful in a real application, the scores it
produces should be interpretable. Our software is designed to
evaluate the interpretability, and therefore the usefulness, of
a QE for several tasks. In particular, the output of our tests
inform a user how well (or how poorly) the QE answers three
simple questions:

Q1: Can the QE score partition a high-quality relatively
undistorted image from a badly-distorted image?

Q2: Does a difference in QE scores between two images
indicate a difference in visual quality?

Q3: Does a greater QE scores for one image than another
correctly predict that the first is better visually?



The latter question is explored within two distinct contexts:

Q3a: Analyzing the performance of a single QE in isolation
Q3b: Analyzing the performance of one QE with respect

to a set of other QEs.

Additional questions that are addressed by our analysis:

• Does the QE become less effective as the image size
increases?

• Is the QE likely to be more effective comparing two
images that have different spatial or different angular
resolution?

Similar tests have been proposed previously to address
these questions [2]; however, no software was provided to
allow a consistent and reproducible comparison across research
groups. Moreover, the reports generated by this software
provide a more comprehensive interpretable summary than the
data summarization in [2].

III. SOFTWARE DESCRIPTION

A. Overview

The software takes a folder of undistorted reference images
and a list of one or more specific image QEs, and computes
a series of tests on the QE using the collection of reference
images, to determine how well it performs. Scores can be
computed for QEs whose algorithms are already included by
the software, or the user can easily add new QEs. Results of the
tests are stored in a large Python dictionary and saved to disk.
A summary report is stored in an Excel file, and graphs are
stored to disk as PNG files. A variety of options are available to
control the analysis; however, default operation will generate
the tests described in this paper.

The software has three main modules: image impairment,
QE computation and statistical analysis. In the image impair-
ment module, the input images are treated as reference images,
and sets of distorted images are created by impairing the ref-
erence images with different distortion types, according to the
specific requirement of each analysis. In the QE computation
module, QE scores are computed for each distorted image.
Finally, the computed QE scores are analyzed in the statistical
analysis module, and results are reported in an excel file.

B. Image distortion method

In the image impairment module, four distortion types are
supported: Gaussian Blur, Gaussian Noise, JPEG compression
and JPEG2000 compression. The strength of each distortion
is controlled by a single parameter, and any level of distortion
can be created. Gaussian blur is generated by convolving a
Gaussian kernel with the reference images, where the variance
of the kernel controls the severity of the distortion. Larger
variance creates a blurrier image. Gaussian noise is generated
by adding Gaussian white noise to the original image where the
distortion severity is controlled by the variance of white noise.
JPEG compression is generated by applying the PIL module
in Python [22] for which the compression quality parameter
controls severity, with 100 indicating the best and 1 the
worst image. For JPEG-2000 compression, we use the Kakadu
software [23], which controls compression rate through the bit-
rate parameter; smaller bit-rate creates more distorted images.

TABLE II. SUMMARY OF TESTING PROCESS, LEVEL 0 CORRESPONDS
TO REFERENCE IMAGE

Test Goal Distortion
Distortion

levels
Performance

Indicator
T1: quality overlap

Q1
separability of
good from bad ALL {0, 50}

fraction of images
in overlap region

Q1

T2: comparable at
equal angle or
equal distance {blur, noise} {0,50} p-value of KS test

Q2
T1: invariance
to pixel shift {JPEG, JP2K} {30}

95th%∆QEmax

after cropping
# monotonic images

T1: monotonicity 80th%∆QEmax

Q3a of each distortion ALL {1,2,.. 50} 80th%∆D levelmax

Q3b

T1: pairwise
agreement with

other QEs ALL {1,2,.. 50}
disagreement rate
with other QEs

IV. EXPERIMENTAL CONDITIONS

We use 60 images 2 , captured from a variety of cameras at
full resolution. One aspect we are particularly interested in, is
how do the different QEs behave as the size of the image
varies. Therefore, for each full-resolution image, we filter
and crop to create versions at 3 spatial resolutions: 512*512,
1024*1024, and 2048*2048 pixels. All four distortions are
introduced into these 60*3 reference images according to the
default operation of the software. By default, the parameters of
each distortion type are chosen to create 50 levels, each with
roughly equal increments of distortion. Level 1 represents the
lightest and 50 represents the most heavily distorted.

The generated distorted images are used to evaluate 6 Full-
reference (FR) and 5 No-reference (NR) QEs summarized
in Table I. These QEs have only minor overlap with the
QEs considered in [2] and contain many QEs that have been
published subsequently.

The collection of testing mechanisms is summarized in
Table II. The first column indicates the basic question being
considered. The second column, ”Test Goal” indicates the
attribute being tested, for example, Q1T1, indicates the degree
to which a QE is able to separate good quality images from
bad. The third column indicates which distortion the test can
effectively be applied to, while the fourth column is the default
distortion levels which are tested. The fifth column indicates
performance indicators assess the QE for the particular ques-
tions and test. For example, Q3aT1blurP1 is the number of
source images for which the QE has monotonic performance
for blur. More detail is provided below.

V. QUESTION 1

A user should be able to rely on scores from a QE to
effectively partition a badly degraded image from a nearly
undegraded image. This is particularly challenging for a no-
reference (NR) QE because it must distinguish desired content
from undesired impairment. This question, “Can the QE score
be used to partition a badly degraded image from a relatively
undistorted image?”, was considered in [2], where tables of
percentiles were created to demonstrate a degree of overlap

2 These 60 reference images can be downloaded at:
https://engineering.purdue.edu/VADL/resources/ref image set/set1.zip



between the two sets of images. In this paper, we quantify
the overlap of the two distributions to characterize the effec-
tiveness of a QE on this question. While a significant amount
of overlap may indicate the QE does not provide adequate
performance, we note that a QE may still be useful even if
there are overlapping scores between undegraded and heavily
degraded images, provided the degree of overlap is known.

To implement this test, the software creates a “badly
distorted” (level-50) distorted image for each distortion type
and each input reference image. The QE scores for these badly
distorted images and the corresponding undegraded images are
all computed. The software finds the minimum and maximum
value of undegraded images, Amin and Amax, and badly
distorted images, Bmin and Bmax. If the QE uses larger value
to represent good quality images, we swap the values of A and
B so the QE direction does not affect the amount of overlap.
Then the overlap is computed by

overlap =
Bmin −Amax

Bmax −Amin
(1)

If this overlap is negative, the scores for the undegraded and
badly-degraded images overlap; the more negative this value,
the greater the overlap. A larger positive overlap shows a
greater distance between high- and low-quality images.

When the input reference images are comprised of versions
with different spatial resolutions, it is also possible to use these
computed QE scores to learn when a QE is effective (or not)
at comparing images of different sizes. Because it is rare for
a description of a QE to describe its scope (including viewing
distance, and spatial size of images it is effective for), this
information can be invaluable to understand how to interpret
a QE’s score.

In the default operation of the software, the strongest (level-
50) blur is chosen such that the width of the filter is a fixed
ratio of the overall spatial resolution of the reference image.
For example, for a 512-image, the variance is 4.06 while for
a 2048-image, the variance is 16.2. Informal subjective tests
indicate that the worst-case blurry images have nearly similar
visual quality when the images are viewed at the same angular
resolution, but the larger image is significantly blurrier than the
smaller image when both are viewed with constant pixel-size
(i.e., when pixels in each image have the same size). Moreover,
in the default operation of the software, the strongest (level-
50) noise is chosen to have identical variance, equal to 60,
independent of the size of the reference image. These worst-
case noisy images appear to have identical visual quality when
viewed at constant pixel-size, but a larger image is significantly
less noisy than a smaller one when both are viewed at the same
viewing angle.

Thus, it is possible to explore whether a QE is more
accurate at comparing two images viewed at identical viewing
angle, or at constant pixel-size, using the objective scores
computed here. We apply the Kolmogorov-Smirnov (KS)
statistical test [24] to identify when two sets of QE scores
are likely to come from the same distribution. The KS test
computes a p-value and a larger p-value between two sizes of
blurry images indicates they are more likely to come from the
same distribution, therefore, that the QE is more effective at
comparing images viewed at the same angular resolution than
the same pixel size. Conversely, a larger p-value between two

Fig. 1. Partition (overlap Q1T1P1) between good images and bad: BRISQUE
[18]. Blue squares: JPEG; red +: blur; yellow o: noise; green triangle: JPEG-
2000, black: undegraded. The largest marker shows 2048 sized, middle sized
is 1024 and smallest is 512.

sizes of noisy images indicates the QE is more effective at
comparing images viewed at the same pixel size than at the
same angular resolution.

Figure 1 demonstrates this for one exemplary QE,
BRISQUE [18]. The cumulative distribution function (CDF)
is shown for fifteen sets of images: the undegraded images of
each of the three resolutions, and the badly-degraded JPEG,
JPEG-2000, noise, and blur distortions for each resolution. The
black symbols on the left denote the undegraded images for
all sizes, and the solid black line on the x-axis demonstrates
the range of QE scores for the undegraded image set.

Several conclusions are immediately apparently. First, the
QE scores for undegraded images vary dramatically whether
they are smaller (512 or 1024) images, or the larger 2048
images. Despite this, there is very little overlap between the
undegraded and the worst-case noisy images, implying the QE
may still be effective in this scenario. Second, among the four
distortion types, the QE scores for noisy and JPEG-compressed
images are relatively independent of image size, while JPEG-
2000 and blur have distinctly different scores for small 512-
sized images relative to larger 1024- or 2048-sized images.
This indicates that BRISQUE is likely to be more effective
when it is used to evaluate images with constant pixel sizes
rather than images with identical viewing angle.

Table III summarizes the software reports for Question 1
for the 11 QEs considered, applied to the 60 reference images
at 3 different spatial resolutions. From the “overlap range
percent” column, corresponding to Eq. (1), it can be seen that
FR QEs clearly partition the good from the bad images (i.e.,
have positive overlap ranges), while all NR QEs are unable to
make a clear partition.

The KS-blur and KS-noise columns show the p-values
from the KS 2-sample test for blur and noise distortions,
respectively, when applied to the 512- and 2048-size images.
As described above, a larger value for KS-blur indicates the
QE is likely to be more effective comparing different sized
images viewed with identical viewing angle, while a larger KS-
noise value indicates it is more effective to compare images
at constant pixel size. Thus we can conclude that among the
FR QEs, ADM, FSIM, and SSIM are all more effective at



TABLE III. QE STATISTICS FOR QUESTION 1.

QE name

Overlap range
percentage
Q1T1P1

Percent of images
in overlap region

Q1T1P2

KS-blur
Q1T2P1

KS-noise
Q1T2P1

ADM +9.6 0.0 0.0 0.0
FSIM +3.5 0.0 0.477 0.0
MAD +42.6 0.0 0.0 0.0
PSNR +98.2 0.0 0.345 0.911
PSNR-HVS-M +100.0 0.0 0.0 0.16
SSIM +2.9 0.0 0.629 0.0
BIQI -48.2 64.2 0.0 0.0
BRISQUE -3.1 1.4 0.0 0.784
CORNIA -10.0 3.6 0.0 0.0
IL-NIQE -5.5 4.1 0.629 0.0
NIQE -5.9 4.0 0.0 0.477

comparing different-sized images with identical viewing angle,
while PSNR, PSNR-HVS-M, and MAD are more effective
for constant pixel size. Similarly, among the NR QEs, IL-
NIQE is unique, in that it will be more effective for identical
viewing angle, while all other NR QEs will be more effective
for constant pixel size.

VI. QUESTION 2

Another aspect of interpreting a QE is to understand “When
does a difference between QE scores indicate a meaningful vi-
sual difference between two images?”. When subjective scores
are also available, this can be measured using the resolving
power, defined as the difference between two QE scores for
which the corresponding subjective-score distributions have
means that are statistically different from each other, typically
at the 0.95 significance value [25].

When evaluating the performance of a QE in the absence
of subjective scores, another approach is needed. Our software
considers the same experiment as was proposed in [2], which
assumes that the QE scores for a set of images that have nearly
identical visual quality should be nearly identical. In particular,
if we have a set of images with nearly identical visual quality,
then the absolute difference between their maximum and
minimum QE scores indicates how much a QE might vary
when evaluating nearly identical images. Any QE variation
smaller than this cannot be meaningfully interpreted as a
difference in visual quality.

To implement this “invariance” test, each reference image
is first impaired by JPEG or JPEG-2000 to produce a mid-
quality (level-30) image. Then the reference image R and the
two impaired images Djpeg and Djp2k are cropped by a total
of 8 pixels in each direction but with 9 different pixel shifts,
to create 9 pairs of (R,Djpeg) and 9 pairs of (R,Djp2k).
All 9 cropped images in each set are visually very similar.
Then the QE scores of these 9 cropped images are computed
and the maximum difference among every 9 pairs of scores,
∆QEmax,i, is recorded to characterize the invariance behavior
of this QE for reference image i. To align with the concept
of 95-%-significance for resolving power, we report the 95-th
percentile of these values. If this difference value is near 0, then
this QE behaves well on the invariance test, and differences in
this QE’s scores are likely to be meaningful.

Table IV demonstrates the performance of each QE.
Columns “Best” and “Worst” indicate the self-reported QE
scores for best- and worst-quality images when available.

TABLE IV. QE STATISTICS FOR QUESTION 2. (OBSERVED BEST AND
WORST VALUES ARE IN PARENTHESES WHEN THE PAPER DOES NOT

INDICATE BEST/WORST.) (Q2T1P1)

QE name Best Worst

JPEG
95%tile of
∆QEmax

JPEG-2000
95%tile of
∆QEmax

ADM 1 0 0.03 0.20
FSIM 1 0 0.0 0.01
MAD 0 (184.66) 5.42 4.67
PSNR ∞ 0 0.26 0.25
PSNR-HVS-M ∞ 0 2.70 0.31
SSIM 1 0 0.01 0.03
BIQI 0 100 23.57 44.40
BRISQUE 0 100 14.20 3.97
CORNIA (-14.84) (113.55) 19.78 17.81
IL-NIQE 0 (145.21) 5.77 9.03
NIQE 0 (22.00) 0.61 1.47

When these values are not available, we report our observed
best- and worst-quality scores in parentheses. Of the FR QEs,
ADM varies by about 20% of its range across images with
visually similar quality. NIQE and IL-NIQE fare the best of
the NR QEs on this test, each with variations less than 7%
of their observed ranges. We note that it is highly likely that
negative values for CORNIA are outside its desired range.

VII. QUESTION 3A: COMPARISON USING ONE QE

In this section, considering only a single QE in isolation,
we explore the question “Does a greater QE scores for one
image than another correctly predict that the first image is
better visually?”. Without subjective tests, this question is
difficult to answer definitively. However, an objective-only
analysis can identify concerns that can be easily verified
with small-scale subjective tests [3]. The basic approach, also
considered by [26], [27], [28], [2], is to explore whether a QE
correctly orders a set of distorted images that have all been
created by applying different severities of the same distortion
to the same reference image.

To implement this “monotonic QE” test, each reference
image is impaired using 50 distortion levels for each distortion
type, where the level-50 image has the greatest distortion.
QE scores are computed for all distorted images. The soft-
ware then identifies, within a single distortion and reference
image, any pairs of images for which the distortion severity
increases but the QE scores denote better quality. Once the
number of reference images with such non-monotonicities are
identified, the software next computes the severities of each
non-monotonicity by computing, for each reference image, the
maximum difference between QE scores and the maximum
difference between distortion levels (as proposed in [2]). A
scatter plot is generated indicating these values, with one point
for each reference image. To easily interpret the scatter plot, a
horizontal line is added to indicate the 80-th percentile of the
maximum difference-level per reference image, and a vertical
line is added to indicate the 80-th percentile of maximum QE-
difference score.

Table V shows the number of reference images (out of 60)
that have fully monotonic behavior for each reference image.
It can be seen that most FR QEs have monotonic behavior for
all distortion types except blur. FSIM has the best monotonic
behavior, and ADM the worst among the FR QEs. However,
because the NR QEs cannot use information from the reference



TABLE V. STATISTICS FOR QUESTION 3A (MONOTONICITY).
NUMBER OF REFERENCE IMAGES FOR WHICH QE DEMONSTRATES FULLY

MONOTONIC BEHAVIOR. (Q3aT1P1)

QE name Noise Blur JPEG JP2K
Size 512 2048 512 2048 512 2048 512 2048
ADM 59 60 0 19 20 28 25 54
FSIM 60 60 60 51 60 55 59 60
MAD 60 60 58 46 50 45 40 53
PSNR 60 60 38 0 60 60 48 60
PSNR-HVS-M 60 60 3 0 51 46 39 60
SSIM 60 59 60 44 59 56 60 60
BIQI 19 20 0 0 4 1 0 0
BRISQUE 51 15 14 6 0 1 0 5
CORNIA 0 0 0 0 0 0 0 0
IL-NIQE 38 0 0 0 0 0 0 0
NIQE 36 36 2 16 0 0 0 0

Fig. 2. Non-Monotonicity results for IL-NIQE with 2048-size images. 80%
of the samples are below the horizontal line, and 80% of the samples are to
the left of the vertical line.

image, they do not have good monotonic behavior. While
BRISQUE and IL-NIQE perform reasonably well on 512-size
noisy images, their performance drops dramatically for larger
images. Finally, we see that CORNIA behaves poorly in this
test, since all references exhibit non-monotonic behavior for
all distortions.

It is possible to reduce the range of distortions over which
this test is applied, to avoid ranges where more distortion
may not monotonically influence quality. For example, a small
amount of added noise is known to increase perceived quality
for lightly blurred images.

From Table V, we see that IL-NIQE behaves non-
monotonically for all 2048-size images. The scatter plot in
Figure 2 explores this further, as described above. Points for
noisy images are near the origin, indicating only minor non-
monotonicities. For blur, many images have small distortion-
level differences but relatively large differences in QE scores.
As described in [2], these images are likely to produce False
Differences (FDs) [25], where the QE scores imply a quality
difference but the distortion-levels imply little difference. For
the JPEG and JPEG-2000 distortions, IL-NIQE has many im-
ages with large distortion-level differences but relatively small
differences in QE scores. These are likely to produce False
Ties (FTs), where the QE scores imply nearly equal quality but
the distortion levels imply a potential large visual difference.
This analysis clearly pinpoints situations that should be tested
subjectively to identify weaknesses in this QE.

TABLE VI. STATISTICS FOR QUESTION 3B, QE DISAGREEMENT
PERCENTAGE (Q3bT1P1)

QE name 512 1024 2048
ADM 13.9 11.0 13.8
FSIM 11.1 9.7 11.2
MAD 11.8 11.0 12.3
PSNR 15.2 15.6 17.5
PSNR-HVS-M 14.8 12.1 13.7
SSIM 11.8 10.3 11.4
BIQI 19.5 16.3 18.4
BRISQUE 15.0 13.6 17.0
CORNIA 16.9 15.1 16.0
IL-NIQE 14.4 16.1 20.7
NIQE 18.6 15.6 17.3

VIII. QUESTION 3B: COMPARISON ACROSS QES

In this section, we consider the same question as in Section
VII, “Does a greater QE scores for one image than another
correctly predict that the first image is better visually?”, by
using a comparison across multiple QEs instead of just using
one QE. With one QE, it is only meaningful to explore
QE scores within the same reference image and the same
distortion. However, comparisons across multiple QEs have
been effectively used in [4], [29], [30] to explore performance
objectively between different reference images and/or different
distortions. We note that, as before, this objective analysis
cannot replace subjective tests for these scenarios, although
it is useful to uncover significant performance concerns.

The same distorted images and their QE scores are used in
this section as were used in Section VII; only the method by
which they are gathered into sets is different. In this test, the
software selects images based on whether they have the same
distortion type or same reference image. The selected images
form an image pool and every two images in the pool are
paired for comparison. After a list of image pairs is generated,
the software computes a preference as to which image of each
pair a given QE predicts has better quality. Preferences are
compared across QEs, and the number of disagreements across
all pairs of images and pairs of QEs is computed. Results are
reported as the percentage of image pairs for which one QE
disagrees with any other QE analyzed. Scatter plots of the
disagreements between each pair of QEs are also generated
(but not shown here).

Table VI shows the percentage of disagreement between
each QE and all of the other 11 QEs, where comparisons
are made between different reference images and different
distortions. It can be seen that FR QEs have significantly less
disagreement with the other QEs than NR QEs do. FSIM
is the QE which agrees best with other QEs, and PSNR is
the FR QE with the most disagreement, especially for the
larger 2048-sized images. Of the NR QEs, IL-NIQE and
BRISQUE perform best on 512-size images, having only
slightly more disagreement than the FR QEs. However, for
larger 2048-size images, IL-NIQE has the most disagreement
of all QEs. While it is important to note that agreement does
not mean correctness (since all QEs could agree with each
other but not characterize human perception), these results
provide additional insight into behavior of these QEs across a
range of image sizes.



IX. CONCLUSIONS

In this paper, we present software STIQE that explores
the performance of image QEs using a series of objective
analyses, with the goal of improving the interpretability of
an individual QE’s scores. The software executes a series of
tests that explore the performance of a single QE in isolation,
as well as compares the performance of one QE relative to
multiple other QEs. A series of reports are created, providing
insight into each QE’s performance, including the answers to
the questions: (a) “Can the QE score be used to partition a
badly degraded image from a relatively undistorted image?”
(b) “Does a greater QE scores for one image than another
correctly predict that the first image is better visually?”, and
(c) “Does a greater QE scores for one image than another
correctly predict that the first image is better visually?”.

We applied the software to analyze 6 FR QEs and 5
NR QEs. One key observation is that image size matters;
performance of these QEs depends on the size of the input
image. This is particularly true for those NR QEs which
have been trained on existing subjective test images. Another
observation is that because the software constructs specific
distorted test images for different-sized images, it is possible to
infer which QEs are likely to be more effective for comparing
different-sized images viewed at identical viewing angle than
at constant pixel size.

For the same set of input images, our software creates con-
sistent performance reports that enable consistent performance
benchmarks for newly designed QEs. However, a user is not
constrained to an existing set of images. New experiments that
may lead to new observations can be easily generated for any
collection of high-quality images.

The current software supplements existing subjective tests
for performance evaluation. We plan to extend the software in
the future to simplify the creation of informative small-scale
subjective tests from the results of the current analysis.
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