
978-1-5090-5966-9/16/$31.00 ©2016 IEEE

DashCam Video Compression using Historical Data
Biao Ma and Amy R. Reibman

School of Electrical and Computer Engineering
Purdue University

West Lafayette, Indiana, USA

Abstract—While dashcam videos (DCVs) are used to document
unanticipated situations such as accidents, they are often used to
create a training set for vehicle detection and vehicle behavior
modeling. This requires a substantial volume of stored DCVs.
In this paper, we propose a system that effectively compresses
these DCVs by taking advantage of existing historical data.
First, our video retrieval and alignment preprocessors construct
a reference video for a new DCV based on GPS information
and ORB (Oriented FAST and Rotated BRIEF) features. The
3D-HEVC encoder jointly compresses these two videos. Our
illumination matching algorithm makes the system robust over
different illumination conditions. Our system reduces the bit-
rate around 30% when tested over 80 sequences and 3 different
scenarios: highway, boulevard and downtown.

Index Terms—Dashcam video, video compression, 3D-HEVC

I. INTRODUCTION

Dashcams, the in-vehicle cameras mounted on dashboards,
are designed to record videos that can provide evidence about
traffic accidents. As a part of intelligent vehicle research, data-
driven approaches [1], [2] use dashcam videos (DCVs) as
training samples to detect vehicles or model vehicle behavior.
However, to model complex traffic and vehicle behavior,
a substantial amount of DCVs is necessary; these can be
collected by vehicle-video-sharing [3] or vehicle-to-broadband
cloud (V2B) platforms [4]. For these platforms, an effective
DCV compression approach is desired. Our work addresses
this problem while other vehicle video compression techniques
[5], [6] mainly focus on on-road surveillance videos rather than
DCVs.

When a vehicle travels the same route on two occasions,
the two DCVs contain both static objects and new or moving
objects. Because vehicles may have the same location in
different DCVs, the static objects may be similar, which makes
the corresponding frames highly correlated. As a result, instead
of compressing these videos separately, it is reasonable to
consider compressing correlated videos jointly.

Recently, multi-view video coding tools (MV-HEVC and
3D-HEVC) [7] have been designed for efficiently encoding
multi-view videos. Multi-view videos are videos that are
recorded simultaneously by different cameras. DCVs are not
multi-view videos, so it is difficult to use MV-HEVC or
3D-HEVC directly. First, unlike in multi-view videos, static
objects in DCVs may be recorded under different illumination
and the relative viewpoints of different DCVs may not be
fixed. Second, users may drive at a different speed, so the
corresponding frames will not match temporally. Our goal is to
take advantage of the existing framework of MV-HEVC/3D-

HEVC as much as possible, by applying several preproces-
sors to create a specific sequence that matches illumination
condition and contents across the timeline for the video to
be encoded. Specifically, there are two tasks: finding related
video pairs and finding their temporal relationships.

There is little research that considers these two tasks ap-
plied to dashcam videos. However, recent research in near
duplicated videos (NDVs) can provide some useful ideas for
both two tasks. NDVs [8] are generated by replicating or
editing a video in different ways, such as changing frame
order, using different compression parameters or modifying
image scales. Most work on NDVs [9]–[12] concentrate on
key-frame-based video retrievals. Given the results, not only
is a matched video found but also a general timeline alignment
can be created. This is because the changes between key-
frames are based on temporal resampling, such as equally-
spaced sampling (e.g. halving or doubling the frame rate).
These research apply global features [9], [10] or quantized
local features [11], [12] to achieve fast retrieval. In addition,
video compression of NDVs [12] shows that a light regulator
and homographic transformations performs well for NDVs.

However, the contents of DCVs vary due to the changing ve-
hicle speed, weather conditions and driving routes. As a result,
unlike the relationship between NDVs, the correspondence
between two DCVs cannot be modeled using regular temporal
resamplings. Thus, key-frame-based algorithms cannot provide
an accurate timeline alignment. Also, DCVs can be difficult
to distinguish temporally since many similar on-road scenes
do not have distinguishing features. So global features or
quantized local features cannot provide a confident video
retrieval. For these two reasons, the approach in [12] does
not perform well when compressing DCVs.

Instead of using local features, some algorithms for video
alignment or video synchronization provide different ideas for
timeline alignment. [13], [14] are based on image intensity
and use heavily downsampled images as the descriptors to
save computations. This enables the application of global
optimization algorithms. In [13], a dynamic Bayesian network
is used to find an optimal correspondence relationship between
frames. [14] tries to find the relationship by minimizing the
cost function based on image difference.

Note that [13], [14] are based on a strong condition that
the relative viewing angle between different videos cannot
be too large and the vehicle must maintain the same lane.
When this is not satisfied, experimental results demonstrate
our system has significantly improved compression efficiency
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Fig. 1: Generation of the baseline video

Fig. 2: Our proposed DCV compression system

relative to the matching algorithm in [14]. Further, we have
a different goal. [13] uses an interval containing 3 to 6
frames to measure the goodness of each matching result. If
the matching result falls into the interval, it is considered a
true correspondence. However, we are interested in finding an
exact frame correspondence that gives the highest compression
efficiency.

To compress DCVs, we propose a video retrieval and
alignment system based on ORB (Oriented FAST and Ro-
tated BRIEF) [15]. In the next section, the global system is
illustrated. A GPS-based video retrieval model and an ORB-
based video alignment preprocessor are proposed in section III.
Also, the illumination model based on 3D-HEVC and a novel
illumination matching algorithm are described. Experimental
results are shown and analyzed in section IV. Finally, we will
conclude our work in section V.

II. SYSTEM DESCRIPTION

The general idea of our system is to assemble a set of
frames (called the “baseline”) from a collection of previously
encoded videos (the “historical data”) so the baseline can be
used to effectively predict the current video (See Fig. 1). The
content of baseline frames should match the current frame as
much as possible. Instead of being aligned at a pixel level,
the corresponding frames only need to have objects of nearly
similar scales.

The whole structure of our system is shown in Fig. 2.
The two preprocessors, video retrieval and video alignment,
are applied to identify correlations between DCVs. The video
retrieval preprocessor is based on GPS information provided
by the dashcam. Searching in the database, it identifies refer-
ence video sequences that have identical location and similar
illumination condition as the current video. Given the param-
eters (the video index and frame interval) of the reference
video sequence, the video alignment preprocessor produces
the baseline video which corresponds on a frame-by-frame
basis with the initial incoming video. Then, the system uses a
3D-HEVC encoder to jointly encode the baseline and current
video. Finally, side information generated by video alignment

Fig. 3: The Video Retrieval Preprocessor

preprocessor, the GPS information and the compressed bit-
stream of the current video are stored. The decoder accesses
the same database.

The 3D-HEVC encoder assumes the videos in both views
share a common timeline, and enables predictions between
frames that are at the same time instances. In our case, the
baseline is view 0 and the current video is encoded as view 1
using inter or intra predictions and interview predictions. We
apply 3D-HEVC in our system, so that we can take advantage
of its illumination compensation algorithm.

III. PROPOSED DCV COMPRESSION METHOD

In this section, we describe in detail our two preprocessors:
video retrieval and video alignment.
A. Video Retrieval

Our video retrieval pre-processor selects the best reference
video. First, the GPS-based retrieval finds all videos for the
same route. Then our illumination algorithm searches for the
best reference for the 3D-HEVC illumination compensation
model.

1) GPS-based Retrieval: The video retrieval preprocessor
shown in Fig. 3 uses the GPS information that was recorded
along with the current video to query within the database for
reference video sequences that have similar physical locations.
Our database is based on a local map divided into several
geographic regions, which allows multi-thread computations.
The size of every region is 4 km2 as suggested by [16]. When
new videos are captured, their GPS information is extracted
on a per-second basis and segmented based on the geographic
regions. For all the GPS information in each region, we search
the matching sequences amid the database.

2) Illumination Matching: Methods based on GPS or local
features cannot provide any information about the illumination
conditions which can dramatically influence the color appear-
ance of the objects. Consequently, block matching may not
find an effective result among the outputs of the GPS-based
retrieval. To solve this problem, we adopt two methods.

First, we adopt an illumination compensation method.
3D-HEVC includes a block-based illumination compensation
model [17] which uses a scale parameter and an offset pa-
rameter to compensate the reference block. These parameters
are calculated using the rows and the columns just before the
reference and current blocks. However, the block matching
algorithm is prior to the compensation. When the illumination
difference is large, there is a high probability that objects are
mismatched during this compensation. These mismatchings
have the minimum displaced frame difference (DFD). How-
ever, in these cases, illumination compensation is unlikely to
further reduce the displaced frame difference. As a result, the
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Fig. 4: The Video Alignment Preprocessor

compensation model in 3D-HEVC only works well when the
illumination difference is small.

Because our application creates videos that may have
significantly different illumination conditions, applying only
the 3D-HEVC illumination compensation algorithm is not
very effective. Therefore, secondly, we design an illumination
matching algorithm, applied prior to 3D-HEVC compression,
to leverage its illumination compensation algorithm.

For the trip in each region, there are likely to be multiple
outputs for the GPS-based retrieval if there are several histori-
cal videos. Based on these outputs, our illumination matching
algorithm narrows the results down to a single matched video.
It uses global features to identify a reference video with
the most similar illumination conditions to the current video.
For convenience, we demonstrate our algorithm within one
geographic region.

We assume the current video has matching locations with
several videos stored in the database since our compression
system is based on a continually growing database. Since these
videos are captured at the same location, the reflectivity of
each immobile object’s surface is approximately unchanged.
Similar illumination conditions produce similar color distribu-
tions, so a feature based on color distributions is useful.

We adopt the statistical mean and the contrast feature
proposed in [18] as the descriptor. It is calculated as:

C = �/(↵4)
1
4

where � is the standard deviation and ↵4 is the fourth moment
of the pixel values.

To incorporate the geometric information of the light in-
tensity, each frame is equally divided into four quadrants.
Frames are divided into upper and lower quadrants to eliminate
the influence of the clouds and sun, since the clouds and
sun only appear in the sky. Frames are divided into left
and right quadrants to separately describe the position of
shadows and sun. The average statistic histogram of every
quadrant is calculated over 300 frames. Then the feature of
this sequence is constructed using the mean and the contrast
of every quadrant.
B. Video Alignment

As shown in Fig. 1, once a single matching video has been
selected, we need to complete a timeline alignment which
ensures every frame in the current video is matched with a
historical frame (chosen from the reference sequence) that is
the best reference for it. Fig. 4 shows the video alignment
preprocessor. It uses a point-wise frame matching algorithm
based on ORB [15] to complete a precise timeline alignment.
Using the frame indexes of the matching procedure and the
decoded reference video, the baseline video is constructed.

Some earlier works also applied local-feature-based homo-
graphic transformations on the matching frames, which we
show here is not effective for our application.

1) Timeline Alignment: Since the GPS only can provide 1
Hz location information for DCVs, the local visual feature is
used to construct a matching sequence that precisely aligns
with the current video temporally.

Our goal is to find a reference frame that gives the highest
compression rate for the current frame. To achieve this, the
objects’ scale in the reference frame should be similar to the
ones in the current frame. We use the number of matching
points between two frames to measure their scale similarity.
In the GPS and illumination matched video, the frame that
has the most matching points is selected to be the reference
frame for a current frame. This is because when similar scale is
achieved, the resolution is similar. And key-points are matched
only when the resolution is similar. The more area has similar
scale, the more matching points the image pair has.

However, not all local features are equally effective. Large-
patch-based local features such as ORB have higher accuracy.
Scale-invariant features have lower accuracy, such as SIFT
[19]. Although scale-invariance increases features’ robustness,
it also increases the number of matching points that have
dissimilar scale. Thus, we select the ORB feature since it has
a larger patch-size and is not completely scale-invariant [15].
We use RANSAC [20] to remove unstable matches.

The timeline alignment need not be real-time in our ap-
plication. Our system can first compress the incoming video
with low QP using standard HEVC. All preprocessings and
the joint encoding process can be finished offline, which also
enables our algorithm to be applied when many options with
similar illumination are available.

2) Image Alignment: To reduce the bit-rate of compressing
one NDV using another, [12], [21] align matching frames at
the pixel level using one or more homographic transforma-
tions, with the goal of reducing both the motion vectors and the
displaced frame difference (DFD). However, our performance
results shown below demonstrate that this approach usually
decreases the performance of our system by about 4%. The
estimation of the transformation is strongly influenced by local
feature matching and tends to be inaccurate for DCVs. Instead,
to reduce the DFD, it is more important that as many objects
as possible have the same scale in each frame; this is ensured
by our timeline alignment and does not require a homographic
transformations.

IV. EXPERIMENTS AND RESULTS
A. Experimental setup

To test our system, we built a DCV database that contains 80
videos recorded in 3 scenarios: boulevard (24 videos), highway
(35 videos) and downtown (21 videos). Videos of the same
scenario were captured under 4 illumination conditions: cloudy
days, and clear days’ morning, noon and afternoon. All of the
DCVs are recorded by KDLINKS X1 Digital Recorder with
resolution 1920⇥ 1080.

We process each video with the video retrieval and align-
ment preprocessors. To show the compression results, we
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Fig. 5: The bit-saving across sequences

use 300 frames of each output video of the video retrieval
preprocessor. Each video is predicted using one historical
video which is chosen by our illumination matching algorithm.
To encode the DCVs, we use the version of 16.7 of test model
of HEVC [22] and its 3D extension [23]. We encode each
video using quantization parameters, 30, 35, 40, 45, and use
BD-rate [24] to quantify the results.

The 80 videos are divided into 2 test sets. Test set I includes
videos recorded on different days (21 videos for boulevard, 31
videos for highway and 17 videos for downtown). Test set II
includes the remaining video pairs recorded at times that differ
by an only few minutes. This ensures that the road-side objects
and illumination condition are nearly identical.

B. Performance of our system
Compared to standard HEVC, the performance of our sys-

tem over test set II are 62.7% (downtown), 65.0% (highway)
and 53.4% (boulevard). Since the difference between the
reference video and current video are minimum, this is the
upper-bound performance.

Fig. 5 shows the performance of our system under dif-
ferent scenarios using test set I. The x-axis represents the
percentage of bit-saving in BD-rate. Every point in this figure
represents the fraction of sequences on which our system
does not exceed the corresponding percentage of bit-saving.
Performance improves to the right. It shows that our algorithm
performs well in all three scenarios, although it performs
better in the downtown and highway scenario than in the
boulevard scenario. The average amount of bit-saving for
the downtown, highway and boulevard scenarios are 39.7%,
31.8% and 23.5% respectively. The downtown scenario has the
highest performance because it is insensitive to illumination
conditions. It has small sky area and a regular shadow shape,
which is easy for the illumination compensation module. The
boulevard scenario has the lowest performance. It is more
sensitive to illumination conditions and has a large sky area
like the highway scenario and a more complex shadow. It
requires more videos to construct a dense database so that the
best reference video can have a similar enough illumination
condition to the current video.

Fig. 6 shows the average performance of our system for each
type of frame using all videos. Here the subscript denotes the
distance away from the reference frame in the current view.
The average efficiency for P, B8, B4, B2 and B1 frames are
48.1%, 41.5%, 32.9%, 18.6% and 6.0%. The further the frame
is away from the reference frame in the current video, the
higher the compression efficiency. This is because for those

Fig. 6: The bit-saving based on distance to reference

frames far away from the reference frame in the current video,
the aligned reference frame in baseline can provide a better
prediction. However, if the timeline alignment is not optimal,
the compression efficiency will decrease correspondingly.

C. Comparison to other methods
In Fig. 5, we also present the performance using SeqSLAM

[14], which uses image intensity for timeline alignment. Its av-
erage performance for the downtown, highway and boulevard
scenarios are 35.1%, 25.5% and 16.7%. The main reason that
our algorithm outperforms SeqSLAM is that we have different
definitions of “best matching”. We define the best matching
frame to be the one with the most similar scale as the current
frame. SeqSLAM chooses the frame that has the smallest
difference to the current frame as the optimal one. These
two approaches are the same only if the difference between
viewing angles is quite small. In Fig. 5, our algorithm is
much better than SeqSLAM when the compression efficiency
is lower. This is because the strong assumption in SeqSLAM is
not satisfied in these cases because the viewing angles are not
quite similar. Although our algorithm also cannot achieve high
performance in these cases, it is more powerful than SeqSLAM
when viewing angles are not quite similar. For cases which
have similar viewing angles, our algorithm and SeqSLAM
both have high and similar compression efficiency. SeqSLAM
performs as well as our algorithm for only 3 sequences in test
set I, although the upper-bound performance on test set II are
nearly identical.

Fig. 7a and Fig. 7b show the timeline alignment results of
our algorithm and SeqSLAM on a sample sequence from the
highway scenario. In this sequence, the viewing angles are a
little different, which makes the result of SeqSLAM unstable.
This also causes the two algorithms to have quite different
results. We take the difference of these two matching results
and plot the distribution in Fig. 7c. Among 300 frames, around
50% of frames have more than a 4 frames difference. And
around 20% of frames have more than a 20 frames difference.
Note that 4 frames is already a large distance for video
compression. Because the timeline alignment of SeqSLAM
is not optimal, its compression efficiency is lower than ours.

Figs. 7d to 7f show an example of matching frames for
a P-frame. The frame selected by our algorithm shares the
same scale across most of the frame, while the frame selected
by SeqSLAM matches well only on the left side of the frame.
Large differences appear on the right side, which requires more
bits for the DFD. For this sequence, our algorithm achieves
29.4% average compression improvement while SeqSLAM
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(a) SeqSLAM Matching Result (d) SeqSLAM Result Example

(b) Our Matching Result (e) Example of Current Frame

(c) Matching Difference (f) Our Result Example

Fig. 7: Matching Results of SeqSLAM and Our algorithm

achieves 21.0%. For this specific frame, our algorithm achieves
a 49.7% savings while SeqSLAM only achieves 37.1%.

If we use homographic transformations discussed in section
III-B2, the performance of our system decreases 4.2% (down-
town), 4.7% (highway) and 2.2% (boulevard) while SeqSLAM
decreases 2.7%, 2.9% and 1.0%. The inaccurate matches of
SeqSLAM are less affected by the homographic transform than
our more accurate matches are.

V. CONCLUSION
In this work, we construct a DCV compression system that

takes advantages of the historical data recorded from previous
trips on the same route. The video retrieval and alignment
preprocessors we design to construct a reference video using
the historical data enables us to leverage the power of the
3D-HEVC standard. Our experiments show that significant
compression improvements are achieved when DCVs are
jointly compressed with a carefully-formed reference video.
On average, we achieve around 30% bit-rate savings.

While we described the system assuming it would be used
by a single vehicle, driving repeated routes on different days,
our compression framework is also relevant for multiple-
vehicle systems. For example, it can be used by a bus company
to archive DCVs on a regular route.

We will continue to refine the preprocessors to improve
system efficiency. For example, we will add adaptive models
to decide which part of the video is necessary to be processed
in order to save more computations. We also consider im-
provements to the illumination compensation model to make
it effective across a broad range of conditions.
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