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Abstract—Recently, video has been applied in different in-
dustrial applications including autonomous driving vehicles.
However, to develop autonomous farming vehicles, the video
analysis must be targeted for specific farming activities. So an
important first step is to classify the videos into their specific
farming activity. In this paper, we propose a video classifica-
tion framework that includes two branches that process videos
differently based on their motions. A gradient-based method is
proposed for separating videos into two subsets which are then
processed by different feature sampling strategies. The result
shows that two motion-based feature sampling strategies provide
more efficient features; thus better classification performances
are achieved. We also discuss how the feature sampling strategy
influences the classification accuracy and the computational
efficiency. In addition to farming videos, this proposed system can
also be applied to classify videos captured from various camera
movements, such as hand-held or first-person cameras.

Index Terms—video classification, feature sampling, farming,
agriculture

I. INTRODUCTION
Cameras are one of the most important sensors used in

autonomous vehicles, because they can provide fast and ac-
curate information about surrounding areas in real-time. In
agriculture, there are different types of large moving machines
working on the farm, such as tractors and combines. Towards
the goal of automating farm vehicles, cameras like dashcam,
are placed on these big machines to sense the environment.
However, operating farming machines is not easy since opera-
tors need to pay attention to many aspects, such as controlling
of the vehicle, controlling of any attachments, and detecting
anything anomalous. These each depend on the exact farming
activity, like planting, spraying, harvesting and tillage. For
example, harvesting needs to monitor the on reel speed and
orientation, but for tillage it is more critical to minimize field
overlap and avoid trenching. To learn from the videos captured
on the farming vehicles, one important step is to separate
videos into different farming activities. But farmers cannot
document the activities as they happen, because they must
focus on getting their work done in a narrow time window.
Therefore, we focus on activity classification with farming
videos captured by dashcams.

Classifying these farming activities using dashcam videos
poses three challenges. The first challenge is the unconstrained
capturing environment. With a working machine in the field,
operators could place the camera at different positions to get
different views, in order to monitor various aspects of the
activity. Such different camera positions can cause significant
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Fig. 1. Some farming video frames from vehicle mounted cameras: chopping
corns (top), tillage (middle), harvesting (bottom). Images on the left are in
the training data; images on the right are in the test data. Notice that these
videos are captured with different camera positions and various angles.

image structure variations. Also the plants in the field have
very different colors and shapes, depending on weather and
season. In addition, there are no rigid objects to track in the
field, which means it is hard to find and match robust feature
points.

Figure 1 provides some examples of images from our farm-
ing videos. Each row shows images from the same category
but with different capture angles or colors. The first two
images captured from two different fields while chopping corn
silage. The second row shows two tillage images with two
camera angles. The last row presents two harvesting images
with different camera positions. The left column images are
chosen from the training set, and the right column images are
from the testing set. We show below that image-based features
are inadequate alone to effectively classify our categories.
Therefore, in this paper we focus on video attributes and
consider both spatial and motion information.

The second challenge is the variety of very different video
motions. Dashcam videos normally have three types of motion
conditions: very low or no motion, object motion and camera
motion. In many instances, motions can be very useful to
distinguish activity categories, but not always. Camera move-
ments can dominate motion features, for example when vehicle
is slowing down. If these motions are used as features, all other
activities which have a similar slowing down movement might
be incorrectly classified. In this case, camera motion becomes



a problem in the feature extraction process.
The third challenge is the limited number of videos. To our

knowledge, currently there are no large scale farming video
datasets available in either the classification or the farming
community. Because a farming season is relatively long, which
means most farming activities take place only once a year and
it is hard to collect a large amount of data in a short time
period.

In this paper, we propose a two-branch video classification
framework to deal with the unpredictable video motions from
dashcams. In this framework, the videos are separated into two
subsets using dense optical flow analysis. One subset of videos
has camera motions only or no motion at all, while another
set has motions generated by the activity or object motion. To
extract positions from two subsets of video separately, we use
dense sampling [1] and proposed the concept of Fixed Position
Trajectories (FPT). Cuboid methods [2] are applied to build
feature descriptors for both subsets, but the cuboid designs
are different. In our designs, features for videos containing
object motions are extracted more densely in the temporal
domain, while the features for camera-motion or low-motion
videos are extracted more densely from the spatial domain.
By applying different sampling and extracting strategies on
different videos, the generated features are more efficient and
informative, which makes this framework more adaptive to
videos with various motion situations.

We have three major contributions in this work. First we
propose a video classification framework that classifies videos
differently based on their motion situations. Secondly, we
summarize the motion types of dashcam videos and develop
a fast method to separate them. Thirdly, we introduce a
new feature sampling strategy to specifically extract motion
features. This paper is organized as follows. In section II, we
introduce some previous methods and algorithms applied for
video classification. Then we explain our proposed framework
together with video motions and our feature extraction method
in section III. Finally we present two experiments which
compare our framework with previous approaches and analyze
the feature efficiency in section IV.

II. PREVIOUS WORK

Image classification has been studied for years. Spatial
image features including color and texture, and robust feature
points, are effective for classification problems. Recently,
Convolutional Neural Networks (CNN) [3] show much better
performance. But we show below that image based spatial
features are not sufficient for our task.

In video feature extraction, there are many sampling meth-
ods to select interesting feature positions, such as the cuboid
detector [2], Space-Time Interest Points (STIP) and dense
trajectories (DT) [4]. STIP is designed to select points from a
3D volume by computing the gradient matrix of each position
and thresholding the trace and determinant. Trajectory-based
feature extraction methods were developed for studying on
human action recognition, and each motion trajectory contains
a series of feature points over time. In [4], interest points

are traced based on Kanade Lucas Tomasi (KLT) trackers
or dense optical flow and then merged as trajectories. But
not all the features generated by such methods are useful, so
methods have been developed to reject inefficient positions.
Page rank and visual similarity graphs were designed in [5]
to prune static features by finding regions of interest. In [6],
the Improved Dense Trajectory (IDT) method was proposed
with a trajectory sampling method that incorporates human
detection and homography estimation.

After these interest positions are identified, local feature de-
scriptors are used to encode information in 3D video volumes.
Some widely-used descriptors are Histogram of Oriented Gra-
dients (HOG) [7], Histogram of Optical Flow (HOF) [8] and
Motion Boundary Histograms (MBH) [9]. HOG and HOF are
directly extracted from video frames and dense optical flow,
but feature descriptors like MBH and Histograms of Motion
Gradients (HMG) [10] are computed based on either spatial
gradient or temporal gradient of optical flow. Such gradient-
based descriptors are more robust to camera motions.

Video classification methods include standard methods and
approaches using CNN. Standard classification methods nor-
mally include three steps: feature extraction, feature encoding
and classifier training, such as [6] [11] [12] . Widely-used
encoding methods include Fisher encoding [13] and Vector
of Locally Aggregated Descriptors (VLAD) [14], and the
one-vs-rest Support Vector Machine (SVM) is one of the
most commonly-used classifiers. Recently, more CNN-based
approaches have appeared, such as the two-stream architecture
[15] and [16] with its fovea stream and context stream.

Many video datasets are available for classification research.
Human action recognition is a widely-studied topic and some
related public datasets are UCF-101 [17], HMDB [18] and
Sport-1M [16]. The Sport-1M dataset is the largest; it includes
one million YouTube video clips with 487 different sports
categories. However, there are no farming-related outdoor ac-
tivity video datasets available. In the image classification field,
there are some datasets for scene classification purposes. The
SUN dataset [19] includes 899 different categories including
indoor, urban and natural scenes. The Places dataset [3] is a
much larger scene-centric dataset, and the Places-CNN [3] is
trained on this for scene classification. Both datasets provide
some farming-related categories, but their categories are not
specific enough to separate our video frames into different
farming activities.

III. PROPOSED METHOD

In this section, we first discuss the video motions and our
proposed framework. Then we introduce our motion separation
method and the feature extraction methods in detail.

A. Two-branch framework
Our two-branch framework is inspired by the motions of

farming video. Our video clips normally have three types
of motions: static, camera motions and object motion. Static
videos have no motion at all or are slowly shifting or shaking.
Motion-based feature extraction methods such as IDT are
not effective on these static regions. The second type is



Fig. 2. Flow chart of the classification framework. Branch 1 (upper row) is
primary and works on all videos, branch 2 (in red box) only works on object
motion videos.

camera motion. The motion in these scenes are generated
only by the camera movement or the vehicle movement. This
occurs when the vehicle is driving and the outside objects are
moving in the reverse direction. Camera motions are useful
in detecting vehicle motion, but not effective for classifying
farming activities. The third type of videos contains object
motions that are generated by the objects themselves. These
motions are robust to camera movements, and yet capture the
movement pattern of the activity. Therefore, they are the most
critical features.

Based on the video motion analysis, simply applying the
same extraction methods on all types of videos cannot provide
efficient features. So we propose two different classification
branches as shown in Figure 2, where both branches (upper
and lower rows) include a complete classification pipeline.
While they have different feature extraction steps, the two
classification branches both have these classification steps:
Principal Component Analysis (PCA) feature dimension re-
duction, Fisher encoding and one-vs-rest SVM training. In
this framework, the upper path is primary so all videos are
processed by the first branch. The optical flow analysis is
performed on the input video and used to determine if it
contains enough object motion. This analysis performs spatial
segmentation and produces spatial-temporal masks that indi-
cate the object-motion regions. If no object-motion regions
are found, the second (lower red) branch is disabled and the
result of the first branch is final. If the video has enough
object motions, the second branch is activated to process that
video. Then both branches are enabled, and the final decision
is determined by a fusion process. Ideally the fusion process
should be a model trained using training videos as was done in
[1] and [20]. Unlike [20] that trains a SVM classifier to merge
results from different classifiers, we simply add the scores
from two classifiers and choose the category with the highest
score. Because the number of our training videos is limited,
we avoid extra training steps that may cause overtraining.

B. Object motion separation
As discussed, object motion is the most critical motion

feature for activity separation. Camera motions produce very
strong features, yet they are not unique to a particular activity.
The goal of the first optical flow analysis is to separate the
potential object motion regions from the camera motions. In
[6], a homography is estimated for consecutive frames to
compensate for the camera motion. But in our agricultural
videos, there are no robust feature points for homography
estimation because there are no rigid objects in the field. The
MBH feature is able to cancel camera motion by computing

Fig. 3. The feature sampling method comparison on a harvesting video. Top
left: the original image, top right: the optical flow at this frame, bottom left:
the trajectories positions from IDT [6], bottom right: sampled positions using
our motion separation method. In the optical flow image, the hand drawn
red line partitions the object motions from the camera motions. In two lower
images, red points represent the positions of trajectories for feature extraction.

a spatial gradient on optical flow, but it also removes useful
motions and only leaves motion boundaries. So in our method,
we compute gradient from both the spatial and temporal
domain of optical flow. Then the regions are selected if they
have large gradient in either the temporal or spatial domain in
a volume of video.

Formally, for a video volume V with frame number T , the
dense optical flow is estimated for every frame noted as OFt

where t ∈
{
1, 2, ...T

}
. Then we convolve each OFt with

horizontal and vertical gradient kernels to obtain OF DXt

and OF DYt. The temporal derivative OF DTt is computed
as the difference between consecutive dense optical flows.
Note that the shape of OF , OF DX , OF DY and OF DT
are all the same as V . With three derivative flow maps, the
active pixel positions are selected using:

Active map = OR
((
OF DX > THdx

)
,(

OF DY > THdy

)
,(

OF DT > THdt

)) (1)

where THdx, THdy and THdt are threshold parameters and
OR is logical operator OR. The Active map is a 3D binary
volume. Then object-motion regions are selected by summing
Active map over the time axis, resulting in a 2D map. Those
positions p

(
x, y

)
in the 2D map that have values that are larger

than T/2 are selected as object-motion regions. As a result,
the optical flow analysis provides a spatial mask which is used
for all T frames in the volume. Finally, a spatial sampling step
is added to pick positions between some minimum distance.
This prevents large overlapping feature vectors if two sampled
positions happen to be too close.

Figure 3 shows an example of the sampling result of a
harvesting video. The upper two images are the original frame
and the computed optical flow map, and the lower two are
the sampled results from IDT [6] and our method. Notice
that, in this video, the combine is driving forward and in the
upper right optical flow figure, the flows above the hand-drawn
red line are caused by the forward motions. These camera
motions are not necessarily related to the harvesting category,



but the rotation motions below the red line are distinctly object
motions. The bottom left IDT method selects forward motions
as features and chooses features from the sky region. Our
method only selects the object motion at the bottom region,
which is more accurate and therefore will be more informative.

C. Feature extraction
The feature extraction process includes both a feature sam-

pling step and a descriptor generation step. In the system
shown in Figure 2, the two branches extract features dif-
ferently. Branch 1 uses dense sampling with spatial-focused
descriptors and Branch 2 uses FPT and temporal-focused
descriptors.

Branch 1 is designed for classifying all video clips, includ-
ing slow motion videos. Thus, its features should focus more
on spatial information than temporal motion. We use the dense
sampling method and include every position in the spatial
frame into the feature vector. As shown in [21], the cuboid
method has better performance than other methods to generate
spatial-temporal local feature descriptors. Each input volume
is first temporally cut into large temporal chunks with length
T and each chunk is spatially segmented into a fixed-sized
M ×M × T cuboid. Within each cuboid, different types of
features are extracted in smaller blocks, and then concatenated
to form a descriptor. The shape of a feature vector per video
is fixed and determined by the volume shape only.

Branch 2 is designed only for object motion clips. Its
features are extracted more densely in the temporal domain
to capture motion information. In this part, the pre-computed
object motion mask is applied and features are only extracted
around positions in the mask. To describe motion features, a
trajectory is better than individual points like STIP, because a
motion should be traced as a series of points. But for dashcam
videos, the spatial structures of consecutive frames are nor-
mally fixed across time. Inspired by optical flow stacking from
[15], we extract features at same positions through time which
we call a Fixed Position Trajectory (FPT). Unlike trajectories
in [6], FPTs have no drifting problems and they can use long
temporal windows. The length of FPTs need not be fixed, but
here we set them to a fixed length to maintain dimensions for
every feature descriptor. The neighborhood region to compute
the descriptor is generated with the selected positions at center
and lasts T frames. The blocks inside each neighborhood
region have fewer frames (a smaller value of t) and this enables
the descriptor to preserve more motion information.

IV. EXPERIMENTS

In this section, we first introduce our videos and the
implementation framework. Then in the first experiment, we
compare our framework with previous methods. In the second
experiment, we analyze feature efficiency for two sampling
strategies with different feature sizes.

A. Experiment setup
All videos are collected from dashcams that are mounted

on combines and tractors at local farms during the last two
years. All the raw captured videos are uniformly sampled into

TABLE I
Feature sampling strategy comparison. Numbers in parentheses are averaged

values. Note *Places-CNN is fine tuned with our data.

Method Feature per video N ×D Accuracy
Object
motion
videos

Proposed B1 480× 396 0.808
IDT [6] (78773.67)× 396 0.822

Proposed B2 (1596.17)× 660 0.857

All
videos

*Places-CNN [3] 5× 4096 0.696
Uijlings et al. [1] 2090× 594 0.755

IDT [6] (46989.83)× 396 0.751
Proposed B1 480× 396 0.792

B1 + B2 N/A 0.840
short 5-second (150-frame) clips every 30 seconds. Each short
clip is downsampled to 480 × 272 and only the middle 120
frames are used for feature extraction. These short videos are
labelled with three basic farming categories: wheat harvesting,
corn chopping and tillage. In total, we randomly select 2400
short clips from all different camera angles with 800 clips
for each category. Within each category, 500 are for training
and 300 are for testing. The training and testing videos are
separated based on the camera angles. For example in Figure
1, the training frames on the left have very different angles
and structures from the testing frames on the right.

Note that the focus of this paper is on the feature sampling
procedure. Therefore the rest of the experimental design
follows that in [20] to process extracted features from all
different methods. In the implementation, we use the optical
flow from [22], because this method provides accurate dense
flow although it is time consuming. We implement the Fisher
encoding method based on [23] while the PCA and one-vs-
rest SVM classifier are both from the Sklearn package [24].
Since our features have much smaller shape, the PCA process
is not performed for our system.
B. Feature sampling comparison

In this experiment, we compare our two-classification
framework with other algorithm that have feature sampling
strategies, such as IDT [6]. Since the IDT method uses HOG,
HOF and MBH, we apply these three features in our strategy
for a fair comparison. Recall that the proposed system has
two classification branches; Branch 1 is for all video clips
and Branch 2 is only for clips which have object motions. In
Branch 1, we design 32× 32× 30 cuboids and 16× 16× 10
blocks inside each cuboid. The cuboid temporal length is set
to be one second (30 frames), since motion information is not
the focus for Branch 1. Based on this setting, each descriptor
has the same feature dimension (396) as the feature from IDT,
with 8 bins for HOG and MBH and 9 bins for HOF. In Branch
2, all videos have strong motions; and features are extracted
from positions that are computed from the optical flow analysis
process shown in Figure 2. Then the neighboring cuboid size
is smaller both temporally and spatially. The cuboid size is set
to be 16×16×30 and block size is 8×8×6. A smaller duration
for each block helps to capture more motion information. With
this setting, each feature descriptor has a dimension of 660.
The fusion stage adds the scores from the two classifiers and
selects the most probable category.

Also, an image-based scene classification method Places-
CNN [3] is compared. We select frames from both training and



TABLE II
Feature efficiency comparison between different feature designs. Upper four rows shows the dense sampling, lower four rows shows the FPT. Note that the

cuboid size is fixed for all designs.

Block shape Block Scale Feature per video HOG HOF MBHX MBHY HMG All merged All Separate
m×m× t number N ×D (8) (9) (8) (8) (8)

Object
motion
videos

(8,8,10) 12 1 (2903.48*492) 0.711 0.858 0.599 0.488 0.77 0.819 0.677
(8,8,6) 20 1 (2903.48*820) 0.718 0.841 0.58 0.305 0.49 0.824 0.635
(4,4,10) 48 1 (2903.48*1968) 0.665 0.637 0.599 0.258 0.635 0.734 0.763
(8,8,6) 20 2 (4317.44*820) 0.74 0.853 0.603 0.295 0.717 0.777 0.594

All
videos

(16,16,10) 12 1 480*492 0.682 0.7 0.651 0.713 0.707 0.802 0.694
(16,16,6) 20 1 480*820 0.768 0.698 0.643 0.677 0.485 0.782 0.645
(8,8,10) 48 1 480*1968 0.618 0.714 0.681 0.688 0.47 0.745 0.766

(16,16,10) 12 2 572*492 0.654 0.707 0.701 0.695 0.502 0.778 0.736

testing videos at one frame per second (5 images per video).
Inspired by [16], we treat the CNN as a feature extractor and
fine-tune the top layer. The AlexNet model with pre-trained
PLACE dataset is the underlying model. The outputs of the
last fully connected layer (FC7) are collected and these 4096-
dimensional features are input to a one-vs-rest SVM classifier.
In total, 7500 images selected from the trained videos are used
to train the classifier and 4500 images are tested.

Two groups of videos are compared for different sampling
methods. By optical flow estimation, 478 out of 900 testing
clips have significant object motions. So we first compare the
performance on 478 videos with large object motions and then
compare all 900 videos.

The results are shown in Table I. The first group (upper
3 rows) considers only 478 object-motion videos and we
compare our two branches B1 and B2, together with the
IDT method. Among all three methods, the dense sampling
method (Branch 1) has the worst performance since no feature
sampling methods are used. Both IDT and our Branch 2
apply motion-based sampling strategies, and Branch 2 has
better accuracy. Apart from accuracy, the feature shapes of
each video from the three methods are very different. IDT
has the most feature descriptors N , because it extracts more
trajectories (see Figure 3) spatially.

The second group (lower 5 rows) considers the entire
group of videos, which includes videos with all motion
types. Notice that image based method Places-CNN has lower
performance than the motion-based methods. Among motion
based methods, the accuracy of the IDT method decreases
relative to the first test because this method is not accurate
for videos that have only small motions or purely camera
motions. Our Branch 1 applies a dense extraction method with
cuboid, that are uniformly sampled from every position in the
video volume. The method in [1] is also densely sampled,
but it has much smaller cuboids and blocks, which makes
both feature number N and dimension D larger than our
design. But considering the performance, our output accuracy
is slightly higher, which means denser sampling might not
always provide better accuracy. The last row demonstrates that
our whole framework outperforms other methods. This final
result directly applies results from Branch 1 for videos without
object motion, while for object motion videos, it combines the
probabilities from two classifiers.

C. Sampled feature efficiency

Sampling methods such as STIP, IDT and the proposed
FPT provide interest positions in the video volume, which can
either be individual points or a series of points (trajectory). But
when generating the feature descriptors from such positions,
normally descriptors are built from cuboid regions. One inter-
esting question is how to design the cuboid and block size,
in order to get better feature efficiency with different feature
sampling methods.

In a video sequence, each cuboid contributes to one feature
vector and the whole video is summarized as a feature vector
with shape N × D. The dimension of each descriptor D
is determined by the number of blocks inside the cuboid,
multiplying the number of bins of the feature histogram. The
number of the descriptors or cuboids per video N is deter-
mined by the sampling strategy. In dense sampling methods, N
is normally the ratio between video size and cuboid size, so a
smaller cuboid produces a large N . On the other hand, in STIP
or trajectory-based methods, the sampling threshold decides
N , and it varies based on video content and motions. Such
N can be increased by dense cuboid sampling on the same
volume or sampling cuboids from more than one spatial scale
space. To explore this problem in our scope, we perform video
classifications on the farming videos with multiple choices of
N and D. Two groups of methods are tested with different
videos. Dense sampling is tested for all videos, and FPT is
only tested on object-motion clips.

The result is provided in Table II. Notice that the results
from Table II are not comparable to Table I, since here we
use more feature types than in the previous experiment. In the
table, the upper half rows show the test for all videos and the
lower four rows are for object motion videos only. We test
features individually first with HOG and HOF, together with
MBH and the recently proposed HMG [10]. The number after
each feature in the table is the number of histogram bins of
that feature. The last two columns show two different orders of
feature encoding and merging. In all merging order, the system
merges all different features together as one long feature vector
and then uses a Fisher vector to encode. On the other hand, All
separate encodes different feature types individually and then
concatenates all encoded vectors. All designs in the table have
the same cuboid shape and each row represents one different
design for the block size. Block number shows the number of
blocks in the fixed-sized cuboid and scale means the number



of scale spaces used to extract features. All the processing
procedures are the same except the feature extraction methods.
The classification accuracy is computed to be the measure of
feature efficiency.

The upper half of Table II shows the results of the FPT sam-
pling method. The HOF feature achieves the best performance
among all feature types, and even outperforms the results from
all features together. The lower half shows the results for the
dense sampling method. The first three rows have the same
number of feature vectors, but the dimension increases. The
best accuracy is achieved with all five feature types with all
merged order. Also, this design has the minimum number of
features and the smallest feature dimension.

There are some observations we can draw from the table.
Firstly, neither using denser sampled cuboids nor increasing
the blocks inside the cuboid to get larger feature vector
improves the accuracy for either the dense sampling method or
the FPT method. Also simply applying more types of features
does not improve accuracy, unless a late score fusion stage is
well trained to merge all decisions, like [20]. However, it is
not efficient to use larger features or multiple feature types,
because this adds computational burden for the encoder and
classifier training process. Secondly, the order of encoding
after merging five features (all merged) allows the GMM
training stage to choose the most representative centroids in
the high dimensional feature space. Therefore it improves the
encoded feature efficiency to some degree. In contrast, when
merging individual encoding features together all separate, all
feature types have the same contribution to the final feature
vector. In this case, the final decision could be influenced by
ineffective features. Thirdly, sampling methods such as FPT
perform a spatial selection process before feature extraction,
and the gradient-based features such as MBH or HMG might
not provide as good performance as features that operate on
the original image or optical flow, such as HOG and HOF.

V. CONCLUSION

In this paper, we propose a two-branch framework to
separate videos into different farming activities with a limited
collection of data. These videos have very different motion
characteristics, and we apply two branches and treat videos
separately based on their motions. In our system, low motion
videos and pure camera motion videos are considered as non-
object motion videos, and object motion videos refer to those
whose motions are independent of camera movement. Two
different sampling strategies, dense sampling and FPT, are
performed individually on the two types of videos. The results
show that our method uses fewer feature vectors from the
videos and achieves better classification accuracy.

This framework is designed to solve the problem of classify-
ing videos with different motion conditions. Not only farming
videos, but also hand-held or first-person cameras introduces a
large amount of video motions mixed with camera movements
and object motions. Our proposed two-branch system adapts
to such types of videos and provides more efficient features
for further analysis.
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