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Abstract—Motion-sensor camera traps help collect images of animals
in the wild without intruding upon their native habitat. To obtain key
insights about animal health and population densities, accurate counting,
detection and classification of animals is important. Deep convolution
neural networks perform well on these tasks when the background is
free from dense vegetation, shadows, occlusions and rapid illumination
changes. However, when the camera traps are located in regions with
extremely complex backgrounds, performance of these models degrades
significantly. This is due to the fact that the models learn to focus on
aspects of the image that are unrelated to the animals. In this paper, we
propose a system based on Robust Principal Component Analysis (Robust
PCA) that spatially localizes the animals in the image. This localization
can then be integrated into existing models to improve classification
and detection accuracy. We demonstrate that our system creates better
localizations than those of a pre-trained R3Net.

Index Terms—Camera traps, Deep convolution networks, Robust
Principal Component Analysis, Spatial Attention, Animal localization

I. INTRODUCTION

Continuous monitoring of wildlife ecosystems can collect data to
inform such tasks as understanding animal behavior, determining
their health and estimating their population densities. Motion-based
camera trap systems set up in several national parks around the world
have enabled the collection of a large number of images without
human intervention. With several recent deep-learning techniques,
key insights can be obtained from these images by identifying,
classifying, counting and detecting the animals accurately.

Although camera-trap images can provide valuable information,
there are several challenges that must be overcome when processing
them. Camera traps are extremely sensitive to motion and are often
triggered unnecessarily by moving vegetation or animals moving
behind the camera. They are configured to collect data in bursts over
a short time period, so they may capture images after an animal has
exited the scene. As a result, camera traps often generate many false-
positive or empty images, which are often considered extraneous or
not useful. Animals that are too close or too far from the camera trap
also create difficulties. Examples of difficult scenarios for camera-trap
images have been presented in [1], [2] and [3].

Few data sets are available for research in this domain. Data sets
often come from different geographic regions, with highly disparate
background complexity and types of animals. Each data set tends to
have an heavy bias towards one specific class of species due to the
region from which the data was collected. Two popular camera-trap
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Fig. 1. Difficult scenarios in the Senegal data set. Row-wise from left to right:
Images (1) of a green monkey and (2) of a baboon show the extreme shift
in illumination for the same scene, (3) shows an eagle completely occluded
by a bush, (4) shows a duiker camouflaged in the environment, (5) shows
a leopard too close to the camera and (6) shows only half of the antelope
captured by the camera.

data sets are the Snapshot Serengeti [2] and the Caltech Camera-
Trap (CCT) [3] data sets. Most of the images in these data sets have
relatively simple backgrounds, so many of the animals are clearly
distinct from the background. As a result, deep learning models
perform well on these data sets [4], [5].

In this paper, we consider a data set of camera-trap images col-
lected from Niokolo-Koba National Park in Senegal within a savanna-
woodland environment. The climate is highly seasonal, with one wet
and one dry season per year and each season lasting approximately
six months. Complex backgrounds occur in all our images, making
animal classification more challenging than in [4], [5]. Images contain
dense and occluding vegetation, rapid illumination changes in short
intervals of time, and strong animal camouflages, as shown in Fig.
1. Moreover, the animals that are present are quite distinct from the
other data sets. Due to these challenges, deep-learning models trained
on the Snapshot Serengeti or CCT data sets perform poorly on our
data set. In particular, applying Grad-CAM [6] to visualize the areas
of importance to the deep-learning models makes it evident that they
focused on inappropriate areas such as the dense vegetation and not
the animals.

Our goal is to improve animal localization in camera-trap images
to improve animal identification, counting, and classification. In this
paper, we propose a mechanism to improve the localization of animals
in camera-trap images with complex backgrounds using Robust PCA
[7]. Robust PCA separates a collection, or stack, of images into
background (low-rank matrix) and foreground (sparse matrix) images.
Robust PCA has been applied to camera-trap images with good
success [8]–[11]. However, the challenges described above for our
images from Senegal cause these approaches to produce foreground
images with significant noise and incorrect localizations. Therefore,
we propose a process of selecting a more effective stack of images
to obtain clearer background/foreground partitions and more accurate
animal localizations. Our method creates a collection of images with
consistent illumination conditions that do not contain animals. By



matching an image containing an animal to similar images containing
only background, we obtain significantly improved localizations.

Section II presents related work and Section III details our pro-
posed method. The experimental results in Section IV evaluates
the performance of our method on our data set and compares its
localization results to those of a pre-trained R3Net [12]. Section V
concludes the paper with future work and a discussion.

II. RELATED WORK

Animal classification and detection in camera-trap images has
recently been considered in [4], [5], [13], [14], [15] and [16]. Multi-
task learning is applied to estimate animal counts and poses in [4],
which also demonstrates the potential of applying an animal-presence
classifier to avoid processing empty images. Deep Convolutional
Neural Network (CNN) object detectors were applied for animal
detection in camera-trap images in [17].

Background-foreground separation is an important component of
identifying a region-of-interest in an image to characterize spatial
attention. The separation techniques surveyed in [18] perform well
on surveillance videos. However, Robust PCA is a popular technique
for background-foreground separation for camera-trap images [8]–
[11]. Pre- and post-processing techniques to improve the ability of
Robust PCA to separate foreground and background are in [8].

Robust PCA has been used to find a region of interest in [1];
however they do not evaluate the accuracy of the localization. Our
goal is to create an attention crop similar to those obtained by Spatial
Transformer Networks (STNs) [19]. However, STNs require signifi-
cantly more data for training than is available in our scenario. R3Net
[12] is a recent approach that has shown to generate accurate saliency
maps for spatial attention. Therefore, we evaluate our saliency results
against those generated by a pre-trained R3Net model.

III. PROPOSED SYSTEM

Images captured from the same camera trap share a common
scene and a common viewpoint. Therefore, they contain a significant
amount of information that could improve the detection and localiza-
tion of wild animals. However, in our camera location, significant
illumination changes occur between wet and dry seasons, during
the course of the day, and even within a few minutes. Therefore,
a conventional foreground detector [18] would be insufficient for
identifying the region of the image that contains an animal. In
addition, as described earlier, camera-trap data sets typically have
many false positives. Strong winds, vegetation, animal motion behind
the camera can all trigger the camera trap to capture empty images,
i.e., images with no animals. Our system is designed to take advantage
of the information contained in all the captured images.

Our proposed system takes a camera-trap image, along with a
collection of additional images from the same camera trap, and out-
puts a region-of-interest (or saliency or attention map) describing the
anticipated location of one or more animals in the initial camera-trap
image. Our system has two main components. The first component
operates on the collection of images from the same camera trap to
create a stack of background images “similar to” the initial input
image. The second component applies Robust PCA to the stack of
images that has been augmented with the original image to localize a
region associated with one or more animals in the initial camera-trap
image. This section explains both of these components in detail.

A. Background stack creation

The goal of this component is to identify a stack (or collection)
of background images that are most similar to the image of interest.

Fig. 2. K-Means Clustering Results with K = 5. Each column shows a
sample belonging to a different cluster of daylight images.

All images will have been taken by the same camera trap, but under
different illumination conditions and may contain a variety of animals
in various locations. Images in the background stack ideally contain
no animals and have similar illumination conditions. The background
stack can then be used together with the target image-of-interest to
assist in localization of potential animals in the target image.

There are two main pieces to this component. First, we use a CNN
as animal-presence classifier [4] to determine which images among
the collection are empty (i.e., do not contain at least one animal).
Unlike in previous work [4], however, we do not discard the images
that have been classified as empty. Instead, we create clusters of the
empty images based on illumination conditions. These empty images
can then be used to improve the performance of Robust PCA for
creating the separation between sparse and low-rank matrices.

To cluster the empty images, we first sort the empty images based
on location and time. All images captured between 8PM and 8AM
are gray-scale and form their own cluster. We apply K-means to
create clusters of daylight images with similar illumination. Empty
images are passed through a deep convolution neural network and the
resulting feature vector from the final convolution layer is flattened
and used as input for the K-means clustering. The best results were
obtained by setting K = 5 clusters; the cluster centers are shown in
Fig. 2. These clusters are then used as individual background models
for each of the non-empty image stacks to improve the quality of the
sparse matrix obtained from Robust PCA.

B. Robust PCA

Robust PCA [7] is a powerful technique to separate foreground
objects from the background. It operates on a stack of images or
a video, and iteratively solves a convex program called Principal
Component Pursuit (PCP) [20]. This separates the image stack, M ,
into a low-rank matrix L0 and a sparse matrix S0. The low-rank
matrix contains all the background entities while the sparse matrix
contains noise and foreground objects. There are several algorithms
to solve PCP; the Accelerated Proximal Gradient (APG-Partial)
algorithm has been shown to provide the best separation between
background and foreground for camera-trap images [8].

Pre-processing each image in the stack has been shown to improve
the separation of background and foreground by Robust PCA for
camera-trap images [8]. Following their methodology, we apply a
Gaussian blurring filter to the images followed by computing the
Local Binary Pattern (LBP) to create the image ILBP . We also apply
histogram equalization to create IHE , and combine these using a
weighted average:

IF = a ∗ IHE + b ∗ ILBP (1)

For daylight images we use a = 0.2 and b = 0.8, while for our
nighttime images we use a = 0.4 and b = 0.6.

Finally, the sparse matrix obtained after Robust PCA is post-
processed using strategies similar to [1], [8]. Specifically, we use
thresholding, morphological operations, and contouring to obtain a
region-of-interest crop and final localization.



IV. EXPERIMENTS

While our goal is to improve the accuracy of animal classification
and animal counting in camera-trap images with complex back-
grounds, in the current paper we focus on evaluating the improve-
ments of our localization mechanism described above. We begin this
section by describing our data set and discussing the performance of
our animal-presence classifier. Next, we present localization results to
characterize the impact of selecting different compositions of image
stacks. And finally, we compare our method both qualitatively and
quantitatively to a recently-developed deep-learning saliency detector,
R3Net, using the pre-trained model provided by the authors [12].

A. Senegal camera trap data set

One Bushnell Trophy Cam Aggressor HD and one Reconyx
Hyperfire HC500 camera were mounted at independent locations in
Niokolo-Koba National Park. Our data comprises of 500 bursts of
3 images taken a second apart, capturing 17 distinct animal species.
However, the data set is highly biased as most of the samples are
of baboons. In the 1500 images, about 300 are empty/background
images and about 500 contain baboons.

We created 7 different image stacks, based on lighting conditions.
Given the two locations of our camera traps, we have two stacks
that have weak illumination effects, two with strongest illumination
effects, and two containing night images. The final stack contains
images taken from either early morning or late evening.

B. Animal-Presence Classifier

An animal-presence classifier is essential because camera traps
generate many empty images [4]. Our system uses these empty
images to improve the separation of animal from background. For
our animal-presence classifier, we experiment with 6 different deep
neural network architectures, including Visual Geometry Group Net
(VGG) [21], Inception V3 [22], Residual Networks (ResNet) [23].

For each model, we started with the pre-trained weights for the
ImageNet database [24], but we fine-tuned the final fully-connected
layer of each network using our data and the task of animal-
presence classification. Due to the limited number of images from the
Niokolo-Koba camera-traps, our images were augmented to ensure
large enough, evenly distributed training and test sets. Augmentation
strategies are similar to those applied in [4]. When applied to our
data, each of the 6 architectures achieved an accuracy between 94.7%
and 96.1% on the testing data. Similar to the results in [4], the best
performer was VGG-16 [21], so we chose to use it in our system.

C. Impact of the composition of the image stacks

The ability for Robust PCA to separate a given stack of images
into low-rank and sparse matrices depends heavily on the number of
images in the stack, and how similar they are to one another. Here we
focus on exploring the degree to which performance improves when
we augment a stack containing only animal images with additional
background images taken during the same illumination conditions.

Table I presents the Intersection over Union (IoU) of the local-
ization, comparing the bounding boxes identified by our algorithm
with the ground truth. The first three columns correspond to the case
where the stack contains only images of animals; the second three
are the case where we added five background images. Results are
shown for stack-sizes of 3, 9, and 15 animal images.

Comparing the first 3 columns, we see that if the input to the
Robust PCA is simply the collection of 3 images taken in one burst,
the background-foreground separation is quite poor. Increasing the
length of the stack may or may not improve the localization for

TABLE I
IMPACT OF STACK COMPOSITION ON LOCALIZATION IOU

Stack Animals only Animals and background

Name
Size 3 9 15 3 9 15

Weak-1 58.31 41.36 36 66.33 66.38 65.8
Weak-2 56.57 61.23 59.26 62.35 64.33 64.21
Strong-1 38.34 43.23 46.2 51.3 57.7 64.2
Strong-2 29.92 60.3 56.13 61.26 62.05 66.15
Night-1 63.59 67.5 68.1 65.73 75.83 69.04
Night-2 17.02 58.93 61.2 38.66 59.83 61.73
Twilight 16.01 36.12 55.01 36.63 47.58 65.43
Average 39.96 52.66 54.55 54.66 62.01 65.22

a given condition, but on average the localization does improve
significantly when the stack size increases from 3 to 9, with further
improvement as the stack size increases to 15. This is consistent with
the expectation that with Robust PCA, a greater stack size leads to
better performance.

When we add 5 background images with similar illumination
conditions to each stack of animal images, performance improves
dramatically in all cases. In more than half the conditions, the IoU
is above 60% for 3 animals. Adding more animal images improves
the performance consistently; when we have 15 animal images and
5 background images, the IoU is above 60% for all conditions.

Interestingly, when we compare the cases of Animals-only with 15
images to Animals-plus-background for 9 animal and 5 background
images, we obtain significantly better performance with one fewer
image. Performance is better for every illumination condition, and
average performance increases by over 12%.

D. Comparison between our method and R3Net

Next, we compare the results of our method and that of a pre-
trained R3Net. Here, we stacked the maximum number of background
images possible for each stack to ensure best performance of Robust
PCA. Given the limited size of our dataset, this is between 5 and 14
background images per condition.

Table II and Figure 3 show us both the qualitative and quantitative
results for both methods. Table II indicates the IoU, Precision, and
Recall of the localization. The precision and recall characterize the
ability of a method to correctly detect each animal.

Table II shows that our method consistently maintains an IoU
of nearly 60% with much higher precision and recall, compared to
the pre-trained R3Net. Although R3Net outperforms our network in
certain scenarios, it performs noticeably worse as the illumination
effects become stronger and when more than one animal is present.

Examples can be seen in Figure 3, which shows the region-of-
interest detection results of our method compared to those of R3Net
on samples chosen from stacks Weak-1, Twilight, and Strong-1.
R3Net produces more well-defined saliency maps; for example, the
legs of one animal are visible in the Twilight case. However, it often
identifies the incorrect region of interest. For example, in the Weak-
1 case, it identifies the log as being of interest, but misses several
animals. Our method more accurately identifies the correct region of
interest, although the regions are not pixel-wise accurate.

V. CONCLUSION AND FUTURE WORK

The proposed method in this paper applies background-image
clustering and Robust PCA to localize animals in camera-trap images.
It uses an animal-presence classifier to identify images that contain
no animals. Empty images are clustered based on their background
illumination. After suitable pre-processing, Robust PCA is then



TABLE II
LOCALIZATION RESULTS IN PERCENTAGES

Stack Ours R3Net
IoU Prec. Rec. IoU Prec. Rec.

Weak-1 64.96 93.45 98.21 37.61 77.38 91.49
Weak-2 67.35 64.10 100.00 82.74 100.00 100.00
Strong-1 68.05 100.00 98.15 63.02 85.19 88.98
Strong-2 57.84 79.81 99.44 50.58 70.00 99.44
Night-1 70.97 94.74 100.00 81.77 94.74 100.00
Night-2 65.14 73.91 97.82 64.38 94.57 97.83
Twilight 62.85 95.00 90.63 56.85 82.67 90.90

Fig. 3. Saliency Maps and Region of Interests generated by R3Net and our
method. Column-wise from left to right: a) Ground Truth ROI, b) R3Net
Saliency Map, c) R3Net ROI, d) Our Saliency Map, e) Our ROI. Row-wise
from top to bottom: a) Baboon, b) Buffalo, c) Green monkey

applied to stacks of camera-trap images to separate the background
(low-rank matrix) and foreground (sparse matrix) of the images. Post-
processing transforms the sparse matrix into an attention map.

We demonstrate that our method performs well in the situations
captured by the camera-traps in the savanna-woodlands of Senegal,
where the background is complex and illumination can change
rapidly due to intense sunlight and shadows from the trees. Our
method leverages the empty camera-trap images to provide additional
background images for Robust PCA. Results demonstrate that these
background images are more useful in isolating animals than adding
additional images of animals.

In our future work, we will explore incorporating our identified
region-of-interest into a deep-learning model to obtain improved
performance on all tasks related to camera-trap images with complex
backgrounds, including the tasks of animal detection, classification,
counting, and pose estimation.
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