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Abstract
Executing video analytics tasks using a large camera net-

work is a challenging problem in the field of video processing.
Video compression is a necessary step to reduce video data size
before transmission. However, the performance of video analytics
tasks generally degrade as video quality drops. This paper con-
siders how to find the optimal point between video compression
and performance for the video analytics task of activity recog-
nition. We propose a system that predicts the success or failure
of a video analytics task under different compression parameters
without executing the task. The system is designed to automati-
cally select the best compression rate for each video to maintain
an acceptable detection accuracy. Our experiments indicate that
such a system has the potential to improve overall performance
across a variety of different activity sets selected from the UCF-
101 dataset [1].

1. Introduction
In recent years, millions of devices have been connected to

the Internet. The management of this video content becomes a
problem due to its size. Video analytics is one of the approaches
to discover the hidden information in videos [2] and can be used to
detect objects and activities which can be used to make decisions.
Video analytics can contribute to applications such as surveillance
systems, data storage and management systems. The combination
of executing video analytics tasks in a large camera network is a
promising as well as challenging task.

Systems based on large amounts of video such as video
surveillance systems normally include a bandwidth constraint.
This constraint limits the video quality during transmission. For
video analytics tasks, the detection accuracy usually drops as
video quality degrades. The goal of our proposed system is to ef-
ficiently identify, at the edge of the network, the optimal amount
of compression to minimize bandwidth during transmission while
maintaining a reasonable detection accuracy.

Several video analytics tasks have been explored in the
context of compression and its impact. In [3, 4], there is an
experimental-based discussion on how to find the trade-off point
for face detection and face tracking tasks from compression. In
[5], they discussed combined algorithms to focus compression
resources on certain interesting elements for the task of object
tracking. In [6], the focus was on modeling object detection’s
performance with the change of Quantization Parameter (QP) in
compression. Through a fitting method, a relation between QP,
false positive pixels (FP) and false negative pixels (FN) can be
built. But the prediction of FP and FN from different QPs is not
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a model that can be applied to other video analytics tasks. In [7],
a system was designed to use texture descriptors to predict de-
tection accuracy of a pedestrian detection task. This system has
demonstrated its ability to save data rate and computational re-
sources. However, none of these have considered the impact of
compression on activity recognition.

In this paper, we examine the impact of compression on de-
tection accuracy in activity recognition. We explore this using
different sets of activities, and show that each activity is affected
by compression differently and that the impact of compression de-
pends on the “neighboring” activities from which this activity is
to be distinguished. Moreover, we propose a video analytics sys-
tem corresponding to the task of activity recognition using com-
pressed videos. We use feature descriptors to predict the success
or failure of the activity recognition task under different QP val-
ues. With this prediction result, the system then selects an optimal
compression rate for each input video. This can enable an accept-
able detection accuracy and video data bitrate to be achieved.

The paper is organized as following: Section 2 provides the
overview of activity recognition. Section 3 explores the impact
of compression on activity recognition. Section 4 describes the
design details of the compression-aware video analytics system.
Section 5 demonstrates the system can perform better than one
that uses the same QP to compress all videos and section 6 con-
cludes the paper.

2. Activity recognition
The goal of activity recognition is to recognize human ac-

tivity from an input video. In other words, the idea is to clas-
sify the input video into its activity category [8]. In [9], a Har-
ris point operator was designed to detect spatial-temporal interest
point (STIP). Through extracting space-time features and using
a Support Vector Machine (SVM), the experiments in [10] were
able to achieve a state-of-the-art result on KTH dataset [11]. As
the pipeline bag-of-features became popular, an evaluation of dif-
ferent feature detectors, descriptors under common experimental
setting was presented in [12]. The result indicates the Histogram
of Oriented Gradients (HOG) [13] and the Histogram of Oriented
Flow (HOF) [14] are effective features for activity recognition.

In this paper, we use the Improved Dense Trajectory (IDT)
[15] for the activity recognition task using the implementation
from [16]. For each input video, IDT applies dense sampling
to select interest points at different image scales for each frame.
Between consecutive frames, a dense optical flow field is used to
estimate the motion interest points. The position of each inter-
est point is recorded and updated to construct their trajectories.
Along with the shape of each trajectory, HOG, HOF and Motion
Boundary Histogram (MBH) [14] features are extracted from 3D
volumes. A technique of warping between consecutive frames is



also applied to eliminate the effect of camera motion. After fea-
ture extraction, each video’s feature descriptor is encoded through
Fisher Vector [17]. In the final step, a SVM will process these en-
coded features for training or testing.

Typically, to evaluate the performance of a method, there are
some public available datasets for activity recognition: The KTH
dataset [11] is one of the easy and common dataset. The Holly-
wood2 dataset [18] includes video clips from movies of actions
and scenes. Other dataset such as the UCF sports [19], UCF
50 [20] and UCF101 [1] datasets are built using realistic action
videos. In this paper, we examine performance using several sub-
sets of the UCF101 [1] database. To explore the impact of the
set of activities, we use different subsets of 10 activities chosen
among the entire collection of 101 activities. We create five dif-
ferent activity sets which are listed in Table 1. There are small
variations between the activities chosen for Sets A, B, C and D,
while in Set E, most of the activities are completely different from
the other sets. For example, Sets A and B differ only in the activ-
ity “Juggling Balls” and “Rowing”, while there are three differ-
ent activities in Set C relative to Set A.

Figure 1: Activity Sets A – E: ideal QP points and fixed QP curves

Figure 2: Set A: per-activity confidence score versus QP

3. Impact of compression
To investigate how video compression influences activity

recognition, we encode each video using Mencoder [21] into
five different compressed versions in H.264 format, each us-

Table 1: Activity names of five different sets
Activity Set A Activity Set B Activity Set C Activity Set D Activity Set E
ApplyEyeMakeup ApplyEyeMakeup ApplyEyeMakeup Archery ApplyEyeMakeup
ApplyLipstick ApplyLipstick ApplyLipstick BabyCrawling BreastStroke
Archery Archery Archery BandMarching Fencing
BabyCrawling BabyCrawling BabyCrawling HorseRace Haircut
BalanceBeam BalanceBeam BalanceBeam JugglingBalls IceDancing
BandMarching BandMarching BandMarching MoppingFloor MilitaryParade
JugglingBalls Rowing JugglingBalls PlayingSitar PlayingDhol
Basketball Basketball PlayingCello Punch SalsaSpin
Kayaking Kayaking PlayingSitar Rowing TaiChi
BenchPress BenchPress Rowing YoYo WalkingWithDog

ing a constant QP (Quantization Parameter) from among the list
{20,26,32,38,44}. A large QP value generates a low bitrate,
which results in low video quality. In our designed method, we
train only one SVM for each activity class. This SVM depends
on each specific set of activities, and is used for all QP values.

Figure 1 demonstrates the detection accuracy for each set,
when a fixed QP is used to compress all videos (where the points
for QP=20 are truncated because the average bit-rate is higher
than 400 kbit/s). As it is indicated in Figure 1, the general trend
of the fixed QP curves shows decreasing performance as the bi-
trate drops, especially below 100 kbit/s. Performance differs sig-
nificantly across the different test sets. In addition, there exist a
few surprises. For instance, on the fixed QP curve of Set C, the
performance degrades as the bitrate increases in the middle range
of the curve.

To understand more about these observations, we analyze the
impact of video compression on each activity class in Set A. The
impact of compression for each activity is evaluated as the aver-
age of all test videos’ confidence score from the respective SVM.
The results are demonstrated in Figure 2 and Figure 3. Figure 2
represents detection results from each individual activity class in
Activity set A. It is obvious as the video quality degrades (QP in-
creases), most actions’ detection confidence scores decrease, but
each to a different degree. In Figure 2, the confidence score for
the activity “ApplyLipstick” drops 34% as the QP increases from
20 to 44. However, the confidence score for activity “Balance-
Beam” drops only 4%. Moreover, the activity “JugglingBalls”
increases its confidence score as the compression increases from
QP value 20 to QP value 44. This implies that compression actu-
ally makes this activity class easier to identify, and accounts for
the decrease in accuracy across the entire set shown in Figure 1 as
the QP increases from 38 to 44. Therefore, from Figure 2, we see
that for the task of activity recognition, the impact of compression
depends heavily on the specific activity class.

We also observe that different combinations of activity

Figure 3: “BabyCrawling” confidence score versus QP



classes influences detection accuracy. Set A, Set B, Set C and Set
D all include the activity class “BabyCrawling”. As shown in
Figure 3, all of them start with the same confidence score around
81%, but as the QP increases to 44, the confidence score of class
“BabyCrawling” in Set A, Set B, Set C and Set D decreases by
26.3%, 22.3 %, 16.7% and 33.3%, respectively. This indicates
that the impact of compression on the detection performance of
each activity depends on the set of other activities.

As these results show, when considering the impact of com-
pression on activity recognition, it is important to consider the
impact both on each individual activity and due to different collec-
tions of activities. Therefore, in this paper, we propose a system
that predicts the optimal amount of compression for each individ-
ual video.

Consider a system that could compress each individual video
i using an ideal quantizer, QP∗

i , that corresponds to the largest QP
in our list that produces the correct detection result for that video.
While such a selection may not be possible in practice, perfor-
mance of such a system can demonstrate whether overall perfor-
mance could be improved if the amount of compression could be
optimally chosen for each input video.

To demonstrate the power of such a system, we define the
concept of ideal QP point. The ideal QP point represents the re-
sult where all the test videos are compressed to the lowest quality
to be detectable by the “Improved Dense Trajectory” (IDT) activ-
ity recognition algorithm. The ideal points for each set are also
shown in Figure 1. Compared to the fixed QP curves, the ideal
points demonstrate promising performance both in bitrate saving
and accuracy improvement. However, these ideal points are ob-
tainable only with perfect knowledge. Therefore they provide the
upper bounds on the performance of our system.

4. Prediction system
In this section, we present our prediction system whose goal

is to predict each input video’s performance under different com-
pression QP values and select the optimal QP value for each
video. This prediction would operate at or near the camera lo-
cation, and is designed to be light-weight processing with low
computational requirements. The proposed system is illustrated
in Figure 4. The main components are: Feature extraction, Hierar-
chical K-means, Random Forest and Compression rate selection.
The system starts with feature extraction from all compressed ver-
sions of the input video, and then applies the visual word assign-
ment pipeline [22] to assign words to each descriptor. The result-
ing histogram represents the video. After that, the histogram is
input to the trained Random Forest to receive a classification re-
sult whether the detection performance is “success” or “failure”
for the given QP value. The final step is to collect the classifica-
tion results from the previous step and select the optimal QP. The
following sections will describe each component in detail.

Feature Extraction
Texture features normally include representative information

about the video. In order to find an appropriate feature for the
prediction system, we evaluated four different types of features in
this paper. According to [12], densely sampled features have the
best performance on complex datasets. Therefore, all the features
evaluated in this paper are densely sampled. We selected HOG
(Histogram of oriented gradients) [13, 22], HOF (Histogram of

oriented flow) [14, 22], MBH (Motion Boundary Histograms) [14,
22] and SIFT (Scale-invariant feature transform) [23, 24] to test
our prediction system.

Visual word assignment
Densely sampled features extracted from different videos

normally have a different dimension of descriptors due to the
video length. In our system, we choose to use hierarchical k-
means [22] to assign each video with an equal length histogram
of visual words.

Random Forest
A Random Forest [25] includes a collection of decision trees,

where the growth of trees and the split of nodes both depend on
random selection. An input vector proceeds through each tree
to receive a decision vote. After collecting the votes across all
trees, the forest selects the class that receives the most votes as
the final decision. In our prediction system, for a given set of
activities, we design five Random Forests, one for each QP value
considered. Each Random Forest predicts success or failure of the
activity recognition task for a given input video compressed using
that QP.

To train each Random Forest for this classification problem,
we require feature inputs and the correspond labels. The input
feature for one video is the histogram of visual words from the
last step. For labels, we use the confidence score of the SVM
predictor in the activity recognition task. The score indicates the
probability that a video belongs to its ground truth activity class.
In our system, if the score is higher than 0.5, we denote it as “suc-
cess”. Otherwise, we denote it as “failure”.

From the perspective of training our system, we need to train
both the activity recognition IDT algorithm and our prediction
system. We split the 25 groups of videos inside each activity class
into two parts. Group 01 to 12 is used for testing the IDT algo-
rithm and 13 to 25 for training the IDT algorithm. Furthermore,
to avoid training the Random Forests on the same data used to
train the IDT, we randomly split groups 01 to 12 into two parts
equally: one part for training the Random Forests, another part
for testing them. The prediction result for each video is a 1x5
vector indicating “failure” or “success”, where each element in
the vector corresponds to one QP value.

Compression rate selection
After each Random Forest predicts whether a correct deci-

sion will be made at each QP considered, we select the estimated
Q̂Pi to be the largest QP that yields a “success” prediction.

Examining the fixed QP curves in Figure 1, we notice that

Figure 4: Prediction system pipeline



Table 2: Random Forest training and testing samples for Set A
and E

success failure
Number of Set A Training samples 1365 230
Number of Set A Testing samples 1437 168
Number of Set E Training samples 1464 136
Number of Set E Testing samples 1499 116

Figure 5: Prediction result from Set A

the detection accuracy drops gradually at high bitrate and sharply
at low bitrate as the bitrate decreases. Therefore, it is usually good
to conservatively trade a small amount of bitrate for a relatively
large detection accuracy increment. Therefore, in some extreme
cases, when all QPs lead to a “failure” prediction, we conserva-
tively compress these videos using QP 20, which corresponds to
the highest video quality and bitrate.

5. Experimental Result
In this section, we construct an evaluation method whose

goal is to test the performance of our prediction system. The pre-
diction system’s pipeline has already been discussed in section 4.
However, for the activities and QPs that we consider, the overall
number of samples are quite unbalanced between “success” and
“failure” for each QP, as shown in Table 2. The “failure” cases
comprise only a small proportion of the total samples. This is a
crucial factor that will limit our prediction accuracy [26]. To re-
duce the impact of this imbalance, we pre-assigned class weights
to the Random Forest during training to increase the importance
of the minority class. As the assigned class weight varies, we plot
each feature’s prediction result as a curve.

These results are shown in Figures 5 and 6, for the different
features mentioned in section 4. The figures examine the perfor-
mance of an entire activity recognition system that incorporates
our prediction results, for activities Set A and Set E respectively.
Recall that these two sets contain only the activity “Apply Eye
Makeup” in common. For Set A, our system performs better
than the system with a fixed QP for almost all of the features we
tried, in the range from 50 to 150 kbit/s. The best performance is
for SIFT in the middle range of bitrates. For Set E, our prediction
system performs better than a fixed-QP system only when the bi-
trate is less than 100 kbit/s. All features have nearly equivalent
performance for bit-rates around 70 kbit/s. For both sets of ac-
tivities, however, the accuracy of the system is still significantly
lower than the ideal point.

To interpret the result in Figure 5 and 6, we examine confu-
sion matrices of the ideal QP value (horizontal axis) and predicted

Figure 6: Prediction result from Set E

Figure 7: Confusion matrix for SIFT from Set A

QP value (vertical axis) in Figures 7 and 8, respectively. Both ma-
trices reflect the prediction point of highest accuracy. For Set A,
this is the right-most point on the SIFT curve. For Set E, this is the
right-most point on the HOG curve. The column labeled “No ac-
tivity detected” indicates when the original activity recognition
system is unable to identify the activity, regardless of the amount
of compression. The row labeled “Task failure” indicates when
our prediction system predicts that there is no QP for which an
activity will be detected. Note that for those videos for which
our system predicts a “Task failure”, our system conservatively
compresses these videos with QP=20, with the goal to increase
the chance that the activity is correctly detected.

A video whose ideal QP is larger than the predicted QP will
require our system to spend additional bitrate without increasing
the detection accuracy. This is also true for those videos for which
our system predicts a “Task failure”. A video whose ideal QP is
smaller than the predicted QP may save the system bitrate but at
the cost of a decrease in detection accuracy. Therefore, by exam-
ining these confusion matrices we can gain insight into our system
performance.

Several observations are apparent from Figures 7 and 8.
First, examining the “ideal QP” for both sets, we see that a major-
ity of videos can be compressed heavily with QP=44 while still
being able to identify the activity. When our system correctly
predicts a QP=44, these videos are optimally compressed for the



Figure 8: Confusion matrix for HOG from Set E

activity recognition. However, for these videos, choosing a less
aggressive QP will increase the bitrate of our system without im-
proving detection accuracy. In particular, for Set A in Figure 7,
we see that while 270 videos have an ideal QP∗ = 44, 100 of these
videos are predicted by our system to require a finer QP, unnec-
essarily increasing the bitrate. Moreover, the 55 videos with ideal
QP∗ = 44 for which our system predicts a task failure will also
require increased bitrate based on our conservative compression
strategy. Similarly, for Set E in Figure 8, 282 videos have an ideal
QP∗ = 44, of which 106 are conservatively compressed; more-
over, 35 videos are conservatively compressed due to “Task fail-
ure”. Combined, this has the effect of moving the “ideal point”
shown in Figures 5 and 6 to the right, without reducing the detec-
tion accuracy.

However, we also can observe from Figures 7 and 8 that there
are a number of videos that require a less-aggressive QP than 44
for correct activity detection, for which our system predicts too
aggressive a QP, relative to the ideal QP∗. This significantly re-
duces detection accuracy while saving only a small amount of
bit-rate. All aggressively-predicted videos appear in the lower tri-
angular region below the diagonal in the matrices of Figures 7
and 8. Comparing these matrices, we see that the percentage of
aggressively predicted videos for Set A and Set E are 0.31 % and
2.78 %. The greater fraction of these videos in Set E relative to
Set A explains why our system performs better for the latter than
the former.

As pointed out above, when our system predicts a “Task fail-
ure”, the associated video is conservatively compressed, increas-
ing the bitrate without improving the detection accuracy. The per-
centage of “Task failure” videos for Set A and Set E are 27.10
% and 14.86 %. We believe “Task failures” are so frequent be-
cause our prediction system is limited by the imbalanced training
data, as discussed earlier. Improvements to the training data could
improve our overall system performance.

We also compare the performance of each feature in our pre-
diction system. For example, in Figure 5, SIFT feature has a better
detection accuracy compared with other features over all bitrates.
Therefore, SIFT has the best performance for Set A. However, af-
ter checking the performance of each feature in all sets, we notice
that the HOF feature has the best performance in three out of five

of these activity sets. Thus while more exploration is needed, the
HOF may be the most reliable feature for our prediction system.

6. Conclusion
In this paper, we proposed a system to predict each video’s

optimal compression rate for the task of activity recognition. The
goal was a system with lightweight processing at the edge of the
network, located near the camera, that could achieve the lowest bi-
trate possible without sacrificing detection accuracy. Toward this
end, we explored the effect of compression on the performance of
activity recognition using different sets of activities, and demon-
strated that significantly different trends are present, depending
on the composition of the set of activities. To evaluate the per-
formance of our system, we defined the concept of an ideal QP
point, which indicates an upper bound on our performance. The
ideal QP point indicates a great deal of promise that significant
gains might be possible in both detection accuracy and bitrate.
Through our experiments, we were able to generate an acceptable
prediction result for some of the combinations of activities. For
other combinations, we analyzed the potential factors which limit
the performance of our system. Because the results of our sys-
tem lie significantly below the ideal QP point, there still exists
potential space to explore in this field.
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