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Abstract—Food safety is affected by the conditions and prac-
tices during different manufacturing steps to prevent contamina-
tion and food-borne illnesses. In this paper, we focus on detecting
hand-hygiene actions in Egocentric videos. We create a two-stage
system to localize and recognize all the hand-hygiene actions in
each untrimmed video. In the first stage, we apply a low-cost hand
mask and motion histogram features to localize the temporal
regions of hand-hygiene actions. In the second stage, we use the
two-stream network model combined with a search algorithm to
recognize all types of hand-hygiene actions that happen in the
untrimmed video. The system achieves a detection accuracy close
to 80% on our dataset with 100 participants.

Index Terms—egocentric video, activity recognition, deep
learning, temporal segmentation

I. INTRODUCTION
Food safety focuses on the implementation of conditions

and practices to prevent contamination and food-borne ill-
nesses at different stages of food production. In recent years
the burden of outbreaks of food-borne illnesses has increased.
Evidence suggest that one of the main causes of contamination
on the food production chain is inappropriate food handling
practices by workers and consumers [1]. For food handlers em-
ployed in this industry, the application of good manufacturing
practices (GMPs) is critical. For instance, hand washing is one
of the most efficient steps to prevent contaminating food with
human pathogens. According to World Health Organization,
there are 12 steps for effective hand-hygiene with soap and
water [2]. These techniques include but are not limited to:
rinse hands, apply soap, rub hands with different poses, and
dry hands.

Egocentric video is recorded by mounting wearable cameras
on human body. This video type contains rich body and camera
motion. In recent years, the study of egocentric video on
personal living activities has become popular. Pirsiavash et al.
[3] investigated egocentric videos of daily living. These videos
are recorded with wearable cameras and represent a person’s
daily activities, such as eating and working inside home. The
video content usually contains hand/object interactions, and
the video is usually varied in length and includes multiple
objects.

In this paper, we focus on classification of hand-hygiene
actions from egocentric videos. Compared to the existing
egocentric videos in the daily living categories [3], egocentric
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recording of hand-hygiene actions provides richer details of
the subtle motions of hands [2] and lack hand/object interac-
tions. This is because the standard procedure of hand washing
requires people not to touch any objects other than soap or
towel.

Due to the absence of publicly available data for hand-
hygiene, we introduce our new hand hygiene-egocentric
dataset, which consists of 100 polled participants. We design
a two-stage system to localize the temporal regions of hand-
hygiene actions and recognize them in untrimmed hand-
hygiene videos. In the first stage, we extract a low-cost hand
mask and motion histogram feature, and process the entire
video to localize temporal regions which contain potential
hand-hygiene actions. In the second stage, we use the temporal
regions detected from the first stage as input. In this stage,
we apply a two-stream network model combined with our
searching algorithm to recognize all hand-hygiene actions that
happen in the input untrimmed video.

In Section 2, we introduce previous work on activity recog-
nition, deep learning, and egocentric videos. In Section 3, we
introduce our new hand-hygiene egocentric dataset. In Section
4, we describe our rationale for the two-stage system design.
In Section 5, we apply two-stream network model for trimmed
hand-hygiene video classification, and in Section 6, we explain
the implementation details of the two-stage system.

II. RELATED WORK
Activity recognition is an important research area in com-

puter vision. Traditionally, researchers search through the spa-
tial and temporal dimensions to build representative features
of the video and then apply machine learning algorithms
for recognition. Features such as STIP [4], HOG [5], HOF
and MBH [6] have proved their effectiveness in recognizing
human activities viewed from the third-person. Wang et al.
[7] propose the Improved Dense Trajectory (IDT) algorithm
that combines HOG, HOF, MBH features and achieves the
state-of-art in many third-person datasets.

In recent years, deep learning methods are widely used to
solve activity recognition problems. Deep learning structures
like AlexNet [8], VGG Net [9] and ResNet [10] take single
images as inputs for image classification. Other structures
such as LSTM [11], two-stream network [12] and C3D [13]
consider both spatial and temporal information from video
frames for activity recognition.

In addition, many researchers focus on recognizing activities
in egocentric videos. Singh et al. [14] consider hand poses and978-1-7281-1817-8/19/$31.00 ©2019 IEEE



optical flow information as important features. By constructing
a EgoConvnet with a few layers which takes a stack of
hand masks, head motion and saliency maps as inputs and
further fuses with two stream network, they achieve promising
detection accuracy. Ma et al. [15] propose to use appearance
and motion information for egocentric activity recognition.
They believe that the object and hand interaction area provide
crucial appearance information, and they construct networks
to locate this area.

However, all of the egocentric video research focuses on
testing on the same category of daily living videos [3] [16]
[17]. The majority of the content in these videos involves
participant’s hands interacting with various objects. We believe
none of these researches discuss egocentric video that focuses
on hand motion only, as we do.

III. HAND-HYGIENE EGOCENTRIC DATASET

A. Data recording procedures
Many publicly available egocentric datasets involve only a

few participants and the recording environments are usually
inside each participant’s home apartment, especially for daily
activity videos. For our hand-hygiene actions, the cooking
tools or food in a home kitchen environment depend on the
specific kitchen and most of them should not appear in a
standard industrial food handling factory. Moreover, every
participant has his/her own style of hand-hygiene actions. In-
volving only few participants recording hand-hygiene actions
multiple times could easily result in too much the similarity
in video content.

To ensure our dataset includes enough variations of hand-
hygiene action samples, we invited 100 participants of various
ages and races to record their hand-hygiene actions. All
participants are allowed to wear watches and jewelries on their
wrists. Each person is recorded twice, once in each of two
adjacent public restrooms. Both of these rooms have similar
environments.

Each participant is asked to wear a GoPro camera with
a harness on his/her chest for recording. We record two
videos from each participant. In the beginning, a participant
performs a naive hand washing, following his/her typical hand
washing habit in the first room. After finishing the first hand
washing, we ask the participant to read instructions for hand-
hygiene [2]. When he/she finishes reading, the participant
records another hand washing in the second room. All videos
are recorded under 1080p resolution with 30 FPS and wide
viewing angle. To increase processing speed, we further down-
sampled these videos to 480× 270 resolution.

B. Hand-hygiene action definition
We define salient hand-hygiene action classes which can

reflect hand washing quality. A subject should not touch
the faucet with their hands, to avoid re-contamination [2].
Therefore, we need to distinguish whether the subject touched
the faucet with hand or with an elbow. Moreover, it is also
important to detect the strength used to rub hands. We enable
this by labelling an action of rinse hand, where the subject
rubs hands with little strength. Furthermore, the subject should

(a) (b) (c) (d)

(e) (f) (g) (h)
Fig. 1: (a) touch faucet with elbow (b) touch faucet with hand
(c) rinse hands (d) rub hands without water (e) rub hands with
water (f) apply soap (g) dry hands with paper towel (h) non-
hand hygiene action

apply soap before hand washing and dry their hands after
hand washing. When soap is applied, the subject needs to rub
hands without keeping their hands in water. Based on these
principles, we define and label 8 actions as indicated in Figure
1, which are: touch faucet with elbow, touch faucet with hand,
rinse hands, rub hands without water, rub hands with water,
apply soap, dry hands, and a background non-hygiene action.
All 8 actions are manually labelled at the frame-level.

IV. TWO STAGE HAND-HYGIENE SYSTEM

A. System design background
Activity recognition for untrimmed video clips is often

termed temporal action proposals or temporal action local-
ization [18]. For hand-hygiene videos, our goal is to local-
ize temporal regions where hand-hygiene actions happen in
untrimmed videos. Then, by applying an action classifier on
these targeted short segments, we will be able to identify what
hand-hygiene actions have been performed by a participant.

Our hand-hygiene videos contain densely-distributed hand
actions with an average of 5 different types of actions per
video. Non-hygiene actions such as standing or walking
around can happen anytime during the video. Thus, it is
difficult for coarse-level temporal proposal methods [19] [20]
to localize hand-hygiene actions in our videos. Moreover,
the average duration of an untrimmed hand-hygiene video
is around 1 minute. Therefore, the temporal segmentation
method [21] designed for long duration egocentric videos is
also not applicable here.

B. System basic description
We propose a two-stage system to localize and detect

hand-hygiene actions from untrimmed videos as shown in
Figure 2. In the first stage of our system, we localize the
temporal interval where hand-hygiene actions happen inside
the untrimmed video. Hand-hygiene actions are dominated
by hand and arm motion, which can be interpreted as the
appearance of hands, arms and their related motion patterns.
We divide our 8 types of actions into two categories. First,
actions containing strong motions, including rinse hands, rub
hands without water, rub hands with water and wipe hands, are
considered as action class ”1”. The other four types of actions,



Fig. 2: Two-stage prediction system pipeline

including non-hygiene actions, are labelled as action class ”0”.
We apply a low cost hand mask and motion histogram features
to process the input video. And the goal of this first stage is to
correctly predict these labels at a frame-level inside the whole
untrimmed video. The implementation details are explained in
Section VI-A and VI-B.

In the second stage, we use a two-stream network to make
a fine-level prediction on all 8 action classes in our data.
Using the location information from the first stage, we apply
a deep learning model to predict on unit of 30 frames. By
combing this model with a certain searching algorithm, we
are able to localize and identify all the hand-hygiene actions
that happen inside the input video. The construction of deep
learning model is introduced in Section V. The implementation
detail of the system’s second stage and overall performance are
explained in Sections VI-C and VI-D.

V. HAND-HYGIENE ACTION CLASSIFICATION

Based on our system design, we need to construct a robust
model which is capable to recognize all hand-hygiene actions.
In this section, we explore the performance of the two-stream
network on recognizing actions in trimmed hand-hygiene
video clips.

A. Two-stream convolutional neural network
Hand-hygiene actions are composed of hand and arm mo-

tions, which lack meaningful objects that might reveal clues
about action itself [15]. In this Section, we would like to
apply a deep learning based model to learn deep feature
representations to distinguish all 8 types of actions.

The two-stream network has demonstrated its effectiveness
in activity recognition in third-person videos [12]. The two-
stream network considers both appearance and motion infor-
mation by separately constructing a spatial-stream ConvNet
and a temporal-stream ConvNet. The spatial-stream ConvNet
takes RGB images as inputs, which provides appearance
information in the scene. On the other hand, the temporal-
stream ConvNet takes chunks of optical flow images between
consecutive frames as inputs. These optical flow images pro-
vide strong clues to the motion information that exists in the

video. The final prediction result is generated from a score
fusion of these two individual networks.

For our experiment, we use the method of Wang et al.
[22] with implementation [23], which applies deeper network
structures and takes advantage of a small learning rate and
more data augmentation techniques.

B. Experiments on two-stream network
We split the 200 videos in our dataset into training and

testing sets with 135 videos and 65 videos respectively. All
videos are trimmed into clips where each clip includes only
one action from beginning to end, which result in 1380 training
video clips and 675 testing video clips.

For training, we use the pre-trained ResNet 152 [10] from
ImageNet [24] for both the spatial and temporal networks with
fine-tuning on the 8 action classes. Input video with 480×270
are down-sampled to resolution 224× 224 to fit the ResNet.

For testing, we apply both the sparse [22] and dense sam-
pling strategies. For the sparse sampling, only 25 frames with
equal distance step are selected from each input video clip.
For dense sampling, all frames are selected. The two-stream
network model predicts each selected frame individually and
uses the average prediction score from these frames as the
prediction for the input video.

Model Accuracy
Spatial Network sparse 85.3%
Spatial Network dense 86.4%

Temporal Network sparse 84.4%
Temporal Network dense 86.8%

Fusion sparse 87.3%
Fusion dense 87.7%

TABLE I: Two-stream network performance

Fig. 3: Confusion matrix for two-stream network fusion, dense
sampling.

The results in Table I show the average detection accuracy
among all 675 video clips. The dense sampling only out-
performs the sparse sampling by 0.4 % after score fusion.
Therefore, sparse sampling is a better strategy for its faster
processing speed and minor sacrifice on detection accuracy.

A prediction confusion matrix for dense sampling after
score fusion is shown in Figure 3. We observe that the trained
deep model performs well on several of the actions with over
90% accuracy. However, for the action pair of rinse hands and
rub hands with water, many participants switch between these



two actions in a short period of time, which caused difficulty
in creating ground truth labels. Therefore, the trained model
makes mistakes on recognizing these two actions.

Fig. 4: Grad cam [25] results of (a) rub hands with water (b)
apply soap (c) touch faucet with elbow

To understand what the two-stream model has learned, we
use Grad-cam [25]. Figure 4 shows these heat maps, where
the highlighted region indicates saliency for a target class.
In Figure 4 (a), the trained model successfully captures hand
related regions to recognize rub hand with water. In Figure
4 (b)(c), however, the chest camera angle hasn’t completely
captured the entire action of applying soap or touching faucet
with elbow. As a result, the trained model makes mistakes by
recognizing these two actions as non-hygiene actions.

VI. SYSTEM IMPLEMENTATION DETAILS

A. Hand-hygiene localization
Hand mask Hand poses are good indicators of hand-hygiene
actions. Especially when rinsing or rubbing hands, the two
hands overlapping each other create distinguishable patterns.
In our work, we applied the pixel-level hand detection method
[26] to generate hand masks. We train the model with a set
of 134 images of manually labelled segmented hand regions
under different illumination conditions. The resulting hand
masks are gray-scale images with size Sm × Sn.

Inspired by the work of Singh et al. [14], we create a
network structure to predict frame-level ”0” or ”1” action
using hand mask as features. The network is composed of 2
Conv layers followed by RELU, max pooling and LRN (local
response normalization) and 2 fully connected (fc) layers. The
network takes L hand masks as input. In our training stage, a
cross entropy loss is applied as well as a dropout 0.5 to avoid
over-fitting. In testing, the softmax score from the last fc layer
indicates the prediction result.
Motion histogram Motion is also a good indicator of hand-
hygiene actions. We create a optical flow histogram feature
within the hand mask region to represent motion patterns.
Applying the hand masks generated on dense optical flow
images, we create two optical flow histograms with bin size
B for both region inside and outside hand mask. Within each
region, we count the magnitude and angle of optical flow for
each pixel i.

Mi =
√
gx2i + gy2i , θi = tan−1(

gyi
gxi

) (1)

The pixel with θi angle that falls into the range of
[ b−1

B π, b
Bπ) contributes to the bin b with magnitude Mi, where

1 ≤ b ≤ B. To overcome the problem of hand mask size
variation, the final sum value for each bin b is normalized

by dividing the total number of pixels in its corresponding
region. The result histograms for hand masked region and
outside hand mask region at frame t are represented as Hht =
[hht,1, hht,2, ..., hht,B ] and Hbt = [hbt,1, hbt,2, ..., hbt,B ]. The
concatenation of these two histograms creates a motion rep-
resentation at frame t. We also compute the ratio Rt =∑B

i=1 hht,i∑B
j=1 hbt,i

and hand motion sum St =
∑B

i=1 hht,i as two ad-
ditional features. The final representation of motion histogram
at frame t is Ht = [Hht, Hbt, Rt, St] with size 1× 2B + 2.

For classification, we apply a Random Forest classifier with
30 estimators and max depth 40 to learn the motion histogram
patterns.
B. Hand-hygiene localization testing

In this section, we test the performance of the hand mask
and motion histogram feature on localizing hand-hygiene
actions from untrimmed videos.
Training For the efficiency of system design, we split the
untrimmed 65 videos, with resolution 480 × 270, from 100
people’s testing dataset into 43 and 22 videos for training
and testing the hand localization system. To increase the
processing speed of the hand-hygiene localization, the hand
masks are generated with size of 32 × 18 and 64 × 36 in
this experiment. Motion histogram features are generated on
480 × 270 dense optical flow images and applied previous
generated hand masks,which resized to 480 × 270, on it.
The hand mask network is trained under batch size 128 and
learning rate 1e−5 with a stack of L = 5 hand masks. The
Random Forest classifier is trained with three bin size options:
9,12 and 16.
Testing The testing experiment is done on 22 untrimmed
videos with the label ”0”,”1” as positive and negative labels
on every frame. The hand mask network slides through the
whole video and predicts using an overlapped stack of hand
masks. The Random Forest classifier predicts on every frame
of each video. For each testing video, we count the TP (true
positive),TN (true negative),FP (false positive) and FN (false
negative) at the frame-level. The performance of each classifier
is measured by the accuracy = tp+tn

tp+tn+fp+fn and true negative
ratio = tn

tn+fp .
Model Accuracy True negative ratio

9 bins motion hist 73.7% 74.0%
12 bins motion hist 74.7% 71.6%
16 bins motion hist 75.0% 70.4%

32x18x5 hand mask network 78.9% 74.1%
64x36x5 hand mask network 80.7% 76.8%

TABLE II: Classifier comparison
Table II indicates the average accuracy and true negative

ratio among 22 testing videos. We notice that hand mask
network outperforms the combination of motion histogram
with Random Forest, and the input stack with hand-mask size
64× 36× 5 is the best option. However, since the hand mask
feature only reveals appearance information, mistakes can be
made when a participant holds his/her hands in a overlapped
manner without motion.

In the final design of hand-hygiene localization, we first
apply the hand mask network to predict frame-level negative



label ”0” and positive label ”1”. Then we re-check the positive
predicted frames with motion histogram and Random Forest
classifier. A frame is predicted as positive label ”1” only
when it is confirmed by both classifiers. Otherwise, a frame
is marked as negative label ”0”. The detailed performance of
this structure will be explained in the next section.

C. Hand-hygiene search and detection
In this Section, we describe the second stage of our two

stage hand-hygiene system. As it has been shown that two-
stream network has a reasonable performance on recognizing
trimmed hygiene videos, we would like to use this model as a
unit level detector to further process untrimmed hand-hygiene
videos.
Location unitization We consider an untrimmed video com-
posed by non-overlapped units. Each unit has 30 frames, which
is 1 second in under 30 FPS. We start by assigning each
unit with a unified label of ”0” or ”1”. Based the frame-level
prediction from the first system stage, if a unit contains more
than 15 frames of positive label ”1”, the unit is marked with
”1”. Otherwise, it will be marked as ”0”.
Unit level prediction The unit with positive label ”1” indicates
those actions with strong hand motion. We start to check these
locations first. To recognize all 8 action classes, we employ
the pre-trained two stream network in Section V-A with a
sparse sampling strategy. We sample 10 RGB images and 3
non-overlapped 10 pairs of optical flow images for each frame
unit. The spatial network and temporal network individually
predict using their sampled inputs and fuse the results with
equal weights for the final prediction.
Searching algorithm There exist 7 types of hand-hygiene
actions to recognize. However, due to short duration and
indistinctive motion patterns, actions of applying soap, touch-
ing faucet with hands and touching faucet with elbow are
categorized into class ”0” in the localization step. These
actions normally happen before or after the actions labeled
in ”1”. Therefore, we designed a searching algorithm to find
all 7 types of hand-hygiene actions. The algorithm iteratively
searches the surrounding unit of each label ”1” unit and
makes predictions using the two-stream network model. The
algorithm stops when it reaches non-hygiene actions on both
left and right-side unit. After finishing the searching algorithm,
each unit visited has been predicted with a result label and the
unvisited units are automatically considered as non-hygiene
actions.

D. System testing
Testing of the overall two-stage system is applied on the

same 22 untrimmed videos in Section VI-B. To evaluate a
video’s prediction accuracy, we compare the prediction result
with our frame-level ground truth labels. We map unit-level
prediction result into a frame-level result by replicating each
unit’s result by 30 times.

The system performance is evaluated by frame-level accu-
racy = tp+tn

tp+tn+fp+fn and the percentage of units visited (PV).
We introduce the PV to measure the system efficiency. A high
frame-level accuracy with a low PV value indicates the system

was effective at localizing hand-hygiene actions and avoiding
non-hygiene regions. For comparison, we create a baseline
by applying two-stream network model to densely predict all
non-overlapping units in each untrimmed video.

Methods Accuracy PV
Baseline 79.3% 100.0%

H+S 79.3% 81.5%
H+M+S 78.6% 76.4%

TABLE III: Average performance on 22 untrimmed videos.
H: Hand mask network localization, M: Motion histogram
localization, S: Searching algorithm with two-stream network
recognition

As indicated in Table III, the baseline system that checked
every unit in each video obtains an average accuracy of 79.3%,
which is lower than the performance on Section V-B due to
the strict frame-level comparison. When applying the hand
mask network only on the first system stage of localization,
the PV drops from 100% to 81.5% while maintaining the
same accuracy as the baseline system. This proves that the
hand-hygiene localization stage helps to avoid processing
the non-hygiene action. By applying the hand mask network
with motion histogram, the PV further drops to 76.4% while
sacrificing 0.7% detection accuracy. It is worth to note that
the average percentage hand-hygiene actions occupied in the
22 untrimmed videos is 71.3%, which is the upper bound for
the PV value.

VII. CONCLUSION

In this paper, we introduced our new hand hygiene-
egocentric dataset. The dataset contains video samples from
100 participants, which were recorded in two public restrooms.
We manually labeled all videos with 8 action categories.
Moreover, we designed a two stage system to localize and
recognize hand-hygiene actions in untrimmed hand-hygiene
video. The system consists of two stages. In the first stage,
our system takes of the hand mask and motion histogram
feature to localize hand-hygiene actions temporally. In the
second stage, we expanded the two-stream network model
to combine with a searching algorithm to recognize all the
hand-hygiene actions in the video. The system has achieved
an acceptable performance. In the future, we plan to explore
the effect of using multiple camera views to recognize hand-
hygiene actions.
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