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A B S T R A C T   

In animal agriculture, animal health directly influences productivity. For dairy cows, many health conditions can 
be evaluated by trained observers based on visual appearance and movement. However, to manually evaluate 
every cow in a commercial farm is expensive and impractical. This study introduces a video-analytic system 
which automatically detects the cow structure from captured video sequences. A side-view cow structural model 
is designed to describe the spatial positions of the joints (keypoints) of the cow, and we develop a system using 
deep learning to automatically extract the structural model from videos. The proposed system can detect mul
tiple cows in the same frame and provides robust performance for the body region under practical challenges like 
obstacles (fences) and poor illumination. Compared to other object detection methods, this system provides 
better detection results and successfully isolates the body keypoints of each cow even when the cows are close to 
each other.   

1. Introduction 

Monitoring health is a critical component of animal agriculture, 
because healthy animals are more productive. Such monitoring is often 
performed visually, because animal appearance and behavior are key 
indicators of health changes. For example, trained farm personnel can 
analyze a dairy cow’s health condition based on visual appearance 
(Fleishman and Endler, 2000), and can detect potential illnesses such as 
lameness (Cook, 2020). However, time and labor limitations preclude a 
human routinely watching for these changes, especially in commercial 
farms which house a large number of cows. 

Thus there is increasing interest in supplementing human observa
tions with automated video analytics for animal agriculture (Pluk et al., 
2010; Zhao et al., 2018; Poursaberi et al., 2010; Condotta et al., 2018; 
Leonard et al., 2019). The primary focus for cows has been to detect 
lameness (Cook and Nordlund, 2009). The methods typically focus on a 
specific body region instead of the entire cow body and its structure. 
For example, back curvature is detected in Poursaberi et al. (2010) and 
Viazzi et al. (2013), while trajectories of the legs and hooves are tracked 
in Song et al. (2008) and Zhao et al. (2018). Other applications for cows 
include tracking (Ter-Sarkisov et al., 2017), behavior analysis (Guzhva 
et al., 2016), cow identification (Andrew et al., 2017; Zhao et al., 2019; 
Shao et al., 2019) and body score estimation (e.g. Spoliansky et al., 
2016). 

One drawback of these previous methods is that their processing 
techniques are developed for a specially-designed environment where 
the captured images are clear enough to process. For example, often 

each cow must stand or walk individually on a well-lit pathway with a 
clear background and no obstructions. To be applicable in the less 
constrained environments typical of those in commercial dairies, these 
methods require an additional fundamental step to detect and locate the 
cows within the images or videos. 

Automated methods to localize an object (e.g., a cow) in an image or 
video are termed object detection(Tsai et al., 2016), object segmenta
tion (Lee et al., 2011; Redmon and Farhadi, 2018), or semantic seg
mentation (Wang et al., 2015; He et al., 2017; Chen et al., 2017). The 
goal of these analytic methods is to generate a binary mask indicating 
the location of the identified objects and their labels. Methods can be 
applied to either individual images (He et al., 2017; Chen et al., 2017; 
Redmon and Farhadi, 2018; Maninis et al., 2018) or to a video (Wang 
et al., 2015; Tsai et al., 2016; Lee et al., 2011; Caelles et al., 2017; 
Tokmakov et al., 2017; Cheng et al., 2017; Voigtlaender and Leibe, 
2017). While these methods have been designed to localize a wide 
range of different types of objects, with appropriate training they can 
also be tailored to a specific task like detecting cows (see for example 
the experiments below). 

The above methods all generate bounding boxes or pixel-level 
masks to represent detected objects, without identifying any structural 
information of the object. However, to assess characteristics of an an
imal (i.e. body size or gait), simply having a binary mask that labels the 
cow’s location is inadequate. Further information of the cow’s structure 
is required, such as the locations of all body parts or joints. In video 
analytics terminology, these body locations and joints are called key
points. Methods to locate them in isolation are call keypoint detection 
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algorithms, and pose estimation detects keypoints as well as connecting 
structural information. Significant progress has been made in human 
pose detection (Toshev et al., 2014; Newell et al., 2016; Newell et al., 
2016; Cao et al., 2017; Cao et al., 2017, 2018), by leveraging several 
public human pose datasets (Andriluka et al., 2014; Lin et al., 2014). 

Recently, keypoint detection and pose estimation has also been 
applied to animals (Mathis et al., 2018; Pereira et al., 2019; Günel et al., 
2019). These methods provide a means for users to define body parts; 
this allows the algorithm to adapt to different animal structures. The 
DeepLabCut toolbox (Mathis et al., 2018) also provides simple access to 
fine-tune the underlying convolutional networks. In addition, with a 
small amount of training data, it achieves promising results when ap
plied to video sequences that have been captured under laboratory 
conditions, that contain a single animal per image in front of a clean 
background with good illumination. However, we will show below that 
it performs less well when applied to videos of cows walking in a cow 
barn that have been recorded in a less controlled setting. 

In this paper, we present a video analytics system to detect the 
keypoints of a cow and the associated connecting structure. Combining 
deep learning with domain knowledge about cows, this system is de
signed to address several challenges that exist when processing videos 
captured on a practical dairy farm: more than one animal, poor lighting 
conditions, and additional objects like occluding fences. In particular, 
our system estimates the number of cow objects in a frame and detects 
the body parts of every individual cow. For each cow object, the de
tected keypoints are composed into a structural model of the side-view 
of a cow, which describes the spatial location of the cow, the body 
contour, the positions of major joints, and the trajectories of their 
movement. This detailed information provides interpretable knowledge 
for further health analysis; for example, weight can be estimated using 
distances between joints on the cow’s body (Song et al., 2018). More 
detail on the structural model is discussed in Section 2.1 below. 

One advantage of our system is that it is designed to operate on 
videos captured on a commercial farm without interrupting the daily 
operation of the farm. In such a scenario, the environment in which 
video is captured cannot be fully controlled. Camera positions and 
angles are limited, lighting and obstacles like fences are governed by 
the needs of the farm, and the forward movement of cows are un
constrained. Given these limitations, our system uses only a surveil
lance camera and no specialized hardware. Cows are observed during 
the daily farm activities, and the system accommodates obstructions 
like fences and image degradations like poor contrast from weak illu
mination (Kawakatsu et al., 2017). 

The main contributions in this work are highlighted as follows. 
First, we design a cow model with keypoints that presents structural 
information about a cow that would be necessary for subsequent cow 
health analysis. Second, a system is developed to extract the cow 
structural models from videos that are captured from practical dairy 
farms, with multiple cows and occluding fences. Third, for the cow 
structural model, we also develop additional evaluation metrics that 
operate with limited ground-truth labels. Fourth, we demonstrate ex
perimentally that this system outperforms other popular object detec
tion algorithms when presented with practical challenges. Finally, in 
later experiments, we use multiple video datasets to demonstrate the 
robustness of the proposed detection system to different cameras. 

This paper is organized as follows. Section 2 introduces the pro
posed cow structural model including the keypoints and their spatial 
constraints. Section 3 presents the cow structure detection system, 
followed by detail explanations of the detection module and the post- 
processing module. The related cow structure evaluation metrics are 
described in Section 4. Next, Section 5 describes the on-farm video data 
collection and preparation, as well as three experiments of our detec
tion system. The first experiment evaluates each individual component 
of our system; the second explores the robustness of our system using 
three sets of video data; and the third experiment demonstrates the 
advantages of our proposed system relative to other popular object 

segmentation methods. Finally, Section 6 summarizes this work. 

2. Structural cow model 

In this section, we first introduce the keypoints in our cow structural 
model in detail, and then describe the spatial constraints between the 
keypoints. These constraints are further used in the detection system for 
separating multiple cows and detecting missing parts. 

2.1. Cow body keypoints 

This proposed structural model is designed to represent a detected 
cow object in the frame more effectively than using a binary cow mask. 
It is designed to provide both the spatial location and cow structural 
details, such as the body shape and positions of the body parts. For 
consecutive video frames, this model should also provide information 
so that we can track the movement or motions of these body parts. 
Inspired by recent approaches to model the human skeleton (Toshev 
et al., 2014), we combine some anatomical cow joints with other spatial 
keypoints to represent the cow pose, and the cow structural model is 
built by connecting the keypoints. 

Fig. 1 shows our proposed side-view cow structural model. There 
are 17 points in total to describe the important locations of a cow object 
from this angle. The upper body region has 9 points, including the head 
region (blue) and the main body region (red). Connecting these points 
forms the contour of the upper body region (green lines). Another 8 
points are in leg-hoof regions which represent the four limbs, and each 
limb has a pair of leg and hoof joints. Comparing to the anatomical 51- 
point cow skeleton model (Aujay et al., 2007), we only select visually- 
observable joints. Some joints such as the elbow and stifle joints are 
neglected because their positions are not readily visible and thus dif
ficult to isolate visually. In addition, we also add some points such as 
the two bottom corners H and I show in Fig. 1. Even though they are not 
physical joints, connecting them with other joints forms a closed con
tour which spatially locates the body region. The point E on the spine is 
also an added point, because connecting three spine points provides 
information about the back curvature which is useful for lameness 
detection. 

There are two general observations about the keypoints in this cow 
structural model. First, the points in the main body region (red in Fig. 1) 
are always visible from the side-view, and their relative spatial loca
tions do not change dramatically when the cows are walking. Second, 
the leg and hoof points are much more difficult to detect compared to 

Fig. 1. The proposed cow structural model. 4 blue head region points: A:nose, 
B:head, C:top of neck, J:bottom of neck. 5 red body region points, D:shoulder, 
E:spine, G:tailhead, H:mid-thigh, I:bottom of shoulder. 8 white leg and hoof 
points, with name format: Right/Left + Front/Back + Leg/Hoof. (For inter
pretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.) 
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the upper body region points because of the practical issues such as bad 
illumination, shadows, and fast leg movement. Distinguishing between 
the points from the left or the right leg is also difficult when there are 
obstacles in front, for example the horizontal fences shown in Fig. 1. 

2.2. Keypoint constraints 

Practical constraints limit the potential relationships among the 
keypoints in both space and time. The camera, located at a fixed po
sition on the side wall, always captures a side-view of the cow as it 
walks through the fences. These fences allow no more than one cow to 
walk through at a time. In this case, each cow shown in the video is 
facing the same direction, and the keypoints of each upper body region 
are always located at relatively fixed spatial positions. For example, a 
cow’s head always appears on the right side of its body, and the body 
does not change size. As a result, we can compute general relationships 
that constrain the keypoints in the cow structural model. 

To model the constraints, we first define the center of the cow’s 
body. This center point is computed as the spatial center of all the 
keypoints from the cow’s upper body region. Note that the points in the 
leg-hoof region are not used to compute the center point because their 
positions are not relatively fixed when the cow moves. Then we can 
estimate the relative spatial relationship between the center and all the 
keypoints. 

Fig. 2 visualizes the keypoint constraints. The middle X shows the 
cow center c, and the relative spatial locations of the upper body parts 
appear surrounding the center. Each body part mapping function Fj is 
based on two Gaussian probability distribution in both the horizontal 
and vertical directions; the distribution parameters are estimated for 
each direction individually using manually-labelled keypoint positions. 
Given a fixed center point, the probability of the mapped keypoints are 
shown as an ellipse in Fig. 2. 

Formally, for a fixed cow center point =c x y( , ), we define a set of 
mapping functions F (·)j that describe the relative spatial locations of 
every upper body-part point pj to the center, 

=p F c( )j j (1) 

where j is the index of the body part. Each mapping function Fj is 
characterized by a 2D Gaussian model, and the parameters are trained 
using all ground-truth labels. During the training process, the approx
imate cow center c is computed first as the geometric center of all la
belled body parts. This center point has no physical meaning, but 
provides a estimated position for the cow in the video frame. Next the 
parameters in each Fj are estimated individually based on their relative 
spatial locations to c. Each keypoint has a different mapping function, 
and keypoints that are closer to the center can be more accurately es
timated. 

In the next section, we show how these constraints can be used to 
separate cows which are spatially close together in the frame. They also 
provide a reference when assigning body-part candidates to each 

individual cow object in the post-processing module. 

3. Skeleton detection system 

This section introduces our proposed system to detect the structure 
of cows. We first review one popular work for keypoint extraction and 
then describe the components of our proposed system. Then we ex
plicitly introduce two main processing components: the body part ex
traction module and the post-processing module. 

3.1. The DeepLabCut toolbox 

The DeepLabCut toolbox (Mathis et al., 2018) is a recent popular 
method to extract keypoints from video sequences. The inputs are color 
images from videos, and it applies a CNN to generate confidence maps 
that represent the potential keypoint locations. One advantage of the 
DeepLabCut toolbox is that it provides simple access for users to 
manually define the output body parts, and the toolbox automatically 
alters the last layer of the CNN based on the number of body parts. For 
example, there are 17 confidence maps generated in our case because 
we have 17 keypoints in our cow structural model. In our system, we 
apply the network created by the toolbox to extract the keypoints of our 
cow structural model. The detailed extraction process is explained 
latter. 

However, other modules from the toolbox are less suitable for our 
application because of two major limitations. First, this platform is 
designed and evaluated with videos captured from a laboratory en
vironment with clear objects and background. But our cow videos, 
generated from a commercial farm, have low video quality and the view 
of the cows are often blocked by obstructions. Later experiments show 
that the original DeepLabCut does not provide robust detection results 
on our videos. Second, this method assumes there is only one object in a 
frame, so it only chooses one body part from each confidence map. If 
there are multiple body-part candidates detected, only the position with 
the highest confidence score will be selected. But in videos generated 
from commercial farms, there could be multiple cows and obstructions 
like fences that easily cause false detection. We address these two 
limitations and build a general keypoints detection system which ex
tracts robust keypoints on our cow videos. 

3.2. Proposed system 

This detection system is targeted to extract the structural model for 
every cow object from video sequences. Fig. 3 presents the overall 
system; its primary components are two CNNs for the extraction and a 
post-processing module. The body part extraction module uses trained 
networks to convert each single image into a group of confidence maps. 
Each map shows the potential locations of a particular body part, and 
the values of the map represent their detection confidence. The post- 
processing module generates the final structural model based on two 
groups of confidence maps and the trained keypoint constraints. Both 
modules are discussed in detail in the next two sections. 

In this figure, both the training process and the testing process are 
labelled using colored arrows. During the training process (indicated by 
the green arrow in Fig. 3), the ground-truth labels are used to fine-tune 
both CNNs and the keypoint constraints. During operation (indicated by 
the yellow arrow), the system takes the input of both the color image 
and the frame difference image on the left, and generates the cow 
structural model for a single image. The frame differences are the ab
solute pixel value difference between adjacent frames, which highlights 
the moving cows and other temporal information in the video. After all 
the frames from a video sequence are processed, the post-processing 
module refines all the detected cow structures based on temporal in
formation. 

Fig. 2. The constraints between the upper body keypoints of the cow structural 
model. The yellow X is the cow center, and the surrounding points shows the 
relative positions of the keypoints in the upper body region. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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3.3. The body part detection module 

The goal of this module is to find the spatial locations of all potential 
keypoints from raw images. In our system, we apply the original 
DeepLabCut network (Mathis et al., 2018), labeled CNN1, to extract 
keypoints from color images. This network structure follows DeeperCut 
(Insafutdinov et al., 2016), and is implemented using ResNet (He et al., 
2016) for the convolution stages, followed by one de-convolution layer 
before the output layer to recover the target spatial locations of the 
keypoints. The last two convolution layers apply atrous convolution, 
which increases effective fields-of-view of the applied convolution and 
preserves spatial resolution (Chen et al., 2017). By default, the Dee
pLabCut network is pre-trained on ImageNet (Krizhevsky et al., 2012) 
for image classification tasks, and we use our own cow labels to fine- 
tune the last de-convolution layer for keypoint detection. During the 
fine-tuning process, the intermediate layers are fixed, and they extract 
the spatial features from the input. For the last upsampling layer, we 
first adjust it to produce the specific number of cow keypoints, and we 
train this layer with our labelled cow data. In the experiment, the 
training and testing frames are randomly chosen using two guidelines. 
First, adjacent frames are not selected because they are too similar 
spatially. Second, we try to include frames where the cows appear in 
different spatial locations. This provides a varied training dataset which 
leads to robust system performances. 

However, as mentioned above, low video quality and heavy ob
stacles influence the performance. To overcome this issue, we add an 
extra network, CNN2, into the system. The architecture of this network 
is same as the first, but it processes frame difference images. There are 
three major advantages of using frame difference images for our cow 
videos. First, because we have fixed cameras, the frame difference 
image better captures the moving objects and eliminates the stationary 
obstacles such as fences. Second, many of our target keypoints are on 
the contour of the cow body, and the frame difference highlights these 
edges of a walking cow. 

Third, frame difference also reduces the influence of color variation. 
This is useful, because the color responses of different cameras are not 
the same especially under poor illumination. In addition, the majority 
of the cows have color variations introduced by the patterns on the 
cows, but some cows only have a single coloring, such as pure white, 
black or brown. If these patterns are not included in the training frames, 
then the color-based CNN methods would likely fail to detect cows with 
unseen colors. As a result, using frame differences provides robustness 
to these factors. 

However, using the frame difference images alone is not enough 
because they eliminate too much spatial information, especially for legs 
and hooves. This is because most of the legs are stationary even when 

the cows are moving. As a result, our system merges both networks 
together to improve the body part detection accuracy. 

3.4. The post-processing module 

The post-processing module collects and merges the confidence 
maps from the two CNNs, and assigns the cow body-part candidates to 
each cow object instead of just to one cow per frame. This step is critical 
to our system, because incorporates domain knowledge about cows into 
the estimation of keypoint locations by incorporating constraints about 
how a cow may move. These constraints help improve the accuracy of 
estimated keypoint locations for both the body region and the leg and 
hoof region, but its performance on the body points is better than on the 
leg and hooves because there are more constraints on the body than the 
legs. In addition, this step enables the system to detect multiple cows in 
the same image frame and track their temporal movements. There are 
three major steps in this post-processing module: body part extraction, 
spatial clustering, and temporal filtering. 

3.4.1. Body part extraction 
This step extracts the spatial locations of all body-part candidates 

from the confidence maps generated by the CNNs. At this stage, the 
number of cow objects in the image is unknown and we want to extract 
all possible candidates. For each body part, we use non-maximum 
suppression (Neubeck and Van Gool, 2006) to select only those pixel 
positions whose confidence scores are higher than their neighbors. We 
apply this process to both CNN outputs, but then process the confidence 
maps and the selected keypoints differently. The cow keypoints are 
separated into upper body region keypoints, and leg and hoof region 
keypoints. If one upper region keypoint is detected by both CNNs, then 
we compute the final keypoint position to be the average of the two 
positions. But if this occurs for a leg and hoof region keypoint, we use 
the position identified by the color CNN as final output; this is because 
the leg and hoof movements are difficult to observe within frame dif
ference images. 

The output of this step are lists of body-part candidates. Formally, 
for a given frame at time t, all these body-part candidates can be re
presented as =p x y( , )j

i t, , where j is the index of that body part, and 
…i {1, 2 } indicates the count of all possible keypoints extracted for 

this body part. The total number of i is not determined because the 
number of cow objects is unknown at this stage, and there could be 
some incorrectly-detected candidates. All these candidates are further 
selected and clustered in the next step. 

3.4.2. Spatial clustering 
The second step in the post-processing module is spatial clustering. 

Fig. 3. A diagram of the proposed system. The green arrows show the training process and yellow arrows present the process during operation. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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This step selects the correct body parts and clusters them into different 
cow objects. The first task before clustering is to determine the number 
of cows in the frame by counting cow centers. The cows in the frame 
will not overlap with each other because of the fences, so the number of 
cows can be estimated based on the keypoint clusters. Given a set of 
extracted keypoint candidates pj

i t, from the upper body parts, the cor
responding cow center positions can be estimated based on the con
straints of the keypoints, shown in Eq. (2). 

=c F p( )j
i t

j j
i t, 1 ,

(2) 

Then a mean-shift clustering method is applied to the 2D spatial posi
tions of all the cow centers cj

i t, . Because the mean-shift algorithm is a 
non-parametric clustering technique, we only need to specify the 
minimum distance between two neighboring clusters; the number of 
clusters is not pre-defined. The minimum distance should be set to be 
much smaller than a cow’s width, which is 100 pixel in our experiment. 
Based on the clustering results of the center points, the corresponding 
body parts are labelled into separate cow objects. We accept a cow 
object if the system detects more than half of its keypoints, which is a 
sufficient amount to localize the closed polygon of the body region. 

The cow centers are also used to predict the location of missing body 
parts that the network fails to detect. After all keypoints are clustered 
into distinct cow objects, then for each cow object, we compute the 
averaged cow centers based on the detected points, and the miss-de
tected keypoints can be estimated using the keypoint constraints Fj. 
While the location of these body parts are only estimates, they provide 
sufficient information of the cow’s spatial location to be useful when 
searching for keypoints in leg-hoof regions. 

The final process in this step is to match the leg-hoof points. Similar 
to Zhao et al. (2018), we indicate the region of all possible leg-hoof 
points using a rectangle that is one-third wider than the rectangle of the 
upper body. Candidates outside this region will not be considered. The 
search process relies on the structural model. We follow the order of 
shoulder/tailhead, leg, hoof along each limb, and search the joints from 
among the candidates that lie in the search range. We also reject in
appropriate points by applying the rule that each limb should have a 
certain rotation range; the angle between shoulder to leg and leg to hoof 
must be greater than 90 degrees for valid keypoints. Finally, all the 
selected leg-hoof joints are connected to the body contour to complete 
the final cow structural model. 

Fig. 4 illustrates the procedures of the spatial clustering step. The 
top left image shows the original extracted body parts from the previous 
step. The red circles are the extracted candidates and each is converted 
to a corresponding cow center, shown as crosses. Then in the top right 
image, all center crosses are clustered using mean-shift to produce three 
clusters shown in distinct colors. Here the incorrect cluster (white) is 
eliminated because there are not enough candidates. Next in the bottom 
left image, points in the leg and hoof region are assigned to each cow 
object. The empty circles are predicted points; the yellow one is blocked 
by the fences. Finally, by connecting all keypoints together, we form 
two cow structural models as shown in the bottom right image. 

3.4.3. Temporal filtering 
The final step in post-processing module refines the detection results 

using temporal information and matches cow objects across different 
frames. The two previous steps each operate on a single image, but the 
relationship between neighboring video frames is helpful to refine 
keypoint positions. It is reasonable to assume that the cows walk on an 
identical path between the fences and that they move steadily and 
slowly. This means that for a specific keypoint in the upper body, its 
trajectory over time should be smooth and any points far from the 
trajectory line can be considered outliers. 

Based on this idea, we refine the positions of every upper body-part 
point across time to improve the temporal smoothness of the output. 
Before this step starts, all the frames in a video have been processed, so 
we know the number of cow objects in each frame. Then for every body 
part in the upper body region, we temporally filter each trajectory to 
remove and correct the outliers. In our experiment, we use a median 
filter, which is simple and provides robust prediction. Other filters such 
as the Kalman filter do not work well especially when there are too 
many missing points from the previous steps. The leg-hoof region points 
are not involved in this process, since their trajectories are much more 
complicated. 

Based on the trajectories of each cow object, the cow objects can be 
matched between neighboring frames. After this process, the system 
detects the total number of cows shown in a complete video sequence, 
and parameters about how every cow moves can be inferred, including 
the speed and rhythm or the walking poses (Whay, 2002). 

Fig. 4. The procedure of spatial clustering during post-processing. Circles represent the body parts p and crosses are the estimated cow centers c. Empty circles are the 
predicted body parts. Each color indicates a different cow object. 
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4. Evaluation metrics 

This section introduces our evaluation metrics. Although our 
method uses few ground-truth labels for training, ground truth is ty
pically also required for performance evaluation. Therefore, in this 
study we propose to use both supervised measures, which compare the 
detected results with ground-truth labels (i.e. manually labelled points 
without noise or obstacles), and unsupervised measures, which directly 
evaluate the results without labels. Adding unsupervised measures to 
the evaluation process improves its thoroughness in the presence of 
insufficient labels. We first discuss the supervised measures for the cow 
structural model, and then introduce two unsupervised metrics. 

4.1. Supervised measures 

Quantifying the performance of the cow structural model requires 
more than the typical measures used to quantify object detection. As 
mentioned in Section 1, the cow structural model is designed to provide 
two types of information: the spatial location of the body region, and 
the detailed positions of body parts. Both information is represented in 
terms of the keypoints of the cow body parts, and our ground-truth 
labels are also in terms of keypoints. As a result, we separately evaluate 
the area of the cow body region and the points in the leg-hoof region. 
Two metrics are developed and described below in detail: the Body F1 
score and the Leg-hoof F1 score. In each case, the F1 score is harmonic 
mean of precision and recall when comparing the detection results to 
the ground truth. Both metrics compare accuracy at the keypoint level. 
In a later experiment in Section 5.4, we also propose a method to 
convert the cow structural model to a binary mask with both body re
gion and extended limbs, for the sole purpose of comparing our de
tected keypoint model with other mask-based segmentation methods. 

4.1.1. Body F1 
This metric measures the spatial area formed by the body region 

points. We connect the keypoints in the upper body region and generate 
one polygon mask for both the detected structural models and the 
ground-truth keypoints. Then we compare the two masks using the 
typical Intersection Over Union (IOU) metric and report the F1 score. 

4.1.2. Leg-hoof F1 
For the legs and hooves, a single pixel position represents each 

keypoint. However, physical joints typically extend for a larger spatial 
region. Therefore, the evaluation metric must accommodate this dis
crepancy, which may introduce systematic errors to both the labelling 
and detection process. For this reason, when measuring the distance 
between ground truth and the detected leg and hoof keypoints, we set a 
threshold distance of 30 pixels, which is the minimum resolution of the 
DeepLabCut labelling system. If the distance between the points is less 
than this threshold, we consider the joint to be detected, and points 
further away are considered to be miss-detected. After thresholding, we 
determine how many leg-hoof points are successfully detected, and 
summarize this using the F1 score computed from the precision and 
recall. Since we do not create ground-truth labels for keypoints that are 
completed blocked by obstacles, these blocked joints do not affect the 
evaluation result. 

4.2. Unsupervised measures 

Unsupervised measures allow performance evaluation without 
ground-truth labels. This is particularly critical for video, where ex
haustive application-specific labeling becomes even more onerous. 
Without labels, previously proposed metrics such as mean of region 
similarity, contour accuracy (Li et al., 2017), and temporal stability 
metric (Perazzi et al., 2016) cannot be computed. Here, we apply prior 
knowledge to evaluate the performance when the ground-truth labels 
are not provided. 

We consider two rules for the cow structural model. First, the spatial 
locations of the keypoints in a model should always form a cow-shaped 
object. Second, the shape of the cow body should be stable during the 
walk and the keypoints should have similar smooth trajectories. Based 
on these two constraints, we introduce two unsupervised metrics: the 
valid cow percentage and temporal consistency. 

4.2.1. The Valid Cow Percentage (VCP) 
This metric counts the fraction of detected cow models that are 

valid. Here valid means that the positions of the keypoints in the 
structural model can form a cow-shaped object. Like the supervised 
measure, we validate the upper body region and leg-hoof region sepa
rately. 

For the upper body region, we use the trained keypoint constraints 
(Fig. 2) as a reference, and compute the similarity between the detected 
contour and the reference using the Fréchet distance (Alt and Godau, 
1995). We choose this distance because it better captures the similarity 
between two curves, which are the body contour in our case. The 
computed distance is thresholded to form a binary decision whether the 
upper body region is valid or not. This distance threshold is set to 30 in 
our experiments. For points in the leg-hoof region, we define two in
terpretable rules to validate their spatial positions: all leg-hoof points 
should be lower than the body region points, and all hoof points should 
be lower than their corresponding leg points. If all leg-hoof points sa
tisfy these two rules and the upper body region contour is also vali
dated, the cow structure is considered valid. 

This validation scheme is applied to all the detected cow objects in a 
video sequence, and the Valid Cow Percentage (VCP) is computed as the 
number of valid cow objects divided by the number of detected cows. 
The absolute VCP score is directly related to the actual number of cows 
in the testing video sequence, so the score is only meaningful when 
compared with other methods on the same testing dataset. 

4.2.2. Temporal Consistency (TC) 
The second unsupervised metric evaluates the Temporal 

Consistency (TC), which reflects the smoothness of the motion of 
moving objects in a video sequence. It is reasonable to assume that at a 
certain camera angle, the points from the body region always share the 
same translational motion because the shape of the cow body is stable. 
So ideally, the motion vector between every upper body region key
point generated from one frame to the next frame should be the same. 
The Temporal Consistency (TC) metric evaluates this co-movement and 
computes the distance between the motion vectors generated by the 
body parts, which shows the smoothness of the detected keypoints in 
temporal domain. 

Formally, for each keypoint in the upper body region pj
t in a cow 

object, we compute its motion vector from time t to +t 1 and sum
marize the variations d between all the motion vectors as 

= …+d std p p j j j( ), { , }t
j
t

j
t1

1 2 (3) 

where std is the standard deviation, and ji represents the index of the 
body part from the upper body region. Then the temporal consistency is 
computed as the average of the motion vector distance across all the 
frames in a video sequence. 

=TC mean d t( ),t (4) 

This measure is applied to every individual cow object in a video se
quence, and smaller TC values imply smoother object movements. The 
variation of the TC value is not considered because the cows are 
walking slowly and steadily in the path, there are unlikely to be large 
TC variations 
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5. Experiments 

5.1. Data collection 

All cow videos in these experiments are collected from the Purdue 
Animal Sciences Research and Education Center located in West 
Lafayette, IN, USA from 2018 to 2019. All procedures were approved by 
the Institutional Animal Care and Use Committee (PACUC 
#1803001704). The cameras are mounted at fixed positions include a 
side-view of the pathway where cows walk every day. This path has 
fences on both sides and only allows one cow to walk through at a time. 
This limits the amount of cow-overlap; however the dense fences partly 
block the view of the cows, and some body parts are not visible behind 
the fences, as shown in Fig. 1. This walking path is a typical component 
of many dairy farms. 

During the course of data collection, we used three different capture 
devices: a commercial surveillance camera with Digital Video Recorder 
(DVR), a GoPro camera, and a high-quality IP camera. Table 1 shows 
the detailed information of the three video sets captured from the three 
cameras. The DVR videos have the worst quality with low frame rate 
and low resolution. The GoPro videos provide higher frame rate, but 
they are spatially cropped with less spatial details. The IP camera 
captures high quality videos with both high frame rate and rich spatial 
information. 

Table 1 compares several factors among the cameras that will in
fluence detection performance. As noted, the video resolution and 
frame rate are different between the three sets, and Set 3 has the best 
quality. The number of pixels per cow refers to the average number of 
pixels that each cow occupies in an image, which is an indication of the 
spatial detail in each set. The Set 2 videos only have 0.29 million pixels 
per cow, which is less than a third of the other two sets. The field-of- 
view for each camera is also different. Set 1 videos only capture the 
center of the walking path where there are fewer fences, while the other 
two sets capture a wider view which includes two sides that have 
denser fences. In addition, the typical number of cows in one video are 
different across the sets. Narrow field-of-view videos normally capture a 
single cow in the frame, but the wider-angle videos could contain 
multiple cows, which challenges the detection method. In general, Set 3 
has more video clips than the others with the greatest variety, so we 
will further divide this set into subsets in a later experiment described 
in Section 5.4. 

To prepare the videos, we temporally segment the hours-long se
quences into 10-s clips, on average, where all cows walk from left to 
right. In each set, we separate the clips into training and testing groups, 
where the number of training clips per set are shown in parentheses in  
Table 1 after the number of video clips. All multiple-cow clips are 
testing clips, so the training clips all contain only a single cow object. 
Non-consecutive frames are chosen randomly for labeling from both 
training and testing clips as described in Section 3.3. 

5.2. System component evaluation 

This experiment compares all the internal outputs from our pro
posed system shown in Fig. 3, to demonstrate the importance of each 
individual module. We choose the output of CNN1 as the baseline 
method, which is the original method in the DeepLabCut (DLC) toolbox 
(Mathis et al., 2018). However, this method can only detect one object 
per frame, so for a fair comparison, we only use the videos in Set 1 since 
these only contain one cow object. We compare the baseline method 
with four other internal outputs from the system: the CNN2 output from 
the difference videos, the CNN1 output plus the Post-Processing (PP) 
stages, the CNN2 output plus the PP stages, and the final merged result. 

The implementation details are explained below. The frame differ
ence images are generated by the sum of differences between the cur
rent frame and both the previous and next frame. The training labels 
from Set 1 are used to fine-tune both CNNs in the system. Recall that 
CNN1 processes the color images and CNN2 processes the frame-dif
ference images. Both networks are pre-trained on ImageNet (Krizhevsky 
et al., 2012) and their final upsampling layers are fine-tuned with our 
cow images. For the two CNN methods without PP stage, we follow the 
extraction method from the DeepLabCut toolbox by setting a hard 
threshold and finding the location in the confidence maps with the 
maximum probability. 

Both supervised and unsupervised evaluation metrics are used, but 
their testing data are different. For unsupervised measures, we compare 
the Valid Cow Percentage (VCP) and Temporal Consistency (TC) for all 
the frames in the testing videos because no labels are required. But for 
supervised measures, only the 585 labelled testing frames are used for 
evaluation. Among these labelled images, we report the body F1 score 
and leg-hoof F1 score, and the VCP score is also computed to compare 
the cow detection capability of each module in the system. Both qua
litative and quantitative results are presented below. 

Fig. 5 shows an example of all five outputs of one testing image in 
Set 1. The direct outputs from the two CNNs without post-processing 
(top middle and bottom left) miss-detect some body parts, because they 
apply the strategy from the original DLC method that only selects one 
maximum point. Our proposed post-processing module uses non-max
imum suppression to select all local maximum values from the con
fidence map, and all body-part candidates are detected (see bottom 
right of Fig. 5). Considering the leg-hoof points, some joints of the 
swing leg are missed by CNN1 based on color image, because of motion 
blurriness and heavy compression. But these points are detected by 
CNN2 using the frame difference image, and the merged result gen
erates a complete cow structural model. 

The numerical comparison results are presented in Table 2. In 
general, our complete system (last row) improves the performance 
compared to the method in the DLC toolbox (first row). It can be ob
served that adding a Post-Processing (PP) module largely improves the 
system performance. The temporal and spatial prediction in the PP 
module improves the cow-detection ability demonstrated by the in
creasing VCP scores. The two VCP scores from supervised measure and 
unsupervised measures are not comparable because their test sets are 
different. In addition, the temporal filtering process in the PP module 
largely improves the Temporal Consistency (TC), because the original 
CNN method purely operates on an image without considering tem
poral information. Comparing two F1 scores in the supervised mea
sures, the PP step improves the detection accuracy for the cow struc
tural model because more body-part candidates are selected from the 
intermediate CNN output. 

Comparing the first two rows from the table, we can see CNN2 has 
better performance than CNN1 for the cow body region but works 
poorly on the leg and hoof regions. As explained in Section 3.3, CNN2 
operates on gray-scale edges generated by the frame difference and 
better captures smoothly moving objects like the body region. But it 
cannot work in isolation because it eliminates too much information 
contained in the original images, such as the stationary legs. As a result, 

Table 1 
Summary of three sets of video data used in the experiments. The # Pixel per 
cow is in units of millions.       

Set 1 Set 2 Set 3  

Capture Device DVR GoPro IP camera 
Video info 1280∗720  

@12fps 
1232∗384  
@30fps 

1920∗1088  
@30fps 

# Pixels per cow 0.88 m 0.29 m 1.35 m 
Image Quality Low Low High 
Field of view Narrow Wide Wide 

# cow per clips Single Multiple Multiple 
# video clips  
(# for training) 

87 (5) 18 (2) 114 (5) 

# training frames 100 40 100 
# testing frames 585 59 611 
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merging the two networks together obtains better detection for the leg- 
hoof region points. 

5.3. Dataset robustness evaluation 

This experiment evaluates the system robustness with different da
tasets. Training-based detection methods normally perform worse when 
they are applied to testing data that is substantially different from the 
training set. In this experiment, we evaluate the performance of our 
system when testing on frames collected from the three different cam
eras, that capture the same region of the farm but with different capture 
angles. This experiment also explores the influence of image quality on 
our system, since the video qualities from the 3 sets are also different. 

For the training images in each video set, we fine-tune three de
tection systems, S S1, 2, and S3, based on each individual corresponding 
datasets, respectively. An extra system S all_ is trained on all the 
training frames together. In the testing phase, each trained system is 
applied to the images from the three sets separately. We also test each 
system on all testing images together for an overall comparison. All 
training and testing data are separated regardless of their dataset, and 
no images used for both training and testing. In total, there are 4 
trained models testing on 4 groups of test sets, which forms 16 training/ 
testing pairs. For each pair, we measure the final system output using 
supervised metrics: body F1 score and leg-hoof F1 score. Table 3 shows 
the comparison results. 

In Table 3, each row represents a system trained from one dataset, 
and each column shows the system performance on one corresponding 
test set. Comparing the four systems, it can be observed that S all_
achieves similar and slightly better performance than the others, and 
this merged system even works better than when each individual 
system is both trained and tested on its own videos (diagonal values). 
This demonstrates that adding training data helps to improve the de
tection performance for video sets that were captured in the same 

environment but from slightly different angles. 
The results in Table 3 also allow us to examine the performance of 

the method when the input videos have different qualities. While both 
Set 1 and Set 2 have low quality, the images in Set 2 shown in Fig. 6 
have a small spatial resolution while the images in Set 1 from Fig. 5 are 
blurry with poor illumination. Therefore, the results of system S1 on Set 
2 and of system S2 on Set 1 images are poor, especially for the leg and 
hoof regions. However, system S3, which is trained on high quality 
images, provides better results on both these two datasets. This de
monstrates that using higher quality images or increasing the variation 
of training data can improve system performance. 

A final observation from the table is that the body region F1 scores 
are more stable across different systems than the leg-hoof F1 scores, due 
to the fact that the post-processing module that only operates on the 
body region. The spatial and temporal prediction in the post-processing 
model improve the estimation of missing and incorrectly detected 
points, which compensates for poor CNN performance. Since the legs 
and hooves are estimated directly from the CNN outputs, the perfor
mance variation is primarily due to the variation of training data. 

In addition to numerical comparison, in Fig. 6 we also present some 
visual results from all 4 trained systems applied to a test image from Set 
2 that contains two cows. Comparing the outputs, system S1 fails to 
detect two cow objects and S3 is confused with some body parts be
tween the two cow objects. However, system S2 and S all_ both detect 
two cow objects and present an accurate cow shape, because these two 
systems are both trained with data from Set 2. But the merged result 
from S all_ is more accurate on some body parts, for example the points 
on each cow’s back, because of the additional training data involved. 
However, for the leg and hoof region, none of the systems detect all the 
points, due to the difficulty of observing them and the lack of post- 
processing process. 

5.4. Segmentation methods comparison 

This experiment compares the detection performance between our 
system and other popular object detection methods. Recall that the 

Fig. 5. The outputs of different stages in the proposed system.  

Table 2 
Comparison of the outputs of the system components on Set 1 videos (single- 
cow). Smaller TC value means smoother object movement in the video. Bold 
numbers show the best performance method in each column.         

Unsupervised Supervised   

VCP TC VCP Body F1 Leg-hoof 
F1 

CNN1 (DLC(Mathis et al., 
2018)) 

0.447 102.8 0.714 0.260 0.391 

CNN2 0.408 155.0 0.673 0.366 0.252 
CNN1 + PP 0.632 8.9 0.846 0.772 0.373 
CNN2 + PP 0.667 10.2 0.929 0.841 0.333 

Merged output 0.705 9.0 0.960 0.879 0.434 

Table 3 
System performance comparison on different video sets. The bold numbers 
show the best performance of each column.           

Trained system Body F1 score on Leg-hoof F1 score on 

Set1 Set2 Set3 All Set1 Set2 Set3 All  

S1 0.80 0.42 0.51 0.64 0.61 0.18 0.35 0.46 
S2 0.72 0.65 0.58 0.65 0.16 0.59 0.33 0.26 
S3 0.82 0.56 0.59 0.69 0.61 0.52 0.56 0.58 

S all_ 0.82 0.64 0.61 0.71 0.62 0.65 0.56 0.59 
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motivation for our system is not only to segment the spatial location of 
the cow, but also to detect critical keypoints about its body parts. 
Therefore, ideally comparison methods should also target these two 
goals. However, as mentioned in the introduction, most previous key
point detection methods focus on human objects and incorporate 
knowledge about human body parts, and it is difficult to adapt them to 
cow bodies for a comparison. On the other hand, there are many pop
ular object detection methods which can be fine-tuned to segment cows, 
and these make for an effective comparison. In this experiment, we 
compare the cow object detection performance between our system and 
other three popular pixel-wise object detection methods: One Shot 
Video Object Segmentation (OSVOS) (Caelles et al., 2017), DeepLab 
(Chen et al., 2017), and Mask R-CNN (He et al., 2017). 

To create a performance comparison that does not disadvantage the 
object detection methods, we convert the output of our structural model 
into a binary cow mask, with two steps. First, all keypoints from the 
upper body region are connected to form a closed area representing the 
cow body. Second, every leg-hoof limb is expanded from a line into a 

polygon with a horizontal width of 20 pixels, as shown in the second 
column of Fig. 7. This expansion process is applied to both the ground- 
truth labels and the detection results. The newly expanded ground-truth 
masks are then used to fine-tune the object detection methods, as well 
as to compute performance metrics. Still the point-to-mask conversion 
is not perfect. The approximated masks cannot exactly cover the cow 
object from the original image; see for example the inaccurate edges of 
the cow body and the straight legs. 

We use all the training and testing data from the three video sets in 
this experiment. In total, there are 240 single-cow frames for training 
and 1255 images for testing. Each of the three comparison methods are 
fine-tuned with the approximate cow masks, with different im
plementation details. For OSVOS (Caelles et al., 2017), we use the 
parent network pre-trained on the DAVIS 2016 (Perazzi et al., 2016) 
dataset and fine-tune it with our data. The output results are binarized 
using Otsu (Liao et al., 2001) threshold. For DeepLab (Chen et al., 
2017), we use the pre-trained network from the COCO dataset (Lin 
et al., 2014), and we modify the last layer to produce two classes: cows 

Fig. 6. The detection comparison between systems trained on different video sets. This example image is from Set 2.  

Fig. 7. Results using different detection methods. From left to right: original image, ground truth, OSVOS (Caelles et al., 2017), DeepLab (Chen et al., 2017), Mask R- 
CNN (He et al., 2017), and ours. Example (a) and (b) are from Set 1 and Set 2, respectively; example (c) and (d) are both from Set 3. 
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and background. The fine-tuning process is applied only on the last 
atrous spatial pyramid pooling layers with binary entropy loss. For 
Mask R-CNN (He et al., 2017), we use the network pre-trained on the 
COCO dataset and fine-tune its region proposal network and feature 
pyramid network. The classifier outputs are also adjusted to the two 
classes of cows and background. 

Fig. 7 shows some visual examples of the detection results. From left 
to right are the original image, ground truth, and the results from 
OSVOS, DeepLab, Mask R-CNN, and our system, respectively. Each row 
shows an example which is selected from a different test set. Example 
(a) includes a human wearing black clothes who is walking right behind 
the cow. This confuses OSVOS which considers it to be part of the 
moving foreground object. Example (c) shows a special case which 
contains a pure white cow, and this color is not present in the training 
data. The DeepLab method completely misses the cow, because it di
rectly extracts information from the color image and this rare color has 
not been seen before. The OSVOS method detects part of this cow using 
motion information, but Mask R-CNN works well because its region 
proposal network determines there is an object candidate and segments 
the cow object correctly. 

Examples (b) and (d) contain multiple cows, and each method does 
detect multiple cow objects. However, the three masked-based methods 
merge all detected cow objects together because the objects are close to 
each other, and we need further effort to count the number of cows or 
to extract other detailed information. But our result provides a clear 
delineation between the cow objects, due to the use of the structural 
model. Another observation about these two examples is that the cow 
positions in these two images are different. Some cows are in the middle 
with fewer fences and others are on either the left or right side with 
denser fences blocking the view. Every method can detect the middle 
cow, but the cows on the sides are more challenging to detect due to the 
obstacles. We further analyze the influence of fences in later para
graphs. 

Numerical comparison results among the methods are also reported 
using the F1 scores of the Intersection Over Union (IOU) between the 
detection results and the ground-truth masks. The measures are re
ported based on every test set separately in Table 4, and on distinct 
subsets of Set 3 in Table 5. 

From Table 4, it can be observed that our method achieves the 
highest IOU score for most sets, although its performance relative to the 
fine-tuned Mask R-CNN is similar. There are three factors which may 
influence these IOU scores. First, when comparing the masks using IOU, 
we use a merged mask containing both the cow body and leg regions. 
Since the body region occupies a larger area of the ground-truth mask, 
the IOU score can still be high even if the legs are miss-detected. 
Second, because the masks for our method and the ground truth are 
both converted from keypoints, it is highly sensitive to the positions of 
the keypoints, especially for the narrow leg regions. Small position 
shifts can lead to a large change to the converted mask, which will 
influence the IOU score. Third, when our system does not detect a leg or 
hoof point, the mask will be empty in this region. This will also decrease 
the IOU of our system. Nonetheless, our system performs well in com
parison. 

As mentioned above, a main consideration of our system is to obtain 
acceptable performance even when there are multiple cows, and when 

there are obstacles like fences. We use Set 3 videos to further explore 
the influence of these issues, to eliminate any performance variations 
due to video quality. As Fig. 7 shows, Set 3 images have a wider view of 
the walking path, and cows in the center have fewer fences while cows 
on the left or right sides are blocked with denser fences. So we separate 
the testing frames from Set 3 into four subsets: cows in the middle, cows 
on either side, single-cow frames, and multiple-cow frames. Among the 
four subsets, images with cows in the middle and with a single cow set 
will be easier than images from the other two subsets. The qualitative 
comparison F1 scores of these subsets are shown in Table 5. From the 
table, Mask R-CNN has better performance on the easier test case when 
the cows are blocked by fewer fences. But for difficult test sets like 
denser obstacles, our proposed system works better. The OSVOS 
method also performs well when there are more obstacles because this 
method only considers the foreground and background, which allows it 
to separate the stationary fences from the moving cows. 

In general, compared to the other three mask-based object detection 
methods, our proposed system has three advantages. First, based on the 
keypoints detection, our method can correctly detect the cow structure 
even when the cows are behind the fences or there are humans nearby. 
Second, when there are multiple cow objects, this system can explicitly 
isolate each cow even when they are close to each other. Third, it can 
detect cows with color patterns that do not exist in the training data 
through the use of frame difference images. However, our system also 
has two limitations. First, the cow structural model completely depends 
on the accuracy of the body parts, and one inaccurate detection can 
cause large errors for the body contour and influence the overall spatial 
location. Second, the prediction system in our method is based on the 
keypoint constraints from the cow structural model, which is fixed after 
the training process. If there are not enough cow body parts detected, 
the prediction system still forces the results to conform to a particular 
shape, which could cause incorrect results. 

6. Conclusions and Future Work 

In this work, we design a practical system to detect the structural 
information for cows recorded in video. We use keypoints to form a cow 
structural model, which represents both the cow’s overall spatial loca
tion and the positions of its specific body parts, such as the joints from 
the leg and hoof. The proposed detection system applies two CNNs to 
extract the keypoints from raw images, and a post-processing model is 
developed to select individual points and convert them into cow 
structural models. This system can detect and track multiple cow ob
jects at the same time, and it is also effective when applied to different 
quality videos that have been captured on commercial farms during 
normal operation. 

In future work, we will apply this system to address several poten
tial applications. Potential applications include visual cow weight es
timation, cow re-identification, and even lameness analysis based on 
the head movement and back arch (Poursaberi et al., 2010). In addition, 
we will explore new methods to improve the limitations of our current 
system. In particular, we will improve the robustness of the leg and hoof 
keypoint estimation. These keypoints are challenging to detect due to 
the motion blur and poor lighting. However, the trajectory of these 
points is important for the cow lameness detection process. Therefore, 

Table 4 
Comparison of methods on different test sets in terms of Intersection Over 
Union (IOU) scores ranging from 0 to 1. Larger score means larger overlapping 
regions, which means better performance.        

Set 1 Set 2 Set 3 All  

OSVOS (Perazzi et al., 2016) 0.571 0.580 0.570 0.571 
DeepLab (Chen et al., 2017) 0.655 0.513 0.577 0.610 

Mask R-CNN (He et al., 2017) 0.735 0.692 0.630 0.682 
ours 0.750 0.668 0.662 0.703 

Table 5 
Comparison of methods on subsets of Set 3 in terms of Intersection Of Union 
(IOU) scores. Middle means the cow is in the image center which has fewer 
obstacles, while Side means the cows are on the two sides with denser fences.        

Middle Side Single-cow Multiple-cows  

OSVOS (Perazzi et al., 2016) 0.672 0.589 0.650 0.547 
DeepLab (Chen et al., 2017) 0.644 0.537 0.616 0.518 

Mask R-CNN (He et al., 2017) 0.749 0.574 0.703 0.520 
ours 0.734 0.645 0.711 0.587 
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designing new methods to overcome these challenges will improve the 
applicability of our current system. Finally, dairy cows are just one type 
of four-legged livestock, and we anticipate our method can be easily 
extended to accommodate similar animals. 
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