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Abstract—First-person videos (FPVs) captured by wearable
cameras have undesired shakiness because of fast changing
views. When existing video stabilization techniques are applied,
FPVs are transformed into cinematographic videos, losing the
First-person motion information (FPMI) such as the recorder’s
interests and actions. We propose a system that can enhance
viewability of FPVs by stabilizing them while preserving their
FPMI. The viewability is charaterized based on a human percep-
tion model. Objective tests show that our method has competitive
stabilization performance relative to existing video stabilization
techniques. And subjective tests show that spectators still expe-
rience the FPMI from the resulting videos while shakiness is
reduced.

I. INTRODUCTION

Wearable cameras, such as GoPro and Pivothead, are be-
coming popular recently. For entertainment purposes, people
use them to record First-person videos (FPVs), which is a
kind of egocentric video that differs from hand-held videos.
However, when people play back these videos, they find that
what they recorded looks quite different than what they ac-
tually experienced. The frames are shaky with uncomfortable
viewing angles. The camera motions may also make spectators
feel dizzy. All in all, it is often an unpleasant experience.

In this paper, we aim to enhance the viewability of a
FPV by stabilizing it while preserving its First-person motion
information (FPMI). By this we mean that spectators do not
feel that the resulting video is too shaky, and it still can convey
the recorder’s interests and actions.

A direct solution would be using hardware-based video
stabilization techniques such as the built-in function in GoPro
Hero 5 and other hand-held stabilizers. The problem with
this solution is that it has limited performance. The built-in
function in GoPro Hero 5 can only remove small amounts
of shakiness since the camera records in real-time and must
avoid obvious stitching errors when applying the stabilization
function. Hand-held stabilizers require users to hold the device,
which limits the users’ activities to riding or driving. Although
wearable gimbals are available, they are large and heavy for
users who want to have long-period activities.

Another straightforward idea would be to apply traditional
video stabilization techniques to FPVs. Video stabilization
can smooth the changes between adjacent frames in order
to make the original jittery video watchable. Normally, three
steps are necessary: motion estimation, motion smoothing and
frame construction. There are two main approaches of video
stabilization: 2D and 3D solutions. In 2D solutions [1]–[5],
frame-based 2D linear motions are estimated by detecting

and tracking local feature points. Then the homographies
are computed to warp the current frame with respect to the
previous one in order to smooth the trajectories of the tracked
features. In 3D solutions [6]–[9], the 3D camera motion is
first estimated, which includes the relative camera orientations
and camera translations. Based on this information, a new
3D path is designed by smoothing the original jittery one.
Then the new frames are synthesized by projecting the original
frames onto the new path. By adding constraints to the path-
smoothing process, some methods try to minimize the missing
area caused by the projection.

Note that these video stabilization techniques are designed
for hand-held or vehicle-mounted videos. These techniques try
to stabilize the videos so that the results are like being shot
from a smooth path (linear or parabolic path [7]). This general
idea is further extended and defined as Re-Cinematography
[11]: recovering a cinematographic video from a shaky one.
Re-Cinematography is inspired by [10] and carefully devel-
oped in [11], [12]. Their goal is to improve apparent camera
motions within videos so that the outputs look like they are
shot by professionals with tripods. In [12], an input video
is segmented into a series of shots. For each shot, small
motions are considered to be shakiness and are removed by
video stabilization techniques. Large motions are edited with a
profiled velocity. The direction of these motions are obtained
by identifying and tracking important objects, which actually
is a subjective procedure and includes many challenging
pattern recognition topics. Later in [7], Re-Cinematography
was applied to 3D video stabilization techniques, where the
subjective procedures were replaced with allowing users to
choose the camera paths.

However, FPVs are different than hand-held videos. They
usually come from cameras mounted on the human body, often
on the head. The content of the scene is usually recorded
passively since the recorder only treats the camera as a wear-
able kit. In contrast, the interests and actions (FPMI) are per-
formed actively, which makes them as important as the scene
itself. By applying video stabilization or Re-Cinematography
techniques, this distinguishing part of FPVs will be removed
with high probability (see [6], [7] for examples). The viewer
may not recognize the human-like-motion and the recorder’s
motion intentions from the resulting video. Several works [6],
[13]–[15] focused on creating a watchable egocentric video
by reducing the unwatchable content using a fast-forwarding
approach. Although [15] tried to only reduce the non-semantic
parts of videos, the FPMI is also lost. Therefore, in this paper,
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Fig. 1: Framework of First-person Video Enhancement

we develop a system that can stabilize original FPVs and also
preserve their FPMI as much as possible without reducing
video length.

Our approach follows the pipeline of traditional 3D video
stabilization techniques. However, the 3D motion estimation
algorithm is modified to only estimate the 3D rotations.
This is motivated by our human perception model of FPVs,
which is also used to design the new camera path instead
of using the Re-Cinematography method. In the next section,
our entire system and innovations are discussed. In section
III, we provide the details of our work including the camera
pose estimation, angular motion decomposition and editing.
Viewability is defined and then enhanced based on our human
perception model. In section IV, both the objective and sub-
jective tests are discussed. Finally, in section V, we conclude
with our contributions and future plans.

II. SYSTEM OVERVIEW

Fig. 1 shows the framework of our system. Our work
includes three novel aspects: a human perception model for
angular motion editing, a human rotation motion model for
angular motion decomposition, and a modified 3D motion
estimation algorithm for camera pose estimation. Based on
our hypothesis, the translations, especially the vertical one,
are necessary to convey the First-person feeling. So we only
estimate the rotation and only edit the angular motions.

We propose a human perception model of First-person mo-
tion conveyed by FPVs. It is based on human eye movements
and viewing distance. Given the camera poses of each frame,
it can localize the undesired part of the First-person motion
in a video. Using this model to edit the undesired motion,
we can design a camera path whose goal is to provide more
stable view while preserving the FPMI. The model and path
selection are described in section III-C.

We build a human rotation motion model to explain the
relationship between motions. The rotation motions are de-
composed based on the motion importance and freedom. A
given rotation is decomposed into first yaw, then pitch, and
then roll. The order of the motion indicates their importance
and freedom. Motion with high importance and freedom may
cause motion with lower importance and freedom.

We modify the traditional 3D motion estimation algorithm
used in video stabilization. Since we only estimate the rota-
tions, our algorithm is not restricted by Structure From Motion
(SFM) [16] whose core is long-term feature tracking, 3D re-
projection and local feature-based bundle adjustment. In our
case, only the feature matching between two views is needed,

which relaxes the constraint that enough features must always
be seen across time. Instead, we propose a inexpensive way
to estimate the rotations, and we apply graph optimization
techniques so the computational process is independent of
local features.

Based on these three aspects, we design the camera path
that enhances the viewability of FPVs.

III. ALGORITHM DETAILS

In this section, our camera pose estimation and angular
motion decomposition algorithms are discussed. Then we
introduce the core of our system: the angular motion editing
algorithm that is based on our human perception model.

A. Camera Pose Estimation

Camera pose estimation is a well-known problem in the
robotics (defined as vSLAM [17]) and computer vision (de-
fined as SFM [16]) communities. It is used to estimate both the
rotation and the 3D translation of the camera. Most previous
3D video stabilization approaches use these results to remove
the translations in x and y directions.

However, in contrast, as in [18], we do not remove and thus
do not need to estimate the translations. This is because trans-
lations include important FPMI. For example, the frequency
and amplitude of translations can reflect the moving speed of
the recorder.

The importance of translations is evident from First-person
video gaming, since watching a First-person video is similar
to playing a First-person video game, except the viewer cannot
control the viewing angle. The translation is called “head
bobbing” in video games. Recent popular video games such
as “Call of Duty 4” and “Grand Theft Auto V” use it to make
the game more realistic. [19] showed that most players prefer
games that have head bobbing.

Since we do not estimate translations, it is unnecessary
to observe a local feature across more than two frames.
The rotation between each two frames can be estimated
independently during a first pass. Then we use the graph
optimization techniques introduced in [20] to further reduce
the error. Assume the estimated rotation from frame m to
frame n is R

n,m

. The estimated camera pose of a single frame
i with respect to the first frame is R

i

:

Ri = Ri,i�1Ri�1,i�2 · · ·R2,1. (1)

When estimating the rotation between two frames, we use
SURF [21] features with RANSAC [22]. We first assume the
two frames share a large enough baseline that we can use
triangulation. In this situation, we use the epipolar geometry
to find the relative rotation. When the triangulation fails (not
enough inliers after RANSAC), we consider it is a pure
rotation between two frames and the fundamental matrix is
degenerated to be a homography.

Using the graph optimization tools provided by [20], we
refine the estimated rotations using the objective function:
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(2)

Note that this approach relaxes the constraint of feature
tracking but requires the camera to be calibrated. We find l = 5
is large enough to have a large baseline with a frame rate of
30.

B. Angular Motion Decomposition

A rotation matrix R

i

describes the relative pose of frame
i with respect to frame 1. We decompose R

i

into rotations
around the x, y and z axes, which are pitch, yaw and roll
respectively. However, there is no unique solution. In order
to make the results have realistic meaning, the decomposition
order should coincide with the importance of human motions.
This means the most important or the main motion should be
extracted first. We believe that the yaw is the primary and most
important motion since it is performed to look around. Then
pitch has intermediate importance since it is performed to look
up and down. Roll is believed to be an inessential motion, as
it is rarely performed on purpose. So R

i

is decomposed as:

Ri = Rz(✓z)Rx(✓x)Ry(✓y). (3)

Then

✓y = tan�1
⇣�Ri(3, 1)

Ri(3, 3)

⌘
, (4)

✓z = tan�1
⇣Rzx(2, 1)
Rzx(1, 1)

⌘
, (5)

✓x = tan�1
⇣�Rzx(2, 3)

Rzx(2, 2)

⌘
, (6)

where
Rzx = RiRy(✓y)

�1. (7)

R(k, l) is the (k, l) entry of matrix R.

C. Angular Motion Editing

We first introduce our human perception model: the basis
of the angular motion editing algorithm. The recorded video
is not identical to what the recorder experienced, because
humans perform different eye movements in real life and
watching FPVs. In real life, the human eye movement related
to our stabilization topic is vestibulo-ocular movement [23]. In
this situation, human motion can be classified into intentional
motion and unintentional motion, and only the unintentional
motion needs to be compensated. Given the information from
semicircular ducts, the vestibulo-ocular reflex will be triggered
to compensate for the unintentional rotation of our head in
order to keep the image fixed on our retina.

However, when we watch a FPV, this reflex is disabled
since our head is not moving. Meanwhile, both the intentional
and unintentional motion need to be compensated. In this
situation, all the motion is compensated by an eye motion
called smooth pursuit movement [23]. It is used to follow
a target using only visual clues. As long as the motion of
smooth pursuit aligns with the camera motion as accurately

Fig. 2: Model of Angular Motions

as the vestibulo-ocular movement, we can watch the FPV
comfortably. However, this eye movement is not as efficient
as the vestibulo-ocular movement, which is the reason that we
may feel that the recorded video is not the same as what we
experienced.

Before we use smooth pursuit movement to track a target,
our eyes need 125 ms to start to catch the target, which is
called a catch-up saccade [24]. At 30 frames per second, this
corresponds to 3.7 frames. Within these 4 frames, we cannot
follow the recorder’s motion, which is a reason for motion
sickness.

Fig. 2 shows two motions that have different amplitudes.
Each of them starts at one local extreme and ends at the next
one, defining two motion anchors. A new smooth pursuit starts
at each anchor. When the motion velocity changes rapidly,
our eyes must perform a catch-up saccade near both anchors.
The constant speed part, modeled by the slope, is where our
eyes can perform smooth pursuit. As a result, unless a motion
lasts more than 8 frames, we cannot follow it. In contrast,
the efficiency of vestibulo-ocular movement is 100 Hz (0.3
frames) [25]. So in real life, we can follow such a motion in
real-time.

Our human perception model consists of this eye motion
characteristic and the motion model in Fig. 2. The constant
speed part is defined as {✓(k) : |✓̂(k)|  ✓

M

, ✓(k) 2 ✓(n)}.
✓(n) is a sequence of angles we estimate in section III-B. ✓̂(k)
is calculated as:

ˆ

✓(k) = ✓(k)� 2✓(k � 1) + ✓(k � 2). (8)

✓

M

(around 0.02 degree) is the minimum angular resolution of
human eyes [26]. Based on this model, we define the stability
of a FPV to be the fraction of frames within the constant speed
part.

However, viewing distance must also be accounted for.
The motion spectators perceive is not as large as what the
recorder performed. Assume the motion we estimate is ✓(n),
the equivalent focal length is f and the viewing distance is d.
Then the actual perceived motion is !(n) = f✓(n)/d. If our
motion editing algorithm modifies ! to be !̃, the frame index
of motion anchors are A(i), and the video length of the i

th

motion is L

i

total

, then we have stability of the i

th motion:
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i
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, (9)
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Note that f(n) is the stability of frame n. Frame n can be
observed only if it is one of the frames in the constant speed
part and also outside the catch-up saccade period.

The idea of our motion editing algorithm is based on the
perception model above. Note that in Fig. 2, the smaller
slope has longer constant speed duration, which can increase
F (i). So we create a new path that has longer constant speed
duration by decreasing the amplitude of each single motion
anchor. The decreasing rate of the i

th motion anchor is:

D(i) =

���!̃
�
A(i)

�
� !

�
A(i)

����
����!

�
A(i)
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� !
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A
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Given two edited motion anchors, the value between them is
interpolated as:

!̃(n) = !̃ (A(i)) + s ·
⇥
!(n)� ! (A(i))

⇤
, (12)

s =

!̃ (A(i+ 1))� !̃ (A(i))

! (A(i+ 1))� ! (A(i))

. (13)

As a result, !̃ is a function of D. Our target is to find D to get
the actual editing strategy. Thus, we perform an optimization
problem using particle swarm on the objective function (14),
which defines the viewability of a FPV.

min

D

|{A}|X

i=1

�
1� F (i)

�2
+ ↵

|{!̃}|X

n=1

��
!̃(n)� !(n)

��2
. (14)

The idea here is to enlarge the stability and at the same time
keep as much FPMI as possible. The second term expresses the
difference between the new motion and the original motion,
which is the FPMI and also the size of black area. ↵ is the
weight of the FPMI. Larger ↵ preserves more FPMI. Its valid
value region is from 0 to 0.2. Finally, the modified motion of
the camera should be !

new

(n) = d!̃(n)/f . All frames are
projected based on the new camera positions.

Note that only yaw and pitch are retained by this algorithm.
The roll motions are all removed since humans rarely perceive
this motion in real life.

IV. EXPERIMENTS

A. Objective tests

Our system is designed to stabilize a FPV while preserving
its FPMI. Before testing its overall performance on enhancing
viewability of FPVs, we first evaluate it as a video stabilizer.

Our test is based on 5 video sets, which are recorded
in 5 different scenes (available at [27]). Each set includes
6 different versions of the same video: an original video,
an output of our system, an output result from Microsoft
Hyperlapse (HL) [6], an output from Deshaker (DS) [28], an
output from Youtube stabilizer [2] and an output from [3].
The original videos are 10 seconds and recorded by a GoPro
Hero Session 4 with 1080p. To minimize the black area of all
results, each output is cropped to 1280⇥ 720.

The objective measurement of video stability is based on
inter-frame transformation fidelity (ITF) [29]. The test results
are shown in Table I where a larger value indicates higher
video stability. According to Table I, all stabilization methods

TABLE I: ITF scores of different video versions
Orig Ours HL DS [2] [3]

Yard 29.2 33.5 (0.6%) 33.7 33.7 (17.2%) 32.9 34.9 (37.0%)
Cave 29.3 33.6 (0.03%) 33.8 33.8 (7.3%) 33.5 34.1 (7.8%)
Beach 26.6 30.3 (0.74%) 30.9 30.9 (15.5%) 30.5 30.8 (10.0%)
Climb1 28.0 32.7 (0.5%) 32.6 32.6 (19.0%) 32.3 33.2 (22.6%)
Climb2 28.4 32.4 (0.76%) 33.6 33.6 (13.0%) 32.3 33.0 (13.4%)
Average 28.3 32.5 (0.5%) 32.9 32.9 (14.4%) 32.3 33.2 (18.2%)

TABLE II: Revised ITF scores
Orig Ours HL DS [2] [3]

Yard 29.2 33.5 33.7 33.0 32.9 32.3
Cave 29.3 33.6 33.8 33.4 33.5 33.7
Beach 26.6 30.3 30.9 30.4 30.5 30.3
Climb1 28.0 32.7 32.6 32.2 32.3 32.0
Climb2 28.4 32.4 33.6 32.5 32.3 32.3
Average 28.3 32.5 32.9 32.3 32.3 32.1

successfully stabilize the videos. Although our method does
not have the highest value among all methods, the difference
between all 5 methods are significantly smaller than the
improvements.

Note that ITF only measures the ability of a stabilization
method to smooth the camera motion. However, ITF cannot
measure the amount of black pixels at the edges of the image.
Table I shows, in parentheses, the percentage of black area for
each method. Hyperlapse and Youtube stabilizer do not have
black area while [28] and [3] have significant amount of black
area. Note that when we obtain the results from [3], [28], we
disable the option to remove the black area. When this option
is enabled, it either scales the frames or introduces significant
stitching errors. However, this black area issue is not reflected
by the ITF scores, which will significantly degrade the stability
in practical situation. For example, the Youtube stabilizer has
the highest ITF score while its resulting videos are obviously
less stable than our method, which can be verified in the
database [27].

As a result, we modified the ITF by taking the black area
issue into account. The revised ITF is calculated as:

ITF =

1

N � 1

N�1X

k=1

PSNR(k), (15)

where N is the number of frames, and:

PSNR(k) = 10 log10

⇣
255

2

MSE(k)

⌘
. (16)

To deal with the black area issue, we compute the mean
square error (MSE) based on the average of non-black area S

of adjacent frames:

MSE(k) =

1

S

X

i

X

j

⇣
Ik(i, j)� Ik�1(i, j))

⌘2
. (17)

The revised ITF scores are shown in Table II, where Hyper-
lapse has the highest score and our method is in the second
place.

B. Subjective tests

Our proposed method is not just a video stabilizer. It is
designed to improve the viewability of FPVs. We aim to sta-
bilize FPVs while preserving its FPMI. Therefore, it is critical



to evaluate our method subjectively. Thus, we conducted a
subjective test with 25 participants. If our human perception
model holds true, participants should evaluate our resulting
videos to have higher stability than the original videos and
higher FPMI than videos, produced by other video enhancing
methods.

To be exempted from the black area issue, the Hyperlapse is
chosen to compare with our system. It is one of the available
systems that has a similar goal to ours: enhancing viewability
of FPVs. However, unlike other similar ones [13]–[15], it
works well when the playing speed is 1, which ensures no
frames are discarded. Also, it is representative since its has
similar ITF scores to other video stabilization methods [2],
[3], [28].

Test videos are played on a 27-inch screen with 82 PPI.
The camera is calibrated and the focal length is 830 pixels,
so the equivalent focal length is about 10 inches. The viewing
distance of participants is set to 40 inches. As a result, the
scale of motion perceived is 0.25 as discussed in section III-C.
Also the ↵ in our system is set to 0.02 for yaw motion and
0.001 for pitch motion. To run the particle swarm for equation
(14), 800 particles are used. The overall speed of our system
is around 6 seconds per frame with nearly 80% of the time is
spent on 3D motion estimation. In this paper, we do not focus
on optimizing the motion estimation algorithm, which can be
achieved by cooperating with the work in [30].

Our test was done using paired comparison. In each scene,
each pair of videos are shown to participants who are asked
the following questions: (1) Which video is more stable;
(2) Whether it is stable or not, in which video you can
recognize more First-person motion; (3) If your friend
tries to share his/her First-person experience with you,
which one do you prefer. The participants have to choose
one of the two videos as an answer. The subjective scores
are computed using Bradley-Terry model [31] and shown in
Fig. 3. Higher subjective score indicates higher stability, more
FPMI or higher preference.

In Fig. 3, we can see that the original videos have the best
FPMI, the Hyperlapse videos have the best stability, and ours
are in second place on both FPMI and stability. In addition,
the FPMI of our resulting videos is very close to that of the
original videos, while their stability is midway between the
other two. This demonstrates that we achieved the intended
goal of stabilizing FPVs while preserving the FPMI as much
as possible. Moreover, our resulting videos have the highest
preference while that of Hyperlapse videos’ is lower and
close to the original videos. This may be explained using
the feedback of several participants: although the result of
Hyperlapse is stable, the video style is more like flying rather
than a First-person style such as running or jumping. This
also indicates that the advantage of preserving FPMI is that
the resulting videos are more interesting and more realistic.

Fig. 4 shows the estimated yaw motion of all three versions
of a running video [27]. At the beginning, there are about 100
frames of head bobbing in the original video, which causes a
shaky video. Our method reduces the amplitude of those sine-

Fig. 3: Subjective Scores of 3 versions of videos

Fig. 4: Example of Yaw motions of 3 versions of videos

waves, stabilizing the video while preserving enough FPMI to
convey the running experience. However, all the First-person
motions are removed in Hyperlapse video. At around 150
frames into the video, the recorder turns around and looks at
houses. Compared with our result and the original video, the
result of [6] loses the information of the recorder’s interests.

V. CONLCUSION

In this paper, we propose a system that can improve the
viewability of FPVs by stabilizing them while preserving their
FPMI. Based on our human perception model, the stability
is described using the fraction of a FPV that a human can
follow. The objective test shows that our method has similar
performance on smoothing camera motion relative to the
Hyperlapse method or ordinary video stabilization methods
[2], [3], [28]. The subjective test shows that, compared with
original videos and results from [6], our results have a middle
level of stability and a high level of FPMI that is close to
that of the original videos. Moreover, our results also have
higher preference scores. In this work, we do not concentrate
on removing rolling shutter. We plan to include it in our future
work. Rolling shutter can be removed by extending our motion
estimation results to incorporate the approaches in [32]. We
also plan to refine our resulting videos by applying image
stitching algorithms to further remove the black areas.
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