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Abstract: Hand-hygiene is a critical component for safe food handling. In this paper, we apply an
iterative engineering process to design a hand-hygiene action detection system to improve food-
handling safety. We demonstrate the feasibility of a baseline RGB-only convolutional neural network
(CNN) in the restricted case of a single scenario; however, since this baseline system performs poorly
across scenarios, we also demonstrate the application of two methods to explore potential reasons for
its poor performance. This leads to the development of our hierarchical system that incorporates a
variety of modalities (RGB, optical flow, hand masks, and human skeleton joints) for recognizing
subsets of hand-hygiene actions. Using hand-washing video recorded from several locations in a
commercial kitchen, we demonstrate the effectiveness of our system for detecting hand hygiene
actions in untrimmed videos. In addition, we discuss recommendations for designing a computer
vision system for a real application.

Keywords: activity recognition; deep learning; domain adaptation

1. Introduction

This paper presents an exploration to build a video-analytics system for hand-hygiene
assessment in an open-room environment. While hand hygiene is important in hospital and
health care settings as well as in our daily life, here we focus on hand hygiene for safe food
handling, where it is a critical component [1] to ensure a healthy food supply. Traditionally,
assessing the quality of handwashing in a food processing facility would require the food
business owner to hire a food expert to conduct an audit, which is expensive. With the
recent growth of automated video processing, or video analytics, using a video analytic
system to replace human observations becomes possible. Compared to the cost of hiring a
person, an automated system only requires cameras, a personal computer, and effective
algorithms. Such a system could accomplish a significant part of a food handling audit
much more inexpensively.

In general, hand hygiene can be decomposed into a list of steps that need to be
accomplished, in many cases in a prescribed order or for a sufficiently long duration [2].
From the perspective of video analytics, hand-hygiene quality can be assessed using either
action recognitionor action detection. Each step in the hand-hygiene procedure can be
considered to be an individual action class. For action recognition, the task is to recognize
one single action that occurs in a trimmed video clip. In contrast, action detection processes
untrimmed videos that contain more than one action, and the task is to localize all actions
as well as identify the class, or category, of each action.

Our previous work [3] presented a two-stage multi-camera system for hand-hygiene
quality assessment. In it, we focused on hand-hygiene assessment in a constrained restroom
environment using both stationary and body-mounted cameras. In this paper, we extend
this work to consider an open-room environment with a single side-view stationary camera.
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We use the term “open-room environment” to contrast these environments with both the
much smaller restrooms of our previous work and the top-down sink-only views of [4–6].
In the current open-room environment, the distances between the camera and the sink
are much longer, and there are potentially many more distracting objects. As a result,
more video-processing challenges exist, so more sophisticated methods are necessary. In
particular, today’s computer vision techniques rely heavily on the availability of data that
have been painstakingly labeled, and yet the methods are known to be brittle when they
are applied in a scenario where the data have different characteristics. Overcoming this
brittleness for our hand-hygiene application will be the focus of this paper. We anticipate
this paper will be of interest to practitioners of computer vision who want to build a
practical computer vision system that operates in a real-world environment.

The system we describe in this paper is motivated by several design goals. First,
similar to [3,7], we need to detect when, and possibly for how long, the basic hand-hygiene
actions occur. Second, the system must perform well in an open-room environment. In
particular, it must work effectively across multiple scenarios, in multiple rooms, or with
different camera angles. Finally, due to the limited availability of data, the system must
be designed to avoid over-fitting. In the course of the design, we also need to define
what actions are to be detected and decide which computer vision methods to leverage,
including which system architectures to apply with what inputs and specific classification
problems to answer. All these steps are necessary components of the design process for
any real-world video analytics system.

The open-room environment is especially challenging for an effective video analytics
system. Because of the variations of possible open-room environments, the data that
can be gathered will never be comprehensive. It is impossible to sample all potential
open-room environments to train a machine-learning method that operates well in all of
them. Variations include the camera angle, height, and distance from the sink; the different
appearances, heights, and locations of required objects like the soap, sink, and faucets; and
the placement and presence of extraneous objects that are not necessary for hand-hygiene.
Moreover, the method must be robust to different people, since no two people are likely to
perform the same actions in the same way.

To begin our design of an effective action detection system for the open-room environ-
ment, we design a baseline action recognition system for a single scenario: a given room
with a given camera placement. This design requires a sufficient amount of annotated video
data from that scenario, and assumes that the distribution of data used for the training and
testing stages are similar.

In addition, we extend our design for action recognition by presenting a hierarchical
system with multi-modal inputs. Our motivation in this new design is to create a model
trained from data in one scenario that can also perform well across scenarios. In real-world
situations, we may not be able to have guaranteed access to the environment in which
we would like to deploy a system prior to the actual deployment. This may be because
we do not have permission to collect video data in that target scenario or we may be
uncertain about where that target scenario may be. This implies that the data from the
target scenario are either limited, unlabeled, or completely missing. For this, we apply
three strategies motivated by the literature and described in more detail in Section 2.3 to
construct a system using data from one scenario but deploy it in a target scenario, a concept
known as transfer learning.

This work extends our previous work [3,7] in three main ways. First, we extend
hand-hygiene action recognition from a single restroom-sink scenario into food-handling
laboratory scenarios with a variety of camera views and background layouts. The extension
allows us to assess the robustness our hand-hygiene method under different situations.
Second, we explore the gap between hand-hygiene action recognition in the same scenario
and across scenarios, and consider the use of multiple modalities to address the challenges.
Third, we propose a hierarchical system that combines multi-modal inputs to recognize
hand-hygiene actions across scenarios.
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Our contributions in this paper are as follows:

1. A multi-modality framework to recognize cross scenario hand-hygiene actions in
untrimmed video sequences. This hierarchical system incorporates a variety of modal-
ities (RGB, optical flow, hand masks, and human skeleton joints) for recognizing
certain subsets of hand-hygiene actions. Combined, these modalities perform effec-
tive hand hygiene assessment across multiple scenarios.

2. A comparison and evaluation of the performance of a baseline spatial-only deep learn-
ing model and a spatio-temporal model on the same scenario hand-hygiene situation
to process both trimmed and untrimmed hand-hygiene videos. We demonstrate that
the spatial-only model has equally good performance as the spatio–temporal model
for hand-hygiene recognition in the same scenario.

3. Demonstration of two methods that explore potential reasons why our baseline RGB-
only model performs poorly across scenarios. These indicate that a primary reason
models designed for one scenario do not transfer well into a second scenario is that
the model may have learned to focus on irrelevant objects.

In Section 2 we review previous approaches for image and video processing for hand-
hygiene assessment and provide background on recent relevant approaches in computer
vision and video analytics. Section 3 describes the engineering process we performed dur-
ing the course of this research. Section 4 describes our video data collection using multiple
side-view cameras in a commercial kitchen. Our baseline system and its performance is
presented in Section 5, and Section 6 presents two additional experiments to explore why
our baseline system performs well in a same-scenario situation but not in a cross-scenario
situation. Section 7 presents our hierarchical system and its subsystems, and performance
results are presented in Section 8. We discuss limitations of our system as well as advice
for others implementing real-world video analytics applications in Section 9, and provide
concluding thoughts in Section 10.

2. Background and Motivation

In this section, we describe both previous systems that have been developed to assess
and assist hand-hygiene activities using image and video processing (Section 2.1); we also
describe background information about video analytics and computer vision methods
for action recognition, action detection, and domain adaptation (Section 2.2). Section 2.3
describes how the previous work in these areas motivates the design of our hand-hygiene
system. In particular, this section describes the three strategies we apply here to create an
effective cross-scenario hand-hygiene system.

2.1. Applications for a Hand-Hygiene Assessment System

Hand hygiene plays a critical role in reducing contamination in our food supply and
in reducing disease transmission. Several image- and video-based systems have been
developed to assess or assist hand hygiene for healthcare workers [5,6,8–12] and people
with dementia [4,13–15]. In [8,9], image processing reports when hospital staff are present
at a hand-washing station. To assess the effectiveness of hand-washing after the fact,
images of the hands using both visible and ultraviolet light have been processed [10–12].
Six handwashing poses are classified using multiple SVMs in [6], by segmenting hands
and arms and analyzing their motion. Robustness to lighting conditions is obtained by
combining skin tone and motion during hand segmentation. A real-time and improved
version of this system using linear discriminant analysis is presented in [5]. The COACH
system (Cognitive Orthosis for Assisting aCtivities in the Home) is an interactive system
that prompts patients with dementia to perform correct hand-hygiene when they are unable
to perform it on their own [4]. The COACH system tracks hands and towels using particle
filters [13], and detects waterflow by combining both audio and video processing [14].
Automated video analysis has also been explored as a means to assess cognitive behavior
in older adults, where the key indicators considered were occupancy of different regions of
the sink, and the path tortuosity of the motion trajectory of the hands [15].
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In this paper, as in our previous work [3,7], we consider a different application of
hand-hygiene assessment: reducing pathogens in food-handling facilities. It is estimated
that each year over 9 million people suffer from a food-bourne illness in the United
States alone [16]. Evidence indicates that the majority of food contamination is caused
by inappropriate food manufacturing practices involving workers with poor food han-
dling skills [1]. Effective hand-hygiene reduces the likelihood that food handlers transfer
pathogenic microorganisms from their hands to food products [17]. Therefore, addressing
proper hand-hygiene for food growers, processors, and handlers can avoid many illnesses.
The proposed system can bring awareness to employees whose job requires consistent
hand-hygiene, regardless of their age.

One key difference between the system we develop here and the methods in [5,6,13]
is that our cameras are not overhead, and the sink area where handwashing occurs may
have extraneous objects. This increases the image and video processing challenges, but also
opens up opportunities for the system to observe other food handling activities. Another
key difference is that we incorporate advances from deep-learning, action recognition,
and action detection that have all been developed since the previous systems.

2.2. Background in Video Analytics and Computer Vision

Action recognition: Action recognition is the task of identifying the action class inside a
video that contains only a single action. Initial explorations applied a detector to locate
salient areas [18] and computed descriptors to extract discriminative information about
the actions [19]. These so-called hand-crafted features, including the Improved Dense
Trajectory (IDT) [20] were soon replaced by deep learning methods, since with the support
of sufficient training data deep learning methods have significantly better performance.
Convolutional neural network (CNN) models, including AlexNet [21], VGGNet [22],
and ResNet [23], perform well for an image classification task, and can also be used as a
spatial feature extractor for video processing. These features can then be input to a temporal
model such as an LSTM [24], BLSTM [25], ConvLSTM [26], or TRN [27], to generate the
final prediction result. The use of 3D CNNs, which process video as fixed size input
volumes has also been applied to action recognition, including C3D [28], I3D [29], T3D [30],
and P3D [31]. However, due to their structure, these systems do not lend themselves
toward flexible designs; they require an input with fixed temporal length and have many
parameters to train.
Action detection: In practice, a video is highly unlikely to contain a single action, and the
start and end time of an action within a video is typically unknown. Action detection
addresses this problem by processing untrimmed videos with the goal not only to recognize
all actions, but also to localize each action temporally. One typical approach is inspired [32]
from object detection to use temporal proposals for action detection. Within this basic
framework, several approaches have been proposed: the temporal structure of each action
instance is modeled using a structured temporal pyramid in [32]; a Temporal Context
Network temporally localizes and ranks proposals in [33]; a Temporal Action Localization
Network is introduced in [34], while [35] identifies relevant regions using temporal bound-
ary regression for actions. Another approach applies temporal convolution with either
one stage [36] or multiple stages [37] to build an encoder–decoder structure to solve this
problem. For our hand-hygiene processing, we focus on actions that happens inside a short
duration; for example, rubbing the hands with water is only necessary for a few seconds.
Thus, we choose to densely process the entire untrimmed video with an action recognition
model to achieve hand-hygiene action detection.
Domain adaptation: Under ideal situations, the action recognition model assumes the
training and test data come from the same data distribution. In reality, it is impossible to
collect data from all potential scenarios in which the model might be deployed. Therefore,
a performance drop is unavoidable if the CNN model is constructed on one scenario and
deployed for another. The research field of domain adaption focuses on solving this issue,
where the goal is to construct an initial model using data from a source domain, and later
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adapt the model to a new target domain, [38]. Unsupervised Domain Adaptation (UDA)
further assumes that no labels are available from the target domain. UDA is useful for
realistic applications with limited availability to the target domain prior to deployment,
and has been applied to image classification [39,40] and video classification [41,42].

2.3. Implications for Designing a Cross-Scenario Hand-Hygiene System

For our hand-hygiene application in an open-room environment, UDA is critical.
While it is reasonable to record and annotate data from one or two scenarios during
the design of the system, it is prohibitive to label data for any new environment prior
to deploying the system. We are particularly interested in UDA for cross views or cross
scenarios [43,44].

We focus in this paper on three main strategies for UDA in our cross-scenario hand-
hygiene application: defining a common action set across all scenarios of interest, selecting
a spatial region of interest (ROI) to process instead of processing the entire image, and build-
ing a robust feature representation. For the first strategy, in addition to limiting the action
set to the hand-hygiene actions that are common in all the scenarios we consider, we also
take the approach to build a classifier to reject non-hygiene actions prior to analyzing the
hand-hygiene actions. More detail on this strategy appears in Section 4.3.2.

For the second strategy, we consider confining a CNN model to operate only on a
region of interest (ROI). This approach is inspired by explorations into Human–Object
Interaction (HOI) [45] that demonstrate that focusing on the spatial region of an image
where a person interacts with an object can be highly effective. The task of HOI is to
locate both the human and an object and predict an interaction class category. A baseline
framework of HOI consists of object, human, and interaction streams [46]. For object and
human streams, a hard attention is created by cropping an ROI at the locations of both the
object and human to force a CNN model to consider only information on these regions.
Section 4 describes the regions we consider in more detail, and Sections 7.1 and 7.2 provide
information about how these are incorporated into our system design.

The above two strategies are used in both our baseline system and in our hierarchical
system with multiple input modalities. The third strategy, to build robust feature repre-
sentations, is a focus for the hierarchical system. Considering hand-to-object interactions
provides one method to create a robust feature representation; another is to consider
multiple input modalities. While it is most common to use the RGB input modality to
process images or videos, other modalities have also been considered for action recognition.
Optical flow, which captures pixel-level motion information, has been combined with
RGB for action recognition, including in two-stream networks [47] and temporal segment
networks [48]. Skeleton joints, which can capture crucial semantic body joints, have been
shown to provide rich information for action recognition, using a spatial temporal graph
convolutional network [49] and an end-to-end attention model [50]. They have also been
used to indicate important discriminative regions in the image [51], when combining both
skeleton joints and RGB modalities. Modalities such as optical flow and human skeleton
joints are capable of maintaining motion or human-only information, which effectively
removes any distractions of irrelevant objects and creates robustness against different
scenarios. Conveniently, large-scale human action datasets like UFC101 [52] and NTU
RGB+D [53] provide extensive training data for deep learning models. This allows us
to generate human skeletal/joint information for our hand-hygiene videos by directly
applying a pre-trained OpenPose [54] network. Thus, not only can we take advantage
of the multiple modalities to compensate for potential weaknesses in the RGB modality,
these approaches also provide a feature representation that is more robust to appearance
variations, even without having data available from the target environment.

3. Method

In this paper, we apply an engineering design process. There is no one best approach
to engineering design, although most include the following: Ask, (research), imagine, plan,
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create, test, improve. Moreover, it is iterative and one can revert back to a previous stage at
any point. In the course of developing our final hierarchical multiple-modality system, we
conducted these steps:

Step 1: Define the problem and gather appropriate data;
Step 2: Label the data, which helps assess the appropriateness of the visual task;
Step 3: Design and implement a baseline system;
Step 4: Evaluate the baseline system;
Step 5: Redesign both to improve the robustness of our feature representations and to

leverage advances in computer vision;
Step 6: Evaluate the improved system.

We discovered during Step 4 that our baseline system performed poorly when it was
trained using data from one scenario but applied to data from another scenario. Therefore,
Step 4 was actually broken into smaller steps, namely:

Step 4(a): Apply Grad-CAM to better understand the weak design;
Step 4(b): Apply a hidden-patch experiment to verify that the baseline system learns to

pay attention to extraneous information.

The redesign, Step 5, was informed by the results of these experiments, and resulted
in a hierarchical system that both improves the robustness of our feature representations
and to leverage advances in computer vision. Therefore, Step 6 is also decomposed into
smaller steps:

Step 6(a): Evaluate each subsystem of the hierarchical system separately;
Step 6(b): Evaluate the overall hierarchical system.

4. Dataset: Class-23 Hand Hygiene Dataset

In this section, we introduce our new Class-23 hand-hygiene dataset. We describe
the video collection steps and data pre-processing. Then, we discus the definitions of the
hand-hygiene tasks for this dataset. Finally, we describe the ground truth labeling and data
availability for action recognition and detection tasks.

4.1. Rationale for a New Dataset

As we described in our previous work [3], the published available food-related
datasets have a different focus than our food safety research. The Georgia Tech Egocentric
Activity (GTEA) [55] and Activities of Daily Living (ADL) dataset [56] collected a dozen
of people’s daily activities in a home scenario. The MPII cooking activity dataset [57],
50salads dataset [58], and Breakfast Actions Dataset [59] recorded food handling and
cooking in a home scenario. However, professional food safety facilities have a different
configuration than the general home kitchen. To simulate the food safety environment,
in our previous work we collected 100 participants who performed hand-hygiene in college
bathrooms [3,7]. In this paper, we extend our data collection scenario into a professional
food handling laboratory.

Our dataset provides video data that can support both action recognition and detection
tasks. For action recognition, each of these hand-hygiene or non-hygiene actions are
considered to be trimmed video clips. For action detection, the untrimmed videos include
all actions of a person’s hand-hygiene steps from start to end.

4.2. Data Collection

In our new data collection, we invited 23 students to participate; these students
were enrolled in a cooking class at Purdue University, hence the dataset name Class-23.
The participants were all undergraduate students at Purdue University, with a likely age
range from 18 to 22 years old. Six were male and 17 were female. All participants were
healthy, and none had a handicap that prevented them from following instructions.

In each class session, students were required to perform hand-hygiene before starting
the lab portion of the class. To reduce waiting time, students were split into two groups to
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perform hand-hygiene in two different rooms; we called these Room1 and Room2. Each
room has one sink, and students lined up to wash hands one after another. All students
followed the strict laboratory policy of wearing a white lab coat and a bouffant cap during
the entire lab section. Students were aware of standard hand-hygiene procedures defined
by the World Health Organization [2], although they may not have followed them precisely.
During the video recording, students performed hand-hygiene without supervision from
the instructor. Therefore, non-hygiene behaviors such as talking to each other and walking
around the room are also captured in our data collection.

The two rooms have distinct layouts; the location of the sink and the configuration
of objects around the sink are different, which affected our camera placement. Figure 1
indicates the layout of Room1, where the sink is located at the corner of laboratory. Thus, we
could only place the camera on one side of the sink for video recording. The angle between
the lines connecting the sink and camera, and connecting the camera and the person was
approximately 90 degrees. However, as indicated in Figure 2, the sink in Room2 is inset
into a countertop, which prevented us from placing the camera at 90 degrees. Instead,
the two cameras were placed on either side of the person (labeled “human” in the figure),
with a viewing angle of about 70 degrees for each camera.

Figure 1. Room1 layout; Side-camera view with a 90-degree angle.

Figure 2. Room2 layout; two side-camera views with an approximately 70-degree angle.

Each of the three cameras were GoPro cameras mounted on a tripod. Each video
has 1080p resolution at 30 fps. We collected 5 days of video data, each during a session
of the class, for our Class-23 dataset. (Data collection stopped when the class shifted
unexpectedly to all-remote learning in March 2020.) Based on the way the group was split
between the two rooms, the number of students in each room was not consistent from
day to day. A frame from each camera is shown in Figure 3. Due to the clear variability
across these three camera views, we consider the captured videos as corresponding to three
distinct scenarios: Room1 Camera1 (R1C1), Room2 Camera1 (R2C1), and Room2 Camera2
(R2C2).
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Figure 3. Data image; Left: Room1 Camera1. Right top: Room2 Camera1. Right bottom: Room2 Cam-
era2.

4.3. Data Processing and Labeling
4.3.1. Creation of Untrimmed Videos

The recorded videos were pre-processed to remove those time periods where students
or staff unintentionally occlude the camera view for an extended period. We also removed
videos in which the tripod was incorrectly positioned. All cameras started recording
before students arrived and were manually stopped after the last student finished hand-
hygiene. To remove unnecessary content, we segment each video by person. Each so-called
untrimmed video starts when a person begins hand hygiene and ends after that person
finishes. There are a total of 105 untrimmed hand-hygiene videos across the three cameras;
30 are in R1C1, 28 in R2C1, and 47 in R2C2. Each untrimmed video includes all the steps of
one person’s hand hygiene on that day.

4.3.2. Defining the Set of Actions to Be Labeled

Defining the set of actions to be identified is a critical step after data collection that
governs the performance of the subsequent classifiers. The set of labels must be reasonably
complete before the annotation for the first experiment starts, or the annotator must go
back and re-annotate, which is an unpleasant task and wastes a lot of time.

For video analytics of hand-hygiene, we have defined [3] three sets of tasks based
on their level of difficulty: detail level, standard level, and detection level. Detail-level
hand-hygiene recognition requires recognizing 12 different hand-hygiene actions, some
of which involve subtle hand and finger motions. These are hard to observe even with an
egocentric camera, so this detail-level hand-hygiene recognition is not a feasible task for the
Class-23 dataset which uses a side-view third-person camera. Therefore, our goal here is
to focus on the standard-level hand-hygiene task, which includes 6 different hand-hygiene
actions: touch faucet with elbow, touch faucet with hand, rub hands with water, rub hands without
water, apply soap, and dry hands with paper towel.

However, due to the behavior of the students, the action sets present in the recorded
videos are not the same. This requires us to adjust the action types to coincide with what
was actually observed. Room2 Camera1 (R2C1) and Room2 Camera2 (R2C2), no students
dry their hands with a paper towel, because the location of the paper towel is never within
camera view, and there are only a few examples of this action in Room1 Camera1 (R1C1).
Moreover, this action is best viewed using an egocentric camera [3] because the paper towel
location is uncertain and the participant could walk while wiping their hands. Therefore,
for this dataset, we will consider this action, dry hands with paper towel, to be a non-hygiene
action. Moreover, it is quite surprising that none of the students in five days of recording
ever performed the action of touching the faucet with their elbow. Therefore, we will only
focus on four types of hand-hygiene actions in this work: touch faucet with hand, rub hands
with water, rub hands without water, and apply soap.
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4.3.3. Labeling and Creation of the Trimmed Videos

In our Class-23 dataset, each frame is labeled by a human expert to indicate the hand-
hygiene actions. In addition, non-hygiene actions such as swinging hands, grabbing a paper
towel, drying hands with paper towel, and camera occlusion are also labeled for each frame.
These actions and the other non-hygiene actions are summarized in Table 1, which also
indicates which of the hand-hygiene actions are considered to be hand-to-hand (H2H)
actions and which are considered to be hand-to-object (H2O). Using these labels, trimmed
videos are created that contain only one action per clip.

Table 1. Actions considered, including their categorizations for this study. Note some action
categorizations were different in [3,7].

Action Name Hand-Hygiene Hand-to-Hand Hand-to-Object

Touch faucet with hand Y N Y

Rub Hands with Water Y Y N

Apply Soap Y N Y

Rub Hands without Water Y Y N

Swing Hands N - -

Grab Paper Towel N - -

Dry Hands with Paper Towel N - -

Camera Occlusion N - -

To assist the system in focusing on the one student who is at the sink and performing
hand hygiene, we manually label the sink region of interest (ROI). This labeling happens
once per day per camera. We crop and resize this ROI to 224 × 224 pixels, and for the
remainder of this paper unless specifically indicated otherwise, these cropped and resized
ROI images or videos are the default input to all experiments. Examples of these cropped
ROI images are shown in Figure 4.

Figure 4. Cropped ROI of sink with four hand-hygiene actions. Columns: (1) touch faucet with hand,
(2) rub hands with water, (3) rub hands without water, (4) apply soap. Rows: (a) Room1 Camera1,
(b) Room2 Camera1, (c) Room2 Camera2.

We also label additional ROIs for the scenes, to focus the attention of the models to the
spatial regions we know are important to hand hygiene. Table 2 lists the ROIs we consider
here, and they are illustrated in Figure 5. Hand ROIs are generated using OpenPose [60],
while all other ROIs are manually annotated. Note that all the ROIs, except for the hands,
the sanitizer (whose ROI is not used in our final system), and the soap are stationary objects
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recorded by a stationary camera. Therefore, these ROIs only need to be labeled once when
the camera is positioned, so this is a feasible approach for a cross-scenario system.

Ideally, these regions could be found using an object localization method such as
Faster R-CNN [61], You Only Look Once (YOLO) [62], and SSD [63]. However, we chose
manual annotation in this paper, which directs the focus of this paper to exploring the
general feasibility and design of a system for cross-scenario hand-hygiene assessment
across different rooms with different layouts, illumination, and object configurations.

Table 2. List of regions of interest (ROI). The hand masks were found using an algorithm; all others
were hand-labeled once per camera placement.

ROI Purpose

Sink To eliminate people not performing hand hygiene

Hands Necessary for all hand-hygiene actions

Sanitizer Only for the hidden-patch experiment in Section 6.2

Faucet To assist the hand-mask model in detecting H2O actions

Soap head To assist the hand-mask model in detecting H2O actions

Water spout
To assist the hand-mask model in detecting H2O actions,

and to create waterflow ROI

Water flow
To assist distinguishing rubbing with and without water;
for model training only; derived from water spout ROI

Figure 5. Regions of interest, Solid red rectangle: water spout. Dotted red rectangle: water flow.
Blue rectangle: soap head. Green rectangle: faucet. Yellow circle: hand region.

4.4. Training, Validation and Testing Data Creation

The trimmed and untrimmed videos are each partitioned into training, validation,
and testing sets. Trimmed videos are used for action recognition, and untrimmed videos
are used for action detection. As is typical for machine learning, during training the model
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is evaluated on both the training data and on the validation data. Training continues
while both results are improving, but when the performance on the validation data begins
to decrease, training is stopped. This is one way to limit overfitting. The validation
set, used only during algorithm development, can also be used to tune hyperparameters
during training. The testing data are used exclusively to evaluate the model once training
is complete.

After removing the untrimmed video clips with heavy occlusion or an incorrectly
positioned tripod as discussed above, we had 62 training, 9 validation, and 34 testing
videos. Each includes one person washing their hands from beginning to end. Trimmed
video clips corresponding to these were categorized identically. For example, untrimmed
training videos were processed to become trimmed training videos, with each trimmed
video containing a single action. The resulting number of trimmed videos for each scenario
are shown in Table 3. Untrimmed videos were not used for training or validation, only for
testing the complete hierarchical system. There were 9, 10, and 15 videos used for testing
purposes in Room1 Camera1, Room2 Camera1, and Room2 Camera2, respectively.

Table 3. Number of trimmed video clips for each scenario. Outside of the parentheses is the
number of hand-hygiene actions; inside the parentheses is the number of both hand-hygiene and
non-hygiene actions.

Scene Train Validation Test

Room1 cam1 127 (177) 16 (26) 60 (80)

Room2 cam1 55 (78) 9 (12) 34 (48)

Room2 cam2 96 (114) 14 (17) 53 (65)

5. A Baseline System for Hand-Hygiene Action Recognition Using RGB Inputs

Here we present a baseline system for using a CNN with RGB inputs to recognize
hand hygiene actions in trimmed videos. The goal here is to explore the degree to which
this simple model can adequately recognize hand hygiene actions across the three scenarios.
In addition, this exploration provides useful insights into how well this generic action-
recognition system can detect the actions in our application. If performance is unacceptable
even in the same-scenario case, then an effective solution to the application may not be
feasible. If the performance is acceptable in both the same-scenario and the cross-scenario
case, then further explorations are unnecessary.

We present the baseline system and some minor variants in Section 5.1 and describe
our experimental method and results in Section 5.2. The experiments consider the case
where the training data come from the same scenario (room and camera) as the testing data,
as well as the case where the training data come from a different scenario than the testing
data, a case we term the cross-scenario case. For the same-scenario case, we explore both a
spatial-only and a spatial+temporal model, and also consider a classifier for two different
sets of actions, one without non-hygiene actions and one with non-hygiene actions.

5.1. Baseline Hand-Hygiene System Description

In this subsection, we present a baseline CNN-based system for hand-hygiene action
recognition, and several minor variants on the baseline system. The baseline system uses a
spatial-RGB input to CNN to decide among the four hand-hygiene actions that are present
in all three of our scenarios (see Table 1). This system is termed “ResNet50 (H)” here, where
the H indicates that we consider only hand-hygiene actions. This baseline model is simply
a 2D CNN ResNet50 model that has as input a single frame of a video. A decision is made
for each frame in the video, and a final decision for the trimmed video uses majority vote
within the video to identify an action.

The first two variations incorporate temporal modeling into the baseline system. We
consider two temporal modeling methods: combining a CNN with Long Short-Term
Memory (LSTM) [24] or with a Temporal Relational Network (TRN) [27]. These systems
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are termed “ResNet50+LSTM (H)” and “ResNet50+TRN (H)”. Temporal models similar
to these have been shown to improve the performance of 2D CNNs in other applica-
tions [64,65]. Temporal modeling requires selecting a fixed number of frames, k. A variety
of methods to select these frames are common. For example, the Temporal Segment Net-
work (TSN) [48] cuts a video input into segments and applies random sampling within
each segment to obtain a fixed length input. Other methods include uniform sampling
or selecting consecutive frames at the beginning of a video. For hand-hygiene action
recognition, we use k = 10 consecutive frames. This is short enough to enable a real-time
implementation in the future, and long enough to capture posture, appearance, motion,
and motion consistency for these actions [3]. The 2D CNN ResNet50 is used as a feature
extractor by removing the last fully-connected layer; each temporal model accepts these
features as input. The system uses a sliding window of k frames, forms a prediction for
every frame, and uses a majority vote within the video to identify the action.

The final minor variation is to use a similar spatial-only system as the baseline, but to
decide among five actions, where a generic non-hygiene action is added to the set of four
hand-hygiene actions. During daily hand-hygiene, it is unavoidable for a participant
to perform a variety of unexpected actions other than hand-hygiene. These actions are
unlikely to contribute one way or another to the quality of the hand hygiene. Therefore, it
is useful to understand if these non-hygiene actions affect the performance of the baseline
system. This system is otherwise identical to the “ResNet50 (H)” system and is termed
“ResNet50 (H+N)”, where the +N indicates it also considers non-hygiene actions.

The baseline system and the variations are trained using a similar strategy. All
ResNet50 models are initialized with the pre-trained weights from ImageNet [21], and
weights are fine-tuned using our data. For the two spatial-only models we randomly
select frames from the training set videos. To train the spatial-plus-temporal models, we
randomly select a start frame and consecutively sample k frames to create an input for the
temporal model.

The CNN ResNet50 model is trained with 350 epochs with batch size 32 and an
initial learning rate 0.001, which decreased by a factor of 10 at 200 and 300 epochs, using
a Stochastic Gradient Decent (SGD) optimizer. For the loss function, we performed an
initial experiment to compare the binary cross-entropy loss and the cross-entropy loss.
We chose cross-entropy loss because it obtained better performance on the validation set.
To avoid over-fitting, data augmentation using a multi-scale crop and random horizontal
flip was applied during the training stage as described in [66]. During training, each
model is applied to training and validation data. When performance on the validation data
worsens, we stop training to prevent over-fitting. See Section 4.4 for details on training and
validation data.

5.2. Performance of Baseline System and Its Variants

In this section, we take an experimental approach to address the following questions:

• Does the baseline system perform well in the same scenario case?
• Does adding temporal information to the baseline system improve performance?
• Is performance of the baseline system degraded if it must also decide about non-

hygiene actions?
• Does the baseline system still perform well in the cross-scenario case?

We begin with the same scenario situation; models are tested using data from the same
environment as they were trained on. The testing data are unique from the training data as
described in Section 4.4. Table 4 shows the performance of the baseline action-recognition
system and all its minor variants in the same-scenario case for the four hand-hygiene actions
of interest. As can be seen, all systems perform similarly, and all achieve over 90% accuracy
in each environment. Temporal models have little effect on performance, and adding
non-hygiene actions also has little effect on the ability to recognize the hand-hygiene
actions. From the results in this table, we conclude that to achieve good performance in
the same-scenario environment, even the simple baseline spatial-only model is effective.
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This indicates that the overall problem of hand-hygiene action recognition with these four
actions lends itself to a simple solution, provided the deployment environment is similar
to the training and development environment.

Table 4. Model accuracy for all three scenarios, on the four hand-hygiene actions. R1C1: Room1
Camera1. R2C1: Room2 Camera1. R2C2: Room2 Camera2. ALL: Accuracy of total correct video
prediction among all three scenarios. H: models only consider hand-hygiene actions. H + N: models
consider both hand-hygiene and non-hygiene actions.

Model
Scene R1C1 R2C1 R2C2 ALL

ResNet50 (H) 91.7% 97.1% 98.1% 95.2%

ResNet50 + LSTM (H) 91.8% 94.6% 93.4% 95.2%

ResNet50 + TRN (H) 93.7% 92.7% 91.4% 95.9%

ResNet50 (H + N) 92.5% 91.7% 95.4% 93.3%

Next, we explore the ability of the baseline system to generalize to unseen environ-
ments. Specifically, we consider the case where the training data come from a different
scenario than the testing data. We term this the cross-scenario case. We apply same baseline
models as above, each trained in one environment, on the testing data from the other
environments. All testing sets are identical to those used in Table 4 for a direct compar-
ison. Table 5 presents the cross-scenario testing results. Note that the accuracies of the
model trained and tested in the same scenario (shown in bold) are identical to those in
Table 4. However, there is a dramatic and unacceptable performance drop when a model
trained in one scenario is applied in another scenario. Incorporating a temporal model
does little to improve the situation, although the TRN model outperforms the LSTM model
almost always.

Table 5. Model accuracy for all three scenarios on the four hand-hygiene actions. Bold numbers
indicate same-scenario situation; not bolded numbers indicate where testing data is not from the
same scenario as the training data. R1C1: Room1 Camera1. R2C1: Room2 Camera1. R2C2: Room2
Camera2. CNN: ResNet50. LSTM: ResNet50 with LSTM. TRN: ResNet50 with TRN. All models
consider only the hand-hygiene actions.

Model
Scene R1C1 R2C1 R2C2

R1C1 CNN 91.7% 5.9% 30.2%

R2C1 CNN 33.3% 97.1% 43.4%

R2C2 CNN 56.7% 73.5% 98.1%

R1C1 LSTM 91.8% 11.8% 43.4%

R2C1 LSTM 28.3% 94.6% 47.2%

R2C2 LSTM 35.0% 55.9% 93.4%

R1C1 TRN 93.7% 38.2% 54.7%

R2C1 TRN 58.3% 92.7% 45.3%

R2C2 TRN 50.0% 61.8% 91.4%

5.3. Discussion about Baseline System

The experiments above address the question: does a straightforward spatial-only
baseline system solve the video recognition task? The results clearly answer this question,
that yes, it is sufficient in the same-scenario case, but also no, it is completely inadequate
when applied in the cross-scenario situation. Unfortunately, this loss in performance is not
surprising. It is well known that data collected for a particular task inevitably describe
only part of the task; this is termed the dataset bias problem [67]. Capture bias depends
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on factors such as camera view, illumination conditions, and background scenes, all three
of which are present in the scenarios we recorded for our Class-23 hand-hygiene dataset.
While dataset bias is certainly a major contributor to the performance drop in the cross-
scenario case, further explorations can provide insights into more specific causes and hence
into potential solutions.

6. Exploring Reasons for Poor Performance of the Baseline System

In this section, we describe two experiments to explore the causes of the poor per-
formance of the baseline system in the cross-scenario case. The first uses Grad-CAM [68]
to highlight inconsistencies between what the model is focusing on and what a human
watching the scene would focus on to make a decision. The second experiment uses a
hidden-patch approach to verify the hypotheses formed from the first experiment. We
include these in this paper because understanding model failures is an important com-
ponent of designing an effective, practical system. Because the hidden-patch experiment
is designed based on observations from the Grad-CAM experiment, we describe their
methods and results sequentially.

6.1. Grad-CAM Exploratory Experiment: Method, Results, and Discussion

In the first experiment, we use Grad-CAM [68] to generate a saliency map that visual-
izes the discriminative area that our CNN model uses to make its prediction. Grad-CAM,
or Gradient-weighted Class Activation Mapping, creates a visualization of which pixel re-
gions in a particular image contribute most heavily when computing the classification label
using a CNN. In our experiment, we apply Grad-CAM on the conv_5x layer of ResNet50
to generate a saliency map for several instances of the rub hands with water action.

The top and bottom rows of Figure 6 show two different scenarios depicting the rub
hands with water action. Both images produce the correct prediction when using the 2D
CNN ResNet50 corresponding to their scenario. We see from the middle column that the
discriminative region for R1C1 not only covers hands and waterflow, but also include objects
sanitizer, water spout and faucet, which are completely irrelevant objects for this action.
In contrast, the discriminative region for R2C1 mostly covers only the hands and waterflow
regions, which is more consistent with how a person would decide on the action.

Figure 6. Rub hands with water action. Left column: images; middle column: saliency map. Right
column: image with black patch hiding the hand sanitizer bottle. Row (a): Scenario Room1 Camera1;
Row (b): Scenario Room2 Camera1.

Thus, it appears that in some scenarios, the discriminative region learned by the
CNN during the weak supervision training process might involve extraneous objects.
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These extraneous objects become a visual cue that misleads the CNN when it is applied
on data from other scenarios and limits the capability of the model to be relevant for
cross-scenario recognition.

6.2. Hidden-Patch Exploratory Experiment: Method, Results, and Discussion

Our second experiment, using hidden patches, is constructed to confirm our obser-
vations below based on the results of the Grad-CAM experiment. Hiding patches of an
image, either during training [69], testing [70], or both [71], has been shown to be a valuable
tool. During training, hiding patches can force a CNN model to broaden its attention to
additional discriminative regions. During testing, if hiding patches creates a distinct drop
in performance, this may reflect the importance of that hidden area to the model.

For this experiment, we focus on verifying the impact of the hand-sanitizer bottle
on the action rub hands with water. We cover that object with a black patch for all testing
images from both R1C1 and R2C1, as illustrated in the rightmost column of Figure 6. We
apply the 2D CNN ResNet50 models of each scenario on their own hidden-patch images.

To highlight the change in the CNN result, before and after hiding the patch, we
consider the raw prediction score from the CNN before applying the softmax function.
Table 6 shows the average prediction scores for both scenarios when testing only the videos
labeled as rub hands with water. Note that since these values are prior to softmax, they
could be any real number. Larger positive numbers indicate stronger confidence. Average
confidence scores are reported for each of the four actions. As can be seen, the confidence
score for rub hands with water in scenario R1C1 drops 2.32 with the hidden patch, while the
confidence score for scenario R2C1 drops only 0.55. Interestingly, neither model changes
their action predictions, because the hidden patches do not change which action has the
highest confidence score when testing on the same-scenario data. However, this does verify
that the model trained for the R1C1 scenario relies heavily on the irrelevant sanitizer bottle
to decide the action, and this raises significant concerns about the ability of the RGB-only
model to perform well in the cross-scenario action recognition for our application.

Table 6. Prediction score (no softmax) on testset, rub hands with water videos; Bold numbers indicate
highest values in column; R1C1: Room1 Camera1. R2C1: Room2 Camera1. R2C2: Room2 Camera2;
origin: test on regular image. hide: test on image with hide patch. Act1: touch faucet with hand.
Act2: rub hands with water. Act3: rub hands without water. Act4: apply soap.

Model
Action Act1 Act2 Act3 Act4

R1C1 origin −1.93 4.71 0.02 −2.86

R1C1 hide −1.24 2.39 −1.24 0.08

R2C1 origin −1.98 4.99 −0.05 −3.10

R2C1 hide −1.67 4.44 0.25 −3.24

The above result highlights a fundamental weakness of weakly-supervised learning
for action recognition. In weakly-supervised learning, each action video is only labeled with
the action class label, and the model must somehow identify discriminative regions during
the training process on its own; there is nothing to prevent the model from relying on an
irrelevant object as a discriminative visual cue of an action. Since the environment around
the hand-washing sink could contain many irrelevant objects and these could change or
move over time, the RGB CNN model presented in this section is unlikely to generalize
well across a wide range of scenarios. Thus, the next step is to consider other methods to
build an effective action detection system for hand-hygiene in an open-room environment.

7. Hierarchical Action Detection System Using Multiple Modalities for Cross-Scenario
Hand Hygiene

Informed by the inability of the baseline system to generalize and perform well in the
cross-scenario situation, in this section we present a new hierarchical system. This system
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is designed to achieve two goals: improve the feature representations so they are robust
across scenarios, and leverage advances in computer vision beyond a spatial-only CNN.
First, we decompose the overall classification problem into a series of smaller, simpler
classification problems. Second, we choose an input modality for each simpler classifier
that is targeted toward the specific task.

7.1. The Overall Hierarchical System

Our hierarchical system is shown in Figure 7, with a more detailed system structure
in Figure 8. This hierarchical approach enables each sub-classifier model to have its own
feature space and architecture, and avoids a highly intertwined model. The system relies
on having the sink ROI already labeled. Both the overall system and each subsystem can
perform either action recognition or action detection. For both tasks, the input video chunk
is a set of k = 10 consecutive frames.

First, for a given chunk of video frames, either from an untrimmed video or a trimmed
video clip, we first detect the skeleton joints present in the full 1080p image by applying
an unsupervised skeleton-joint modality model to reject non-hygiene actions for which
there are no upper-body joints appear in the sink ROI. Second, using the pixels in the sink
ROI only, chunks of video frames which are not rejected are then processed by the model
using the optical flow modality to distinguish between H2H and H2O actions. Third,
chunks of video in these two categories are then processed by either an RGB model or
a hand-mask model. The RGB model decides among H2H actions Rub with water and
Rub without water, while the hand-mask model decides among H2O Apply soap and Touch
faucet with hand. Note that the hand-mask model requires ROIs for the water spout, faucet,
and soap head. The final outcome of the hierarchical system is a prediction of one of the
four hand-hygiene actions.

Figure 7. Hierarchical action recognition with multi-modalities.

For action recognition from a trimmed video, an action decision is made for each
window of 10 frames, and the final system prediction result for a trimmed video is obtained
by choosing the action that has the largest the average among all the softmax-ed scores for
that video. For action detection applied to an untrimmed video, actions are decided for
each second. The action for one second, which comprises 30 frames, is determined by the
most frequent action among the 10-frame chunks for that second. This approach to action
detection is more efficient for our hand-hygiene task than more typical approaches for
action detection [32,37]. Those methods create temporal proposals or apply an end-to-end
training structure. However, for us, the duration of the entire set of actions is typically
only one or two minutes long, which is much shorter than the applications those methods
address, where the untrimmed video might last half an hour or more.
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Figure 8. Cross scenario action detection.

The overall hierarchical system does not require training; however, three of the sub-
systems do. The required training is described below as each subsystem is introduced.

7.2. Subsystem Descriptions for Each Modality

In this section, we present each subsystem for our hierarchical system. Each subsystem
relies on a single input modality and focuses on making one specific decision.

7.2.1. Subsystem 1: Deciding among Hygiene and Non-Hygiene Actions Using Skeleton
and Object Coordinates

In the first subsystem, we concentrate on two input modalities to decide among
hygiene and non-hygiene actions. These are object coordinates and human skeleton joints.
For object coordinates, we consider the location of three objects: faucet, water spout, and soap
head. These are represented by the center coordinates of the corresponding bounding box.
Although these could be identified using an object detector, as discussed in Section 4.3.2,
here we apply manual annotation of these mostly stationary object locations. For skeleton
joints, we are interested in the upper-body skeleton joints of a participant, namely shoulder,
elbow, wrist, and hands.

We apply skeleton joint detection using the complete 1080 image in which the entire
body can be clearly viewed, because body detection performs well only if most of the body
is visible. We use the OpenPose method [54] to detect 18 human body joints and 21 hand
joints for each the people in the image, but retain only joints from the person around the
sink. Among the 18 body joints, we only keep shoulder, elbow, wrist, and hands of both the
left and right sides. The location of the 21 hand joints is averaged to obtain the coordinates
of the hand. Two sample visualizations of coordinate detection are shown in Figure 9.

Using this subsystem, we classify actions as being non-hygiene actions or associated
with hand hygiene. If hand or wrist joints are present in the sink ROI, then we conclude
this is a hand-hygiene action; otherwise we decide it is an non-hygiene action. Note that
this subsystem does not require any training using our data, as it relies on a pre-trained
OpenPose method.
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Figure 9. Coordinate detection results, left: OpenPose, right: object + upper-body coordinates; row (a)
R2C1. Row (b) R1C1.

7.2.2. Subsystem 2: Deciding among Hand-to-Hand and Hand-to-Object Actions Using
Optical Flow Modality

In the second subsystem, we apply optical flow to decide whether a hygiene action
is H2H or H2O (see Table 1). Optical flow, which describes motions for each pixel in the
image, is a widely used modality in action recognition [47]. For our hand-hygiene actions
recorded with a static third-person camera, optical flow can track the moving body parts of
the participant, with a particular focus on the forearm, and can be used to reject information
about static objects that might be scattered about the environment.

We compute optical flow using TV-L1 [72] and rescale the result to the range [0, 255].
Similar to the temporal network structure described in [47,66], we select ResNet50 with
weights pre-trained on ImageNet [73] as our model. The input is a stack of ten optical flow
image pairs as shown in Figure 10. The first convolutional layer accepts 20 channels as
input. The pretrained weight on that conv layer is averaged by its original 3 channels and
repeated 20 times to match the parameter setting of the first convolutional layer.

Figure 10. Model structure for the optical flow modality.

The subsystem is trained to recognize if an action is H2H or H2O using data from
each scenario; the models are referred to by the name of the associated scenario. Each CNN
ResNet50 model is trained with 350 epochs with batch size 32 and an initial learning rate
0.001, which decreased by a factor of 10 at 200 and 300 epochs, using a Stochastic Gradient
Decent (SGD) optimizer. We apply the cross-entropy loss function. To avoid over-fitting,
data augmentation using multi-scale crop and random horizontal flip was applied during
the training stage as described in [66].
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7.2.3. Subsystem 3: Deciding between Actions Apply Soap and Touch Faucet with Hand
Using a Hand-Mask Modality

In the third subsystem, we apply hand masks to decide whether a H2O hygiene action
is either apply soap or touch faucet with hand. Hand-hygiene actions contain body parts
and often require interaction with objects that are in fixed locations, such as the faucet or
sink. By applying image segmentation masks, we can discard redundant appearance infor-
mation and maintain the shape and silhouette which is robust across scenarios. Therefore,
we apply the mask information of human hands to recognize H2O actions: touch faucet with
hand and apply soap. Since these two actions occur in the ROI of the two faucet and soap head
objects, we crop the hand masks to contain only the ROI of these objects instead of using
the whole image.

We generate human hand masks using the method in [74], which applies RefineNet [75]
pretrained on the EYTH (EgoYouTubeHands) dataset for hand segmentation. Each hand
mask image is a binary image. We resize the hand-mask ROI images to a fixed size of 224 ×
224 and stack 10 frames to incorporate temporal information. As shown in Figure 11, each
stack of hand-mask ROI images is input to a VGG11 [22] backbone with unshared weights;
features are concatenated before the last fully-connected layer makes the final prediction.

Figure 11. Hand mask modality model structure.

The subsystem is trained to recognize if a H2O action is touch faucet with hand and
apply soap using data from each scenario; the models are referred to by the name of the
associated scenario. Each model is trained with 350 epochs with an initial learning rate
0.0001, which is decreased by a factor of 10 at 200 and 300 epochs.

7.2.4. Subsystem 4: Deciding between Actions Rub Hands with Water and Rub Hands
without Water Using the RGB Modality

In our final subsystem, we use the RGB modality to decide among the H2H actions
rub hands with water and rub hands without water. Although the RGB modality was shown to
perform poorly for distinguishing among all actions in the cross-scenario case in Section 5.2,
the RGB modality has unique appearance information which is not captured by the other
modalities. In particular, the appearance of the waterflow is crucial to distinguish between
these actions.

This subsystem applies “hard attention” by cropping a region of interest (ROI) of the
waterflow to constrain the input RGB signal. The waterflow ROI is obtained by extending
the human-labeled bounding box of the water spout down to the bottom of the image. This
ROI is then resized into a 224 × 224 image. The process of creating the waterflow ROI is
illustrated in Figure 12 (left and right top).
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Our waterflow-based model applies a ResNet50 CNN using as input the stack of
10 RGB images associated with the waterflow ROI. The subsystem is trained to recognize
if an H2H action is rub hands with water or rub hands without water using data from each
scenario; the models are referred to by the name of the associated scenario. Each model is
trained with 350 epochs with an initial learning rate 0.0001, and decreased by a factor of 10
at 200 and 300 epochs.

Figure 12. Hands overlap waterflow; left: water spout ROI extends to acquire waterflow. right top:
resized waterflow ROI. Right bottom: waterflow ROI attention using Grad-CAM.

With the waterflow ROI applied, there are actually three situations of interest when
comparing the two H2H actions. In the first case, the hands cut the waterflow and deflect
the path of the water; in the second, the hands are not adjacent to the waterflow; and in
the third, the hands occlude the waterflow but are not actually in the water. The first case
corresponds to the action rub hands with water, and the second corresponds to the action rub
hands without water. However, to learn to effectively distinguish these two actions, it is also
crucial to be able to correctly process the third case. Unfortunately, in our data collection
R1C1 and R2C1 do not include any examples of this third situation. For R2C2 though,
the presence of situations where the hand occludes the flow of water forces the CNN model
to recognize that the bottom area of water is a discriminative region. This increases feature
robustness and assists in distinguishing these actions. This observation is supported by
Figure 12 (Right bottom) which illustrates using Grad-CAM how that a model trained on
R2C2 has learned to recognize that the bottom area of water is a discriminative region.

To improve this situation for R1C1 and R2C1, we use offline data augmentation to
create additional training samples. We manually select several consecutive frames in those
two scenarios where the hands occlude but do not intersect with the waterflow. These
frames are repeated to create a 60-frame video clip for the situation hands overlap with
waterflow. To be consistent with the existing amount of data in these two rooms for the two
H2H actions, we created eight and three hands overlap with waterflow video samples to add
into the R1C2 and R2C1 training sets, respectively.

Next, we apply adversarial learning to improve the domain adaptation [40]. Recall
that using computer vision terminology, we can consider each of our three scenarios to be
a domain, and our goal to achieve an effective model that performs well across scenarios
can be considered as building a model using source domain data and labels that performs
well in a target domain.

For our adversarial learning, we use a discriminator in the training stage to assist
in mapping the features from the target domain model feature onto source domain. We
begin with a source-domain CNN model that has been trained using the labeled data from
the source domain, as described above in this subsection. Then we follow two steps to
alternately train a discriminator and a target-domain CNN, as illustrated in Figure 13.
The goal of discriminator is to recognize which of the two domains (source or target) is
associated with the input feature vector. The goal of the target-domain CNN is to produce
a feature vector using target-domain data that fools the discriminator into thinking the
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feature vector came from the source domain. Step one starts by training the discriminator
using the features from both domains, which are the result of two source- and target-
domain CNN models. In step two, the target-domain CNN is trained to create output
feature vectors that are more similar to the source-domain features.

Figure 13. Target domain model training procedures.

The goal of this domain adaptation is to improve recognition between the two actions
of rubbing the hands with or without water. However, effective training requires us to select
only videos that contain these actions of interest and not the other actions. Unfortunately,
to apply this strategy in operation, the target domain will not have been annotated. To
address this problem, we apply the optical flow model trained in Section 7.2.2 to select
those videos that contain these H2H actions and exclude those videos that do not. With this
step, the domain adaptation procedure can focus on the actions of interest, which improves
its effectiveness.

To implement domain-adaptation with adversarial learning, we choose ResNet50 with
input of stack 10 frames as a CNN model for both source and target domain. The discrim-
inator is a multilayer perceptron (MLP) with three layers. Both the target domain CNN
and discriminator are trained with cross-entropy loss in combination with Adam optimizer
using 0.00001 and 0.001 learning rates, respectively, for 350 epochs.

7.2.5. Summary of Observations Regarding the Multiple Modalities

To summarize, each modality has its unique strengths. The skeleton modality, when
computed from the original uncropped images and in combination with the location
of the sink ROI, can be used to determine if there is actually someone standing at the
sink, and hence to reject non-hygiene actions. The optical flow modality is effective at
discriminating between H2H and H2O actions. The hand-mask modality, when combined
with ROIs for the soap and faucet, can decide between the two H2O actions. Finally,
the RGB modality, when supplemented with data augmentation and domain adaptation,
can effectively discriminate between the two H2H actions. Note that our model for the
hand-mask modality relies not only on our own data, but also on the data used to train the
hand sementation algorithm [74]; similarly, the skeleton modality relies both on our data
and on the data used to train OpenPose [54].

8. Cross-Scenario Results

We begin by describing performance results for action recognition for each subsystem
individually in Section 8.1. Then, in Section 8.2, we describe the performance of the overall
system for action detection.

8.1. Experiments and Results: Individual Subsystems

Here, we present the capability of individual modalities on recognizing hand-hygiene
actions in the cross-scenarios case. Recall that a model been trained using data from each
scenario. Each model is tested on the trimmed video from all three scenarios. The model is
applied on every sliding window in the testing video. Each window has a fixed length of
10 frames and the step size between windows is 1 frame. The final prediction result for
each subsystem is obtained by choosing the action that has the largest average among all
the softmax-ed scores for that video.
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8.1.1. Subsystem 1: Experimental Method and Results

To begin exploring the effectiveness of detecting human joints in our scenarios, we
apply OpenPose to the complete uncropped 1080p image and compute detectability results
on the joints of the left and right sides of the person at the sink. As can be seen from Table 7,
joints on the left side are well detected in R1C1 and R2C1, but the left elbow and hand are
often missed in R2C2. Similarly, the right side is well detected in R1C1 and R2C2, but the
right elbow and hand are often missed in R2C1. This is due to the camera angle which
views the person slightly from behind, as shown in Figure 2. The detection rate for at least
one hand or wrist is over 94%. The presence of missing joints motivated us to avoid the
skeletal modality except to decide between hand-hygiene and non-hygiene actions. When
we apply OpenPose to make this decision, as described in Section 7.2.1, the accuracy is
94.0%, 95.0%, and 96.4% for scenarios, R1C1, R2C1, and R2C2, respectively.

Table 7. Upper-body skeleton detection rate for all three scenarios. R1C1: Room1 Camera1. R2C1:
Room2 Camera1. R2C2: Room2 Camera2. L: left side. R: right side. S: shoulder. E: elbow. W: wrist.
H: hand.

(a) Left side joint detection rate.

Model
Scene Shoulder Elbow Wrist Hand

R1C1 98.4% 97.0% 91.2% 91.2%

R2C1 98.8% 98.6% 97.9% 97.9%

R2C2 98.7% 83.9% 52.7% 52.7%

(b) Right side joint detection rate.

Model
Scene Shoulder Elbow Wrist Hand

R1C1 99.4% 99.3% 99.0% 99.0%

R2C1 95.8% 94.0% 56.4% 56.4%

R2C2 99.3% 99.2% 99.1% 99.1%

8.1.2. Subsystem 2: Experimental Method and Results

The testing results of using optical flow for subsystem 2 are shown in Table 8. We
observe that each model performs well when tested cross-scenario, with over 94% accuracy.
Thus, we conclude that an optical flow model is effective across scenarios at deciding
between H2H actions and H2O actions.

Table 8. ResNet50 Model accuracy with optical flow input, for all three scenarios cross recognition,
to decide if an action is H2H or H2O. R1C1: Room1 Camera1. R2C1: Room2 Camera1. R2C2: Room2
Camera2. flow.

Model
Scene R1C1 R2C1 R2C2

R1C1 flow 98.3% 94.1% 98.1%

R2C1 flow 95.0% 100.0% 96.2%

R2C2 flow 96.7% 94.1% 100.0%

8.1.3. Subsystem 3: Experimental Method and Results

The performance of applying the cropped ROI hand mask on cross-scenario recogni-
tion for subsystem 3 is shown in Table 9. The average detection accuracy of each action is
computed from cross-scenario situations only, where a model is tested on all other scenarios
except the scenario it was trained on. This approach provides good performance for recog-
nizing both actions, especially using the model trained on R1C1. However, for scenario
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R2C1 it is difficult due to the camera angle and a lack of depth information to distin-
guish when hands are occluding an object but not touching it; this explains the reduced
performance of the model trained for this scenario.

Table 9. Two action average accuracy for cross scenarios only Faucet hand: average performance
of “touch faucet with hand action”. Soap: average performance of “apply soap” action. R1C1 (C):
Model trained on Room1 Camera1, tested on other scenarios beside Room1 Camera1. R2C1 (C):
Model trained on Room2 Camera1, tested on other scenarios beside Room2 Camera1. R2C2 (C):
Model trained on Room2 Camera2, tested on other scenarios besides Room2 Camera2.

Action
Scene R1C1(C) R1C2(C) R2C2(C)

Faucet hand 100.0% 100.0% 68.0%

Soap 90.9% 28.6% 75.0%

8.1.4. Subsystem 4: Experimental Method and Results

To explore the performance for the RGB modality in subsystem 4; we consider using
the waterfall ROI (indicated by “W”), data augmentation (indicated by “D”), adversarial
learning (indicated by “A”). In addition, we also consider the so-called ideal case for
adversarial learning, where we can use the ground truth of whether an action is a H2H
action or not. We denote this final situation by “A(I)”. Results for these four cases are
shown in Table 10.

Table 10. Model accuracy for all three scenarios’ cross recognition, for the two H2H actions. R1C1:
room1 camera1. R2C1: room2 camera1. R2C2: room2 camera2. W: waterflow ROI. D: offline data
augmentation. A: adversarial. I: ideal.

Model
Scene R1C1 R2C1 R2C2

R1C1 W 100.0% 88.9% 62.2%

R1C1 W + D 100.0% 96.3% 70.3%

R1C1 W + D + A 100.0% 92.6% 56.8%

R1C1 W + D + A(I) 100.0% 88.9% 81.1%

R2C1 W 73.1% 100.0% 62.2%

R2C1 W + D 84.6% 100.0% 78.4%

R2C1 W + D + A 100.0% 100.0% 83.8%

R2C1 W + D + A(I) 100.0% 100.0% 94.6%

R2C2 W 88.5% 100.0% 100.0%

R2C2 W + A 88.5% 100.0% 100.0%

R2C2 W + A(I) 100.0% 100.0% 100.0%

Simply applying the waterflow ROI provides reasonable performance, particularly
in the same scenario. When offline data augmentation is added, we obtain improved
recognition accuracy for R1C1 and R2C1 models on R2C2 data. (Note there is no row for
R2C2 W+D because data augmentation was not necessary for this scenario.) Adversarial
learning further improves the performance in most of the cross-scenario cases, especially
the for model trained on R2C1. Finally, when we consider the ideal case, where adversarial
learning is based on ground-truth which would be unavailable in practice, we obtain
excellent performance for most scenarios.
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8.2. Results: Hierarchical System

In this section, we present the overall performance of our complete hierarchical system.

8.2.1. Experimental Methods for Hierarchical System

For a comparative baseline to our hierarchical system, we choose the 2D CNN Resnet50
model with RGB inputs which has been described earlier in Section 5.1. In addition,
to illustrate the performance of the overall method, we also present results for the ideal
situation introduced in Section 7.2.4. Recall that ideal model used manual annotation
of the target domain data to distinguish between H2H and H2O actions for the domain
adaptation process.

We apply three evaluation metrics: frame-wise accuracy (F-acc), window-wise ac-
curacy (W-acc), and task-wise accuracy (T-acc). Frame-wise accuracy directly compares
the frame-level prediction result with the ground-truth label. To compute window-wise
accuracy, we split the untrimmed video into non-overlapping fixed-length windows and
compute the prediction result for the window as the average predication across all the
frames in the window. The window-wise accuracy is then computed by comparing the
window-level prediction with the ground-truth label for the window. This metric allows us
to evaluate the effectiveness of our estimates of how long the H2H action rub hands without
water lasts. Since our video was recorded under 30 FPS, the window size is set to 30 frames.

Finally, the task-wise accuracy is defined specifically to address the question of how
well does one person perform the entire hand-hygiene process. The task-wise accuracy
includes four components: (1) mis-detection seconds for rub hands with water. (2) mis-
detection seconds for rub hands without water. (3) the existence of touch faucet with hand
after the last H2H action. (4) the existence of apply soap between a rub hands with water
and a rub hands without water action. During the evaluation of the task-based accuracy, we
applied a tolerance towards the transition between actions within our untrimmed videos.
A transition often occurs between two hand-hygiene actions; for example, after rubbing
hands in water, a person moves their hands towards the soap. This intermediate transitional
usually lasts for only a few frames and does not materially affect the hand-hygiene quality.
Thus, we tolerate these actions by not counting them in our evaluation.

8.2.2. Experimental Results for Hierarchical System

Table 11 shows the frame-wise (F-acc) and window-wise accuracies (W-acc) for the
three systems. The multi-modal system significantly outperforms the baseline system in
the cross-scenario cases, although the baseline model designed for R1C1 actually performs
better on that same scenario. On average, our multi-modal hierarchical system outperforms
the baseline system by 36.42 and 38.46 percentage points on cross-scenario with respect to
these two measures. This demonstrates that our system design is effective for cross-scenario
open-room hand-hygiene recognition. Moreover, the ideal system demonstrates that
performance improvements of 3.82 and 4.19 percentage points may be possible if manual
annotation of H2H actions is possible to assist domain adaptation. This improvement is
best for the cross-scenario between R1C1 and R2C2.
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Table 11. Frame-wise accuracy (F-acc) and window-wise accuracy (W-acc) for all three scenarios,
action detection. R1C1: room1 camera1. R2C1: room2 camera1. R2C2: room2 camera2.

(a) Baseline system

Metric
Model R1C1 R2C1 R2C2

R1C1 F-acc 85.8% 10.9% 12.3%

R1C1 W-acc 86.3% 10.3% 12.3%

R2C1 F-acc 9.7% 74.8% 34.1%

R2C1 W-acc 9.5% 79.2% 33.4%

R2C2 F-acc 38.0% 52.7% 82.8%

R2C2 W-acc 38.9% 55.5% 85.4%

(b) Multi-modal hierarchical system

Metric
Model R1C1 R2C1 R2C2

R1C1 F-acc 74.9% 67.6% 54.6%

R1C1 W-acc 76.7% 67.7% 56.7%

R2C1 F-acc 58.1% 75.1% 68.7%

R2C1 W-acc 63.1% 76.1% 71.5%

R2C2 F-acc 53.2% 74.1% 82.3%

R2C2 W-acc 57.2% 74.6% 86.1%

(c) Ideal multi-modal hierarchical system

Metric
Model R1C1 R2C1 R2C2

R1C1 F-acc 74.9% 67.1% 66.0%

R1C1 W-acc 76.7% 66.9% 69.9%

R2C1 F-acc 58.5% 75.1% 69.4%

R2C1 W-acc 63.8% 76.1% 72.8%

R2C2 F-acc 62.8% 75.3% 82.3%

R2C2 W-acc 66.7% 75.7% 86.1%

Next, we consider task-wise evaluation of our proposed system that uses optical flow
labeling and the ideal system that uses manual annotation to perform domain adaptation.
These results are shown in Tables 12 and 13, respectively. Recall that task-based accuracy
considers the duration of the two H2H actions and the existence of the two H2O actions.
Comparing the Tables 12b and 13b for the models trained using R2C1, we see good cross-
scenario performance for the two H2H actions. Specifically, the error in the duration is on
the order of 2–4 seconds, which is comparable to similar errors for the same scenario cases.
In contrast, the systems trained using R1C1 data performs worse than the other models.
Many of the errors for the ideal system are nearly identical to those for the proposed system,
with the notable exception of the case of model R2C2 applied to scenario R1C1, where
the ideal case dramatically decreases the duration error for the two H2H actions. Since
the primary difference between these two systems is the errors made by the optical flow
model to facilitate domain adaptation, this points to a potential area for improvement for
our model.
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Table 12. Task-wise accuracy (T-acc) for all three scenarios, action detection, optical flow labeling.
R1C1: room1 camera1. R2C1: room2 camera1. R2C2: room2 camera2. RW: rub hands with water.
RNW: rub hands without water. Faucet: touch faucet with hand. Soap: apply soap.

(a) Flow labeling: R1C1 model

Scene
Task RW RNW Faucet Soap

R1C1 0.89s 4.11s 67% 89%

R2C1 3.90s 6.30s 70% 80%

R2C2 6.87s 8.93s 80% 87%

(b) Flow labeling: R2C1 model

Scene
Task RW RNW Faucet Soap

R1C1 2.67s 3.44s 67% 100%

R2C1 2.30s 2.40s 60% 90%

R2C2 4.00s 3.80s 27% 93%

(c) Flow labeling: R2C2 model

Scene
Task RW RNW Faucet Soap

R1C1 6.33s 6.11s 89% 100%

R2C1 2.10s 3.60s 60% 70%

R2C2 1.60s 2.20s 33% 100%

Table 13. Task-wise accuracy (T-acc) for all three scenarios, action detection, ideal labeling. R1C1:
room1 camera1. R2C1: room2 camera1. R2C2: room2 camera2. RW: rub hands with water. RNW:
rub hands without water. Faucet: touch faucet with hand. Soap: apply soap.

(a) Ideal labeling: R1C1 model

Scene
Task RW RNW Faucet Soap

R1C1 0.89s 4.11s 67% 89%

R2C1 4.00s 6.50s 70% 80%

R2C2 4.60s 6.80s 80% 93%

(b) Ideal labeling: R2C1 model

Scene
Task RW RNW Faucet Soap

R1C1 2.00s 2.89s 67% 100%

R2C1 2.30s 2.40s 60% 90%

R2C2 3.60s 3.67s 27% 93%

(c) Ideal labeling: R2C2 model

Scene
Task RW RNW Faucet Soap

R1C1 2.00s 3.89s 89% 89%

R2C1 1.90s 3.20s 60% 80%

R2C2 1.60s 2.20s 33% 100%

9. Discussion

In this section, we first discuss limitations of the proposed approach, and then describe
suggestions for people who may be designing real-world systems for similar scenarios.
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9.1. Discussion on System Limitations

Every system has limitations. Ours can be clustered into three areas: characteristics of
the people and the environment, camera placement, and system configuration and design.

First, while we have considered cross-scenario design for an “open-room” environ-
ment, we do not expect the current system to work in unconstrained environments where
objects, sinks, faucets, and water pipes may have vastly different appearances. For example,
we may need to retrain parts of the system to work well for an outdoors environment,
for instance in the field of a farm where produce is being harvested. Such an environment
could have background vegetation moving with the wind, which could create a challenge.
Variations in the appearance of the participants are also likely to require our system to be
retrained. Different clothing may challenge the system, as could varied skin tone. However,
we believe both of these are minor challenges because our system relies on OpenPose
for locating people and their body parts, and OpenPose is relatively robust against these
variations. Moreover, our system can be easily adapted to incorporate any new advances
in localizing skeletal joints.

We chose to place our camera to create a side-view of the washing area. In general,
the side-angle view may not be possible given the layout of the room and the position of the
sink. For example, in our previous work [3], due to the size of the restroom, the side-view
camera could not be placed far enough from the sink to view the entire person, or even
their entire torso. In general, the camera placement may have to be adjusted to each room,
so the distance to the sink and the height of the camera relative to the sink may vary.
Moreover, a side-camera is vulnerable to occlusions from passing people, and depending
on its distance to the sink it may not be able to observe fine motor actions of the fingers and
hands. However, a side-view camera has the capability to observe other food-handling
activities, which provides advantages relative to a top-down view of the sink.

With respect to our overall system, we chose a hierarchical design. This allows each
sub-system to use a modality that performs well. However, if significantly more data were
available, it could be possible to obtain better performance using an end-to-end model that
allows all sub-systems to be integrated and trained jointly. Moreover, new advances in
deep learning like the Vision Transformer [76] are producing classifiers that outperform
the ResNet model we applied here.

Additionally, the domain adaptation approaches that we applied here have limitations;
they are effective when there are sufficient similarities between the domains used for the
design and for the deployment, but are unlikely to be effective when there are too few
similarities between domains. More data and further explorations would be necessary to
validate how well these methods work in a broader set of environments.

9.2. Suggestions for Designing Video Analytics Systems for Real-World Applications

Here we discuss some general suggestions for designing an action detection system
for a real-world application and give examples from our hand-washing system throughout.
Given that the variety of action detection problems is unconstrained, it is impossible to
provide comprehensive design suggestions here. However, our overarching advice is
to start simple and adapt from there. This may involve adding complexity if necessary,
but may also require simplifying the problem even further.

For many applications, data have already been gathered and published. In these cases,
it may be effective to build on their existing data and apply solutions already proposed in
the literature. However, the collected data may not actually address the specific problem of
interest, or no data may exist. In these cases, it is necessary to consider the data collection
as an integral part of the system design.

Camera placement is a critical consideration for gathering new data for system design
and evaluation. Above, we discuss several issues regarding camera placement, including
being able to observe the actions of interest, being able to obtain sufficient cues about the
location of the person executing the actions, and the ability of the camera to see necessary
details of the actions. These must all be considered when designing a system for a real-
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world application. The very act of obtaining manual labels can help assess effective camera
placement. If a person doing the labeling cannot see the actions or distinguish among them,
then new data or a new problem definition (regarding which actions to detect) would
be required.

Additional decisions about camera placement are related to ease of use for the partici-
pants. This includes the intrusiveness of wearing a camera, or implicit constraints on how
people must execute actions. For example, we chose to passively observe people washing
their hands which means they may not execute all steps and some actions may be out of
camera view. In contrast, other handwashing systems have been designed to be interactive
or even educational about what the next action to execute should be [4,5]. The interactive
approach simplifies the image processing but constrains people to keep their hands over
the sink in camera view during the washing activities. If a wearable head-mounted camera
was chosen, people would also need to watch their hands while washing to ensure the
actions are captured, and the camera itself might be intrusive.

In terms of algorithm design, it is worthwhile to consider possible domain knowledge
that can be incorporated into the solution. Sometimes domain knowledge is very specific,
as it would be in the case of a system that analyzes martial arts actions. In other cases,
domain knowledge can be very basic, and include things that even a toddler might already
know. Where’s the person? What objects do they touch and interact with? Where are those
objects located? Are there other objects that should be ignored? Is there some area of the
image that should be attended to or could be ignored?

In addition, we reiterate the three strategies we applied in this paper, as described in
Section 2.2. Choose a common set of actions, select an ROI (either with hard attention as
we did here, or training for soft attention), and use multiple modalities as needed. Related
to this, consider potential hand-to-object and object-to-object interactions. These can both
be informed by the domain knowledge considered above.

Finally, remember that simplifications can be defined multiple ways, including “curat-
ing the environment” (making it clean and distraction free), simplifying the set of actions
to process, educating the participants to perform actions in a prescribed canonical way,
in a prescribed order, and isolated from each other in time, or even choosing to do action
recognition instead of action detection.

10. Conclusions and Future Work

In this paper, we present an overall video analytics system to solve a real-world
practical problem, namely, assessing the quality of hand-hygiene actions in an open-room
environment. We demonstrate that a baseline model, using a generic action-recognition
CNN model performs acceptably, but only when operating in the same environment for
which it was trained. We explore potential reasons for the poor performance of this model
when deployed in another open-room environment, and conclude that appearance infor-
mation, which is captured by the RGB inputs, is too varied and complicated, too dependent
on the environment, to provide a robust feature representation for the CNN model.

Using these insights, we explore multiple modalities and seek to identify the strength
of each modality. For example, given our camera placements, the skeletal modality is
useful to distinguish hand-hygiene actions from non-hygiene actions, but is not adequate
to distinguish among the hand-hygiene actions. By integrating multiple modalities into
our final system, we are able to leverage the data, models, and approaches that have been
gathered by other researchers to solve different computer vision challenges.

In our future work, we will extend this work to consider the broader class of actions
associated with food handling; this includes hand hygiene, washing produce, and sanitizing
containers and surfaces. We are also interested in identifying a more robust camera view
for both hand-hygiene and food handling action recognition. In our previous work [3,7],
the egocentric camera views from the chest and the nose share a common advantage
for capturing subtle motion details in all the hand-hygiene actions. Therefore, if a food
handling task involves subtle motions or relies on textural details of objects, an egocentric
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camera view is a good selection. However, there are also significant shortcomings of
egocentric cameras; they do not always capture the action of interest, and they can be
uncomfortable to wear for a long time. In contrast, static third-person cameras enable data
collection to take place seamlessly without placing addition burdens on the food handler.
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