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A B S T R A C T   

A camera mounted on the front of a large agricultural machine captures a rich collection of visual data. Powerful 
cues about the upcoming field can be extracted through video processing. However, to access these cues requires 
methods to focus only on a specific region of the video frame, for example, the region containing the vehicle 
attachment or the upcoming field. To separate these different spatial regions in farming videos, this paper 
presents a spatial segmentation method using a rapidly-trained classifier. This classifier is trained on low-level 
hand-crafted features with limited data and can be easily adapted to different farming applications. We 
consider two applications here: classifying farming activities and automatic control to lift the header of a 
combine harvester. We demonstrate experimentally that the segmentation algorithm enables activity classifi-
cation accuracy of 87%, as well as a prediction error of about 1.3 s on the correct time to lift the combine header.   

1. Introduction 

Recently, new engineering technologies, such as sensing and ro-
botics, have been applied to challenges with the agriculture industry 
(King et al., 2017). Traditional farming activities such as planting and 
harvesting also benefit from these technologies by using advanced 
farming machines (vehicles), including tractors and combine harvesters. 
Applications have been designed to improve different aspects of the 
farming machines including autonomous control. Completely autono-
mous systems are still difficult to build now, and our target is to develop 
systems to help and assist the control process for these machines. 

A normal autonomous system requires sensors to collect signals from 
the surrounding environment. Compared to traditional sensors such as 
GPS and RADAR used in farming machines, cameras can provide a large 
amount of visual data efficiently, and the data can be easily interpreted 
for human analysis. With the help of image processing methods and 
video analytics, cameras have been applied in automation systems for 
farming vehicles (Boursianis et al., 2020; Gupta et al., 2020; Chen et al., 
2017; Liu et al., 2019). 

However, farming machines are more complex than automobiles. In 
addition to steering and speed control, machines like a tractor or a 
combine harvester have a tool, or attachment, whose interaction with 
the crops or the field must be controlled. Each farming activity requires a 
distinct attachment with its own requirements for controlling the 
interaction. 

Fig. 1 shows three different farming activities and their attachments: 
corn chopping, wheat harvesting and tillage. The color, shape, and 
motion of the attachments are all distinctive, which make them effective 
cues to separate one activity from another. Automating the interaction 
between the attachment and the field requires identifying the activity 
and isolating the location of the attachment in the image. For example, 
when harvesting, the height of the attachment (called the header) 
should be adjusted based on the condition of the approaching field. 

In addition, processing videos in practical farming vehicle applica-
tions is also challenging. Different applications have distinct re-
quirements which determine where the camera should be located, and 
their processing techniques are not the same. In Kurita et al. (2012), 
cameras that are placed near the auger of a combine harvester are used 
to automate the unloading process, while in (Liu et al., 2018) dash 
cameras are mounted inside the cockpit of farming vehicles to capture 
the front view of the operator. But one common challenge for cameras is 
that the captured images normally include some unrelated areas which 
are not useful for further analysis (Cho et al., 2014). As a result, the most 
fundamental step for practical image analysis is to identify which region 
of the image is useful for the application. Unlike many video-based 
applications whose goal is to detect objects, instead we need to locate 
distinct regions of the image for further analysis. 

Our video data are collected from multiple farms in the US between 
2016 and 2018. For the purpose of control automation, the cameras are 
placed by farmers inside the cockpit of large agriculture vehicles to 

☆ This work was supported by the Foundation for Food and Agricultural Research Grant #534662 and the Open Ag Technologies and Systems (OATS) Group. 
* Corresponding author. 

E-mail address: liu1433@purdue.edu (H. Liu).  

Contents lists available at ScienceDirect 

Computers and Electronics in Agriculture 

journal homepage: www.elsevier.com/locate/compag 

https://doi.org/10.1016/j.compag.2021.106095 
Received 21 May 2020; Received in revised form 27 February 2021; Accepted 7 March 2021   

mailto:liu1433@purdue.edu
www.sciencedirect.com/science/journal/01681699
https://www.elsevier.com/locate/compag
https://doi.org/10.1016/j.compag.2021.106095
https://doi.org/10.1016/j.compag.2021.106095
https://doi.org/10.1016/j.compag.2021.106095
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compag.2021.106095&domain=pdf


Computers and Electronics in Agriculture 184 (2021) 106095

2

capture a view similar to that observed by a human operator. Notice that 
we refer to these captured videos as farming videos for the rest of this 
paper. Typical dashboard cameras (dash cams) are used for capture 
because they can be easily mounted on the windows of the farming 
machines, and the cameras are always pointed towards either the front 
side or back side of the vehicles based on the farming activities. Fig. 1 
shows some example frames. 

In our farming videos, there are normally three common regions 
captured from the cockpit. The first important region is the header or 
attachment region, which is normally connected to the front side. 
Different farming activities use various types of attachments. For 
example, the first row of Fig. 1 shows two different attachments used for 
corn chopping, although the attachment is blocked by the corn on the 
left image. The second important region is the upcoming field in front of 
the vehicle. There are many types of fields and each has a unique 
appearance. Our collection mainly covers three categories: soybean, 
wheat and corn. But for the same type of field, the color and shape can be 
different; see for example, the two types of wheat fields in the second 
row of Fig. 1. The third region includes all other parts such as sky or 
faraway objects that have no large motion. These low-motion regions 
are crucial in multi-camera systems because the feature points in this 
region can be used to connect different cameras. As a result, our target is 
to segment the farming videos into these three regions. 

However, this farming video segmentation problem differs from the 
typical video segmentation such as (Liu et al., 2020; Karegowda et al., 

2021). First, there are no particular objects to detect in farming videos, 
and our target is instead to divide the frame into different regions. In 
object detection, the appearance of the target (like shape and color), do 
not dramatically change over time. But for region detection, the content 
inside the region is not determined, and it also changes across time. 
Second, since the cameras are manually mounted by farmers, the 
capturing angles and scene structures of the videos are not controllable, 
shown in Fig. 1. This requires the segmentation method to be robust to 
all these challenges caused during capturing; for example, it should be 
able to quickly adapt to new viewing angles. Third, there are many 
practical constraints like time and hardware. The segmentation should 
process videos as quickly as possible because it needs to save time for 
further analysis, especially for real-time applications. It is also not 
practical to install powerful machines on farming vehicles, which limits 
the computational power of the method. Currently, we have not seen 
any related applications which address all the issues listed above. 

In this work, we present a robust training-based segmentation 
method that effectively segments scenes captured from a large farming 
machine. The current work is both generic and effective when applied to 
each of the individual vision-based farming tasks that we have consid-
ered earlier (Liu et al., 2018; Liu et al., 2019). In addition, our new 
method overcomes two limitations of both of our previous solutions; 
these had used specifically-tuned threshold parameters and had focused 
on identifying only parts of the video frame (Liu et al., 2018; Liu et al., 
2019). The current segmentation method is a training-based algorithm 

Fig. 1. Sample video frames captured by dash cameras mounted on different farming machines: chopping corn, harvesting, and tillage.  
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that segments all regions simultaneously and quickly adapts to different 
applications with a small number of training labels. We demonstrate 
here that our new method performs as well or better than our previous 
methods for each of the two tasks we considered before. 

There are four main contributions in this work. First, we summarize 
the challenges associated with processing dash camera videos captured 
from farming vehicles. Second, a training-based spatial segmentation 
method is developed for farming videos which adapts easily to different 
farming applications. Third, we propose a generalized two-branch 
classification pipeline to improve video classification performance 
using domain knowledge. After that, we present another practical 
application which relies on the field region identified by the segmen-
tation method, and it predicts the header-height1 of a combine 
harvester. 

This paper is organized as follows. We start by reviewing the related 
prior research on image and video processing in Section 2. Next, we 
introduce the farming videos and their unique challenges in Section 3, 
and propose the newly proposed spatial segmentation method in Section 
4. Based on the new method, Section 5 and Section 6 describe the 
extended work from our previous research: farming activity classifica-
tion and combine header-height prediction. Finally, Section 7 summa-
rizes this work. 

2. Previous work 

2.1. Image and video segmentation 

Image segmentation has been studied extensively. Typical image 
segmentation methods are based on color information (Felzenszwalb 
and Huttenlocher, 2004). But the color information is not robust enough 
on its own for segmenting outdoor farming videos (Liu et al., 2019). 
More recent methods apply Convolutional Neural Networks (CNN) to 
segment objects from the image; for example (Long et al., 2015) applies 
fully-connected networks. However, these methods are trained and 
tested with public datasets that do not contain relevant images related to 
agriculture or farming. Training a large image segmentation network for 
farming applications requires a large number of images and ground 
truth labels, and it is difficult to gather so much data. 

Recently, CNN becomes popular for solving the Video Object Seg-
mentation (VOS) problems (Pathak et al., 2017). However, CNN-based 
methods require large training datasets such as (Perazzi et al., 2016). 
These datasets include videos with clearly-labelled moving objects in the 
foreground. But for videos captured from farming vehicles, the fore-
ground is not well-defined and it is hard to apply these methods to our 
segmentation problem. In addition, the videos from the popular datasets 
are not closely related to farming. 

For practical applications, obtaining ground truth labels is time- 
consuming, so new methods are being developed to handle the label 
limitations. Semi-supervised methods train both labelled and unlabeled 
data together, while weakly-supervised methods use image-level labels 
on pixel-level segmentation tasks (Papandreou et al., 2015). These 
methods solve the problem of either lack of labels or low-quality labels, 
but they do not consider the computational load. As mentioned in Sec-
tion 1, computational power is limited for practical farming video sys-
tems. As a result, although these previous work tackle some practical 
problems such as labelling, they are not suitable for farming 
applications. 

2.2. Features for video classification 

Farming applications require a system that can automatically classify 

videos into different categories or contexts. Traditional image and video 
classification algorithms extract features from the data and train clas-
sifiers with ground truth labels. Their performance largely depends on 
where the features are sampled and the corresponding feature de-
scriptors. The popular feature extraction methods include traditional 2D 
key points such as SIFT, and 3D cuboids (Dollár et al., 2005). A 
trajectory-based (Wang and Schmid, 2013) feature sampling method can 
be more effective to capture the motions in video streams. 

Feature descriptors are generated based on the sampled positions. 
Popular image feature descriptors include color features such as 
Content-Based Image Retrieval (CBIR) (Yue et al., 2011), and texture 
features such as the Gray Level Co-occurrence Matrix (GLCM) (Baraldi 
and Parmiggiani, 1995). Video feature descriptors are mainly extracted 
from 3D volumes based on the optical flow. 

Recently, Convolutional Neural Networks (CNNs) have been widely 
applied to image and video classification, such as the PlacesCNN (Zhou 
et al., 2018) for image scene classification. However, most of the 
learning-based classification algorithms are not trained on farming- 
related data, and it is hard to find large-scale public datasets of 
farming images or videos. Moreover, these methods require significant 
computational power which is hard to applied in practical farming 
vehicles. 

2.3. Farming video applications and CNNs 

There are many video-related applications for farming vehicles. 
Video-based algorithms have been designed to detect the lateral cutting 
edges in corn chopping (Benson et al., 2003), and to adjust the tractor 
steering using video motion information for the corn (Sainz-Costa et al., 
2011). 

CNNs are powerful methods that have been applied to solve a variety 
of problems, including agricultural applications (Kamilaris and Pre-
nafeta-Boldú, 2018; Kounalakis et al., 2019). However, our proposed 
method is not related to CNNs. First, the hardware constraint limits the 
computational power of this application, so it is not suitable to use a 
CNN. More importantly, the visual differences between our target re-
gions can be easily characterized using simple classifiers. Therefore, 
there is no reason to apply more powerful methods, and the experiment 
in Section 4 shows that our hand-crafted features achieve better seg-
mentation results. Also, using models like CNNs are more likely to cause 
over-fitting problems, especially when the training data is not extensive. 
In this paper, we train a light-weighted classifier with simple video 
features which can be easily incorporated into practical farming 
applications. 

3. Farming videos and challenges 

This section introduces the background of the practical vision-based 
farming application. We first talk about video data collection and then 
discuss some general challenges associated with processing these videos. 

3.1. Farming video collection 

As mentioned in Section 1, we use the term farming videos to indi-
cate the videos that are captured from the cockpit of a machine such as a 
combine harvester or a tractor. However, the video collection process is 
not trivial. In general, it is time-consuming to collect videos in an out-
door environment for everyday farming activities (Liu et al., 2018). To 
the best of our knowledge, there are no embedded camera systems 
available for farming vehicles that can transfer videos directly for 
analysis, and there are few public farming datasets available. A multi- 
sensor dataset is published from Kragh et al. (2017) to detect obstacles 
on the farm, but their video data only lasts for two hours. 

In addition, our target is to build a general segmentation system for 
different farming activities, and we need to collect various types of 
videos from different farming events. This is because the training-based 

1 In this paper, we refer the term header-height to the sum of the reel-height 
and actual header-height, and which equals to the distance of rotating reel to 
the ground in a combine harvester. 
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systems have poor performance on data they have not been seen before, 
and poor data variation causes troubles. However in practice, the timing 
of when most of the farming activities occur depends on factors such as 
human labor and weather, and most of these tasks are finished within a 
short period of time. This means that the farming videos must be 
collected within a limited time period, for example within several hours 
a day for a few days a year. Such videos contain the same repeating 
actions under the same environment for a long time, and special situa-
tions like field anomalies or machine breakdown rarely occur. 

In summary, the video capturing environment makes it difficult to 
build one general segmentation method which works for all farming 
applications with limited computational power. However, it is possible 
to build a system with a quick learning process using limited data, so 
that it can be easily adapted to different farming applications. Our 
proposed segmentation method in Section 5 is designed based on this 
idea. It is trained on low-level hand-crafted features with limited data 
and provides robust segmentation on videos from different farming 
activities. 

3.2. Challenges in processing farming videos 

As mentioned in Section 1, our goal is to segment regions instead of 
particular objects. The structure and object in each region can change 
due to vehicle movement, and the image distortion also challenges the 
segmentation because of the outdoor environment (Liu et al., 2018). 
Outdoor illumination changes quickly and influences the color of every 
region in the video. Some regions could be blocked by shadows and 
window glare due to the direction of movement and sunshine. Apart 
from color, the outdoor regions also suffer from noise and blur distor-
tion, which are caused by the dust in the field or foggy weather. 

Motion information is robust to outdoor illumination changes, but 
the variety of motion from a farming vehicle is also challenging. For 
normal vehicle-mounted cameras, two types of motions are summarized 
in Liu et al. (2018): camera-induced motion and object motion in Liu 
et al. (2018). But both motion types are more complicated in farming 
videos compared to those in the videos from automobiles. Camera- 
induced motions are generated by the moving cameras, and farming 
vehicles are very shaky when moving in the field, which causes noises 
when analyzing the motions. Independent motions are caused by 
movements other than the camera, and most of these motions on 
farming videos come from the interaction between the machine and the 
crops. These motions are difficult to model and challenge the segmen-
tation process. 

Both the image distortion and complicated motions Based on such 
practical challenges, we propose our classification algorithm. We extract 
hand-crafted features of both color and motion information and train a 
classifier to segment images, which is effective shown in later 
experiments. 

4. Training-based spatial segmentation 

In this section, we first describe the problem of segmenting farming 
videos and then review the motion consistency measure from our pre-
vious work (Liu et al., 2019). Next we explain how to apply this measure 
to design new pixel-wise features for our proposed training-based seg-
mentation method. After that, the comparison experiment of different 
segmentation methods is presented. 

4.1. Motion consistency and segmentation 

Both color and motion information are widely used in video spatial 
segmentation. In an outdoor farming environment, however, relying 
only on color features is insufficient due to the illumination variation 
and its affect on color. In particular, video motions are more effective to 
separate the moving objects. However, simple separation between the 
foreground moving objects and the background scene is not enough, 

because some object movement comes from both the camera motion and 
object motion. Most camera motions are consistent with the vehicle, 
such as forward, backward, and turning motions. Even though the fields 
in the farm are uneven and the vehicle can shake dramatically, we as-
sume these camera motions are consistent over time because of the slow 
driving speed. Unlike camera motions, the object motions from the 
attachment regions are independent of the vehicle movement, and they 
are not consistent over time. They vary due to the different farming 
activities and the types of the corresponding machine. Normally, the 
motions in harvesting and chopping videos are chaotic, but tillage and 
spraying activities have weaker interactions and their motions are 
smaller. 

To separate the camera motions and object motions, in Liu et al. 
(2019) we design a motion consistency measure C. This measure as-
sumes the structure of video frames does not have sudden changes in a 
short period of time, which is valid because of low speed of farming 
vehicles. The measure is computed based on the optical flow over a 
block of consecutive video frames with length T: 

C =
1
T

∑T

t=1
•

[
dut

dt
< θ
]

•

[
dvt

dt
< θ
]

(1)  

where (ut , vt) is the optical flow at frame t, • represents the indicator 
function and θ is the minimum motion threshold. Here the optical flow 
values are computed based on every pixel position across frames. As a 
result, this measure shows the temporal consistency all over the frame. 

This motion consistency measure is used to partition the frame in our 
previous work (Liu et al., 2019). However, that system depends on fixed 
threshold values and is not robust when applied in different farming 
activities. In this paper, we address this disadvantage by training a 
classifier with a limited number of labels, which makes it robust when 
applied to general farming videos. 

4.2. Training-based segmentation 

In order to separate spatial regions of general farming videos, we 
propose a training-based segmentation method which uses a classifier to 
separate pixel positions. Every pixel position in the frame is a classifi-
cation unit and represented by a feature vector. Both color and motion 
information are used to form the feature vector, but their spatial posi-
tions are not included because the region positions of farming videos 
vary between different capture angles. The color features improve the 
spatial smoothness of the segmentation as shown later in Fig. 4. The 
color features are extracted using the Content-Based Image Retrieval 
(CBIR) method (Yue et al., 2011), which is the histogram of the pixels in 
the HSV color space over a set of pixel values, with 8 bins of illuminance 
channel and 6 bins of two color channels. The motion features are hand- 
crafted with length 14D, and are described in detail below. In total, each 
pixel position has a feature vector of 14D color feature and 14D motion 
feature; a summary of the features is shown in Table 1. 

The motion features are extracted from the magnitudes of the optical 
flows over a video block. The feature vector includes two parts: a 
measure of the motion magnitude and the motion temporal consistency. 
The motion magnitudes are directly characterized by six percentiles 
ranging from 1% to 90% and the differences between two neighbor 
percentile values. The motion temporal consistency is summarized by 

Table 1 
The components of our hand-crafted features.  

Feature Dimension 

CBIR color feature luminance hist 8D 
color hist 6D 

Motion feature OF mag % 6D 
OF mag diff % 6D 

S_total 1D 
S_sbs 1D  
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two values: the total sum of motion Stotal and the sum of Step-By-Step 
motion Ssbs, which are defined in Eq. (2) and (3). 

Stotal =
1
T

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
∑T

t=1
ut

)2

+

(
∑T

t=1
vt

)2
√
√
√
√ (2)  

Ssbs =
1
T

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑T

t=1

((
dut

dt

)2

+

(
dvt

dt

)2
)√

√
√
√ (3)  

The optical flow operations between different frames are at pixel level. 
This total sum of motion Stotal describes the net movement of a pixel 
position during a period T, which is similar to the cumulative distance 
(Poleg et al., 2014) for video blocks. Here the net movement is computed 
as the sum of optical flows over time, where the periodical rotations are 
cancelled and the overall forward motion is preserved. The step-by-step 
motion sum Ssbs records the sum of the motion changes, which is 
computed as the sum of all flow differences (dut/dt, dvt/dt) between 
neighboring frames. By accumulating the differences, the rotating 
header region which is ignored in Stotal can be highlighted. As a result, 
comparing these two types of motion sums can separate the camera 
motion and object motion, especially when the camera motions are 
basically forward or backward. Both consistency values and their dif-
ference are normalized and added to the motion feature vector. 

Fig. 2 visualizes these two indicators. The main region in the sum of 
motion Stotal identifies the field region and part of the rotating header, 
and the main region in the step-by-step motion Ssbs mainly indicates the 
rotating header region. Their difference mask shown in the bottom right 
image highlights the upcoming field region on the left side. Note that 
there is a smaller and brighter region in middle of the difference mask. It 
represents the conveyor belt (Fig. 6), which is also highlighted because 
the belt motions are also consistent. 

Using these features, spatial segmentation can be achieved by clas-
sifying all pixels into different regions. Based on the training data, here 
we use a Random Forest (RF) classifier for two reasons. First, the clas-
sification is performed on each pixel position, which means the size of 
the training data is huge, and a RF classifier is much faster to train than 
other classifiers such as SVM. Another reason is that our feature vector 

contains multiple types of information like motions and color, and some 
features may be more useful. However, most linear classifiers treat all 
features equally without a preference, while the RF can focus more on 
the distinguishable parts of the feature vector (Pal, 2005). 

In the next section, we compare the segmentation results using three 
different choices of features: color only, motion only and both features 
concatenated together. Every feature group is individually trained with 
a RF classifier. 

4.3. Methods comparison experiment 

4.3.1. Experiment preparation 
This section compares different segmentation methods using farming 

videos and the manually-labelled ground truth. In total, 229 wheat and 
bean harvesting video clips are prepared in this experiment. These video 
clips are selected and pre-processed from the video dataset that we 
collected from the farms. During pre-processing, the raw videos are 
downsampled to the resolution of 480 × 272 and temporally segmented 
into video blocks with a length of 30 frames (1 s). The temporal seg-
mentation enables us to assume that the video structure remains the 
same during a short period of time. 

The pre-processed video clips are hand-labelled into the three spatial 
regions introduced in Section 1: the upcoming field region, the header 
(attachment) region, and low motion region (including sky and part of 
the body of vehicle). Each video is only labelled with one ground truth 
mask for all frames because the frame structure has little variation. As a 
result, there is no guarantee that a given pixel position has the same 
label across the entire second. Because of this, we only label the pixel 
positions that maintain a single region consistently across time. In other 
words, not all the pixels in the frame are labeled, but if the mask in-
dicates that a pixel belongs to one category, this position will always 
belong to that category across the entire clip. As a result, there are some 
gaps (the black regions in the ground truth label in Fig. 4) in the labels, 
and this could influence the calculated segmentation performance as 
discussed below. 

4.3.2. Implementation details 
In our experiment, we train three RF classifiers using different fea-

tures: the color, motion, and both features together. In a real application, 

Fig. 2. Motion difference measure, with the white region in the bottom right mask shows where Stotal > Ssbs. Notice the sky is on the left side.  
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the number of ground truth labels for segmentation is limited. So we 
choose only one sample video clip from the 229 video clips to be the 
training data for all three classifiers. Here one clip is sufficient to provide 
training data for pixel-level classification. In the actual training, 5000 
pixel positions are randomly selected for each segmentation region. 
Notice all these clips are chosen from several farms, which means the 
one selected training clip could be similar to some of the testing clips, 
and we consider this issue when reporting the experiment results. 

In this experiment, we compare our proposed methods with 5 
different segmentation methods. Since there are no previous segmen-
tation methods which solve a similar problem, here we test our videos on 
two popular VOS algorithms: Non-Local Consensus Voting (NLCV) 
(Faktor and Irani, 2014) and Saliency Aware Video Object Segmentation 
(SAVOS) (Wang et al., 2017). In addition, we compare with our two 
previous hand-crafted segmentation methods (Liu et al., 2018; Liu et al., 
2019). Note that because the method in Liu et al. (2019) is only designed 
for the header region, in this experiment we extend it to create method 
(Liu et al., 2019)* by adding extra thresholds to separate all three re-
gions. Furthermore, we also compare with a CNN-based method Deeplab 
(Chen et al., 2017). Although CNN-based methods are not practical to 
use for farming application, we still want to explore the potentials of 
these methods in the future. In this experiment, we fine-tune the last 
layer of the pre-trained Deeplab (Chen et al., 2017) network which is 
denoted by Deeplab (Chen et al., 2017)*. Here the training data are the 
same limited ground truth labels used to train the random forest clas-
sifiers which applies 100 estimators with maximum tree depth of 2, so 
we can obtain a fair comparison. The quantitative comparison results are 
presented in Table 2 and Fig. 3, and two sets of visual segmentation 
results are presented in Fig. 4. 

4.3.3. Quantitative comparison results 
All 228 testing video clips are quantitatively measured with the 

ground truth masks. The segmentation measures are based on all three 
regions, together with the overall frame. For each region, the Intersec-
tion Over Union (IOU) percentages are computed for all the testing 
videos, and we report their mean and standard deviation (STD) values. 
Here, the STD value is reported because the method is expected to 
generate robust segmentation on videos from different scenes. Methods 
with a higher mean percentage and a smaller STD value show better and 
robust performance. We first show the general performance comparison 
between different methods using a cumulative accuracy curve, and then 
the detailed numerical measures are explained later. 

A cumulative IOU percentage plot of the accuracy on the overall 
frame measure is presented in Fig. 3. Each line represents the IOU 
measures of one method, and its detailed mean and STD values are 
shown in the last two rows in Table 2. The x axis of Fig. 3 shows the 
number of the test videos and y is the normalized sum of all IOU per-
centages at this number of testing videos. For example, when x value is 
100, the corresponding y value is the sum of all testing videos from 1 to 
100. In general, a line that reaches higher y values means this method 
has better accuracy, and the straightness of a line represents the 
robustness across different input videos. Notice among all testing videos, 

there are some clips which are similar to the training data, and we use a 
black vertical line to separate them: testing clips on the left side (first 42 
clips) have similar structure as the training video, while the others do 
not. 

From this figure, we can see that two proposed random forest 
methods RF_motion (pink) and RF_both (gray) are above the other lines 
and are relatively straighter than the others. Methods like (Liu et al., 
2019)* and Deeplab* are not as robust. Our previous fixed threshold 
method (Liu et al., 2019)* (red) is consistently below the new training- 
based method. Specifically for Deeplab* (purple), applied to the first 42 
testing videos, reaches similar performance with other methods, but its 
performance starts to decrease after the vertical separation line (better 
viewed in the zoomed-in box) when the testing data have different scene 
structures. 

The detailed numerical measures of all the methods are reported in 
Table 2. Each row shows the IOU of a target region and each column 
represents a segmentation method. In general, the RF method with both 
color and motion features achieves better performance than other 
methods, with both high mean accuracy and stable STD values. 

Among all the methods, three major comparisons from this table are 
discussed below. First, considering the mean accuracy, the improved 
hand-crafted method (Liu et al., 2019)* using fixed thresholds is slightly 
better than all training-based methods, but its STD value is much larger. 
This means fixed threshold values can be adjusted to make the average 
accuracy high, but the performance is not robust when applied to 
different video inputs. Second, comparing the Deeplab (Chen et al., 
2017)* method with others, we can see it provides reasonable perfor-
mance for the field region, but fails on other regions. This is mainly 
because the color of the field is much more similar across different 
testing videos. In addition, it has a high STD, which indicates a lack of 
robustness, potentially caused by the limited number of training clips. 
Third, the methods from the last two columns have similar performance: 
one uses only motion features and the other uses both motion and color 
features. But the STD values for the second method is slightly lower. This 
shows that adding color features has the potential to improve the 
robustness for segmentation. 

4.3.4. Qualitative comparison results 
In this section, we select two examples to show the visual segmen-

tation results in Fig. 4, which present some segmentation results from 
two testing videos. The example clip (a) is captured from the same 
farming vehicle as the training data, but example (b) is from a different 
scene. The blue, green, and red regions respectively represent the header 
(attachment) region, the upcoming field region, and the low-motion 
region. The black region represents unlabeled gaps in the ground truth 
or pixels that are not labeled by the algorithm. 

In this figure, the SAVOS (Wang et al., 2017 and Liu et al., 2018) only 
segment the header region, and SAVOS is not accurate enough because 
of the poor performance of the super-pixel segmentation. Notice the 
Deeplab (Chen et al., 2017)* method works well on the left example 
because this testing video is similar to the training data, but it fails on the 
right one because of the scene difference. This scene change also 

Table 2 
The segmentation comparison with different methods, presented by the mean and standard deviation (STD) of IOU percentages. Higher mean percentage and lower 
STD values means a better performance. The bold number indicates the best performance of each row.  

Measured regions NLCV (Faktor and Irani, 
2014) 

SAVOS (Wang et al., 
2017) 

Liu et al. 
(2018) 

Liu et al. 
(2019)* 

Deeplab (Chen et al., 
2017)* 

RF_color RF_motion RF_both 

header mean 0.17 0.379 0.608 0.617 0.499 0.375 0.614 0.615 
STD 0.126 0.136 0.107 0.133 0.185 0.159 0.092 0.092 

field mean N/A N/A N/A 0.646 0.63 0.278 0.622 0.619 
STD N/A N/A N/A 0.28 0.218 0.204 0.209 0.203 

low_motion mean N/A N/A N/A 0.35 0.457 0.313 0.493 0.511 
STD N/A N/A N/A 0.252 0.289 0.164 0.197 0.189 

overall_frame mean 0.146 0.198 0.291 0.652 0.668 0.649 0.714 0.717 
STD 0.053 0.051 0.094 0.118 0.161 0.136 0.095 0.092  
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explains the drop of its curve in Fig. 3 after video number 40. 
Our previous methods (Liu et al., 2018 and Liu et al., 2019) are 

specifically designed with fixed threshold parameters to locate only the 
header (blue) region and field (green) region respectively. The improved 
(Liu et al., 2019)* can perform multiple-region segmentation based on 
fixed threshold values. But these fixed values are not robust so the 
method misses some regions and has unlabelled black areas for the left 
video. Considering our proposed RF methods, their performances largely 
depend on the features they used. Color features over-segment the left 
clip, but fail on the right one because of the color difference. Motion 
features are more robust in general, but adding color features together 
corrects some miss-classified regions shown in both examples. 

4.3.5. General discussion 
In general, the new training-based segmentation method has four 

advantages for farming video segmentation. First, our method is robust 
to different farming applications. Using color and motion features can 
achieve segmentation in real-time with machines equipped with normal 
computational power and storage, such as a single-board computer. 
Second, with a quick training process, no fixed thresholds are required, 
and it is capable of handling practical challenges. Third, unlike 
complicated models such as a CNN, this classifier uses few labels for 
training, but achieves similar or better segmentation results. In addition, 
the new classifier segments all three spatial regions in one step, which 
can be directly applied to applications focusing on different regions. In 
the next two sections, we introduce two farming applications which use 
different regions based on the segmentation. 

5. Generalized two-branch video classification 

This section proposes a generalized two-branch video classification 
system that we then applied to classify farming activities. We first 
discuss the motivation of classifying farming videos, and then introduce 
the generalized classification system. Next we show how to incorporate 
segmentation to this two-branch system on farming videos, and finally a 
validation experiment is presented. 

5.1. Farming activity classification 

Many different farming activities may happen on the field and each 
activity needs a specific rule or strategy for further processing. This re-
quires the collected videos to be categorized first. However, when per-
forming their daily work, farmers cannot spare the time to identify the 
current activity, nor provide labels for the system design. So it is 
worthwhile to design a video classification system to detect what ac-
tivity is happening in each video. 

In video classification, motion is useful but can be chaotic in farming 
videos. Many of the public activity classification datasets are captured 
from static cameras (Chaquet et al., 2013), where all motion features are 
generated by the foreground objects such as human motion. However, 
the dash camera videos captured from farming vehicles have strong 
camera motions which are not effective for distinguishing among 
farming activities. Many of the camera motion estimation methods 
apply feature-point matching to cancel the global motions (Wang and 
Schmid, 2013). But in farming videos, there are few robust feature 
points available. 

5.2. Generalized two-branch classification pipeline 

In real applications, video classification methods that use domain 
knowledge typically perform better than methods that are designed for a 
general scenario (Onofri et al., 2016). Based on the domain knowledge, 
the specific targeted methods can be designed to extract the unique 
domain features that better distinguish the different categories. Such 
specifically-designed systems have been developed in different in-
dustries (Petscharnig and Schöffmann, 2018). However, these unique 
characteristics are not always applicable to all input data, and there are 
always exceptions. For example, the object motions of farming videos 
are useful to recognize farming activities, but some raw videos may be 
static or have little object motion. As a result, classifying videos with 
only the specific domain features is not enough. 

In Liu et al. (2018), we proposed a two-branch classification pipeline, 
which applies two specific feature sampling strategies on different 

Fig. 3. The normalized cumulative IOU percentages on the overall frame measure. X axis is the number of videos, Y axis is the normalized sum of previous IOU 
percentages. For the vertical line, the left side shows the clips similar to the training data, the right side shows testing clips different from the training data. A zoomed- 
in plot is provided in the black box. 
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videos. In this paper, we expand this framework to a generalized two- 
branch classification pipeline, which is shown in Fig. 5. The upper 
branch processes all input videos, but unlike our previous design, this 
branch can incorporate any general classification method. The second 
branch (shown in the red dashed box) selects those videos with unique 
domain-related features and processes them with specific methods. 
There is an activation scheme of the second branch to decide whether 
the input video has characteristics that will lead to better classification 

with the specifically-designed classifier (Branch 2). This scheme can be 
determined by different indicators based on domain knowledge, such as 
amount of object motion in farming video classification. Finally, the 
results from the general and specific classifiers are merged to improve 
the overall accuracy. A number of different score fusion methods can be 
applied to form the final decision, such as simple averaging and 
weighted sum. Depending on the reliability of the classifiers, it is also 
possible to train a classifier that learns the weights between multiple 

Fig. 4. Two segmentation results. Example (a) has the similar structure as the training data, and example (b) is from a different farm. The blue region is the header or 
attachment, green region is the upcoming field region, and red region is low-motion region. The black region is unlabeled. 
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branches (Peng et al., 2016). The next subsection describes the specific 
choices we made to apply this pipeline for farming video classification. 

5.3. Two-branch classification on farming videos 

This subsection shows how we apply the two-branch pipeline for 
farming video classification. Farming videos have strong domain fea-
tures, and the most effective cues to distinguish different farming ac-
tivities are in the attachment region. In particular, the attachment 
interacts with the vehicle and the field in a way that is unique for each 
activity. As a result, the motion information from the attachment region 
is an effective choice for the feature in the second branch, and our 
proposed segmentation method can be applied as the activation scheme 
to sample these distinguishing features. 

Based on this domain knowledge, we apply the generalized two- 
branch framework to classify the farming videos. The second branch 
in Fig. 5 is specifically designed to sample the object motions based on 
the output of the segmentation. The second branch is only activated if 
the segmentation method finds the object motion region, otherwise only 
the general classifier in Branch 1 is used. Then, features are extracted in 
the identified regions using the Fixed Position Trajectory (FPT) (Liu 
et al., 2018) methodology. FPT is based on the idea of optical flow 
stacking (Simonyan and Zisserman, 2014), tracks the motion at every 
fixed pixel position over a variable number of frames, and extracts 
features with the cuboid-based dense sampling method (Dollár et al., 
2005). A random forest classifier processes these features, and we use 
direct averaging as the final score fusion method. 

5.4. Experiment on farming video classification 

This section presents a farming activity classification experiment that 
demonstrates that adding Branch 2 improves the overall performance of 
the classification system. Due to the limited farming data, only three 
farming activities are classified: tillage, corn chopping and wheat/bean 
harvesting, which are shown in Fig. 1. All the video clips used in this 
experiment have a fixed length of 5 s, and they are randomly selected 
from the raw farming videos. Each clip is manually labeled with a 
farming activity label. To measure the robustness of the system, we 
separate all the video clips into training and testing groups based on the 
time they were captured. The training clips are all selected from 2016 
and 2017, and the testing clips are from other days during 2017 and 
2018. For each activity, we select 500 clips for training and 500 clips for 
testing, which equals to 1500 training clips and 1500 testing clips in 
total. 

In the experiment, we choose different general classifiers as the 
baseline (Branch 1 in Fig. 5) and compare them with the overall accu-
racy after adding Branch 2. Four general video classification systems are 
tested as Branch 1: the Improved Dense Trajectory (IDT) (Wang and 
Schmid, 2013), the dense-extracted features (Uijlings et al., 2015), the 
first branch classifier from Liu et al. (2018), and a video-based 3D 
Convolutional Neural Network (C3D) model (Hara et al., 2018). We 
implement the dense cuboid method (Uijlings et al., 2015) and our 
previous method (Liu et al., 2018). The original implementation of IDT 
feature extraction (Wang and Schmid, 2013) is directly used. For the 

CNN method (Hara et al., 2018), we apply the pre-trained C3D network 
and select the last layer from the network as the feature vector. So the 
farming videos are input to the network and the output features are used 
to train a random forest classifier. Note that this pre-trained model uses 
the ResNet architecture (He et al., 2016) that is trained on Kinetics 
human action dataset (Kay et al., 2017). 

Next we describe the implementation details of Branch 2. Four seg-
mentation methods from Section 4 are selected to activate Branch 2: the 
fine-tuned Deeplab (Chen et al., 2017)*, our previous method (Liu et al., 
2018), the improved (Liu et al., 2019)*, and the new proposed RF_mo-
tion. These segmentation methods produce spatial masks, but the rest of 
the classification processes are the same. We extract video features 
including HOG, HOF and MBH from the masks using FPT. The Fisher 
Vector (FV) from Krapac et al. (2011) is used to encode the feature 
vector and a random forest classifier is trained as the classifier for this 
branch. The final decision is made by averaging the scores from both 
branches. 

The classification results are shown in Table 3. In this table, the 
second column shows the classification results with Branch 1 only, and 
the right four columns present the overall accuracy after adding the 
second branch with different segmentation methods. Comparing these 
columns, it can be observed that the performance of all four general 
classifiers are improved after adding the second branch. The overall best 
performance is achieved by the C3D (Hara et al., 2018) method as a 
general classifier plus the cuboid-based method with RF_motion 
segmentation. 

Comparing four segmentation methods for feature sampling in the 
second branch, we can see the proposed RF_motion method has the best 
performance. Note that each segmentation result activates a different 
subset of videos to be processed by the Branch 2 classifier. So we do not 
report accuracy for Branch 2 alone because it does not operate in 
isolation. But inaccurate segmentation can cause unnecessary compu-
tation such as the Deeplab (Chen et al., 2017)* method, which activates 
Branch 2 for almost all testing videos. It increases both time and 
computational requirements for this method relative to the other seg-
mentation methods. 

Comparing the four general classifiers in Table 3, the improvements 
provided by the second branch vary. This is mainly due to the feature 
sampling and extraction strategies used in the two branches. The fea-
tures from Branch 1 are extracted from the whole frame, while features 
in Branch 2 are hand-crafted to concentrate more on object motions. 
However, the similarities between the feature-sampling strategies of two 
branches limit the improvements that can be obtained by adding Branch 
2. From the table, two classifiers in Branch 1, (Liu et al., 2018) in row 3 
and (Uijlings et al., 2015) in row 4, also depend on cuboid-based feature 
extraction methods and they provide limited improvement. The dense 
trajectories (Wang and Schmid, 2013) work poorly as Branch 1, but 

Fig. 5. The generalized two-branch video classification pipeline. The farming 
video classification is used in the second branch. 

Table 3 
The comparison of video classification methods. Note the right four columns 
show the results by adding Branch 2, and each column uses different segmen-
tation method. The C3D (Hara et al., 2018)* on the bottom row is used as feature 
extractor.  

General 
Classifiers 

Branch 1 
only 

Overall result adding Branch 2 

(Chen 
et al., 

2017)* 

(Liu 
et al., 
2018) 

(Liu et al., 
2019)* 

RF_motion 

IDT (Wang and 
Schmid, 
2013) 

0.591 0.661 0.618 0.619 0.754 

Uijlings et al. 
(2015) 

0.772 0.798 0.815 0.812 0.833 

Liu et al. 
(2018) 

0.768 0.792 0.80 0.819 0.834 

C3D (Hara 
et al., 2018)* 

0.818 0.869 0.826 0.830 0.872  
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Branch 2 helps to improve the overall accuracy. Comparing with tradi-
tional feature extraction methods, the pre-trained C3D (Hara et al., 
2018) model better captures the general video characteristics, so adding 
the hand-crafted Branch 2 method compensates for the lack of domain- 
related farming features and achieves best performance. 

In general, when applying this two-branch system to practical ap-
plications, the domain-related features would generally be hand-crafted 
by humans based on prior knowledge. As a result, choosing the general 
feature processing methods such as the cuboid-based feature extractor 
or learning-based feature extractor as the first branch can achieve better 
performance in the overall classification. 

6. Combine header control 

This section introduces another farming application. Based on 
analyzing the crop in the segmented field region, we predict the time 
when the header needs to be lifted on a combine harvester. We first 
introduce the basic background of a combine harvester and explain the 
workflow of the system. Finally, a validation experiment is presented. 

6.1. Combine header control 

A combine harvester is one of the most-widely used farming vehicles 
in agriculture. Fig. 6 shows some sample frames that were captured from 
the cockpit of a combine harvester. The red box indicates the reel or 
header and the green box is the conveyor belt that carries cut crops into 
the machine. The position of header (reel) can be adjusted as needed. 
The header should be low to the ground when there are crops to be cut, 
so no crops are left in the ground. But the header should be lifted when 
there are no crops in front to harvest, to prevent damage (Xie et al., 
2013). As a result, the amount of uncut crops in front can be used to 
adjust the header-height. Most of the previous efforts (Xie and Alleyne, 
2012) for combine header are mainly passive control and their common 
goal is to stabilize the header-height despite vehicle vibration. However, 

by incorporating visual information, the header-height can be actively 
predicted. While continuous height adjustment is possible, here we only 
consider the movement from low to high. In other words, we assume the 
combine harvester is harvesting crops with its header low, so there are 
crops in the upcoming field region by default, and our goal is to predict 
and automatically control when the header should be lifted. 

The prediction is based on analyzing the upcoming field region, 
which is shown as the black box in Fig. 6. Estimating how the crop 
amount changes in the field region is the key step. However, designing 
this automatic prediction system is not trivial. First, it needs an accurate 
spatial segmentation of the upcoming field region as the target. Inac-
curate field regions cause missing blocks which affects crop estimation. 
Second, comparing the left and right columns in Fig. 6, it is visually 
difficult to separate the uncut crop versus the empty field (including cut 
crops), or even to estimate of the amount of crops. Later in this section, 
two segmentation methods are evaluated for this task, and a texture- 
based crop-presence classifier is developed to estimate the fraction of 
remaining crops. 

6.2. Field region analysis 

The presented header prediction system is shown in Fig. 7. The input 
raw videos are processed based on a block of frames with length 30. 
After applying spatial segmentation, the upcoming field region is high-
lighted, and a crop-presence classifier is used to separate the uncut crop 
and empty field. Based on the classification results, each video frame 

Fig. 6. Sample frames captured by dash cameras mounted on combine harvester in bean field (top) and wheat field (bottom). The left and right images show the crop 
field and empty field. 

Fig. 7. The combine harvester header prediction pipeline.  
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produces one crop percentage value p. By analyzing a series of per-
centage values, we can estimate the final time when the header should 
be lifted. 

The goal of the crop-presence classifier is to separate the crops from 
the empty field and estimate the crops percentages. In our design, we 
segment the field regions into smaller units for the classifier and then 
calculate the total crops percentages. As a result, the field region is 
divided into squares with length L based on the segmentation, and all 
neighboring squares overlap. We use overlapping squares because each 
square might not provide a complete view of the crop, and over- 
segmenting the field region can preserve the shape of crops. This over-
lap also means that each pixel is covered by multiple squares, which 
improves the accuracy of crop amount estimation. 

To classify the squares between crop and empty field, the GLCM 
(Baraldi and Parmiggiani, 1995) texture feature is used. This feature 
captures four possible directions of neighboring pixel pairs in each 
square. Histograms of contrast and homogeneity are measured as the 
feature vector. Notice that all the combine harvesting videos we 
collected have a resolution of 1920× 1080, and these higher resolution 
images enable the texture feature to perform well. The texture features 
are used to train a random forest classifier, and based on the classified 
squares, each pixel receives a probability representing how likely it is to 
be a crop instead of empty field. Then for each video frame, a final crop 
percentage value p is estimated using the weighted sum of all the 
probabilities of pixels in the upcoming field region. 

After estimating all the frames in a video block, a series of crop 
percentage values pt are generated. If the header of the combine 
harvester needs to be lifted, this percentage value should be decreasing. 
To capture the possible decreasing percentages, a Sigmoid function (4) is 
used to fit pt with respect to time t: 

p̂t =
s0

1 + e−
s1

t− s2

+ s3 (4)  

where all the si are parameters, s ∈ {0,1,2,3}. This Sigmoidal function is 
a natural choice given that the percentage of crop will monotonically 
decrease. The parameter s2 controls the temporal position where the 
function decreases, s1 indicates the dropping curvature, and s0, s3 
normalize the range into 0 to 100. The fitted curve represents the 
decrease of crop percentage, which allows us to estimate the percentage 
value at a future time ̂pt+ΔT. As a result, the time when the header should 
be lifted tup can be estimated by Eq. (5), 

tup = arg(p̂t→0)+ Tdelay (5)  

which predicts the time when the crop percentage will decrease to 0. The 
Tdelay is a constant time and it represents the delay between the time 
when there are no crops in the camera until the combine actually har-
vests the crops. 

6.3. Header prediction experiment 

We use both wheat harvesting and soybean harvesting videos (shown 
in Fig. 1) in this header prediction experiment. The crop-presence 
classifier is trained from the manually labelled masks used in the seg-
mentation experiment in Section 4. These ground truth masks are 
further labelled into crops and empty fields to train the crop-presence 
classifier. In the implementation, the square length L is 100 pixels, the 
overlap between squares is L/2, and the crop-presence classifier is 
trained from multiple harvesting clips. 

When preparing the testing videos for header prediction, the raw 
harvesting clips are manually segmented into transition clips. All these 
clips contain the moment when the farmer lifts the header. Each tran-
sition clip is 10 s (300 frames) long with the transition happening 
around frame 250 to 280. We also select some normal harvesting videos 
(without header lifted) as negative clips. In total, we prepare 37 positive 
transition clips and 38 negative clips. 

We begin by comparing the performance of different classifiers on 
classifying each square as having been cropped or not-yet cropped. Four 
methods are compared: a decision tree classifier, a Support Vector Ma-
chine (SVM) classifier, an Adaboost classifier, and our applied random 
forest classifier. Labelled crop and non-crop squares are partitioned into 
training and testing sets and we compute the prediction accuracy. In this 
experiment, the random forest method achieves 93.3%, followed by 
Adaboost classifier with 92.2%, decision tree with 89.8%, and the 60.3% 
for the SVM. Subsequent experiments all use the random forest classifier. 

Next, we compare three segmentation methods from Section 4: the 
fine-tuned Deeplab (Chen et al., 2017)*, our previous method (Liu et al., 
2019)*, and the proposed random forest method RF_motion. To measure 
the performance of this system, we first evaluate whether the system can 
make a correct decision when to lift the header. This measure is based on 
the difference between the average value of p̂t of the first N frames and 
the average value of the last N frames. Here N is the number of frames 
that the header is stabilized to either high or low position, which is 30 
frames (1 s) in the experiment. The accuracy is computed by the ratio of 
correctly predicted clips. If the header needs to be lifted, the system also 
predicts the time when the header needs to be lifted. So another measure 
is the averaged error time between the actual rising time and the pre-
dicted Tup. 

Fig. 8 shows the result of the crop-presence classifier using the seg-
mentation in Liu et al. (2019)* on a soybean-harvesting video. The blue 
color indicates regions that are more likely to have crop and the orange 
regions represents the empty field. Note that this machine is driving 
toward to the right side, which is the end of a row in the field. As the 
frame number increases, the area of crop (blue) is shrinking to the left 
(frame 150 and 180 in Fig. 8), and disappears in the end. It can be 
observed that the classifier is applied on squares, and the light blue 
squares in frame 180 shows the uncertainty of the classifier. Each frame 
produces one percentage value p, and after fitting these values with 
time, the future crop percentage can be estimated. 

On the same soybean harvesting clip, the crop percentage curves 
estimated by three segmentation methods are shown in Fig. 9. All three 
curves present the decreasing crop percentages, but the decreasing 
moment of the Deeplab* (Chen et al., 2017) curve is difficult to detect. 
One possible reason could be the segmentation method miss-classifies 
other blurry regions such as the sky or some far-away blurry fields. 
The texture features in those regions confuse the crop percentage esti-
mation which leads to the flat curve. The other two methods provide 
clear decreasing curves which can be easily interpreted to create a 
header control signal. 

The quantitative comparison between the segmentation methods is 
shown in Table 4. It can be observed that apart from the Deeplab (Chen 
et al., 2017)*, the other two methods have almost the same performance 
on both decision accuracy and averaged error time. But for real appli-
cations, no incorrect prediction is allowed. So for further improvement, 
this system needs to have more accurate spatial segmentation results for 
the field region. Also the crop-presence classifier needs to gain robust-
ness by training data from various farms. 

An extra experiment is performed to evaluate the sensitivity of the 
parameters of the fitting function in Eq. (4). All four si values are 
adjusted to si ± 5% and we perform the same evaluation as in Table 4. 
The results show that only the variation of s2 cause 1% variation 
compared to the original results in Table 4, and all other parameter 
variations result in no changes. This indicates that the method is robust 
to small perturbations generated by the parameters in the fitting model. 

7. Conclusion 

This paper introduces the role of spatial segmentation in processing 
farming videos. Unlike typical video object segmentation, the goal of 
segmenting farming videos is to partition the frame into different re-
gions. The practical farming environment also requires the system to be 
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both computationally efficient and easily adaptable to different farming 
applications. A training-based segmentation method is introduced using 
a random forest classifier. It extracts basic color and motion features, 
and the system can be quickly trained on machines with limited 
computational power. 

In addition, two video-based farming applications are presented, 
each focusing on a different region of the image. First, we develop a 
generalized two-branch pipeline for farming video classification. The 
system uses a general video classifier as Branch 1 and merges a 
specifically-designed classifier in Branch 2 based on domain knowledge. 
When applying this system to classify farming activity videos, the second 
branch selects features from the attachment region and improves the 

overall performance. In addition to farming, this two-branch pipeline 
can be further applied to video classification problems for other areas 
with domain knowledge involved. 

Another application we consider is to predict and control the header- 
height of a combine harvester. This system uses the segmentation results 
and focuses on analyzing the upcoming field region. Based on crop 
presence classification, the system estimates the crop amount in the 
field, which can be further parsed to indicate and adjust the combine 
header-height. The results show that the crop percentages in the field 
regions can be successfully detected, and the sensitivity test shows the 
model to identify the decreasing percentage is robust to minor crop 
detection errors. 

In this paper, we have considered data from only a few farms in the 
US. While performance is promising on these data, future work is needed 
on a wider variety of farms and crops, to validate and establish 
robustness of our methods. Future work will also incorporating our ideas 
into other vision-based harvesting applications, like fine-tuned control 
of the header height to maintain uniform stubble height despite varying 
terrain. Finally, we will apply our general processing pipeline to addi-
tional applications. 

Fig. 8. Example output of the crop-presence classifier. The color represents the probability of crops: blue indicates crops, and orange indicates empty field.  

Fig. 9. The crop amount prediction comparison on an example video clip. The X axis shows the frame number, and Y axis is the estimated crop percentage.  

Table 4 
The comparison of three segmentation methods in combine header prediction. 
Notice all videos are 30 frame per second.  

Method Prediction accuracy Averaged error frames 

Deeplab (Chen et al., 2017)* 0.778 121.04 
Liu et al. (2019)* 0.984 40.67 

RF_motion 0.953 66.72  
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