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A B S T R A C T

First-person videos (FPVs) or egocentric videos provide a huge amount of data for visual lifelogs. The quality
assessment of frames in FPVs serves as an important tool, feature or evaluation baseline for not only structuring
but also analyzing lifelogs. To develop a frame-quality measure for FPVs, we introduce a new strategy for image
quality estimation, called mutual reference (MR), which uses one or more pseudo-reference images to evaluate a
test image. We then propose a MR quality estimator, called Local Visual Information (LVI), that primarily
measures the relative blur between two images. To apply the MR strategy to FPVs, we propose a mutual re-
ference frame quality assessment for FPVs (MRFQAFPV) framework which incorporates LVI. Our results, using
both real and synthetic distortions and objective and subjective tests, demonstrate both methods perform better
than existing NR QEs at measuring the quality of frames in FPVs.

1. Introduction

Wearable cameras (Pivothead, Looxcie Camera, Mobius, Gopro,
Google Glass) mounted on human bodies can record videos at any time
and place without length limitation. These so-called first-person videos
(FPVs) or egocentric videos can record continuous data about personal
daily life. People are increasingly using FPVs to document activities,
share experiences, record trips, and more [4]. The huge amount of in-
formation from long-time and unstructured FPVs is a rich source for
visual lifelogs [5]. Recent research on assessing lifelogs in FPVs in-
volves two aspects: structuring and analysis. Methods to structure vi-
sual lifelogs consists of informative-image detection [6], temporal
segmentation [7,8], egocentric summarization [9,10] and content-
based search and retrival [11,12]. Analysis of lifelogs involves object
discovery [13], activity recognition [14] and spatial localization [15].

The visual quality of individual frames influences the ability to both
structure and analyze FPVs. First, image quality is one important in-
dicator when searching for informative images, which are defined in
[6] as “intentional” images and can be used to summarize FPVs.
Second, image quality provides an evaluation tool for applications re-
lated to viewing experience, including fast-forward and stabilization
[16,17]. Third, it can be used to filter out useless frames before ap-
plying methods for content search [12] and activity recognition [14]. In
addition, it can provide information about the wearer’s motion as well
as environmental cues regarding fog, over-exposure or under-exposure.

FPVs have significantly different attributes than typical broadcast

and mobile videos. Broadcast videos are often captured by stably-
mounted cameras with high-quality frames, and mobile videos are
captured from hand-held mobile devices. In both cases, a filmmaker
captures scenes guided by real-time feedback from a screen, so the
camera can be intentionally controlled to be reasonably stable and have
the desired field of view. However, wearable cameras rarely are stably
mounted nor have real-time feedback. Video is often gathered pas-
sively, without attending to composition. Even if there is an intention to
record a high-quality video, the camera may not capture a well-com-
posed high-quality video. This occurs not only because the wearer may
be unaware of the field of view, but also because external factors may
temporarily influence body actions as well. As a result, FPVs as re-
corded from camera rarely tell an effective story that is attractive from
an aesthetic perspective, which are two attributes of professional videos
[18]. An experienced filmmaker can learn to capture professional-
quality video using a mobile camera. However, the passive nature of
FPVs, as well as their lack of organization and shot boundaries, limits
their ability to tell an effective story. Even with a high spatial resolution
and high quality, FPVs would rarely be considered professional.

Camera motions due to head or body movement of the camera
wearer can significantly degrade the quality of individual frames in an
FPV [1,2]. The motion-induced distortions of images in FPVs can be
mainly classified as blur and the geometric distortions of rolling shutter
artifacts and rotation. Blur could be caused by any camera movement,
and arises when motion is sufficiently large during the exposure period
[19]. Rolling shutter artifacts mainly arise from camera panning and
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tilt, and produce skew or wobble in an image. Skew appears when the
camera moves at a constant speed; wobble occurs when the frequency
of motion is greater than the frame rate of the recording video [20].
Finally, image rotation is a combination of translational camera motion
and roll. For example, when camera is mounted on the hat of the wearer
and the head tilts to left or right, the camera rotates around an axis with
some distance to the camera center.

To evaluate the quality of individual frames, it is typical to apply
Image Quality Estimators (IQEs). Existing IQEs are normally classified
into three types: full-reference (FR), reduced-reference (RR) and no-
reference (NR) methods. FR and RR methods [21–24] need a high-
quality corresponding reference image that is the source of the distorted
image to be evaluated. These types of IQEs are not applicable for as-
sessing frames in a FPV, because no reference image exists. Moreover,
since the image might already be degraded, the results of FR and RR
methods will not meaningfully reflect any additionally introduced de-
gradations.

In contrast, NR methods estimate the quality of a single image
without relying on any reference [25]. However, most existing NR
methods are content dependent [26–29]. As a result, it is often difficult
to interpret the output of a NR method [30]. For example, setting a
quality threshold in a system is challenging; all five NR QEs considered
in [30] are unable to consistently partition high-quality images from
heavily degraded images. In addition, these IQEs are rarely evaluated
on the types of degradations present in individual frames of an FPV [2].

In this paper, we propose a new strategy of quality estimation,
called mutual reference (MR), which does not fit into the previous ca-
tegorization of FR, RR or NR methods. A MR QE estimates the quality of
a test image based on one or more pseudo-reference image. Unlike FR
and RR QEs, perfect pixel alignment is not necessary; instead the
pseudo-reference image and the test image are constrained only to have
sufficient overlapping content. For example, the pseudo-reference could
be a high-quality image captured by a stably-mounted camera from one
viewpoint, and test images can capture the same scene from different
points of view using a moving camera. Another example is a group of
temporally-adjacent video frames, where one or more frames can be a
pseudo-reference for the remaining frames.

The MR strategy is a natural choice to assess the quality of frames in
a FPV. First, MR provides a relative quality estimation that allows de-
gradations to be present in any images. A relative score can be used to
select the image with the best quality from a set of images. Second, MR
uses information from the overlapping regions between two or more
images. This minimizes content dependency in quality scores, so that
scores are more easily interpretable in a system.

We apply the mutual reference approach to design a MR QE, called
Local Visual Information (LVI) [1], to measure the relative blur. The
principle of LVI is to locally measure the effective visual information in
the human visual system (HVS), and to evaluate the quality difference
based on the information ratio. Based on LVI, we design a framework of
mutual reference frame quality assessment for FPVs (MRFQAFPV),
which measures the LVI score of each frame in a FPV [3].

Section 2 describes prior works in FR QEs and NR QEs. Section 3
presents a detailed description of the strategy for MR. Our proposed MR
QE, LVI, is described with its basic principle and reliability check in 4.
Our MRFQAFPV is described in Section 5. The framework has three
steps: temporal partitioning, reference search and quality estimation. In
Section 6, we demonstrate our framework is effective at assessing
quality of individual frames in FPVs, and outperforms existing NR QEs
in this context. Our results include demonstrating temporal partitioning
methods, as well as two subjective tests that include synthetic distor-
tions and real frames captured from FPVs. Section 7 summarizes this
paper and discusses future work.

2. Prior work on QEs

2.1. Full-reference QEs

FR QEs use a pixel-aligned reference image to estimate the quality of
distorted versions of the same image. They can be categorized by
whether they apply models of the human visual system, image struc-
ture, or image statistics [31]. Two common QEs are the Structural Si-
milarity Index (SSIM) [21], which is based on structure, and Visual
Information Fidelity (VIF) [32], which is based on statistics.

SSIM computes means and variances of each image, applies a si-
milarity measure to each,
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and combines these with a correlation term to quantify distortions in
the luminance and contrast. In Eq. (1), x is the reference image and y is
the test image, and fx and fy are extracted features from x and y, re-
spectively. The same quality score will be unchanged if we swap the
order and instead consider the distorted image to be the reference x.
This type of symmetry does not allow SSIM to be used to determine
which image has better quality. In addition to SSIM, Feature Similarity
(FSIM) [22], Gradient Magnitude Similarity (GSM) [33] and Spectral
Residual based Similarity (SR-SIM) [34] employ the same similarity
measure in Eq. (1) using other features. Therefore, these QEs also are
incapable of determining whether a test image is better than its re-
ference image. While, some other QEs, for example, VSNR [35] and
MAD [36], use a non-symmetric structure to compute quality scores,
reversing the order of the reference image and the test image still does
not lead to a meaningful comparison.

VIF [32] is an information-based QE. It assumes that the two images
are from the exact same source field, which it models using the statistics
of the reference image. Since VIF does not depend on the similarity of
features or error images, it is able to distinguish which image is better
among the two images despite having no prior information. Another QE
that can compare the quality of two images is Visual Distortion Gauge
(VDG) [37]. However, neither VIF nor VDG have been designed to
measure two images with geometric changes.

2.2. No-reference QEs

No-reference (NR) QEs use only the information of the input image
to be evaluated. One specific subset of NR QEs are NR blur metrics,
which were summarized in [38,25]. One uses the histogram of DCT
coefficients [39]. Edge-based blur QEs have also been proposed and
comprise the majority of blur QEs: [40,41], JNBM [38], CPBD [42].
Non-edge blur metrics using the discrimination between re-blurred
versions of an image [43,44] and local phase coherence [45] were also
proposed. However, blur estimation developed from these strategies
depends heavily on the image content. If we have two images that share
only a portion of their content, then because blur metrics may show
very different behaviors in their non-common areas, the overall blur
scores of the two images cannot accurately reflect their visual differ-
ence. NR QEs may also be based on statistics. Specifically, BRISQUE
[27], NIQE [28], and IL-NIQE [29] all use natural scene statistics (NSS)
to compute quality. These QEs are still content-dependent, and do not
often have bounded range of their quality scores. Moreover, they are
less effective when applied to images that differ in spatial resolution
from the images that were used to train them [30].

In [30], the question is considered of whether a QE can distinguish
between badly degraded images and relatively undistorted images.
Their results indicate that it is challenging for NR QEs. In particular,
there exists a large overlap between the historgrams of the quality
scores for undistorted and badly degraded images using BRISQUE,
NIQE and IL-NIQE. In addition, our results in Section 6 demonstrate
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that the state-of-the-art NR QEs are source-dependent, and our pro-
posed method in Section 3 significantly reduces the source dependency
when estimating the quality of First-Person images.

3. Mutual reference

Mutual reference (MR) is a strategy of image quality estimation
whose basic idea is to use a collection of “similar enough” images that
can provide each other with effective information for quality assess-
ment. To define ”similar enough”, we introduce the concept of a near-
set, which is a group of images that share common content. One ex-
ample is a group of images captured from nearby locations. In addition,
images in the near-set do not need to have the same spatial resolution.
For example, [46] considers quality estimation for downsampled
images, while [47] considers quality of image super-resolution techni-
ques.

Within the MR strategy, there are two approaches: pairwise and
group-based measures. The pairwise approach uses a single pseudo-
reference image to estimate the quality of a test image. The pseudo-
reference does not need to be pixel aligned with the test image, but can
be classified into the same near-set as the test image. Typically, the
pseudo-reference image needs to be the best image in an identified
near-set. One way of creating a MR QE using the pairwise measure is
that the QE is able to distinguish which of two images is better. Such a
MR QE can identify the pseudo-reference by pairwise comparison in a
near-set. One example is the MR QE, Local Visual Information (LVI),
described in Section 4 and first presented in [1].

The group measure approach for MR QE estimates the quality of an
image using more than one pseudo-reference. One example is the
quality assessment of image fusion, for which the goal is to integrate
complementary information from a group of images into a new image,
in order to obtain more complete and useful information for image-
processing tasks [48]. To evaluate the quality of a fused image, all
source images are used as references [49,50]. The near-set consists of
all source images and the fused image.

MR provides a relative quality estimation, which allows quality
degradations to be present in all images in the near-set. The best image
in a near-set does not necessarily need to be a high-quality image. Also,
a new image can easily be added into an existing near-set. If the added
image has better quality than all other images in the near-set, the new
image can be set to be the pseudo-reference.

MR methods do not fit into the typical categorization of FR, RR or
NR methods. Specifically, MR uses the effective information from the
overlapping regions between different images. The overlapping area
could differ in a geometric transformation or distortions. As a com-
parison, FR and RR uses a high-quality reference image that is also the
source of the distorted image to provide information for quality as-
sessment. NR uses implicit knowledge of distorted image versus high-
quality image.

MR quality assessment has two major application areas. The first
application is quality assessment for image fusion, as discussed above
[48–50], and including the quality metric for exposure fusion techni-
ques [51]. The second application is to assess images captured either
from, or of, nearby locations. For example, in this paper, we consider
quality assessment of individual frames in a video using temporally
nearby frames. Another example would be to assess the quality of
frames in two videos taken in nearby locations on, say, two different
days. The third example is to assess images considered in [52], which
implemented a subjective test using images captured of the same scene

by either different cameras or the same camera with different settings.

4. Local Visual Information

In this section, we describe our proposed MR QE, Local Visual
Information (LVI) [1], which primarily measures relative blur between
two images.

4.1. Basic principle

LVI is derived from the approach of VIF [32]. VIF quantifies the
visual quality of an image using the mutual information between the
test image and its reference. VIF uses natural scene statistics (NSS) [53]
to model the reference image, and uses the model obtained from the
reference plus a distortion channel to model the test image. First, it
decomposes the two images into blocks and sub-bands. Second, it
computes the mutual information between the reference and the test
image in each block and subband using a NSS model. Third, the VIF
score is pooled from all blocks and subbands.

LVI has two major changes. First, instead of computing a global
measure of information in an image, LVI measures patch-based local
information. Second, LVI models the source field of the two input
images separately, which enables LVI to compare the quality of any two
images in a near-set. One assumption behind LVI is that the image has
consistent spatial quality.

The quality measure LVI has three procedures, shown in Fig. 1. The
input of LVI is a pseudo-reference image A and a test image B, where A
and B are in the same near-set. In the first step, LVI computes the pixel
relationship between A and B using feature matching. All matching
points are filtered by a ratio test, a symmetric test and a RANSAC test to
remove outliers. A matching patch is defined to be the square block
centered around a matching point in the image. The output of the first
procedure is the locations of all corresponding patches.

The second step measures the effective local visual information
between A and B for all corresponding patches. High-quality images can
be described by Gaussian scale mixtures (GSMs) in the wavelet domain
based on natural statistics. LVI approximately models either sharp or
blurry images by GSMs, whose shapes are determined by the statistics
of the image content. The effective visual information is quantified by
the amount of mutual information between the input and output images
in human visual system (HVS).

Let the index for each matching image patch be l. Al and Bl are two
matching image patches from A and B, respectively. GSMs describe an
image according to its content, so Al and Bl have different shapes of
GSMs in the wavelet domain. We describe the GSMs of Al and Bl in the
pth subband as

=A S U·lp lp
A

lp
A

(2)

=B S U·lp lp
B

lp
B

(3)

where Slp is a scalar random variable in the pth subband modeling the
source field, andUlp is a zero mean Gaussian random vector. Alp and Blp
are the wavelet coefficients of the patch in the pth subband for image
patch Al and Bl, respectively.

The HVS model in [32] uses a Gaussian channel to model the un-
certainty that image information flows through it. The model can be
expressed as

X= +C Alp lp (4)

Fig. 1. Block diagram of Local Visual Information
(LVI) quality estimator.
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X= + ′D Blp lp (5)

where Clp and Dlp are the outputs of Alp and Blp after flowing through
the HVS model, respectively. X and X ′ are Gaussian noise drawn from
N σ(0, )x

2 to model the noise from HVS.
The amount of mutual information between input image signals and

output image signals of the HVS can be calculated as
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where λ are the eigenvalues of Ulp, and m and n is the indices of ei-
genvalues. slp

A and slp
B are the realizations of Slp

A and Slp
B, respectively.

The third step is to pool the LVI score using the local visual in-
formation in all corresponding patches. By computing the sum of the
information from all corresponding local regions of A and B, LVI takes
the ratio of the total amount of information from the two images as the
output.

=
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The output score of Eq. (8) represents the quality of B relative to the
pseudo-reference A. If B has worse quality than A, LVI varies from 0 to
1, which indicates that B has less visual information pooled than A.
Otherwise, the LVI score is larger than 1, which indicates our selected
pseudo-reference A is worse than B. The value of LVI score between two
images represents their relative quality, and provides a quality com-
parison.

Fig. 2 shows an example of the LVI measure between a pseudo-re-
ference image and a test image, extracted from a captured FPV. The
connected lines are the center of matching patches. Two corresponding
patches are enlarged to display the difference.

4.2. Reliability check

LVI fails to provide an effective quality measure at all cases. To
ensure we only apply LVI in those situations when its score is mean-
ingful, we design a reliability check to verify that neither of the two
known issues are present to reduce the accuracy of the computed LVI
score.

The first known limitation is that LVI cannot measure quality when
there are insufficient feature matching points between the pseudo-re-
ference and the test image. For example, when the test image is heavily
blurred, there are very few feature matching points between the two

images.
The second known limitation is that LVI is sensitive to scaling, al-

though it is insensitive to other affine transformations [1]. This allows
LVI to measure quality degradations almost independently of geometric
distortions when the image is sheared or rotated relative to the pseudo-
reference. However, when the two images have similar quality but have
objects in very different sizes or scales, their LVI scores often have a
large difference. Our reliability check is designed to identify these un-
reliable scores.

Within a near-set, we expect the geometric relationship between
two images to be approximately modeled by a homography. This
homography can be estimated [54,55] using matching feature points.
Specifically, we apply point-based homography [54] using the result of
the feature matching step in Fig. 1. Then by decomposing the homo-
graphy matrix MH , as described below, we can independently extract
scale changes both horizontally and vertically.

First, MH is decomposed into the product of an affine transform MA
and a projective transform MP, given by

= = ⎡
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where and wb are projective parameters in MP. The affine matrix MA has
six degrees of freedom corresponding to parameters, u u u v v v, , , , ,a b c a b c.
When and wb are very small, MH is approximated well by MA.

Further, MA is a combination of five independent transformations,
translation, shear, rotation, scaling and aspect ratio. In FPVs, shear and
rotation artifacts often occur in frames from a near-set. Focusing only
on horizontal shear and rotation, MA can be decomposed as
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where M M M, ,s k r and Mt are scale, shear, rotation and translation ma-
trices, respectively. sx and sy are scaling factors in horizontal and ver-
tical directions, respectively, and s s/x y is the aspect ratio. ks is the shear
value, θ is the rotation angle, and tx and ty are translation distances in
horizontal and vertical directions, respectively. Using the parameters
estimated from MA, we can calculate Ms as
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When either one of sx and sy exceeds the range bounded between a[ , ]a
1 ,

where a is the threshold experimentally set to be 0.95, the LVI score is

Fig. 2. Left: Pseudo-reference. Right: Test image. LVI score= 0.771.
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considered to be unreliable.
This reliability check ensures that an effective LVI score is calcu-

lated between two images that are neither too blurry nor have sig-
nificant scale differences. In the next Section 5, we will describe how
LVI can be incorporated into a quality assessment framework for FPVs
using the strategy of mutual reference.

5. Framework of MR quality assessment of FPVs

Our framework of mutual reference frame quality assessment of
FPVs (MRFQAFPV) can be separated into three steps: temporal parti-
tioning, reference search and quality estimation. Fig. 3 shows the block
diagram of MRFQAFPV. In the first step, frames from the input FPV are
temporally partitioned into different near-sets. In the second step, the
system searches for one pseudo-reference image in each near-set using
the pairwise approach of MR. In the third step, the LVI quality score of
each frame is calculated based on the identified pseudo-reference.

The temporal partitioning shown in the first block of Fig. 3 is designed
to temporally partition frames within different time intervals into near-
sets, in which all images have similar scale. Let k be a near-set index. An
initial partitioned near-set k is represented as B B( , )k k

1 2 , where B k
1 is the

start frame and B k
2 is the end frame. The basic procedure is: (1) Set

= =k B1, 1k
1 . (2) Boundary Search for B k

2 starting from B k
1 . (3) Set

= + = +k k B B1, 1k k
1 2 , and then go to (2).

Method 1 NFP

1: get the start frame number B k
1

2: Let =n 1, =δ 20, =T 50
3: do feature matching between B k

1 and +B 10k
1

4: if the number of matching points <T then
5: set =B Bk k

2 1 , break
6: else
7: do feature matching between B k

1 and +B n δ·k
1 , store the

number of matching points after RANSAC as N
8: if <N T and =n 1 then
9: do binary search from +B 10k

1 to +B 20k
1 using the same

decision rule <N T , break when the search interval ⩽1, and set
B k

2 to be start frame of the search interval
10: else if <N T and and >n 1 then

Method 1 NFP

11: do binary search from +B 10k
1 to +B 20k

1 sing the same
decision rule <N T

12: else

13: set =T max T( , )N
2 and = +n n 1, goto 3

14: end if
15: end if

Method 2 FMA

1: get the start frame number B k
1

2: do feature matching between B k
1 and +B 10k

1 , and store the
locations of all matching points by a bounding box S10

3: Let =n 1, =δ 20
4: do feature matching between B k

1 and +B n δ·k
1 , get the bounding

box Sn δ·

5: if ∩ <S S S| | | |n δ10 ·
1
4 10 then

6: do binary search between + −B n δ( 1)·k
1 and +B n δ·k

1 using the

same decision rule, break when the search interval ⩽1 and set B k
2

to be start frame of the search interval
7: else
8: set = +n n 1, goto 4
9: if − <B B 10k k

2 1 then

10: set =B Bk k
2 1

11: end if
12: end if

For Boundary Search in the basic procedure, we introduce two dif-
ferent methods, as shown in Method 1 and Method 2. Method 1 is based
on the number of feature matching points between frames, denoted by
NFP. Method 2 is based on the feature matching area between frames,
denoted by FMA. Both methods rely on feature matching, during which
we incorporate the scale check detailed in Section 4.2 to guarantee that
we have reliable LVI measures in the following steps. Note that the
parameter δ is empirically set to be 20, since we often have near-sets
from 20 to 40 frames. If we increase or decrease δ, the near-set length is
similar. The threshold for the number of matching points T is set to be
50. If we increase T, it will introduce more uncategorized frames. If we

Fig. 3. Framework of quality assessment for First Person Video.

Fig. 4. Sample test images: (0) basketball (1) run (2) walk (3) billiards (4) cat (5) eat (6) ping pong (7) talk (8) car (9) flight.
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decrease T, the percentage of unreliable matching points increases
significantly. We empirically set the minimum length of a partitioned
near-set to be 10 frames. If the partitioning does not satisfy the length
constraint, the current B k

1 is considered to be an uncategorized frame,
and we repeat the basic procedure with = +B B 1k k

1 1 .
The reference search in the second block of Fig. 3 finds the pseudo-

reference image in each near-set iteratively. Let Rk be the pseudo-re-
ference in the kth near-set. Initially, let =R Bk k

1 , and use it as the initial
pseudo-reference in the kth near-set. Then, we calculate the LVI scores
from +B 1k

1 to B k
2 using the current Rk. Those frames with better

quality than the current Rk have LVI scores larger than 1. We reset the
frame with the largest LVI score in the kth near-set to be our new Rk. A
typical output of the kth near-set is B B R( , , )k k

k1 2 .
The quality estimation in the third block of Fig. 3 calculates the frame

quality score. The input is the representation of the kth near-set,
B B R( , , )k k k

1 2 . Let k n( ) be the nth frame in the kth near-set. The quality es-
timation uses Rk as the pseudo-reference to measure the quality of all
remaining frames in the kth near-set, and stores the LVI score as QLVI

k n( )
,

the quality measure for frame k n( ).

6. Experiments and results

In this section, we present experimental results of applying our LVI
and MRFQAFPV to First-Person Videos captured from a Pivothead
camera at 1080p30. Our experiments explore two aspects: design con-
siderations, and evaluating the performance for quality assessment. For
the first, we explore six design choices for the temporal partitioning
step in MRFQAFPV shown in Fig. 3, and two feature detectors for the
first step of LVI shown in Fig. 1. For the second, we explore perfor-
mance of our methods using both synthetically injected distortions as
well as images taken from actual FPV containing real, so-called au-
thentic, distortions. In addition, we explore performance of quality
assessment not only using objective comparisons, but also using two
subjective tests. The first demonstrates that MRFQAFPV provides an
effective quality assessment for individual frames in FPVs, while the
second shows that not only does LVI outperform existing NR QEs, but
both LVI and other existing QEs that are insensitive to geometric dis-
tortions can be generalized to better estimate overall frame quality in
FPVs. Finally, by applying LVI to images from the typical image quality
databases [36,56,57], we demonstrate that LVI is also effective to assess
the quality for some distortions that are not typically present in FPVs.

6.1. Implementation design comparisons

In this section, we explore the performance of several design options
for both LIVE and MRFQAFPV. Specifically, we compare and select the
FMA method with affine estimation as the scale check to be our tem-
poral partitioning method in MRFQAFPV. Also, we show SIFT and ORB
have similar performance in LVI and MRFQAFPV, so ORB is a better
design choice because it is less time-consuming.

Temporal partitioning: We compare six approaches to form near-sets
for the temporal partitioning step in Fig. 3. Section 5 presents two

methods, NFP and FMA. In addition, the scale check detailed in 4.2
incorporated in NFP or FMA can be implemented using either affine or
homography estimation. Thus, our experiments compare four proposed
methods: NFP+ affine, NFP+homography, FMA+ affine and
FMA+homography. In addition to these four methods, two baseline
methods are introduced. One baseline method uses a fixed time interval
(30 frames) to separate frames into each near-set. Another baseline
method partitions using displacements computed by optical flow as in
[8], such that each partitioned interval has a cumulative displacement
of 10% of a frame width. Note that the shot boundary detection method
[58] is not effective to segment FPVs, because it typically classifies the
entire video into only one shot.

A good partitioning for a near-set has three criteria:

1. The length of the near-set is long enough so that most frames cap-
tured in the same scene are included.

2. Frames with a useless LVI are rare in the entire FPV. Three types of
frames are considered to have useless LVI: uncategorized frames,
frames that failed the reliability check, and frames with LVI score
greater than 1.

3. The shared content between two frames in different temporally
adjacent near-sets is small. We estimate the degree of overlap be-
tween any two frames by counting the number of matching points.

Fig. 6 presents the performance of the six methods using these three
criteria. The first and second criteria are demonstrated by the average
length of the near-set and the percentage of useless LVI, as shown in
Fig. 6a) and and (b), respectively. The third criterion is demonstrated
with two values, the average number of matching points between
pseudo-references and between start frames in temporally adjacent
near-sets, as shown in Fig. 6(c) and (d). The video indexes represent
videos with different content. Outdoor videos are indexed from 0 to 2,
indoor videos are indexed from 3 to 7, and 8, 9 are in-vehicle videos.
Sample frames for each video are shown in Fig. 4, and frames in two
partitioned near-sets are shown in Fig. 5. The test dataset is available at
[59].

The first baseline method, fixed interval, has the shortest near-set
length and third least percentage of useless LVI. The second baseline
method, optical flow, has the longest average near-set length, but the
highest percentage of useless LVI. Actually, compared to all methods,
FMA+affine method shows the best performance among the six
methods; it has the second longest near-set length, the least percentage
of useless LVI, and the least or the second least number of matching
points either for pseudo-references or for start frames in all videos. The
effectiveness of the other three methods can be successively ordered as
follows: NFP+ affine, FMA+homography, NFP+homography.
According to the results, FMA creates a better partitioning than NFP.
Affine estimation outperforms homography estimation using the same
partitioning method according to the percentage of useless LVI, so the
former is more effective at estimating scale change than the latter.
Given the performance comparison, we uses the FMA+affine, the best
among the six methods, as our temporal partitioning method in

Fig. 5. Sample partitioned near-sets.
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MRFQAFPV in the following sections.
Feature detector: Next, we explore the performance of LVI using two

different feature detectors for step 1 of Fig. 1. Specifically, we compare
the quality scores of LVI using SIFT [60] (SIFT-LVI) and using ORB [61]
(ORB-LVI). Their results are similar in most images, but there are large
difference in a few pairs of images. We apply MRFQAFPV as in Section
5 by incorporating either SIFT and ORB as the feature matching de-
tector. Fig. Fig. 7(a) and (b) shows scatter plots of the LVI scores for
MRFQAFPV-SIFT versus MRFQAFPV-ORB from outdoor and indoor
videos, with average mean square error (MSE) 0.03 and 0.05, respec-
tively. Note that we do not consider those frames that have too few
matching points using either SIFT or ORB.

In addition, we also apply SIFT-LVI and ORB-LVI on three image-
quality datasets: the LIVE image quality database [56], the Categorical
Subjective Image Quality (CSIQ) [36] and the Tampere Image Quality
Database (TID2013) [57]. The MSE between all calculated quality
scores of SIFT-LVI and ORB-LVI are 0.156, 0.049 and 0.071, respec-
tively. The advantage of using ORB instead of SIFT is that ORB is

computationally much faster than SIFT [61]. Given the small perfor-
mance differences between using SIFT and ORB, we choose ORB as a
more computationally efficient feature detector in LVI and MRFQAFPV.

6.2. Performance evaluation

In this section, we explore performance of our methods using both
synthetically injected distortions as well as images taken from actual
FPV containing real distortions. We begin by with objective compar-
isons on images with synthetically-generated distortions to show that
LVI is effective at measuring blur, but insensitive to geometric distor-
tions, including shear and rotation. Next, we present results of a sub-
jective test using images extracted from FPVs, which demonstrate that
MRFQAFPV outperforms existing NR QEs for quality assessment of in-
dividual frames with “similar enough” content in FPVs. A second sub-
jective test demonstrates that LVI and existing NR QEs can be gen-
eralized to measure images with both blur and geometric distortions
simultaneously. Finally, we apply LVI to subjective data with

Fig. 6. The performance of six temporal partitioning methods in 10 FPVs: (a) criteria 1: the average length of near-sets (b) criteria 2: the percentage of useless LVI (c)
criteria 3: the average number of matching points between pseudo-references in temporally adjacent near-sets (d) criteria 3: the average number of matching points
between start frames in temporally adjacent near-sets.

Fig. 7. The distribution of MRFQAFPV-SIFT versus MRFQAFPV-ORB: (a) outdoor content (b) indoor content.
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distortions other than those in FPVs [36,56,57], to demonstrate that LVI
is able to characterize quality of some of these distortions as well.

Synthetic distortions: LVI is sensitive to motion blur, but insensitive
to affine transformation. To demonstrate this, we introduce synthetic
distortions including motion blur, shear and rotation into 13 manually-
selected high-quality FPV frames with different content [1]. We apply
different 1-D box filters with lengths 1 to 30 to simulate different
amounts of motion blur. The LVI scores of all test images decreases
significantly, from 1 to an average of 0.461 as the blur increases.
Synthetic shear and rotation are also created using an affine transfor-
mation. For these geometric distortions, LVI decreases to no less than
0.947 when the shear difference increases from 0 to 0.4, and decreases
to no less than 0.965 when the rotation increases from 0° to 90°.

Subjective test for MRFQAFPV: Next, we implemented a subjective
test to evaluate the performance of a quality measure within the
MRFQAFPV framework. The goal of this test is to evaluate the effec-
tiveness of MRFQAFPV to characterize frame quality within an identi-
fied near-set.

The test material are frames selected from the 10 videos tested in
Section 6.1, and all images are rescaled to ×1280 720 both for com-
puting in MRFQAFPV and for presentation to viewers in the test. The
selection procedure of frames from one FPV has three steps, with the
goal to find five images that have similar content but distinct quality.
First, we identify all near-sets that have frames with LVI scores located
in [0,9,1),[0,8,0.9),[0.7,0.8),[0.6,0.7), respectively. Second, we choose the
near-set X with the most frames among all near-sets found in the first
step. Third, we choose the pseudo-reference frame and four frames with
LVI score closest to each of 0.95, 0.85, 0.75 and 0.65 inX . In total, we
have 10 test groups, each with five test images.

The test methodology is paired comparison. In each of the 10 test
groups, we implement full paired comparisons for all five frames. The
platform of this test is Amazon Mechanical Turk. The number of par-
ticipants is 30 with no record of gender. The instruction presented
before each test is as follows: In the test, there will be some pairs of images
for you to compare, and please select the image with better technical quality
in each pair. The technical quality mainly refers to blur, noise and com-
pression artifacts, and does not include composition. For each pair of images,
you can view both images back and forth to a maximum of five times and
then make your decision anyway. Any accepted answer is not allowed to
have at more than one circular triad [62], defined as a situation that

> >I I I I,1 2 2 3 and >I I3 1, where I I I, ,1 2 3 are three different images, and “>”
means “better”.

The subjective score of each image is calculated based on the
Bradley-Terry Model [63]. We apply LVI and five NR QEs, NIQE [28],
IL-NIQE [29], a perceptual blur metric (Blurriness) [44], JNBM [38]
and CPBD [42] to all test images. Table 1 shows the PLCC and SROCC
between subjective scores with LVI and the five NR QEs. LVI shows the
best performance in five near-sets, “basketball”, “walk”, “eat”, “ping
pong”, and “flight”, with PLCC greater than 0.9. The PLCC is relatively
low in four near-sets, “run”, “billiards”, “talk” and “car” with PLCC less
than 0.8. In terms of the overall performance of the five NR QEs, the

best is outdoor videos, next is indoor videos, the worst is in-vehicle
videos. Among the five NR QEs, blurriness and JNBM show better
performance than the other three QEs. LVI outperforms the five NR QEs
in six near-sets, and shows intermediate performance in the other four
near-sets.

Discussion: Content influences all tested QEs; however, LVI is less
influenced by content than the other five QEs. All QEs have somewhat
inconsistent performance across different contents. This content de-
pendency is apparent from the fact that the PLCC has large variations
when evaluating the ten near-sets. Compared to the five NR QEs, LVI
shows more consistent performance indicating a reduction in content-
dependency.

In addition, there are three challenging contents for all the QEs:
“talk”, “car” and “run”. First, the set of “talk” is captured in a small
room with apparent geometric distortions. LVI shows the best perfor-
mance among all QEs with PLCC 0.72. Second, the set of “car” is dif-
ficult for most participants to distinguish quality variations in the
subjective test. Third, there exists spatially inconsistent motion blur in
the set of “run” that significantly influences the LVI measure.

Subjective test for LVI and geometric distortions: Next, we implemented
a subjective test using paired comparison in [2] to validate the per-
formance of LVI and to evaluate the overall quality of images with both
blur and geometric distortions. The test mainly has three components:
motion blur, motion blur with shear, motion blur with rotation. Recall
these are the dominant types of distortions in FPV frames. The sub-
jective scores are calculated by Bradley-Terry Model [63]. The motion
blur test uses temporally nearby captured frames of three contents.
Each content contains test images of five levels, which is partitioned
based on their LVI scores. Compared with seven NR QEs, JNBM [38],
BIQI [64], CPBD [42], BRISQUE [27], CORNIA [65], IL-NIQE [29] and
NIQE [28], only LVI correctly ranks all test images. In the motion blur
with shear test, we evaluate images with multiple distortions using four
levels of synthetic motion blur and four levels of synthetic shear. We
use the same number of distortion levels in motion blur as in the ro-
tation test; the difference here is the four different levels of rotation are
captured using real images. The results indicate that both shear and
rotation introduce quality degradations to images, and the overall
quality of an image is a combined effect of blur and geometric distor-
tions. We proposed a form of quality mapping function, Eq. (12), to map
LVI or existing NR QEs that are insensitive to geometric distortions with
estimated shear and rotation value to the overall quality. Eq. (12) is the
mapping function to calculate the overall quality of an image with
motion blur and geometric distortions simultaneously.
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−
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⎞
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⎟Q q q p

q q
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| |

| |
· .best

best worst

2

(12)

whereD is the measured value of shear or rotation (ks or θ in Eq. 10). q
is the QE score of the image, qbest and qworst indicate the quality scores
for the best- and the worst-quality images based on the corresponding
quality measure q, respectively. p is a constant parameter. In terms of

Table 1
PLCC(SROCC) of LVI and five NR QEs with subjective scores.

Video type Video name LVI NIQE IL-NIQE Blurriness JNBM CPBD

outdoor basketball 0.9936(1.0) 0.9351(1.0) 0.8846(0.7) 0.9862(1.0) 0.9814(1.0) 0.9385(1.0)
run 0.7096(0.5) 0.4899(0.2) 0.4392(0.1) 0.9933(1.0) 0.9739(1.0) 0.9430(0.9)
walk 0.9052(0.9) 0.7547(0.7) 0.1326(0.3) 0.9398(1.0) 0.9721(0.9) 0.8881(0.7)

indoor billiards 0.7468(0.7) 0.5513(0.7) 0.5523(0.1) 0.7834(0.7) 0.8377(0.7) 0.7063(0.7)
cat 0.8823(0.9) 0.8142(0.8) 0.8150(0.6) 0.8396(0.9) 0.8202(0.7) 0.5610(0.4)
eat 0.9265(0.9) 0.9911(0.9) 0.9253(0.9) 0.9732(0.9) 0.8162(0.9) 0.8242(0.8)
ping pong 0.9735(1.0) 0.7010(0.7) 0.6255(0.6) 0.9014(0.8) 0.9095(1.0) 0.8331(0.8)
talk 0.7247(0.7) 0.6045(0.6) 0.6408(0.6) 0.3901(0.6) 0.5937(0.7) 0.5023(0.7)

in-vehicle car 0.6765(0.7) 0.2105(0.3) 0.2865(0.1) 0.5501(0.4) 0.4644(0.4) 0.1801(0.3)
flight 0.9527(0.9) 0.7019(0.7) 0.2869(0.3) 0.7718(0.9) 0.9449(0.9) 0.7263(0.9)
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the optimized p values based on SROCC between subjective and ob-
jective quality scores, both shear and rotation are highly dependent on
content. Specifically, shear is less sensitive to content variations than
rotation.

Overall, LVI outperforms existing NR QEs in evaluating actual
captured frames in FPVs. Also, both LVI and NR QEs that are insensitive
to geometric changes can be generalized to incorporate measurements
of geometric quality degradations.

Scenarios other than FPVs: LVI is effective at measuring distortions
other than blur in FPVs; however, LVI cannot be used to measure dis-
tortions caused by any type of noise. We apply LVI to three image da-
tabases designed for evaluating IQEs, LIVE [56], CSIQ [36] and
TID2013 [57]. Note that the images in these databases only contain
synthetically created distortions, and are in perfect pixel alignment. We
use Spearman correlation coefficients (SROCC) to compare the perfor-
mance of LVI with 5 FR methods: SSIM [21], VIF [32], FSIM [22], VSNR
[35] and SR-SIM[34]. Table 2 lists some distortions that LVI can mea-
sure in the three image databases. The results indicate that LVI de-
monstrates acceptable performance in the scenarios shown in Table 2,
despite the fact that it has not been designed for those cases. Note that
LVI works much better for JPEG2000 than JPEG. The reason is that
JPEG introduces block boundary effects in the matching patches used in
the LVI measure. The block boundaries have the potential to increase
the information measure in a single patch. In addition, in [32], the
results also show that VIF performs better in JPEG2000 than JPEG.

7. Conclusions

In this paper, we introduce a new image quality assessment strategy,
mutual reference, that uses effective information provided by the
overlap between images, without relying on pixel alignment. This
mutual reference strategy does not fit into the typical categorization of
FR, RR or NR methods. We then propose a mutual reference QE, Local
Visual Information (LVI), that primarily measures the relative blur be-
tween two images. LVI is effective for comparing two images that have
similar scales and are not too blurry. To apply the MR strategy to assess
the quality of frames within a First-Person Video, we propose a fra-
mework, MRFQAFPV, which uses a pairwise measure and incorporate
LVI as the quality estimator.

MRFQAFPV provides several effective tools for assessing lifelogs.
First, the temporal partitioning in MRFQAFPV partitions FPVs into
different segments such that each segment contains different content.

The pseudo-references in each segment provide information for video
summarization using shots. Second, the quality estimation in MRFQA-
FPV is an effective assessment tool for video fast-forward. It can help to
avoid using frames with heavy quality degradations. Third, from the
perspective of analysis, the quality score of each frame provides an
indication of useful and useless frames for applications such as object
detection and activity recognition.

We experimentally explore and validate several properties of LVI.
First, LVI primarily measures blur, and is insensitive to shear and ro-
tation. Second, LVI outperforms existing NR QEs at measuring the
quality of actual frames in FPVs. Third, LVI has acceptable performance
in measuring some additional distortions, such as contrast change. Also,
we implement a subjective test to demonstrate that MRFQAFPV is an
effective framework to estimate the quality of individual frames with
similar content in FPVs.

The future work for our framework is to (1) remove the scaling
constraint so that the quality measure can be applied to images with
different scales, (2) develop a quality estimator between images that
have no overlapping content and incorporate it into our present fra-
mework, and (3) incorporate measures of more varieties of quality
degradations, such as hazing, over-exposure and under-exposure.
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