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ABSTRACT

First-person videos (FPVs) captured by wearable cameras
are explored for applications of sharing experiences, record-
ing daily lives, measuring social interactions and behaviors.
These applications can be improved by an accurate quality
assessment. To maximally use the information present in
a FPV, we introduce a new strategy for image quality as-
sessment, called mutual reference (MR). MR does not fit
into the previous categorization of full-reference, reduced-
reference and no-reference. It uses the overlapping content
between images to provide effective information for quality
estimation. We propose a framework of mutual reference
frame-quality assessment for FPVs (MRFQAFPV) to imple-
ment the MR strategy based on a MR quality estimator (QE),
LVI. The effectiveness of MRFQAFPV is demonstrated in
a subjective test by comparing with 3 no-reference QEs and
frame-to-frame motion.

Index Terms— first-person videos, image quality assess-
ment, mutual reference, LVI, near-set

1. INTRODUCTION

Wearable cameras provide a new way to record videos in first-
person perspective without holding any device in hand. First-
person videos (FPVs) captured by these cameras are there-
fore becoming a widely spread type of videos that can doc-
ument activities, share experiences and record trips without
length limitation or specific structure. Numerous applications
of FPVs have emerged using object tracking, activity recog-
nition, video summarization and retrieval [1]. Recently, some
topics related to viewing experience of FPVs have been pro-
posed, involving fast-forward and stabilization [2,3], engage-
ment detection [4] and quality evaluation [5, 6].

Quality assessment of FPVs is very important. First, it can
identify whether frames have high enough quality for applica-
tions using object tracking and activity recognition. Second,
it serves as an evaluation tool for improving the viewing ex-
perience of FPVs [3]. Third, the visual quality of frames is a
considerable factor for keyframe or snap points detection [7],
and can be incorporated into frameworks for video summa-
rization [8, 9].

To evaluate the quality of every frame in a FPV, image
quality estimators (IQEs) can be applied. Existing IQEs

are normally classified into three types: full-reference (FR),
reduced-reference (RR) and no-reference (NR) methods. FR
and RR methods estimate the quality of a distorted image
based on its high-quality corresponding reference image that
is also the source of the distorted image. One limitation for
most FR and RR QEs [10–12] is that they cannot evaluate a
test image that is better than its reference image. Two excep-
tions are VIF [13] and Visual Distortion Gauge [14]. Another
related limitation is that FR and RR methods assumes that the
reference image is not degraded, otherwise their results are
not meaningful.

NR methods estimate the quality of a single image with-
out relying on any reference. One subset of NR QEs is blur
metrics [15, 16]; another subset is natural scene statistics
based QEs [17–19]. However, most existing NR methods are
content dependent so that it makes sense to compare their
quality scores only when the two images have almost the
same content.

We propose a new image quality estimation strategy,
called mutual reference (MR), which does not fit into any
of the previous classification of FR, RR or NR methods.
The basic strategy for MR is to estimate the quality of a test
image based on one or more pseudo-reference images. As
implied by the name pseudo-reference, this image needs to
share overlapping content with the test image but does not
necessarily need to be pixel-aligned. Compared to FR, RR
and NR methods, the advantages to apply a MR method for
FPVs are: (1) MR provides a relative quality estimation that
allows degradations to be present in the pseudo-reference
image. (2) MR uses information provided from overlapping
content between images to minimize content dependency in
quality scores.

To apply the MR strategy to FPVs, we design a framework
of mutual reference frame-quality assessment for FPVs (MR-
FQAFPV) based on a MR QE, the local visual information
(LVI), proposed in [5]. This paper is organized as follows:
Section 2 presents a detailed description of the mutual refer-
ence strategy. Section 3 describes the MRFQAFPV, which
has 3 steps: temporal partitioning, reference search, and qual-
ity estimation. In Section 4, we first evaluate the performance
of our proposed temporal partitioning method. Then, a sub-
jective test is implemented to demonstrate the effectiveness of
MRFQAFPV. Section 5 summarizes this paper and discusses
the future work.



2. MUTUAL REFERENCE

Mutual reference (MR) is a strategy of image quality esti-
mation whose basic idea is to use a collection of “similar
enough” images that can provide each other with effective in-
formation for quality assessment. To define “similar enough”,
we introduce the concept of a near-set, which is a collection of
images that share common content. One example is a group
of images captured either from or of nearby locations.

There are two approaches for MR image quality assess-
ment. The first is a pairwise measure: use a single pseudo-
reference image to estimate the quality of a test image when
both images belong to the same near-set. Ideally, the pseudo-
reference image should have the best quality in the identified
near-set. One example of this method is the Local Visual In-
formation (LVI) [5], which uses a pseudo-reference to esti-
mate the quality of a test image with pixel misalignment [6].

The second approach is a group measure: evaluate the
quality of an image using more than one image in the near-set
as pseudo-references. An example is the quality assessment
of image fusion, in which complementary information from
a group of images is integrated to form a new image [20].
A common strategy to estimate the quality of the fused im-
age [21, 22] is to use all source images for fusion, possibly
with misalignment. Source images and the fused images cre-
ated by different image fusion algorithms [22] can all be clas-
sified into the same near-set.

MR methods cannot be classified into any of the FR, RR
or NR methods. In particular, MR uses the effective informa-
tion provided by the overlapping portion of the images. The
overlaps between those images could differ because of any
geometric transformation. In contrast, FR and RR uses an
exact high-quality source image as reference to provide infor-
mation, while NR uses implicit knowledge of distorted image
versus high-quality image.

MR provides a relative quality estimation that allows
degradations to be present in all images in the near-set. As
a comparison, FR and RR methods estimate any distorted
image relative to an undistorted reference image of entirely
same content. NR methods provides absolute quality scores,
not relative to any other images. It is designed to be used for
comparing two images with completely different content.

One application for MR is to assess images captured of the
same scene from slightly different locations, as has been con-
sidered in [23]. Another application is to estimate the quality
of temporally nearby frames in a video.

3. MUTUAL REFERENCE FRAMEWORK FOR
FIRST-PERSON VIDEOS

3.1. Overview of LVI

As described in [5], Local Visual Information (LVI) has 3
steps as shown in Figure 1. In the first block, LVI builds pixel
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correspondences between A and B using feature matching
with the ORB feature [24]. In the second block, it measures
the effective local visual information between A and B for
all corresponding patches using a method similar to VIF [13].
See more details in [5]. In the final block, the LVI score is
pooled from all local information measures.

However, there exists two limitations when applying LVI.
First, LVI is not effective at measuring quality when there
are insufficient feature matching points between the pseudo-
reference and the test image. In this case, we consider the
test image to have a zero LVI score. Second, LVI is sensi-
tive to scaling change, although it is insensitive to shear and
rotation [5]. When the test image has objects in very differ-
ent scales relative to the pseudo-reference, the LVI score is
unreliable. In the implementation of LVI, we apply affine or
homography estimation [5] to measure the scale change be-
tween the pseudo-reference and the test image in horizontal
direction, sx, and vertical direction, sy . If sx or sy exceeds
the bounded range [a, 1/a], we reject the LVI score as unreli-
able. a is experimentally set to be 0.95.

3.2. Framework

Our framework of mutual reference frame-quality assessment
for FPVs (MRFQAFPV) consists of 3 steps: temporal parti-
tioning, reference search and quality estimation, as shown in
Figure 2. Note that the framework is designed based on LVI,
so we use the approach of pairwise measurement as described
in Section 2.

The step of temporal partitioning shown in Figure 2 is to
partition frames within a time interval into different near-sets.
The kth near-set is represented as (Bk1 , B

k
2 ), where Bk1 is the

start frame and Bk2 is the end frame. Algorithm 1 describes
our general temporal partitioning method, which includes a
boundary search strategy detailed in Algorithm 2. Algorithm
2 relies on feature matching, after which a scale check process
is incorporated to guarantee that frames within any classified
near-set have small scale change. This allows us to effectively
apply LVI in our near-sets in the following steps. Note that if
the partitioned near-set has fewer than 10 frames, then we
discard the near-set and the current Bk1 is considered to be an
uncategorized frame.

The step of reference search in Figure 2 is an iterative



approach to find the best pseudo-reference frame in each near-
set. LetRk be the pseudo-reference frame in near-set k. First,
initialize Rk to be the start frame Bk1 with initial LVI score
1. Second, we calculate the initial LVI scores from frame
Bk1 + 1 to the end frame Bk2 using Rk as pseudo-reference.
LVI indicates that any frame with score greater than 1 has
better quality than Rk. Therefore, we choose the frame with
the largest initial LVI score to replace the current Rk. Finally,
Rk is added to the representation of the near-set k, which is
(Bk1 , B

k
2 , Rk).

The step of quality estimation in Figure 2 is to estimate
the frame LVI score of each frame. The input is a near-set k,
represented by (Bk1 , B

k
2 , R

k). Let index n be the frame num-
ber. In near-set k, the system usesRk as the pseudo-reference
to measure the quality of all remaining frames in near-set k,
and stores the LVI score of frame n as QnLV I , which is the
final quality measure.

Algorithm 1 temporal partitioning
1: set k = 1, Bk1 = 1
2: boundary search for Bk2 based on Bk1
3: set k = k+1, setBk1 = Bk2 +1, break whenBk1 exceeds

the last frame in the video
4: go to 2

Algorithm 2 boundary search
1: get the start frame Bk1
2: do feature matching between Bk1 and Bk1 + 10, and store

the locations of all matching points by a bounding box
S10

3: Let n = 1, δ = 20
4: do feature matching between Bk1 and Bk1 + n · δ, get the

bounding box Sn·δ
5: if |S10 ∩ Sn·δ| < 1

4 |S10| then
6: do bisection search between Bk1 + (n − 1) · δ and
Bk1 + n · δ using the same decision rule, break when the
bisection interval ≤ 1 and set Bk2 to be start frame of the
bisection interval

7: else
8: set n = n+ 1, goto 4
9: if Bk2 −Bk1 < 10 then

10: set Bk2 = Bk1
11: end if
12: end if

4. EXPERIMENTS AND RESULTS

We evaluate both the performances of our temporal partition-
ing algorithm and frame quality estimation of MRFQAFPV.
Our test resources are 10 FPVs with different content captured
by a Pivothead camera (1080p, 30fps).

4.1. Evaluation of Temporal Partitioning

The performance of our proposed temporal partitioning
method described in Section 3.2 is compared with two base-
line methods. The first baseline method uses a fixed time
interval (30 frames) to partition frames into different near-
sets. The second baseline method uses block-based optical
flow to compute cumulative displacement [25], where each
partitioned temporal interval has a cumulative displacement
of value 0.1. We also considered the boundary detection
method [26], but because it often creates only one segment
for the entire FPV, we do not present its results here.

The evaluation of temporal partitioning is based on 3 cri-
teria: (1) The length of the near-set is long enough that it
covers most frames captured in the specific scene. (2) The
percentage of frames with useless LVI is low. We consider
3 types of frames to have useless LVI: frames that failed in
feature matching, frames with LVI score greater than 1, and
uncategorized frames. (3) Temporally adjacent near-sets con-
tain frames that have little shared content. We measure the
shared content between near-sets by counting the number of
matching points between any two frames.

We compare our proposed method and the 2 baseline
methods in Figure 3. Figure 3(a) and Figure 3(b) compare
the 3 methods using the average length of near-sets and the
percentage of frames with useless LVI, based on the first and
the second criteria, respectively. Figure 3(c) and Figure 3(d)
compare the methods using the third criterion demonstrated
by both the average number of matching points between
pseudo-references and between start frames in temporally
adjacent near-sets. The video indexes in Figure 3 represent
different FPVs. Specifically, 0 to 2 are outdoor, 3 to 7 are
indoor, and 8, 9 are in-vehicle videos.

As can be seen in Figure 3, our proposed method has the
intermediate near-set length, the lowest percentage of useless
LVI, and the fewest matching points between either pseudo-
references or start frames in temporally adjacent near-sets. As
a comparison, the method using fixed interval has the short-
est near-set length and the intermediate percentage of useless
LVI. The method using optical flow has the longest near-set
length and the largest percentage of useless LVI. Based on the
3 criteria mentioned above, our proposed method outperforms
the two baseline methods.

4.2. Subjective Test of Frame Quality

We implement a subjective test to evaluate the quality of
frames in identified near-sets and test if the quality measure
of MRFQAFPV correctly ranks frame quality.

Individual test images are selected from FPVs to have spe-
cific LVI scores within the context of our MRFQAFPV frame-
work. The content of test images are listed in Table I. In the
implementation of LVI and the presentation of our subjective
test, we rescale all frames to 1280×720. The procedure to se-
lect test frames in one FPV is as follows: (1) All near-sets that



video type video content LVI NIQE IL-NIQE Blurriness motion
outdoor basketball 0.9936(1.0) 0.9351(1.0) 0.8846(0.7) 0.9862(1.0) 0.9931 (1.0)

run 0.7096(0.5) 0.4899(0.2) 0.4392(0.1) 0.9933(1.0) 0.6407(0.8)
walk 0.9052 (0.9) 0.7547(0.7) 0.1326(0.3) 0.9398(1.0) 0.6024(0.6)

indoor billiards 0.7468(0.7) 0.5513(0.7) 0.5523(0.1) 0.7834(0.7) 0.6399(0.6)
cat 0.8823(0.9) 0.8142(0.8) 0.8150(0.6) 0.8396(0.9) 0.6958(0.5)
eat 0.9265(0.9) 0.9911(0.9) 0.9253(0.9) 0.9732(0.9) 0.8988(0.9)

ping pong 0.9735(1.0) 0.7010(0.7) 0.6255(0.6) 0.9014(0.8) 0.9743(0.9)
talk 0.7247(0.7) 0.6045(0.6) 0.6408(0.6) 0.3901(0.6) 0.8172(0.9)

in-vehicle car 0.6765(0.7) 0.2105(0.3) 0.2865(0.1) 0.5501(0.4) 0.2511(0.2)
flight 0.9527(0.9) 0.7019(0.7) 0.2869(0.3) 0.7718(0.9) 0.8126(0.7)

Table I. PLCC(SROCC) between LVI, 3 NR QEs and motion and subjective scores
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Fig. 3. Comparison of our proposed temporal partitioning
method and two baseline methods: (a) the average length
of near-sets (b) the percentage of frames with useless LVI
(c) the average number of matching points between pseudo-
references in temporally adjacent near-sets (d) the average
number of matching points between start frames in tempo-
rally adjacent near-sets

have frames with LVI scores located respectively in [0, 9, 1),
[0, 8, 0.9), [0.7, 0.8), [0.6, 0.7) are identified. (2) The near-
set with the longest length among all identified near-sets is
selected as our test near-set S. (3) We choose the pseudo-
reference frame and 4 frames with LVI scores closest to each
of 0.95, 0.85, 0.75, 0.65 in S as our test frames. Hence, we
get 5 test frames chosen from one near-set within one FPV.

The subjective test is implemented on Amazon Mechani-
cal Turk by paired comparison using 30 participants. The in-
struction before each test is presented as: In the test, there will
be some pairs of images for you to compare. Please select the
image with better technical quality in each pair. The tech-
nical quality mainly refers to blur, noise and compression
artifacts, and does not include composition. For each pair
of images, you can view both images back and forth to a max-
imum of 5 times and then make your decision. Any accepted
answer is allowed to have at most one circular triad [27], de-
fined as a situation thatA > B,B > C and C > A, whereA,
B, C are 3 different images in a test group, and “>” means

the choice of “better”.
The subjective scores are calculated using the Bradley-

Terry Model [28]. We evaluate the quality measure of MR-
FQAFPV and 3 NR QEs (NIQE [18], IL-NIQE [19], a per-
ceptual blur metric [29] using as feature blurriness in [7]).

In addition, we compare these methods with simply using
the estimated frame-to-frame motion. Specifically in videos,
motion often introduces quality degradations. Characterizing
frame quality using frame-to-frame motion is a MR method,
since it uses the effective information provided by neighbor-
ing frames. In our experiment, the motion is characterized by
the optical flow magnitude from the previous frame to the cur-
rent frame. First, we use method in [25] to calculate optical
flow between neighboring frames. Second, we employ self-
tuning spectral clustering [30] to separately cluster horizontal
and vertical optical flow vectors, and the centroid of the dom-
inant cluster is considered as the aggregate optical flow vector
of the frame. Finally, the motion is quantified as the magni-
tude of the aggregate optical flow vector.

Table I shows the PLCC and SROCC between subjective
scores with LVI, 3 NR QEs and motion. LVI shows the best
or the second best performances in all near-sets. Among the 3
NR QEs, the performance is successfully ranked as follows:
bluriness, NIQE, IL-NIQE. The relation between frame-to-
frame motion and frame quality varies across different con-
tents, and shows intermediate performances in most near-sets
among these metrics.

5. CONCLUSION
In this paper, we propose a new strategy of image quality as-
sessment, called mutual reference, which does not fit the typ-
ical categorization of FR, RR and NR methods. Then, we
propose a framework of mutual reference frame-quality as-
sessment for FPVs (MRFQAFPV), in which we estimate the
frame quality by incorporating the MR QE, LVI [5]. To eval-
uate the performance of MRFQAFPV, we implement a sub-
jective test to validate its effectiveness by comparing with ex-
isting NR QEs and frame-to-frame motion. Remaining issues
for future work are how to compare the quality between dif-
ferent near-sets and how to incorporate motion features into
the framework of MR quality assessment for FPVs.
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