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Abstract: First-Person Videos (FPVs) are recorded using wearable cameras to share the recorder’s
First-Person Experience (FPE). Ideally, the FPE is conveyed by the viewing experience of the FPV.
However, raw FPVs are usually too shaky to watch, which ruins the viewing experience. To solve this
problem, we improve the viewing experience of FPVs by modeling it as two parts: video stability and
First-Person Motion Information (FPMI). Existing video stabilization techniques can improve the video
stability but damage the FPMI. We propose a Viewing Experience (VE) score, which measures both the
stability and the FPMI of a FPV by exploring the mechanism of human perception. This enables us
to further develop a system that can stabilize FPVs while preserving their FPMI so that the viewing
experience of FPVs is improved. Objective tests show that our measurement is robust under different
kinds of noise, and our system has competitive performance relative to current stabilization techniques.
Subjective tests show that (1) both our stability and FPMI measurements can correctly compare the
corresponding attributes of an FPV across different versions of the same content, and (2) our video
processing system can effectively improve the viewing experience of FPVs.

Keywords: First-Person Videos; viewing experience; video stabilization

1. Introduction

With the development of wearable cameras, people are starting to create First-Person Videos
(FPVs) to record their life. Some producers even make First-Person films. From simple life-logs to
playing sports, the content of FPVs varies dramatically. Recorders usually share a common primary
goal: sharing their First-Person Experience (FPE) with others. However, the fact is that the viewing
experience of FPVs is quite different from the recorder’s FPE. In this paper, we start by discussing the
reason behind this fact and create a reliable solution that enables us to improve the viewing experience
of FPVs based on a viewing experience model. As a result, recorders’ FPEs can be effectively conveyed
to viewers.

Our problem can be addressed by comparing the attributes of both the FPE and the viewing
experience of FPVs and accordingly adjusting the attributes of the latter. We begin by modeling the
attributes of the FPE. Recorders are eager to share two aspects of the FPE. First, recorders would
like to share the objective information they perceive. For example, if a recorder captures an FPV
when he/she is running in a park, he/she may want to share the trees or flowers with viewers.
Second, recorders would like to share the feeling of interacting in the First-Person perspective,
i.e., the subjective information they perceived from the objective world. Using the same example,
the recorder may want to share his/her reaction and interest to a dog that barks behind him/her as
he/she turns around to look at the dog.

The viewing experience of FPVs has different attributes, which includes video stability and
First-Person Motion Information (FPMI). The FPMI corresponds to the FPE and includes both the
objective and subjective information conveyed by camera motion. Video instability does not have a

J. Imaging 2018, 4, 106; doi:10.3390/jimaging4090106 www.mdpi.com/journal/jimaging

http://www.mdpi.com/journal/jimaging
http://www.mdpi.com
http://www.mdpi.com/2313-433X/4/9/106?type=check_update&version=1
http://dx.doi.org/10.3390/jimaging4090106
http://www.mdpi.com/journal/jimaging


J. Imaging 2018, 4, 106 2 of 29

corresponding concept in FPE, because it is not experienced in real life. Usually, viewers feel that FPVs
are too shaky to watch, but recorders never feel dizzy when they record the video. They never even
realize that there are stability-related issues. Later in this paper, we show that this is because the visual
function we apply when we watch the FPVs is different from the visual function that we rely on when
we experience real-life. As a result, to help recorders to share FPE, we propose it is important to

(1) Preserve FPMI;
(2) Fix the unpleasant component, that is, increase video stability.

In this work, we propose a system to improve the viewing experience of FPVs by stabilizing them
while preserving their FPMI. To achieve this, we construct measurements of video stability and FPMI
for FPVs based on a human perception model.

In the next section, we review several off-the-shelf approaches which are related to our problem,
such as traditional video stabilization techniques. However, we show that these methods are
insufficient. In Section 3, we provide an overview of our system. Following the pipeline of our
system, its subparts are introduced from Sections 4–7. Section 4 focuses on the motion estimation
algorithm which is a modified visual odometer according to the difference between our task and
traditional stabilization tasks. The human perception model based on eye movements is the basis of
our system, and is presented in Section 5. By applying the human perception model, we propose the
quality metric of the viewing experience of FPVs in Section 6. We edit camera motion using the quality
metric to improve the viewing experience, which is shown in Section 7. Section 8 includes three parts
of our experimental results. First, we design and use subjective tests to finalize the parameters in our
human perception model. Second, objective and subjective tests are employed to test the robustness of
our viewing experience measurement. Third, subjective tests show the effectiveness of our system in
comparison with other methods.

This paper is based on our three conference papers [1–3]. In Ref. [1], we proposed the
prototype of our current system without an accurate perception model. In Ref. [2], we improved
the system by proposing an accurate mathematical perception model based on eye motion, and in
Ref. [3], we performed subjective tests to help us explore the parameter setting in the mathematical
perception model.

This current paper incorporates these settings into our complete system and provides a cohesive
description of the structure and theory of the entire system. We update the experiments, which compare
the performance of our system with state-of-art systems. We enhance the figures to help explain the
mathematical model more clearly. In addition, we present new discussions about the relationship
between motion and the video viewing experience. These results have not been included in our
previous work and are valuable for many applications, such as video quality, digital video stabilization,
gimbal design, and First-Person game design.

Note that we define several new concepts here. For readers’ convenience, we summarize them in
Table 1.

Table 1. Concept Abbreviations.

Abbreviations Extend Names

FPVs First-Person Videos
FPM First-Person Motion
FPF First-Person Feeling

FPMR First-Person Motion Range
FPMI First-Person Motion Information
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2. Related Work

2.1. Video Stabilization

As we discussed, the viewing experience of FPVs includes two parts: video stability and
FPMI. Traditional video stabilization techniques can effectively remove the shakiness within FPVs,
but they either have limited performance on FPVs or damage the FPMI with high probability.
However, these traditional methods still provide some valuable concepts.

Traditional video stabilization techniques include hardware-based methods and software-based
methods. Examples of hardware-based video stabilization techniques include the built-in functions of
cameras such as GoPro Hero 5/6 and other hand-held stabilizers. The problem with these solutions
is that they have limited performance. The built-in function in GoPro Hero 5/6 can only remove
small amounts of shakiness since the camera records in real-time and must avoid obvious stitching
errors when applying the stabilization function. Hand-held stabilizers require users to hold the
device, which limits the users’ activities to riding or driving. Although wearable gimbals are available,
their current designs are still large and heavy for users who want to record for long-period activities.

To stabilize a video using a software-based method, three steps are performed: motion estimation,
motion smoothing, and frame/video reforming. The problem of these methods is that their motion
smoothing step damages the FPMI of the FPV, since the purpose of these methods is to stabilize
videos as much as possible. They are still valuable if they can be guided by an accurate video stability
estimator so that users know how much stabilization can be used without damaging the FPMI.

Based on the motion type they are designed for, the video stabilization techniques are classified
into 2D [4–7] and 3D solutions [8–11]. In the 2D solutions, the motion on the image plane is estimated
using either local features or pixel intensity information. Then, the frame transformation is calculated
based on the smoothed 2D motion. In contrast, 3D solutions estimate the camera motion in the
3D world. The estimation approaches mainly rely on the methods of either structure-from-motion
(SfM) [12] or visual-based simultaneous localization and mapping (vSLAM) [13]. The advantage of 3D
solutions is that they generate a full understanding of the physical camera motions. However, they are
usually slower and more fragile than 2D methods, since their motion estimation step is sensitive to
the accuracy of feature matching [4,6,9]. The drawback of 2D methods is that they do not have an
understanding of the 3D world, so users cannot obtain a real ideal camera path like the ones that 3D
methods can provide. As a result, some advanced processes, such as intentional motion preservation,
cannot be performed. Also, in most cases, these algorithms would produce severe distortions when
the recorded scene cannot be modeled as planar.

To precisely edit the camera motion to improve video stability and preserve FPMI, we adopted a
3D video stabilization pipeline in this paper.

2.2. Stability Measurements

As we discussed, to correctly operate the video stabilization algorithms, an accurate video stability
estimator is needed. Some stability measurements have been proposed along with video stabilization
techniques. In fact, many video stabilization techniques are not based on measurements [6,9,14–16].
Since they do not rely on any measurement, their smoothing parameters are not adaptive, and thus,
the stabilization process is not controllable. However, other video stabilization techniques [4,5,7,8,17]
implicitly generate stability measurements as by-products. Their smoothing step is based on
optimization processes that minimize the sum of the squared values of the second derivatives of
the motion curves. Some also use other similar objective functions. For example, in Ref. [5], the mean
square value of the third derivative was also used, and the difference between the simplified affine
motion parameters between adjacent frames was used in Ref. [17].

Inter-frame transformation fidelity (ITF) was proposed in Ref. [18] for surveillance applications
and has been used by many authors [19–22] to compare the performances of different stabilization
methods. First, the peak signal-to-noise ratio (PSNR) between adjacent frames are computed. The mean
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PSNR of all adjacent pairs is the ITF which can be easily and quickly computed. The motion-based
mean squared error (MV-MSE) [23] is another valuable stability estimator which is a full-reference
stability estimator. The MV-MSE is also easy to compute. First, the intentional camera motion needs
to be computed. For example, in Ref. [23], the original motion was transformed into the frequency
domain and low-pass filtered to generate the intentional motion. Then, the quality score was the MSE
between the intentional motion and the original one. The mean squared error was decomposed in
Ref. [24] into jitter and divergence in an effort to further interpret the MV-MSE.

The drawback of these stability measurements is that they cannot precisely predict the subjective
stability. The measurements used by video stabilization techniques assume that fast motion is the
reason for instability. However, the numerical relationship between motion speed and instability is
unknown. Also, it is well-known that PSNR does not have high correlation with subjective quality
scores [25,26]. In addition, MV-MSE only measures the relative stability between the original motion
and the intentional motion. Moreover, the intentional motion is just estimated, because the actual
intended motion is unknown. In this paper, we show that the subjective stability of intentional motion
strictly depends on its amplitude and frequency characteristics which means intentional motion is
seldom completely stable. As a result, MV-MSE cannot accurately measure the subjective stability
of videos.

In this work, we propose a video stability measurement that can help us to predict the subjective
video stability and guide us to appropriately stabilize FPVs.

2.3. FPV Enhancement Techniques

There is also some prior work that enhances FPVs [8,27–29]. Two factors make them different
from the traditional video stabilization techniques. First, they focus on processing FPVs and share the
same target that we have: to create watchable FPVs. Second, these works may solve the shakiness
problem in different ways [27–29] or introduce additional processes to the stabilized FPVs [8].

Instead of stabilizing frames by smoothing the camera motion, Refs. [27–29] tried to find and
eliminate the frames which cause the shakiness. After the processing, only the semantic segments,
for example the segments that contain human faces, are preserved and assembled to construct the
resulting video. The resulting video has reduced content and is a fast-forwarded version of the original
video. However, we believe semantic meaning is not only available from selected frames, but also that
there is semantic meaning in the First-Person Motions themselves. Their strategy ignores and discards
this meaning, just like traditional video stabilization techniques.

Ref. [8] was the earliest work that focused on stabilizing FPVs. It used the 3D method in traditional
video stabilization techniques to stabilize FPVs. However, the authors believe that FPVs are usually
long which makes them boring to watch. As a result, the authors further processed the stabilized FPVs
to be hyper-lapse videos which are FPVs accelerated through time. This idea is similar to the ones
discussed above [27–29]. However, the accelerating rate of hyperlapse videos is controllable and the
entire process does not require any content understanding techniques.

Note that Ref. [8] followed the idea proposed in Ref. [9]. They believe that the shaky video
needs to be stabilized in a cinematographic manner, which means the camera motion should be highly
smoothed. However, this is in contrast to our assumption. As we discussed, blindly smoothing camera
motion damages the FPMI of the FPV. As a result, to evaluate our assumption, we compare our results
with their results in the experiment section.

3. System Overview

We adopted the pipeline of traditional video stabilization techniques shown in Figure 1. However,
three main differences help our system outperform traditional algorithms on FPVs. First, we replaced the
motion smoothing step with a more general motion editing step, since this is where traditional methods
damage the FPMI. Within the motion editing step, we employed two procedures: measuring and
improving. The failure of traditional video stabilization techniques tells us that stabilization needs
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to be carefully performed for FPVs. We need to precisely measure the video stability to decide how
much stabilization we should apply to shaky FPVs, to avoid the same drawbacks of traditional video
stabilization techniques.

Figure 1. System Pipeline.

Second, this motion editing step is based on a human perception model of First-Person Motion
conveyed by FPVs, which has never been explicitly considered in traditional solutions. It models
the eye movements of viewers as a random process. Based on this model, we propose our viewing
experience measurement which estimates the fraction of the FPV that the viewer can watch comfortably.
Using our measurement, we can design a new camera path that provides a more stable view while
preserving the FPMI, i.e., we can improve the viewing experience. The model of human perception
ensures our viewing experience improvement results are consistent with human preference.

Third, our system only edits angular motions. Based on our hypothesis, translational motion
conveys the FPMI, so it should be preserved. As a result, the traditional 3D motion estimation
algorithm is simplified to only extract the angular motions. This also allows us to avoid the challenge
of monocular visual odometers, where computing the scale requires the local features to be observed
successively in several frames. When we only compute rotations, this constraint does not apply
because rotations are independent of scale.

4. Three-Dimensional Motion Estimation

Three-dimensional motion estimation, or so-called camera pose estimation, is a well-studied
problem in both the computer vision and the robotics communities where it is defined as
Structure-from-Motion (SfM) or visual Simultaneous Localization And Mapping (vSLAM). “Motion”
or “camera pose” usually refers to both the translation and rotation of the camera. Traditional 3D
video stabilization techniques apply these approaches and remove both the angular motion and the
translation of the camera.

However, we do not remove, and thus do not need, to estimate the camera translations. As stated
above, the translations include significant FPMI. The amplitude and frequency of translations can
reflect the speed and type of movement of the recorder (e.g., running, flying, or walking). For example,
if the amplitude of forward translation is high, and the amplitude and frequency of the translation
in the vertical direction are also relatively high, then we may infer that the recorder is running.
By applying traditional stabilization techniques, we may lose this important information, since the
video would look like it was recorded using a moving tripod if the vertical translation was smoothed
or removed.

Also, translations are preferred in FPVs. Their importance is evident from First-Person Video gaming,
since watching an FPV is similar to playing a First-Person Video game. In First-Person Video games,
the translations in the vertical and horizontal directions are called “head bobbing”. Recent First-Person
Video games simulate head bobbing to make the games more realistic. For this topic, Ref. [30] provided a
study and showed that most players prefer games that have head bobbing.

Since the translation is not estimated, the rotation between each two frames can be estimated
independently during a first pass which is called the initialization. After that, we the pose graph is
built and a graph-based optimization algorithm is applied to reduce the error introduced during the
initialization step. The initialization step is operated based on SURF (Speeded Up Robust Features) [31]
with RANSAC (random sample consensus) [32]. For each two frames, it is first assumed they share
a large enough baseline that a triangulation can be performed successfully using epipolar geometry.
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When there are not enough inliers after the RANSAC, we believe the triangulation fails, and the
camera motion between these two frames is a pure rotation. In this situation, the fundamental matrix
degenerates to a homography.

Suppose the estimated camera pose of the ith frame is Ri,

Ri = Ri,i−1Ri−1,i−2 · · · R2,1, (1)

where Ri,i−1 the estimated rotation from frame (i− 1) to frame i. Using the graph optimization tools
provided by Ref. [33], we refined the estimated rotations using the objective function:

min
Ri ,Rj∈SO(3)

∑
(i,j)∈L

∥∥∥Log(RT
i,jRiRT

j )
∥∥∥2

,

L = {(i, j) : i− j = l and i, j ∈ Z+}.
(2)

SO(3) refers to the special orthogonal group which is the group of all 3D rotations. It restricts all
R to be valid rotations during optimization. i and j are time indices of camera poses. L constrains
the distance between frame indices. The larger l is, the further apart the two frames may be. In the
experiments, we found that l = 5 is large enough to have a large baseline for FPVs recorded in 30 fps.
Note that this approach requires the camera’s intrinsic parameters.

These matrices in the special orthogonal group are mathematical expressions of the camera poses
which do not have a physical meaning to humans. To edit camera motions, we need to decompose
these matrices in the same way that humans understand camera motions. After that, we can apply the
human perception model to measure the viewing experience of the camera motions.

Humans understand camera motions in the sense of Euler angles. A camera motion is usually
understood as a combination of pitch, yaw, and roll, which are the rotations around the x, y, and z
axes. Thus, we decompose a camera pose (Ri) into three Euler angles. However, there is no unique
solution for the decomposition. In order to give the results a more realistic meaning that is closer to the
understanding of humans, the decomposition order is chosen so that it coincides with the importance
of human motions. Considering typical human activities, yaw, which is performed to look around,
is the most important motion. Pitch, which is performed to look up and down, has intermediate
importance. Roll is seldom performed intentionally, so our goal is to remove it during stabilization.
As a result, the camera pose of the ith frame Ri is decomposed as

Ri = Rz(θz)Rx(θx)Ry(θy). (3)

The corresponding angles are computed as

θy = tan−1
(−Ri(3, 1)

Ri(3, 3)

)
, (4)

θz = tan−1
(Rzx(2, 1)

Rzx(1, 1)

)
, (5)

θx = tan−1
(−Rzx(2, 3)

Rzx(2, 2)

)
, (6)

where
Rzx = RiRy(θy)

−1, (7)

and R(k, l) is the (k, l) entry of matrix R.
Note that the entire speed of our system (including the parts we introduce in the rest of the paper)

is around 6 s per frame with nearly 80% of the time spent on 3D motion estimation. In this paper, we do
not focus on optimizing the motion estimation algorithm, which can be achieved by incorporating the
recent work in Ref. [34].



J. Imaging 2018, 4, 106 7 of 29

5. Human Perception Model

The viewing experience when watching FPVs is different than our real life First-Person Experience.
This is because we rely on different visual functions in these two different situations. In this section,
we first introduce the human visual functions used in these two situations, which are the Vestibulo-Ocular
Reflex (VOR) and Smooth Pursuit Eye Movement (SPEM). Then we describe our eye movement model of
SPEM which considers the closed-loop characteristics of the human visual tracking system.

5.1. Vestibulo-Ocular Reflex

When the recorder captures FPVs in real life, they never feel dizzy. This is because their body
applies the Vestibulo-Ocular Reflex (VOR) to compensate for the rotations of their head. The bio-signals
from the semicircular ducts located in their ears carry the information of the amplitudes of the yaw,
pitch, and roll and control the extraocular muscles to perform opposite eye motions to compensate
for the head motion. As a result, the images of interesting objects can be maintained at the center of
the visual field, i.e., the fovea. This process can be thought as an image stabilization function of the
human body. The frequency of VOR can reach up to 100 Hz [35], which ensures the stabilization can
be achieved in real-time.

5.2. Smooth Pursuit Eye Movement

When watching an FPV, the viewer performs a different eye movement to accomplish the stabilization
task. The perceived motion of a passive viewer does not activate the VOR, and the semicircular ducts
provide no information. Consequently, to stabilize the images, viewers can only rely on visual information
and must perform Smooth Pursuit Eye Movement (SPEM).

Before the viewer starts to pursue the target, a catch-up saccade needs to be performed to catch
the target, which takes nearly 150 ms [36]. A catch-up saccade is triggered when SPEM lags behind or
over-shoots the target. During a catch-up saccade, little visual information is processed by the human
visual system which leads to the experience of instability.

This indicates that by measuring the fraction of the video length that the SPEM is operating
under, we can measure the video stability which is one of the two parts of the viewing experience of
FPVs. This requires us to understand and model the operating mechanism of the catch-up saccade.
A reliable triggering model was proposed in Ref. [37] in which a catch-up saccade is triggered based
on the eye-crossing time (TXE) that the human brain estimates. If the TXE is between 40 ms and 180 ms,
the catch-up saccade is not triggered. TXE is defined as

TXE =
−PE
ωrs

, (8)

where PE is the angular position error, and ωrs is the relative angular speed (target’s image speed
on the fovea) or so-called retinal slip. Intuitively, this ratio is the time that human eyes need to catch
the target.

However, this model is not sufficient for building a measurement of viewing experience of
FPVs. Next, we discuss the basic geometry of watching FPVs. By considering the practical situations,
we present our mathematical model of SPEM for FPVs which forms the basis of the measuring approach
described in Section 6.

5.3. Mathematical Model of SPEM for FPVs

To simply the problem, we developed the models for yaw, pitch, and roll motions separately.
Suppose the viewer observes a video with a viewing distance (d), and the camera is performing a
yaw/pitch motion. Figure 2 illustrates this in 3D. To help readers understand the 3D geometry, Figure 3
shows the top view of Figure 2.
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Figure 2. Images of the target object under yaw motion in 3D. Images from the left to right illustrate
when the camera yaws from angle 0 (aligned with the world coordinate) to angle θ(i), and to angle
θ(i + 1) and captures the object on the image plane. “Yaw” means the camera rotates about the y axis
at the camera’s center (o). Images for pitch motion are similar but the camera rotates about the x axis.
β is the angular object position with respect to the world coordinate and is independent of the camera
motion. It is only shown in the leftmost image for clarity.
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Figure 3. Images of target object under yaw motion from the top view.

Figure 2 shows the geometric relationships among the target object, camera, and viewer over time.
Images from the left to right illustrate when the camera yaws from angle 0 (aligns with the coordinates)
to angle θ(i) and to angle θ(i + 1) and captures the object on the image plane. Images for pitch motion
are similar, but the camera rotates along the x axis. For FPVs, the translation of the recorder within a
short period is relatively small with respect to the depth of most objects. As a result, we assume the
relative position of the target with respect to the camera center is fixed.

Suppose the target position with respect to the camera center is βk at frame k while the camera
focal length is f . The viewing distance of the viewer is d and the estimated camera position is θ.
So, the observation angle of the target for the viewer at frame k is

ϕobj(k; βk) = arctan
[ f tan βk

d
]
. (9)

At frame k′, the observation angle under the coordinates of frame k changes to

ϕobj(k′; βk) = arctan
[ f tan(βk − θ(k′ − 1) + θ(k))

d
]
. (10)

The geometry of roll motion is different from yaw and pitch, as shown in Figure 4. Suppose the
object is on the x− z plane in the kth frame. Then, the position at frame k′ is

ϕobj(k′; βk) = 2 arcsin
[ r sin(θ(k′ − 1)/2− θ(k)/2)√

d2 + r2

]
, (11)

r = f tan βk. (12)
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Figure 4. Geometry of roll motion in 3D. Images from the left to right illustrate when the camera rolls
from angle 0 (aligned with the world coordinate) to angle θ(i) and to angle θ(i + 1) and captures the
object on the image plane. “Roll” means the camera rotates about the z axis at the camera’s center
(o). β is the angular object position with respect to the world coordinate and is independent of the
camera’s motion.

Assume that the frame rate is 30, and the viewer performs a SPEM from frame k to frame (k + 1).
Then, the PE(βk) and ωrs(βk) in Equation (8) at frame (k + 2) can be calculated with

PE(βk; k + 2) = ϕobj(k + 2; βk)− 2ϕobj(k + 1; βk) + ϕobj(k; βk), (13)

ωrs(βk; k + 2) = 30 · PE(βk; k + 2). (14)

However, we found that it is inaccurate to directly apply the conditions given in Equation (8)
for two main reasons. First, the model in Ref. [37] ignores the predictive ability of SPEM.
Second, the sensitivity of the human visual system needs to be taken into consideration in practice.
We improve the model given in Equation (8) by considering each of these two reasons, respectively,
with the following two new conditions:

0.04 ≤ |PE(βk; k + 2)|+ b
|ωrs(βk; k + 2)| ≤ 0.18 (15)

|PE(βk; k + 2)| < MAR, (16)

where k is the frame index, MAR is the minimum angular resolution of human eyes, and b is the bias
of position error estimation. If either one of these two conditions is satisfied, the catch-up saccade is
not triggered. In the next two paragraphs, we explain each of these two conditions.

The first condition, Equation (15), addresses the fact that Equation (8) treats the SPEM as an
open-loop system. In the experiments in Ref. [37], the position errors are generated by changing
the target position abruptly. This weakens the predictive ability of SPEM which is a key closed-loop
characteristic of SPEM [38]. In addition, Ref. [37] used laser spots or circles as the tracking target
to test the SPEM properties of human eyes. This will also underestimate the predictive ability of
SPEM, because, according to Ref. [39,40], the target shape can provide additional information for
visual tracking. Refs. [38,41,42] also concluded that the predictive ability can be generated by scene
understanding or the experiences of motion patterns. None of these factors were taken into account in
Ref. [37]. A direct illustration of the failure of their model is that, without the additional information,
the target may precede the gaze in both position and velocity which would create a negative value
of TXE.

In contrast, our modified constraint (15) treats the SPEM as a closed-loop system. We recognize
that the viewer can utilize the additional information (i.e., target shape, scene content) to track targets.
The eye movement can be accelerated before the next frame is shown which makes the retinal slip
change and makes the TXE positive and fall into the desired region. This is the reason that we
introduced the absolute values in Equation (15). However, there is no widely recognized mathematical
model to adjust for retinal slip [38], although most studies agree that the procedure relates to a feedback
control that has constant parameters based on visual content, scene understanding, or the experiences
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of motion patterns [38–42]. As a result, to describe the characteristic of the feedback control and make
our model compatible, we include an unknown bias parameter b. Later in Section 8, we design a
subjective test based on real scenes to help us learn about the bias parameter. The learned parameter
makes our model accurately describe the SPEM in practical situations.

The second condition, Equation (16), models a limitation of our visual system. A position error,
PE, less than the minimum angular resolution (MAR) cannot be perceived by human eyes. In addition,
the human visual system introduces an estimation error when estimating the position error. This is
another reason why introducing the bias b is helpful.

Equations (15) and (16) are conditions on βk, the angular position of the target at frame k.
Solving them for each frame and for each type of motion (yaw, pitch, or roll) gives us an interval of βk.
Any object in the current frame that has an angular position within this interval can be tracked without
having a catch-up saccade between the next two frames if the SPEM has already been performed.
We defined this interval as B(k) for future convenience. B(k) contains all the information we need to
compute the viewing experience of FPVs.

6. Viewing Experience Measurement

We decomposed the camera motion of a FPV into yaw, pitch, and roll sub-motions. We combined
the viewing experience measures of all sub-motions into an overall viewing experience measure of the
FPV. In this section, we propose two viewing experience measurements for sub-motions, which are
both based on the interval of SPEM-possible object positions (B(k)). The first measurement is called
the Viewing Experience (VE) score which is based on a probabilistic model. It measures the fraction of
frames in a video that can be tracked using SPEM. The second measurement is called the Structure
Viewing Experience (SVE) score which is a faster algorithm inspired by the VE score but without
the same physical meaning. The approach of combining scores of sub-motions is presented after
discussing the VE and SVE scores.

6.1. Viewing Experience Score

The VE score indicates the fraction of frames can be tracked using SPEM given the current camera
motion of yaw, pitch or roll. In Section 7, we show how it can be applied to different components of
First-Person Motion to obtain either the stability or FPMI of a FPV. Here, however, we show how a
single VE score is computed for a given motion.

Suppose we want to compute the VE of a yaw or a pitch motion. B(k) is the interval that indicates
the object positions for which SPEM is possible. To unify the coordinate of all frames, we add the
camera position (θ(k)) to B(k). Recall that θ(k) was computed in Section 4 for frame k:

B̃(k) = B(k) + θ(k). (17)

In Figure 5, the upper and lower boundaries show an example of B̃(k). Unlike B(k), B̃(k) includes
not only the positions for which SPEM is possible of each single frame but also incorporates the spatial
relationship between the intervals across the duration of the video.

Consider the example in Figure 5. The eye movements of the viewer are modeled as a random
process. Suppose the viewer randomly chooses a target to track within the field of view (FOV) from
the first frame. The trajectory of this target in Figure 5 is a straight, horizontal line, since it remains at
the same object position within a short period with respect to the camera orientation in the first frame.
When this line intersects the boundaries (B̃(k)), the viewer can no longer track this target. In this
situation, one of two things happens. To keep tracking the same target, the viewer can perform a
catch-up saccade. Otherwise, a saccade eye movement is performed to randomly retarget a new object
within the FOV. Either of these two procedures takes time, nearly 6 frames [36].
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Ending range (saccade here)

Frame 1 Frame k

Frame k+1

Figure 5. Example of B̃(k).

The procedure of targeting and maintaining smooth pursuit is defined here as a trail of tracking.
A possible path of watching a video consists of several trails of tracking. By calculating the length
of each possible path and their probability, we can find the expected value of the fraction of frames
for which the viewer performs SPEM. Intuitively, a wider, more open pathway between the upper
and lower bounds (shown in Figure 5), will produce a higher expected value, i.e., a higher VE score.
This indicates that there are likely to be fewer catch-up saccades while watching the video.

First, we compute the probability of a single tracking trail. Vi,j is defined as the event:

Vi,j = {The target can be tracked from frames i to j}.

Define Ti,j to be the event:

Ti,j = {The target is tracked from frame i and lost at frame j}.

Then, we have the probability that a target is tracked from frame k and lost at frame (k′ + 1):

Prob(Tk,k′+1) = Prob(Vk,k′+1, Vk,k′)

= Prob(Vk,k′)− Prob(Vk,k′+1),
(18)

where

Prob(Vk,k′) =
max

⋂k′
i=k B(i)−min

⋂k′
i=k B(i)

FOV
. (19)

Note that here we assume the viewer will choose any target in the frame within the FOV with
equal chance.

The probability of a possible path is the cumulative product of the probability of all its tracking
trails. Suppose for an K0-frame video, a possible path pathm has n trails of tracking. Then, the probability
of pathm is

Prob(pathm; K0) =
n−1

∏
i=1

Prob(Tlm(i),lm(i+1)−6) · Prob(Vlm(n),K0
), (20)

where lm(i) encodes the start frame index of each trail of tracking in pathm.
The length of this possible path is

L(pathm; K0) = K0 − 6(n− 1). (21)

The reason that the current tracking procedure lasts 6 frames before the next tracking procedure
(i.e., from frame lm(i) to frame lm(i + 1)− 6) is that there will be a 6-frame-length catch-up saccade
period before the next tracking starts at frame lm(i + 1)− 6.
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Our VE score of a video from frame k to frame (k + K0) can be computed as

VE(k; K0, θ) =
1

K0 + 1 ∑
m

Prob(pathm; K0) · L(pathm; K0), (22)

which depends on θ, the camera motion.
The reason we calculate a VE score for only a few frames (from k to frame (k + K0)) instead of

the whole video is that objects may only be visible for a short period. To compute Equation (22),
we first identify all the possible paths for a length (K0 + 1) video. Then, we check whether each path is
feasible or not. A path is not feasible when any of its trails are not feasible which is indicated when the
probabilities in Equations (18) and (20) are less than 0. Then, we let

Prob(pathm) = 0. (23)

To reduce the computational complexity, we set (K0 + 1) to 10. For a K-frame video, the B̃(k) of
yaw, pitch, or roll is a (K− 2) by 2 vector. The VE score of any one of yaw, pitch, or roll has a length
of (K− K0 − 2).

6.2. Structure Viewing Experience Score

The procedure to compute VE scores is somewhat time consuming. For K0 + 1 = 10,
computing the VE of a 300-frame video requires around 0.425 s. On the contrary, the Structure
Viewing Experience (SVE) score introduced in this section only needs 0.155 s. However, the price of
this is that the SVE score does not have a physical meaning like the VE score.

The value of the VE score depends on the interval value (B̃(n)) of each frame and also depends
on the shape of B̃(n). Figure 6 shows the B̃(n) when there is zero motion and when there is a motion
with slope. The zero motion has the largest VE score since a target can be tracked across the whole
video as long as it is within the FOV. However, the motion with slope yields a VE score that is smaller
than 1. Intuitively, the shaded area in Figure 6 decreases as the motion slope increases.
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Figure 6. B̃(n) of zero motion and motion with slope.

The SVE score shares the same mechanism as the VE score. Through the example in Figure 6,
we see that the more open the pathway of B̃(n) is, the higher VE the video has, which is the inspiration
for the SVE score. The most straightforward approach would be to compute the shaded area in
Figure 6. However, this becomes more complicated when the motion amplitude has significant
variation. Instead, the following equation is applied to obtain a similar measurement:

SVE(k; K0, θ) = 1− 2
(K0 + 1)K0

· ∑K0−1
i=0

(
∆B̃(k + i)

)(
K0 − i

)
FOV

, (24)

∆B̃(k) =
∥∥∥B̃(k + 1) \

(
B̃(k + 1) ∩ B̃(k)

)∥∥∥. (25)
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where ‖ · ‖ computes the distance of an interval, and \ indicates interval subtraction.
Equation (25) is applied to compute the ∆B̃ of each pair of adjacent frames which quantifies

the number of objects we would lose tracking from frame k to frame (k + 1). Then, the SVE score is
computed for a short period of the video using Equation (24), where we also set (K0 + 1) to 10.

The main idea of Equation (24) is to assign different weights to ∆B̃ corresponding to different
time instants. ∆B̃ of earlier time instants are more influential to the openness of the interval of
SPEM-possible object positions B̃ across the time, which also can be seen using the right plot in
Figure 6. If a target is lost at the second frame, then this target cannot be tracked for a total of 6 frames.
If a target is lost at the 8th frame, then it only influences the viewing experience of 1 frame.

Both the VE and SVE scores are based on the interval B̃ that indicates the object position for which
SPEM is possible across the time. This gives VE and SVE similar properties and performances for
measuring Viewing Experience. Experiments of performance comparison are presented in Section 8.

6.3. Measurement of a Video

Both the resulting VE score and the SVE score of a single motion have three components: yaw, pitch,
and roll. As a result, a FPV has 3 VE/SVE scores. To obtain a single measurement, we combined the three
scores into one to describe the fraction of frames that can be tracked using SPEM temporally. Suppose the
measurement for the three motions are My, Mx, and Mz. Then, the measurement for the whole FPV is Mall:

Mall(k; K0, θ) = min
i=x,y,z

Mi(k; K0, θ). (26)

Each element of Mall is a VE/SVE score for a short period. This VE/SVE score is the smallest
VE/SVE score of the yaw, pitch, and roll.

To apply optimization procedures and do further analysis, we created a single score, M, which is
the mean-square value of Mall . For a K-frame video, M is computed as

M(θ) =
‖Mall(k; K0, θ)‖

K− K0 − 2
. (27)

In the following sections, for convenience, the VE/SVE scores are referred to by M.

7. Motion Editing

To improving the viewing experience of an FPV, we edited its First-Person Motion (FPM) and
reconstructed frames to create a new version of the video. In this section, we first define the FPM
including both structures (anchors and shape) and properties (stability and FPMI). Then, we introduce
the approach of measuring the properties using our VE/SVE scores. At the end, we demonstrate the
optimization procedure applied to edit the FPM given the measurements of the stability and FPMI.

7.1. First-Person Motion

First-Person Motion (FPM) is the angular camera motion estimated from FPVs. We first introduce
the properties of FPM, which are the intuitive feelings that viewers can directly perceive. After that,
we introduce its structure which controls its properties. The background provides a framework to
understand the rationale behind our measurement of each property which is described in Section 7.2.

7.1.1. Properties of FPM

The FPM has two properties: stability and First-Person Motion Information (FPMI). The stability
describes the degree of comfort when watching the FPV. A low stability makes it difficult for the viewer
to perceive the content of the video and may even cause dizziness.

The FPMI is the information conveyed by FPM. It has two parts: the First-Person Motion Range
(FPMR) and the First-Person Feeling (FPF). FPMR is the objective information which is produced
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when the recorder looks around. Motion editing may damage the FPMR so that the viewer will
never be able to see some particular objects that appeared in the original video. FPF is the subjective
information, which is the sense of watching activities captured from the First-Person Perspective.
The FPF is produced by three conflicts. The first and main conflict for the viewer is that the motion
perceived by watching FPVs is not consistent with what is perceived in real First-Person Experience.
The more obvious the conflict is, the more obvious the FPF is.

The second and third conflicts have limited influences on the viewing experience of FPVs but
do exist. The second conflict is between the feeling of watching FPVs and traditional videos (such as
cinematographic videos). The viewer senses that the current video (FPV) is not like the video he/she
usually watches. By watching more FPVs, this conflict may be eliminated. The third conflict happens
in the vestibular system caused by mismatched motions: the visual motions make humans feel that
their body is moving while the body has no physical motion. It causes disorder in the visual system,
which is called vestibular illusion. However, this effect varies with the strength of visual cues [43].
Stronger visual clues make the viewer more confident about the mismatched motions and make the
third conflict stronger. Compared with virtual reality systems, 2D screens have fewer visual clues so
that the third conflict is weaker.

Figure 7 shows the trade-off between stability and FPMI. When the FPM is large, the FPMI
increases (in both FPMR and FPF) while the stability decreases. However, it is still possible to increase
the stability while preserving the FPMI. Consequently, we can increase the viewing experience of a
FPV which is shown in Section 7.2.

Stability
First-person 

feeling

First-person 
motion range

FPMI
Viewing 
Experience

Figure 7. Properties of First-Person Motion.

7.1.2. The Structure of FPM

FPM consists of two structures: motion anchors and motion shape. An example of a FPM is
shown in Figure 8. Motion anchors are the time and magnitude of the local extremes of the FPM
and can be thought of as the skeleton of the FPM. When the motion anchors are fixed, the motion
amplitude and motion frequency of the FPM is fixed which causes the FPMR and FPF to also be fixed.
The motion shape is the path between motion anchors which only influences the stability of FPVs but
not the FPMI. Note that the stability is also influenced by the motion anchors, since the possible shapes
of the motion are limited by the motion amplitude and motion frequency.

Frame #

Angle

0

Anchor 1

Anchor 2

An angular motion

Figure 8. Example of a First-Person Motion.
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So, the general strategy of our system is a two-step iteration. First, we modify the amplitude of
original motion anchors which increases the video stability while still preserving a certain amount
of FPMI. Second, we find the optimal motion shape based on the new motion anchors which yields
the highest video stability. The iteration terminates when we find the desirable motions that preserve
an adequate amount of FPMI and maximize the video stability. Note that in the iterative process,
we simplify the problem by modifying only the motion amplitude and motion shape of the FPM;
we do not modify the motion frequency.

To apply optimization algorithms to perform the iterations, we need a measurement for the motion
anchors. The problem is that motion anchors are just a set of points while the VE/SVE measurements
proposed in previous sections are only suitable for motion curves. As a result, we create a motion
which is a one-to-one relationship with motion anchors: the pure FPM. The pure FPM is the zigzag
path that connects all motion anchors. An example of pure FPM is shown in Figure 8 using dotted lines.
The pure FPM is uniquely determined by motion anchors, and vice versa. As a result, the VE/SVE
score of the pure FPM is a description of the motion anchors. Since the FPMI is only determined by
motion anchors, any measurement of the pure FPM is a measurement of the FPMI.

7.2. Measurements of Video Stability and FPMI

The properties of the FPM (stability and FPMI) are influenced by different structures of the FPM
(anchors and shape). To improve the Viewing Experience, different measurements are assigned to
different structures and they are controlled based on the measurements.

Our proposed VE/SVE score can measure either the stability or FPMI, depending on which
motion structure it is computed on. Stability is measured using the absolute value of VE/SVE score
applied to the original FPM. In addition, the FPMI is measured by the negative VE/SVE score of the
pure FPM of the original FPM.

The intuition of VE/SVE is consistent with the stability. A larger VE/SVE score implies a larger
fraction of frames that the viewers can perceive and a higher stability. The reason for using the VE/SVE
score of the pure FPM to measure FPMI is that any measurement of the pure FPM is a measurement of
the FPMI. We use the negative value because the FPMI increases when the main conflict discussed in
Section 7.1.1 becomes more obvious, which happens when the FPM has a higher frequency and larger
motion amplitude. In this situation, the VE/SVE score of the pure FPM decreases.

The example in Figure 9 demonstrates the impact of motion amplitude and motion shape on these
two measurements. Figure 9a shows an example of a pure motion, and Figure 9b is the computed
measures using the motion in Figure 9a and the associated optimal motion that has the highest VE/SVE
score by only changing the motion shape using the algorithm derived in the next Section. This process
is performed repeatedly by varying the motion amplitude from 1 to 20. In this example, the ratio of
viewing distance with respect to the focal length is 6.
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Figure 9. Viewing Experience (VE) scores based on pure motions. (a) Example of pure motion;
(b) VE scores.
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This example shows that when the motion amplitude increases, the VE score of the optimal
motion decreases, since the camera/view shakes more heavily. Thus, it is reasonable to assign the
VE/SVE score to be the measurement of the FPV’s stability. The interpretation of the VE score of
the pure motion, which measures the FPMI is more interesting. First, there is a sharp decrease from
point A to point B (shown in Figure 9b); thus, FPMI increases from point A to point B. This is because,
at point A, there is so little motion that there is no FPMI, but at point B, the motion amplitude has
increased enough to provide noticeable FP, F and at the same time, increases the FPMR (FPM Range).
As the motion amplitude increases beyond point B, the VE scores of the pure motion decrease gradually
which is mainly because the FPMR is increasing. Thus, it is reasonable to use negative VE/SVE to
measure the FPMI.

Based on Figure 9b, we see that it is possible to increase the stability of FPVs while preserving
their FPMIs. The VE/SVE curve of the optimal motion indicates the potential highest video stability.
The curve of the pure motion is the FPMI. Suppose the original FPV has large motions and the situation
locates at the rightmost point on the curves in Figure 9b. Applying stabilization reduces the motion
amplitude, and as more stabilization is introduced, the corresponding point moves further to the left,
as shown in Figure 9b.

So, the optimal stopping instance is point B, where the video has become as stable as possible,
given that the FPF is noticeable. The loss of FPMR is small, and we will compensate for the loss of
intentional motion during stabilization.

7.3. Optimization Procedure

Our optimization procedure operates based on the two-step iteration mentioned in Section 7.1.2.
In this section, we first systematically introduce the general procedure and the mathematical definitions
of parameters that need optimizing. Then, we propose and discuss our objective function which enables
us to increase the video stability while preserving the FPMI. Finally, we present a method to speed up
the optimization procedure.

7.3.1. General Procedure and Optimization Parameters

Figure 10 shows the pipeline of the general optimization procedure. Given the original motion,
extract the pure FPM is first extracted. The optimization module focuses on two tasks: adjusting the
motion amplitude and searching for the optimal motion shape that produces the highest VE/SVE score
for a given amplitude of the adjusted motion anchors. This means there are two sets of optimization
parameters: motion amplitude reduction rates (D(i)), and motion shape controlling parameters
(q and s).

Figure 10. General procedure of motion editing.

Suppose the frame index of the ith motion anchor is A(i), the original camera motion is θ, and the
new camera motion is θ̃. Their pure motions are θp and θ̃p. Then, the motion amplitude reduction rates
of the ith motion anchor are defined as D(i):
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D(i) =

∣∣∣θ̃p
(

A(i)
)
− θp

(
A(i)

)∣∣∣∣∣∣∣θp
(

A(i)
)
− θp

(
A
(

arg min
i 6=j

∣∣A(j)− A(i)
∣∣))∣∣∣∣ . (28)

Equation (28) groups the nearest two motion anchors and assumes that they consist of an FPM.
The absolute amplitude difference between these two anchors is set to the base size of the amplitude.
The reduction rate is the ratio of the reduction amount with respect to the base size.

We apply the easing function method to search for the optimal motion shape. Easing function
methods are popular in the computer graphics community [44,45], and are usually used to construct
smooth motion. However, if we adopt an n-dimensional polynomial easing function to search the
motion shapes, there will be n unknown parameters that need optimizing for only one motion anchor
pair and usually, a 300-frame FPV has at least 30 individual motion anchors. For longer videos,
this computational requirement can become unacceptable. As a result, we construct an easing function
in Equation (29) which only requires 2 parameters for each motion anchor pair. The motion at frame k
is constructed based on the pure motion (after amplitude reduction) and the location of the adjacent
motion anchors:

θ̃(k; qi, si) = θ̃p(k) + si ·
[n−

(
A(i) + A(i + 1)

)
/2(

A(i + 1)− A(i)
)
/2

]qi
∆θ̃p(k), (29)

∆θ̃p(k) = θ̃p

(
arg min

A

(
A(i)− k, k− A(i + 1)

))
− θ̃p(k). (30)

In Equation (29), qi controls the degree of the shape, while si controls the scale of the ith motion.

7.3.2. Objective Function

Our primary goal is to increase the video stability while preserving an adequate amount of FPMI.
Our conclusion is that the theoretical optimal stopping instance for stabilization is the point B in
Figure 9. That is, the optimization strategy is to find the point where the VE/SVE score of the optimal
motion is high (to create a high stability) and the VE/SVE score of the corresponding pure motion
is low.

However, we also need to consider the FPMR since it is also part of the FPMI. We can increase
the video stability and preserve an adequate amount of FPF. However, this damages the FPMR since
reducing the motion amplitude will definitely discard part of the image. To solve this problem,
we adjust those motion anchors for which the FPMR is important. For example, for the FPMs caused by
vibrations or unintentional head motions, the original FPMR contains no information of the recorder’s
personal interests. However, for those FPMs that are larger than the FOV, we believe that the recorder
has performed those the motion intentionally and the FPMR has significant information. As a result,
our objective function is constructed as

min
D,q,s

[
1−M(θ̃) +M(θ̃p)

]
+ αFPMR · ∆FPMRT , (31)

where θ̃ is the edited motion, and θ̃p is the corresponding pure motion. M(·) is either VE(·) or SVE(·).
As a result, 1−M(θ̃) is the instability; M(θ̃p) is the negative value of FPMI. The last term provides
the compensation for FPMR. ∆FPMR is the vector of the FPMR loss. Its ith entry is the loss of the ith
motion, estimated using the fraction by which the ith motion had its amplitude reduced:

∆FPMR(i) = 1−
θ̃
(

A(i)
)

θ
(

A(i)
) . (32)
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Finally, αFPMR is the vector of the weights of motions. The ith entry is only not zero when the ith
motion is larger than FOV:

αFPMR(i) =
∆θ(i) · 1{x>FOV}∆θ(i)

∑j ∆θ(j) · 1{x>FOV}∆θ(j)
, (33)

∆θ(i) = θ
(

A(i)
)
− θ
(

A(i− 1)
)
. (34)

7.3.3. Speeding up the Optimization

Our optimization procedure is performed based on particle swarm which enables us to find the
global optimum. For a camera motion which has T motion anchors, the proposed objective function
has T + 2(T − 1) variables, where T are needed to search for the reduction rate, and 2(T − 1) are
needed to search for the motion shape. To find the global optimum when T is large, more particles and
a longer convergence time are required. As a result, we constructed a look-up table which produces
the values of the motion shape variables q and s as a function of the motion amplitude. This was
accomplished by using the objective function below and varying the motion amplitude from 0.1 to 30.

min
q,s

1−M(θ̃). (35)

This look-up table enabled us to eliminate the parameters q and s in Equation (31) which reduces
the number of variables by a factor of three. Since the yaw and pitch motions have a different
mathematical model than the roll motion, two separate training processes are necessary.

7.4. Applications of Viewing Experience Score

So far, we have discussed the properties of our Viewing Experience score, how to use it to measure
both the video stability and First-Person Feeling of FPVs, and how to use it to improve the viewing
experience of FPVs. However, our Viewing Experience score also enables other important applications.
In this section, we briefly introduce two examples: a filter for video quality estimation and rapid
motion design.

7.4.1. Filter for Video-Frame Quality Estimation

Video quality is different from image quality because of the existence of motion. Images are still,
and what viewers perceive is 2D information. A video is a set of images that is shown to viewers in
temporal order, and what viewers perceive is dynamic 2D information. In videos which are egocentric
or have long-shot scenes, the camera/image motion heavily influences perception. Large and fast
motion make the video shaky and the dynamic 2D information that a viewer can perceive is reduced.

Human visual saliency is often incorporated with models of image and video quality [46].
The basic principle is that the image and video quality should be measured for the area that viewers are
interested in. However, considering the fact discussed above, video quality should also be measured
for the area in which viewers can perceive information.

Identifying this area can be accomplished by our VE score. Our VE score can serve as a filter
which indicates how much information viewers can perceive across time. If the VE score of a period of
time is low, the quality of this part of the video is less important, since no matter whether the quality is
good or bad, and no matter whether viewers are interested or not, the information will be difficult to
perceive. In addition, as a result, the original quality score of this part of the video should be assigned
a low weight when computing the quality of the entire video. Similarly, if the VE score during a period
of time is high, then its quality score should be assigned a high weight. For example, Figure 11 shows
the VE score of a FPV. At around frames 150 and 240, the video has low a VE score, which means the
quality of the video will be difficult to perceive during these instances.
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Figure 11. Example of the VE score of a FPV.

7.4.2. Rapid Motion Design

In fact, the example in Figure 9 not only provides the suggestion of how to stabilize a FPV, but also
enables many applications, such as gimbal design, First-Person game design, and efficient video
stabilization. By repeating the experiment in Figure 9 with different motion frequencies, given a single
original motion, we can immediately provide a threshold on motion amplitude as a function of its
motion frequency. When the motion amplitude is reduced below the suggested threshold, no more
stabilization is needed. The thresholds to achieve VE = 0.8 under different motion frequencies and
viewing distances are shown in Figure 12.
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Figure 12. Suggested threshold to achieve VE = 0.8 under different motion frequencies and viewing distances.

In applications, we can use this figure to quickly detect the shaky part of the video and provide
a quick strategy for stabilization. For gimbal design and First-Person game design, the figure also
provides suggestions for maximum stable motion amplitude for viewers. Note that the VE score in
Figure 12 is only a suggested threshold. Our algorithm has the flexibility to control the threshold based
on the user requirements. To accomplish this, a weight (αb) is simply added into Equation (31):

min
D,q,s

[
1−M(θ̃) + αbM(θ̃p)

]
+ αFPMR · ∆FPMRT . (36)

If αb is larger than one, a greater First-Person Feeling is obtained in the resulting video. Otherwise,
a resulting video with higher stability is obtained.

8. Experimental Results

In this section, the experimental results are presented in two parts: the performance of our
proposed measurement and that of our whole system. Each part includes both objective tests and
subjective tests.
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8.1. Tests for Viewing Experience Measurement

So far, we have proposed Viewing Experience measurements that are based on the model of viewers’
eye movement. As we discussed, the measurement can help determine the amount of stabilization to be
applied to FPVs so that the video stability is improved and, also, an adequate amount of FPMI is preserved.
Here, we perform experiments to show that the measurement result aligns with viewers’ experiences.

First, we design a subjective test to improve the design of our eye movement model, which is
the basis of the measurement. After that, an objective test is performed to test the robustness of the
measurement under noise, and a subjective test is applied to test its effectiveness on real FPVs.

8.1.1. Perception Model Parameter Estimation

This sub-section describes the process used to find an accurate bias parameter for Equation (15)
so that the measurement of stability or FPMI has a higher correlation coefficient with the human
subjective scores.

The general idea is to obtain subjective scores of the stability of carefully-constructed FPVs across
a range of possible bias parameters. The optimal bias parameter is found when the Pearson linear
correlation coefficient (PLCC) between the subjective scores of the stability and the objective VE scores
is maximized. This process can also be performed using FPMI instead of video stability, since they are
based on the same measurement. We chose video stability because it is an easier task to explain to
subjects and to expect them to access accurately.

This subjective test used a paired comparison and included 19 subjects. The test videos were
based on 4 scenes. For each scene, there were 9 versions, each with a different combination of motion
amplitude in both yaw and pitch to create different levels of video stability. Each video was 5 s long
and was displayed on a 27-inch, 82 PPI (Pixels Per Inch) screen at full resolution. The ratio of viewing
distance with respect to the equivalent focal length was 4. During the test, for each comparison,
only one question was asked: “Which video is more stable?” Note that we only tested within samples
of the same scene and not between 2 different scenes.

Figure 13 shows sample frames of the scenes in the test. The resolution of all videos was 1080 p
and the frame rate was 30 fps. These test videos were generated by adding synthesized motions into
360◦ videos which were captured using a 360◦ camera set on a wheeled tripod.

(a) (b)

(c) (d)

Figure 13. Example frames of source videos: (a) lobby; (b) market; (c) university street (US); (d) park
walkway (PW).
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Each frame of the 360◦ video was an equirectangular image. Based on the synthesized motion
of each frame, we centralized the camera view at a particular part of the equirectangular image to
create a perspective image. After collecting all resulting perspective images, we generated a video with
synthesized motions.

According to the motion model used in First-Person video games [47], yaw and pitch motions are
synthesized using sinewaves. Details of the synthesis process are described in Ref. [3], including the
method used to design the synthetic motion and adjust the video speed.

There are two main reasons for using test scenes with synthetic motion. First, this enables easy
and accurate access to the camera motion since it is actually generated. Second, it enables us to
create videos that do not contain several potential distortions. For example, since the tripod is moved
smoothly and slowly, videos are free from rolling shutter. In addition, since 360◦ videos are used,
all the test videos are free from black areas.

The subjective test results are expressed using Bradley–Terry scores and are shown in Table 2.
Suppose the bias parameter is b, the BT scores of ith scene are stored in vector BTi, and the
corresponding VE scores under a saliency model are VEi. Then, the following equation was used
to find the optimal bias parameter that maximizes the correlation between subjective scores and
our measurement:

max
b

J =
√

∑
i
(corr(BTi, VEi))2, (37)

where corr(·) computes the Pearson linear correlation coefficient (PLCC). The PLCCs using different
bias parameters are shown in Figure 14. As can be seen, the optimal bias parameter is 0.0183, which is
quite close to the minimum angular resolution of human eyes. We also show the robustness of the
bias parameter setting in Figure 14. For each possible bias (b), we computed the standard deviation of
PLCC within the range of [b− 0.001, b + 0.001]. The robustness is indicated by the standard deviation.
The smaller the standard deviation is, the more robust the bias parameter setting is. As can be seen,
the resulting optimal bias setting has high robustness. Even if we did not obtain the optimal setting
because of the noise in the subjective data, it still fell within the robust bias parameter range where VE
scores and subjective scores have high PLCCs.

Table 2. Bradley–Terry scores of all videos.

Yaw Motion Amplitude

4.3 6.2 8.1 10

Lobby

Pitch Motion Amplitude

1.075 0 (±0.345) −3.057 (±0.422) −5.105 (±0.550)
1.55 −4.027 (±0.533) −5.987 (±0.622) −7.813 (±0.809)

2.025 −6.464 (±0.652) −9.021 (±0.956)
2.5 −9.857 (±1.095)

Market

1.075 0 (±0.387) −1.262 (±0.431) −2.184 (±0.495)
1.55 −1.268 (±0.468) −2.683 (±0.555) −4.445 (±0.720)

2.025 −3.199 (±0.580) −4.906 (±0.799)
2.5 −5.298 (±0.870)

US

1.075 0 (±0.370) −3.057 (±0.463) −5.041 (±0.588)
1.55 −3.734 (±0.551) −5.761 (±0.671) −7.087 (±0.796)

2.025 −6.948 (±0.763) −7.981 (±0.897)
2.5 −8.641 (±1.006)

PW

1.075 0 (±0.434) −1.885 (±0.468) −3.202 (±0.515)
1.55 −2.083 (±0.455) −3.792 (±0.566) −5.101 (±0.658)

2.025 −4.530 (±0.624) −5.950 (±0.729)
2.5 −6.516 (±0.827)
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Figure 14. Average Pearson linear correlation coefficient (PLCC) values across four test scenes under
different bias parameters and the standard deviations under different bias settings.

8.1.2. Measurement Robustness

The VE and SVE measurements are subjective measurements. Usually, the performance of this
kind of measurement is evaluated using a subjective test, but objective tests are also useful [48,49].
We applied objective tests to evaluate the robustness of our measurements, since objective tests are
easy to perform for a large collection of data.

Robustness, as we consider it here, is the concept that if a viewer cannot distinguish between
two versions of the same object, then the objective measurements should be quite similar. In practice,
the smaller the difference between the measurement results, the more robust the measurement is.
The measurement here is our VE/SVE score. The two versions of the same object refer to the synthetic
camera motion of a same scene.

Our objective tests were based on comparing videos with motions that are similar enough that they
are expected to have nearly equivalent subjective viewing experiences. First, we used the sine-wave
as our base motion. Then we modified the sine-wave motion by making small changes bounded by
the minimum angular resolution (MAR). As a result, it is reasonable to assume that a viewer should
not be able to perceive differences between the base motion and the synthetic motions. After that,
we computed the VE/SVE scores of the base motion and the synthetic motions. A comparison of the
measurement errors between the base motion and the synthetic motions using either VE/SVE showed
that the average error is

e =
1
r

r

∑
i=1

∣∣∣M(θi
syn)−M(θ)

M(θ)

∣∣∣ · 100%, (38)

where r is the number of experiment trials. The base sine-wave we use has an amplitude of 1, a period
of 20, and lasts for 12 periods. We performed the experiment by increasing the amplitude of the base
sine-wave from 1 to 20. For each amplitude, the number of trials (n) was set to 100, and MAR was set
to be 0.02.

The synthetic motions were generated using 3 operations: flipping, adding Gaussian noise,
and adding slope. The flipping operation simply flips the sine-wave from left to right or upside down.
The operation of adding noise adds normally distributed Gaussian noise using the following equation:

θsyn(k)− θsyn(k− 1) = θ(k)− θ(k− 1) +N
(

0,
(MAR · d

3 f
)2
)

, (39)

where f is the camera focal length, and d is the viewing distance in pixels. This distribution bounds
the amplitude of the noise so that the noise added to the position error is smaller than MAR in human
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eyes with a probability of 99.73%. The operation of adding slope is the same as adding accumulated
noise based on Equation (39) which models the drifting in motion estimation.

We assumed that the resolution of the video of the synthetic motion was 1080p, the viewing
distance was 3240 and the focal length was 830. The errors of the VE and SVE scores are shown in
Figure 15. From Figure 15, we can see that our two measurements, VE and SVE, are both robust under
the different operations. There were three main observations. Firstly, the flipping operation does
not influence the scores at all, as expected. Secondly, VE and SVE have similar performances when
the motion amplitude is large. Meanwhile, they are more robust at a high amplitude than at a low
amplitude. Intuitively, this is not only because the same noise magnitude is smaller relative to the
larger amplitude, but also because larger amplitude creates a shakier video, so it is harder for viewers
to distinguish the difference between similar motions. Thirdly, VE is a more sensitive measure since
it has larger changes under noise, especially in the low amplitude region where the FPF increases
dramatically according to Figure 9b. We prefer a measurement that has a higher sensitivity while being
robust enough. This is supported by the tests in the next section.
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Figure 15. Error caused by synthetic motions.

8.1.3. Measurement Effectiveness

To evaluate the effectiveness of our measurements, we treated them as quality estimators of video
stability and FPMI. We used videos and subjective test results from our earlier work [1] to test if the
results of our measurements aligned with the subjective scores. Since Ref. [1] used a different video
stabilization method, this experiment is independent of our motion editing step and simply considers
how effective the VE/SVE is for measuring viewing experience. Note that the videos from Ref. [1]
were not synthetic, but captured from a First-Person camera.

Three versions of videos were compared in Ref. [1]: the original ones, results of their stabilization
algorithm, and the results from Microsoft Hyperlapse [8,50]. Their subjective scores were computed
based on the Bradley–Terry model [51]. To test the effect of measurements, we applied the approach
proposed in Ref. [52].

The general idea of this model is to examine the ordinal scale of the quality estimator scores.
As illustrated in [52,53], if the Bradley–Terry scores of three version of the videos have the relationship
BT1 < BT2 < BT3, then the scores of a quality estimator that has a good ordinal scale should
be QE1 < QE2 < QE3. Meanwhile, the distance between the subjective scores and the distance
between the quality estimator scores should be similar. As a result, the model [52] yields the
following conditions:

sign(BT3 − BT2) = sign(QE3 −QE2), (40)

sign(BT3 − BT1) = sign(QE3 −QE1), (41)

sign(BT2 − BT1) = sign(QE2 −QE1), (42)

sign(BT3 − 2BT2 + BT1) = sign(QE3 − 2QE2 + QE1). (43)
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By calculating the number of conditions that are satisfied, we can use the fraction of correctness to
evaluate the effectiveness of our measurements. The results are shown in Table 3. We can see that for
the first three conditions, VE and SVE have the same performance—they are both robust for ranking
either stability or FPMI. However, for condition (43), the performance of VE is much better than SVE,
which supports the demonstration in the objective tests. VE is a more sensitive measure and creates more
similar distances among subjective scores and the quality estimator scores. This conclusion is even more
relevant when measuring the FPMI, since VE is more sensitive when the motion amplitude is small,
whereas FPMI varies dramatically according to Figure 9b.

Table 3. Fraction of Correct Distance Conditions.

VE

Conditions Cdn (41) Cdn (42) Cdn (43) Cdn (44) Total
Stability 1 1 1 0.8 0.95

FPMI 0.8 1 1 0.8 0.9

SVE

Conditions Cdn (41) Cdn (42) Cdn (43) Cdn (44) Total
Stability 1 1 1 0.6 0.9

FPMI 0.8 1 1 0 0.7

8.2. Tests for the Overall System

After evaluating several of the individual components, we were ready to evaluate our overall
system. To do so, we first applied an objective test to compare our stabilization algorithm with
existing stabilization techniques. After that, we constructed a subjective test to show that our system
can effectively improve the stability of FPVs while preserving their FPMIs. In accordance with the
experimental results shown in the previous section, we adopted VE as the measurement in this section.

8.2.1. Stabilization Performance

Our stabilization performance test was based on 5 video sets; the originals were recorded in
5 different locations (available at [54]). Each set included 7 different versions of the same video:
an original video, an output of our system, an output of our system which only stabilizes the video
(achieved by setting αb in Equation (36) to 0), an output result from Microsoft Hyperlapse (HL) [50],
an output from Deshaker (DS) [55], an output from YouTube stabilizer [5], and an output from Ref. [6].
The original videos lasted 10 s and were recorded by a GoPro Hero Session 4 with 1080p. To minimize
the black area of all results, each output was cropped to 1280× 720.

One objective measurement of video stability is the inter-frame transformation fidelity (ITF) [18].
The test results are shown in Table 4 where a larger value indicates higher video stability. According
to Table 4, all stabilization methods successfully stabilized the videos. Although our methods do not
have the highest values among all methods, the differences between all 5 methods are significantly
smaller than the improvement relative to the original.

Table 4. Original inter-frame transformation fidelity (ITF) scores.

Orig Ours Ours
(Only Stabilization) HL DS [5] [6]

Yard 29.2 33.5 (0.6%) 33.6 (1.28%) 33.7 33.7 (17.2%) 32.9 34.9 (37.0%)
Cave 29.3 33.6 (0.03%) 33.8 (0.05%) 33.8 33.8 (7.3%) 33.5 34.1 (7.8%)
Beach 26.6 30.3 (0.74%) 30.4 (1.2%) 30.9 30.9 (15.5%) 30.5 30.8 (10.0%)

Climb1 28.0 32.7 (0.5%) 32.9 (4.98%) 32.6 32.6 (19.0%) 32.3 33.2 (22.6%)
Climb2 28.4 32.4 (0.76%) 32.4 (0.31%) 33.6 33.6 (13.0%) 32.3 33.0 (13.4%)
Average 28.3 32.5 (0.5%) 32.6 (1.56%) 32.9 32.9 (14.4%) 32.3 33.2 (18.2%)
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As we mentioned in Section 2.2, ITF scores do not predict subjective stability scores well.
One reason for this is that ITF only measures the ability of a stabilization method to smooth the
camera motion; also, ITF does not capture the impact of the amount of black pixels at the edges of
the image. Table 4 shows, in parentheses, the percentage of black area after stabilization for each
method. The Hyperlapse and YouTube stabilizers do not have black area while Refs. [6,55] create a
significant amount of black area. Note that when we obtained the results from Refs. [6,55], we disabled
the option to remove the black area. When this option is enabled, the method either scales the frames
or introduces significant stitching errors. While this black area issue is not reflected by the ITF scores,
it significantly degrades the stability in practical situations. For example, ref. [6] has the highest ITF
score, but its resulting videos are less stable than our method, as demonstrated in our tests, and this
can be seen from the video in our database [54].

As a result, we modified the ITF to take the black area into account. The revised ITF was
calculated as

ITF =
1

N − 1

N−1

∑
k=1

PSNR(k), (44)

where k is the frame index, N is the total number of frames of a video, and

PSNR(k) = 10 log10

( 2552

MSE(k)

)
. (45)

To incorporate the impact of the black area issue, we computed the mean square error (MSE)
based on the average over the non-black area (S) of adjacent frames:

MSE(k) =
1
S ∑

i
∑

j

(
Ik(i, j)− Ik−1(i, j))

)2
. (46)

The revised ITF scores are shown in Table 5, where Hyperlapse has the highest score, and our
method is in second place. This demonstrates that our system can effectively stabilize FPVs.

Table 5. Revised ITF scores.

Orig Ours Ours
(Only Stabilization) HL DS [5] [6]

Yard 29.2 33.5 33.4 33.7 33.0 32.9 32.3
Cave 29.3 33.6 33.8 33.8 33.4 33.5 33.7
Beach 26.6 30.3 30.3 30.9 30.4 30.5 30.3

Climb1 28.0 32.7 32.6 32.6 32.2 32.3 32.0
Climb2 28.4 32.4 32.3 33.6 32.5 32.3 32.3
Average 28.3 32.5 32.5 32.9 32.3 32.3 32.1

8.2.2. Overall Performance

To further subjectively evaluate the ability of our system to improve stability while preserving
FPMI, this sections describes the construction and discussion of another subjective test.

This subjective test uses the same source videos as the previous section (Section 8.2.1), which includes
five different scenes shot by GoPro Hero Session 4 with 1080p. Three versions were prepared for each
video: the original one, our resulting video, and the Hyperlapse result. All the test parameters were the
same; videos were played back on a 27-inch, 82 PPI screen, and the ratio of viewing distance with respect
to the equivalent focal length was 4.

Our test used a paired comparison and included 21 subjects. Subjects were asked the following
questions after being shown each pair: (1) Which video is more stable; (2) In which video you can
recognize more First-Person motion; (3) If your friend tries to share his/her First-person experience
with you, which one do you prefer. The subjective scores (with 95% confidence interval) calculated
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using the Bradley–Terry model [51] are shown in Figure 16, which also includes the result from our
earlier work [1]. A higher score indicates higher stability, more FPMI, or higher preference.
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Figure 16. Result comparison of different version videos.

As expected, the original videos have the highest scores for FPMI, and Hyperlapse’s videos have
the highest stability levels. Our system is in second place for these two scores. Meanwhile, the scores
of our videos are closer to the desired videos: our FPMI score is closer to the original videos’ scores,
while our stability score is closer to the Hyperlapse’s scores. This illustrates that our system can
effectively increase the stability while preserving an adequate amount of FPMI. The stabilized result
in our earlier work [1] has a similar FPMI score as our current work. However, the stability score of
our earlier work is lower than our current work. Moreover, the preference score of our videos is the
highest. As a result, we can conclude that our system is more effective than the one in our earlier work
[1]. This is because our system is based on a more precise human perception model and has carefully
designed measurements for the viewing experience.

9. Conclusions

In this paper, we proposed two measurements (VE and SVE) to quantify both the stability and
the FPMI of an FPV. Based on the measurements, we further proposed a system to improve the
viewing experience of FPVs. To accomplish these two items, we described the human perception
model, analyzed the perceptual geometry of watching FPVs and defined the First-Person Motion
and its properties. We also applied a subjective test to further improve the basic perception model.
Finally, we systematically evaluated our measurement and overall system using objective tests and
subjective tests.

The objective test of robustness showed that our measurements are robust under different
operations that create visually equivalent motions. The objective test of stabilization performance
showed that our system is as effective as existing methods. The subjective tests showed that both
measures of VE and SVE highly align with the subjective scores. Also, our system can effectively
increase the stability of FPVs while preserving an adequate amount of FPMI.

Our system still has room for improvement for application in practical situations. Our current
pipeline is based on a 3D video stabilization procedure which requires the estimation of camera 3D
motion. In practice, speed and accuracy cannot both be achieved in real-time currently. In future
work, we plan to extend our VE/SVE measurements to 2D motion and develop a 2D-based video
stabilization technique to enable both speed and accuracy.
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