
A PERCEPTUALLY-INSPIRED 2D VIDEO STABILITY ESTIMATOR

Biao Ma and Amy R. Reibman

School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana, USA

ABSTRACT

Video stability is a significant problem for videos captured
by handheld or body-worn cameras. An accurate video sta-
bility estimation that is consistent with human perception is
the basis of effective video stabilization algorithms. It is also
useful for comparing different video stabilization algorithms
and constructing a benchmark. In this paper, we present a
perception-inspired video stability estimator based on 2D im-
age motions. It calculates the fraction of information in each
frame that can be perceived by human eyes. Experimental re-
sults show that our stability estimator can accurately estimate
subjective video stability scores. It requires less time to com-
pute and is more accurate and robust under different scene
structures than methods based on 3D motions.

Index Terms— Video stability, eye movement, estimator,
2D image motion

1. INTRODUCTION
Mobile cameras play an important role in our daily living.
They are installed on our cellphones or wearable devices, and
allow us to capture videos nearly any time and any place.
However, the resulting videos are often too shaky to watch
comfortably. Thus, it is important both to estimate the stabil-
ity of videos before releasing them and to evaluate the effec-
tiveness of the applied video stabilization algorithms [1–7].
Our goal is find such a video stability estimator.

The criteria of what makes a good stability estimator de-
pends on the application [8]. For scenarios which require fast
computation, such as video compression, objective estimators
like Peak Signal-to-Noise Ratio (PSNR) are preferred. The
stability estimator we want here should be consistent with hu-
man perception because then (1) a video that is evaluated to be
stable is comfortable for humans to watch, and (2) the eval-
uation criteria of the estimator is consistent across different
scene structures so that different stabilization algorithms can
be compared using different videos statistically.

Currently, there are many video stability estimators, but
few of them are consistent with human perception. Some
[1–7] are side-products implicitly generated by a video sta-
bilization algorithm. Some [9–15] are independent studies
based on video quality assessment. They all compute stabil-
ity scores based on the camera motion and can be classified
into two categories: the motion types they analyze and the
motion properties they measure.

Different motion types: The video stability estimators
are based on analyzing 2D image motion or 3D camera mo-
tions. 2D image motion refers to motion in the image plane,
i.e., the motion of interest points from frame to frame. Es-
timators [1–4, 9–15] either track local feature points or ap-
ply optical-flow algorithms to calculate the 2D motion. 3D
motion refers to the real camera movements in the 3D world.
These methods [5–8] estimate camera movements from frame
to frame using the epipolar geometry.

To estimate the degree of video stability, approaches
based on 2D motions have two advantages. Firstly, the 2D
image motion is faster and more robust to compute. The
whole process of 3D motion estimation is fragile and time
consuming. To accurately estimate the 3D camera motion,
enough local feature points need to be observed across dif-
ferent frames, and computational power is needed for opti-
mization. Secondly, theoretically, video stability estimation
based on 2D image motions has a greater potential to be
consistent with human perception. This is because what
viewers actually perceive are 2D images with 2D motions.
2D motions include the information of both the camera and
the objects in the video. However, the 3D camera motion
only provides information about the camera itself; the scene
structure information is missing. Therefore, to achieve these
two advantages, in this paper we measure the stability based
on 2D image motion.

Different motion characterizations: To analyze the sta-
bility or shakiness of camera motions, methods focus on two
different characterizations of the motion: intensity and fre-
quency. Studies that focus on the camera motion intensity
assume that camera motion with higher intensity is shakier.
Most of them use the camera motion amplitude as the mea-
surement of the motion intensity. For example, [9, 10] uses
the average motion amplitude of local feature points between
frames as the measurement. The Inter-Frame Transformation
Fidelity (ITF) [11] is a special case in this category, which
does not estimate the actual motion but uses the PSNR be-
tween adjacent frames as the measurement of motion inten-
sity. One problem of these methods is that they do not con-
sider the frequency of the camera motion. For instance, back-
and-forth motion and single-direction motion may generate
the same score under these algorithms but viewers would per-
ceive a different degree of stability.

Therefore, many authors [12–15] consider the problem in



the frequency domain. After obtaining the camera motion,
some use the first, second and even the third derivative of the
motion amplitude to measure the motion shakiness. Many
video stabilization algorithms adopt these methods since they
are easy to calculate. In [12–14], the original motion is first
filtered to generate a smooth motion. Then the difference
between the original motion and the smoothed motion is as-
sumed to be the high frequency component, which is used
as the shakiness measurement. However, these methods also
have a drawback in that they do not have a reliable human
perception model. The threshold between shaky motion and
smooth motion in the frequency domain is ambiguous. A
recent work [15] tries to solve this problem by applying a
machine learning process to analyze how different frequency
bands of camera motion influence human perception.

We approach this problem using a human perception
model learned from psychophysics. In our previous works
[8, 16], we proposed an algorithm based on the 3D camera
motion, which is called 3D-based Viewing Experience score.
It is fragile because of an unstable motion estimation process,
and it relies on saliency models. In this paper, based on the
same human perception model, we propose an estimator that
measures the video stability using 2D image motion. The
resulting estimator is more robust and faster to compute.
Moreover, it does not depend on different scene structures
and its scores are consistent with human perception even
without incorporating saliency models. In section 2, we
introduce our new stability estimator: 2D-based Viewing
Experience score. In section 3, experimental results are pre-
sented. We show that our stability estimator can accurately
measure the subjective video stability. Under different scene
structures, it is more robust than compared methods and
our previous work [8], and has higher accuracy in practical
situations. Finally, we conclude our work in section 4.

2. 2D-BASED VIEWING EXPERIENCE SCORE
Our new video stability estimator, 2D-based Viewing Expe-
rience Score (2D-VE score), measures the fraction of visual
information that can be perceived by viewers across frames
on a block-by-block basis. In this section, we introduce the
inspiration of 2D-VE score: a human perception model and
its 2D mathematical model.

2.1. Smooth pursuit eye movement
To evaluate the video stability, we incorporate a human per-
ception model. This differs from existing works which evalu-
ate the smoothness of the motion simply using derivatives of
the motion. The basis of this human perception model is a
human eye movement called Smooth Pursuit Eye Movement
(SPEM). Its mathematical model gives us an accurate and
clear answer of whether a specific motion is stable or shaky.

Watching videos can be considered as a visual tracking
task. SPEM is the main eye movements that viewers apply
to track visual targets. It is applied after the visual target has
started to be tracked by viewers’ eyes. And during the SPEM

period, visual information can be perceived by human eyes.
The more information viewers can perceive, the more stable
the video is. However, to track the visual target, viewers need
to perform another eye movement called the catch-up sac-
cade, which takes around 0.15 to 0.2 seconds [17]. During
the catch-up saccade period, nearly no visual information is
perceived, which is the reason for the feeling of shakiness. To
evaluate the stability, we apply a mathematical model on 2D
image motions, which helps us to judge when the SPEM or
the catch-up saccade is performed. The mathematical model
is proposed in our previous work [16] and based on results
from psychophysics research [18].

2.2. Our previous work
Our proposed mathematical model of the eye movement sta-
tus is based on the target motion and eye motion in three adja-
cent frames. We assume the viewer is tracking a visual target
from frame n to frame (n + 1) using SPEM. If a target sud-
denly moves and its position in frame (n + 2) is out of the
region predicted by the human visual system, the viewer may
fail to track the target and may need to perform a catch-up
saccade to re-catch the same target or to choose and lock on
another visual target. The proposed mathematical model is
shown in condition (1). It is used to judge if the target moves
out of the predicted region. The derivation of the model can
be found in [16, 18].

0.04 ≤
|PE(βn;n+ 2)|+ b

|ω(βn;n+ 2)|
≤ 0.18 or |PE(βn;n+ 2)| < MAR.

(1)
Condition (1) is based on angular values. PE is the posi-
tion error between the target and the eye-gaze point at frame
(n + 2). ω is the retinal slip at frame (n + 2). MAR is
the minimum angular resolution of human eyes. b is the bias
of position error estimation. βn is the target angular position
with respect to the camera at the nth frame.

Note that both the position error PE and retinal slip ω are
functions of the target motion and the eye motion at frame n
to frame (n+2). In our previous work, we use the 3D camera
motion to approximate these under the assumption that the
angular positions of visual targets are uniformly distributed.
This leads to the consequence that the linear relationship be-
tween measure scores and subjective scores vary across differ-
ent scene structures. This means, without incorporating that
has an accurate saliency model, the resulting measurement
depends on different scene structures. Meanwhile, if the 3D
camera motion estimation fails or has errors, the measurement
result is also inaccurate. Therefore, in this work, we propose
a new estimator that computes the video stability using 2D
image motions, so it is more robust under motion estimation
errors and does not depend on different scene structures.

2.3. 2D-Mathematical model of SPEM
To create our 2D-VE stability estimator, we recalculate con-
dition (1) based on target position on the screen with respect
to human eyes using the 2D image motion of interest points
instead of target angular position βn with respect the camera.
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Fig. 1: 2D image motion of a visual target from frame n to
frame (n+ 1).

Assume a viewer tracks a target from frame n to (n + 1)
and its 2D image motion is estimated as shown in Fig. 1. The
target moves from

(
x(n), y(n)

)
to
(
x(n+1), y(n+1)

)
while

this event is observed by the viewer with viewing distance d
on an image with width w and height h. αx(n) and αy(n) are
target angular positions in the viewer’s eyes in the horizontal
and vertical directions respectively. αx(n) can be calculated
as:

αx(n) = arctan

∣∣x(n)− w/2∣∣√(
y(n)− h/2)2 + d2

. (2)

αy(n) and similar results can be derived for target angular
positions in frame (n+1) and (n+2). We assume the viewer’s
eye movement has a constant speed after the target is tracked
at frame n. Then the position error PE and retinal slip ω at
frame (n + 2) in the horizontal or vertical direction can be
calculated:

PEk(n+ 2) = αk(n+ 2)− 2αk(n+ 1) + αk(n), (3)

ωk(n+ 2) =
PEk(n+ 2)

FPS
, (4)

where k = x or y indicating the horizontal and vertical com-
ponents. FPS is the video frame rate. After substituting
Equation (3) and (4) into condition (1), if the condition is
satisfied for both vertical and horizontal motion, we can con-
clude that the current tracked target can be continually tracked
at frame (n + 2). We use C(·) to denote the processing of
checking condition (1) based on the input motion. The out-
put of C(·) is binary: “1” indicates that the condition is sat-
isfied for both vertical and horizontal motion. “0” indicates
a catch-up saccade will be triggered. During the required
200ms (about 5 frames at 30fps) nearly no information can
be perceived. In the next section, we introduce how the video
stability is computed using this 2D mathematical model.

2.4. 2D-VE of a video
Given a video, we first identify the interest points in each
frame. Then we calculate the possible tracking length of each
interest points using the model we propose above. The stabil-
ity of a video is measured using the averaged possible track-
ing length of all interest points.

For a N-frame length video segment, we split its frames
into I by J regions (vertically and horizontally). For each
region, we choose its center as the interest point. Then we
calculate the optical-flow of each frame. Suppose we start to
track the target from frame k and focus on the (i, j)th interest
point. Its pixel location at frame n(k < n ≤ N) is interpo-
lated using the computed optical-flow of frame n, denoted as
mi,j,k(n). We define the stability S of the (i, j, k)th interest
point at frame (n+ 2) to be:

Si,j,k(n+ 2) = C
(
mi,j,k(n);mi,j,k(n+ 1)

)
(5)

Si,j,k(n + 2) represents whether the (i, j, k)th target can be
tracked using SPEM at frame (n+2). This is calculated only
based on the motion of frame n and (n+1). However, to know
about the stability of this target across the time, we need also
consider the catch-up saccade periods. For example, if Si,j,k

is “1011111”, then it needs to be converted to “1000001” to
account for the fact that once a viewer can no longer track at
the second frame, and that a catch-up saccade lasting 5 frames
is required. For the converted resulting vector, we use the
notation S∗i,j,k.

To calculate the stability of an N-frame video segment, we
need to calculate equation (5) for all IJ interest points and for
all possible starting frame index k (1 ≤ k < N). The overall
video stability is estimated using our 2D-VE score, which is
calculated as:

V E2D =

√√√√ 1

K −N + 1

K−N+1∑
k=1

(
meani,j

|S∗
i,j,k|
N

)2

. (6)

K is the total number of frames while | · | computes the L1
norm.

|S∗
i,j,k|
N calculates the fraction of frames over which the

(i, j, k)th interest point can be tracked using SPEM. And the
overall VE score is the average over all interest points. In the
experiments, we set N to 30 frames, I and J to 10 and 20.

3. EXPERIMENTAL RESULTS
In this section, we present the performance and usage of our
stability estimator 2D-VE. We apply the results of our pre-
vious subjective test [8] to help us learn about the bias pa-
rameter in the human eye movement model (1) when using
2D motion. Meanwhile, we explore predictive models that
can use the 2D-VE scores to predict subjective video stabil-
ity scores. Compared with our previous work and two other
estimators [11, 14], our proposed method has good predictive
accuracy and is more robust across different scenes. And we
demonstrate how we use our method to effectively compare
different video stabilization algorithms.

3.1. Performance of 2D-VE score
The bias parameter in the mathematical model (1) must be
learned using subjective tests. It characterizes human visual
tracking ability including the position error estimation and the
feedback control of eye movements.

In [8], we built a dataset which has videos from 4 differ-
ent scenes. Fig. 2 shows example frames of the dataset. Each
scene has 9 different versions which have different amount of
synthesized motions. For each scene, we select 4 versions to
be the training set and 5 versions to be the test set. We per-
formed a subjective test to acquire their subjective stability
scores and used the scores to learn about the bias parameter
for the 3D motion model. All test details can be found in [8].
Using the test result, we can obtain the optimal bias parameter
which maximizes the sum value of the Pearson Linear Corre-
lation Coefficient (PLCC) between the subjective scores and
the corresponding VE scores. Meanwhile, we get the fitting
models between the subjective scores and VE scores.
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Fig. 2: Example frames of source videos
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Fig. 3: Fitting models of 2D-VE scores and subjective video
stability scores

In this paper, we apply the same dataset and experiment
to help us learn about the 2D motion model. The final bias
parameter is 0.038. The learned fitting models corresponding
to the optimal bias parameter are shown in Fig.3.

We use the models to predict the subjective scores of the
videos in the test set. The PLCCs and the average of mean
square errors (MSE) are shown in Table 1. We also fit the
subjective scores with the estimator scores of [14] and [11].
The fitting and predicting results are also shown in Table 1.

Since the videos in this database are using synthesized
motions, we can access the ground truth of the camera mo-
tion. Table 1 shows that our 3D-VE with saliency models
computed over ground truth motion has the lowest MSE of
the prediction. However, in practice, we rarely have access to
the ground truth motions. In this case, we estimate them us-
ing the-state-of-art visual odometer [19], the performance of
3D-VE is not as good as before. However, even when using
estimated motion, our 2D-VE still has a similar performance
to the 3D-VE (using ground truth motion) though it does not
incorporate any saliency model at all.

The last column of Table 1 is another important criteria
for the performance of estimators, which is the coefficient

Table 1: Results of fitting and testing
Measurement PLCC MSE Average MSE cv% of slopes

2D-VE

0.9814 0.6271

0.5662 7.00.9972 0.2259
0.9711 0.6959
0.9816 0.7161

3D-VE [8]
(saliency models + ground truth motion)

0.9744 0.4886

0.4927 7.90.923 0.7962
0.9687 0.3291
0.9513 0.3570

3D-VE [8]
(saliency models + estimated motion)

0.9854 0.6116

0.7392 16.970.934 0.7163
0.9684 0.8228
0.9191 0.8086

MV-MSE [14]

0.9657 1.2538

1.0571 28.60.9644 0.864
0.9374 1.3048
0.9496 0.8056

ITF [11]

0.9960 0.7539

0.9086 12.30.9526 1.1421
0.9985 0.9
0.9940 0.8383

Table 2: Compare video stabilization methods using the dif-
ference between the 2D-VE of stabilized video and the origi-
nal video

Ma et al. [20] Microsoft [21] Deshaker [22] Youtube [1] Liu et al. [3]
Yard 0.272 0.46 0.03 0.213 0.005
Cave 0.266 0.344 0.121 0.243 0.192
Beach 0.258 0.396 0.008 0.221 0.197

Climb1 0.265 0.227 0.063 0.057 0.044
Climb2 0.284 0.271 0.016 0.157 0.035
Average 0.269 0.34 0.047 0.178 0.094

Std 0.01 0.094 0.046 0.075 0.092

variance (cv%) of slopes of the fitting lines across different
scenes. The smaller the value is, the more similar the slopes
of the fitting lines are. We desire to have fitting lines with sim-
ilar slopes, because it means the estimator does not depend
on different scene structures. Otherwise, a similar amount of
score improvement between a stabilized video and the corre-
sponding shaky video would have different subjective mean-
ings under different scene structures. In [8], we showed that
incorporating a saliency model into the 3D-VE significantly
reduced the cv%. However, our 2D-VE has a lower cv%, even
without a saliency model. The reason is that the 2D motion
model not only includes the information of the camera mo-
tion, but also includes the information of the scene structure.

In addition, the computational speed of our 2D-VE is
much faster than 3D-VE. In our implementation, accurate 3D
motion estimation needs at least 5 seconds for each frame
while to compute 2D-VE, we only need 400 ms per frame.

All these desirable features of our 2D-VE score enable
us to use it to effectively and statistically evaluate video sta-
bilization algorithms using many videos. Table 2 shows an
example. We apply 5 stabilization algorithms [1,3,20–22] on
our video set [23] and compute the relative scores between
the stabilized videos and original videos. As can be seen, the
most effective stabilization algorithm is [21], and [20] is in the
the second place. However, because [20] is more carefully
designed based on stability measurement, it is more robust
than [21] according to the standard deviation of their 2D-VE
scores. Methods [22] and [3] do not have good performance
on this dataset. All these are consistent with our previous
observations in [20] and can be verified visually using [23].
Note that these analyses using average scores and standard
deviation are only meaningful when the estimator is accurate
and does not depend on different scene structures.

4. CONLCUSION
In this paper, we propose a 2D-based video stability estima-
tor: 2D-based Viewing Experience (2D-VE) score. It can ac-
curately measure the subjective video stability and is more
accurate than other methods including our previous work [8].
Although it is modified from our previous 3D-VE [8], since
our 2D-VE score is based on 2D image motions, it is faster
computationally and more robust under practical situations.
Unlike [8], its scores are more consistent with human per-
ception even without incorporating a saliency model. Using
our 2D-VE score, video stabilization algorithms can be effec-
tively and systematically evaluated.
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