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We create an automatic Holstein cattle cataloging system called the AutoCattlogger to address the dynamic 
needs of dairy farms with frequently changing herds. This system instantly registers the identities of cattle by 
tracking them passing underneath a camera. The AutoCattlogger saves the identities of each individual cow 
in a predefined, interpretable representation space as barcodes, which allows for direct addition or deletion of 
cow identities without expensive model retraining. Thus, this system only requires a farmer to make a new cow 
walk under a camera for its identity to be instantly learned. Additionally, it is also capable of one-shot learning 
from single images of cows when videos are not available, has built-in illumination calibration functionality, 
and is robust to varying cow poses. The AutoCattlogger supports AutoCattleID, which is a cattle identification 
functionality that yields consistently high Track-level Top-1 recognition accuracy of above 90% even after a year 
on unannotated, unsegmented dairy videos. This demonstrates the robustness of our system to long-term changes 
in cow sizes and scene lighting conditions, which is a hard problem for Deep Metric Learning based recognition 
methods. The AutoCattlogger, with its tracks and identities, can thus serve as the foundation for many cattle 
video analytics tasks such as video retrieval, weight estimation, and primarily, cattle recognition.

1. Introduction

Computer vision systems can improve the efficiency of cattle herd 
management in dairy farms. Dairy farms in the Americas usually have 
hundreds of cows, and require significant labor resources to manage 
the herd. The dairy workers must regularly monitor and record sev
eral attributes for individual cows. These attributes include symptoms 
of health issues such as lameness, abnormalities such as reduced feed in
take, weight and body condition, and estrus behavior. Automating these 
monitoring tasks will reduce labor and operational expenses, while po
tentially increasing operational reliability. Using computer vision meth
ods for automation further ensures ease of use and lower cost of equip
ment.

The task of cattle identification underpins all other automation sys
tems mentioned above. The weight, body condition, behavior or any 
other recorded characteristic, must always be associated with an in
dividual cow. Designing a robust and reliable computer vision cattle 
identification system is thus an important first step towards developing 
herd management systems.

A good computer vision cattle identification system satisfies accu
racy requirements even within the limitations of a real-world setting. 
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Unlike curated datasets, real-world barns come with limited data, and 
limited time and workforce available to collect and annotate this data. 
Moreover, dairy farms regularly take in new cows, and have older ones 
removed. A good recognition system must be able to quickly adapt to 
the changing herd without the need for expensive computation.

However, almost all recent computer-vision cattle identification 
methods use either Deep Learning (DL) or Deep Metric Learning (DML) 
approaches, which cannot operate within the aforementioned limita
tions of a real-world setting. The DL methods approach cattle identifica
tion as a multi-class classification problem and force neural network sys
tems to memorize the appearances of hundreds of cows. These systems 
cannot learn to identify new individuals without modification to their 
neural network architecture, and expensive model retraining. Identifi
cation systems that use DML, train neural networks to generate feature 
embeddings for cow instances using variants of contrastive loss func
tions. These systems can learn the identities of new individuals without 
modifications to the neural network architecture and without requiring 
any retraining. However, similar to DL systems, they too require large 
amounts of annotated training data to achieve the required levels of per
formance. Satisfying this requirement is difficult in a real-world setting.
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Fig. 1. Block diagram of the AutoCattlogger. In this diagram, the boxes indicate the operators, the illustrations indicate the form of data, and the arrows indicate data 
flow. The AutoCattlogger tracks each cow passing underneath a top-view camera and instantly generates its identifying feature vector and saves it in the ‘Cattlog’. 
The track information along with its start and end times for each cow is also returned.

On the contrary, our system, the AutoCattlogger, is designed to work 
within the limitations of the real-world while also achieving commend
able cattle identification performance. The AutoCattlogger is built by 
combining an ID-agnostic cattle tracker inspired from [1], with a Cow
to-barcode conversion system developed from the Eidetic Cattle Recog
nition system [2]. This unique combination results in a system that not 
only automatically labels each cow instance, but also instantly regis
ters their identities for recognition. This means that as soon as a new 
cow walks past our camera, our system is ready to recognize the cow. 
Further, the AutoCattlogger is also capable of learning identity repre
sentations from single training images per cow. This one-shot learning 
capability is useful when farmers need to quickly add a cow to the 
catalog without having to make it walk under a camera. Thus, the Au
toCattlogger builds a cattle identity catalog by seamlessly blending the 
three steps of data collection, annotation and training, requiring virtu
ally zero human effort in the process.

The block diagram in Fig. 1 shows the inputs and outputs of the 
AutoCattlogger along with a high level overview of the components in
volved. The AutoCattlogger ingests raw videos, which are unsegmented 
and unannotated videos of cows from a top-view camera. In our data, 
these videos have cows walking in a single file after being milked. Op
tionally, a list of the ground-truth identities (ear-tag numbers) of these 
cows in the order in which they appear can also be provided. The Auto
Cattlogger has three main outputs -- the Cattlog of cow-barcodes serving 
as the identity model of all the seen cows, the path information of each 
cow as tracks, and the start and end frame numbers for each track.

Since cattle recognition and tracking provide a foundation for the 
different herd management tasks mentioned earlier, many video ana
lytics applications can be built on top of the AutoCattlogger. These are 
shown in Fig. 2. Of these, this paper addresses Cattle Recognition, with 
the Automatic Cattle Identifier, also called AutoCattleID, which is an 
application that utilizes video context information embedded in the cat
tle tracks. Cattle weight estimation from side-view videos [3] is another 
application. The start and end points of each cattle-track can be used to 
obtain video clips of individual cows from synchronized side-view cam
eras observing the same scene. The side-view weight estimator in [3] 
can then be applied to the obtained video clips to automatically log the 
weight estimates of each cow in the herd. A basic version of the Auto
Cattlogger was also used to retrieve video clips of individual cattle in 
[4].

Fig. 2. Cattle video analytics stack built atop the AutoCattlogger. Blocks with 
italicized text represent data, be it raw or processed. Blocks with normal text 
represent the application tools built primarily on top of the underlying data.

AutoCattleID utilizes the foundational principle of the ECR system 
[2], which is to use stochastic, learning-based models to replicate tasks 
which humans are intuitively good at, and to use deterministic algo
rithms that are not learning-based to perform tasks which computers 
are historically good at. Accordingly, AutoCattleID uses a learning-based 
model to identify parts of a cow’s anatomy via keypoints, and uses deter
ministic algorithms to memorize the appearances of hundreds of cows 
and find the best match. Further, the AutoCattlogger is designed with 
checks and balances that prevent it from blindly accepting every out
put of the learning-based detectors. Rules based on a shape model are 
used to verify the validity of the detected keypoints before they are al
lowed to be used for cattle pose correction. Further, the cow-barcodes 
are interpretable intermediate representations that enable designers to 
directly compare them with pose-corrected cow instances and pinpoint 
representational errors. This explainability of system input-output rela
tionship allows us to accurately identify sources of errors and design 
parts such as the aforementioned color-corrector to address them.
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The AutoCattlogger builds on top of our previous efforts in the do
main of cattle recognition which introduced a barcode based cattle 
recognition system [2], a keypoint rectifier [5], and an illumination cal
ibration system [6]. Our key contributions in this paper are:

• We combine the cow-to-barcode system from our previous works 
[2,5,6] which translates unique coat patterns into binary represen
tations, with an object tracker to create the AutoCattlogger. The 
AutoCattlogger is thus a modular, track-based, automatic and an 
instant cattle identity registration system. This system, presented 
in Sec. 3, reduces human effort to just making cattle walk below a 
camera and noting down their ear-tag numbers.

• The AutoCattlogger, despite being designed to learn cattle identity 
representations from videos, is also capable of one-shot learning 
from images of cows when videos are not available. This is demon
strated in Sec. 6.1.

• We present AutoCattleID, an improved cattle recognition applica
tion built atop the AutoCattlogger, in Sec. 3.4. AutoCattleID uses 
contextual information from the cattle tracks for identifying indi
vidual cows, unlike other candidate systems that totally neglect this 
crucial information.

• We demonstrate that AutoCattleID is robust to long-term changes 
in cow appearance even after a year (See Sec. 6.3.). This makes it 
more accurate than Deep Metric Learning-based methods as shown 
in Sec. 6.1.

We study the related works next in Sec. 2.

2. Related works

Automatic recognition and tracking of cattle provide avenues to 
many cattle analytics applications including their health tracking, be
havior monitoring, milk production at an individual level. Moreover, 
automation of these tasks ensures savings in cost, time and labor. The 
primary functions supported by the AutoCattlogger are cattle tracking 
and identification. Since the AutoCattlogger uses a very simple online vi
sual Multi Object (cattle) Tracker (MOT) inspired by [1], in this section, 
we discuss the related works only in the domain of cattle recognition.

Cattle recognition techniques have come a long way since the tradi
tional methods of branding, ear-notching and ear-tagging. Newer meth
ods such as ones that use RFID tags [7] are also intrusive, expensive, 
and easily susceptible to wear and tear in the harsh barn environments. 
Methods that recognize cattle using muzzle-prints [8--11] or retinal pat
terns [12] are just too slow to sample instances. Also, they cannot be 
automated. So, they require expensive human labor for implementation.

Lately, many computer-vision based cattle recognition algorithms 
have emerged which identify cattle from their faces [13--18], ear-tags 
[19--22], coat patterns in the side-view [23] or top-view [24,2], or key
points on their backs [25,26]. Because they are executed on computers, 
they are automation friendly. However, some have operational limita
tions. Identifying cattle from their faces would mean that the algorithm 
must wait till the face of the required animal is facing the camera. These 
faces could also easily be occluded by other cattle, fences or other ob
jects in between them and the camera. The same problems also affect 
computer-vision methods that identify cattle by reading their ear-tag 
numbers. Using the side view presents challenges such as occluding 
fences and other animals, which need extra processing to remove. Using 
top-view for identification has no such limitations. The backs of cattle 
are always visible without obstruction to a top-view camera.

Of the top-view based identification systems in the literature, many 
[27,16,28,29] use monolithic neural networks that perform end-to-end 
cattle identification or provide the embeddings for identity classifica
tion. These monolithic systems are burdened to localize cows within 
their (already) detected bounding-boxes, and then identifying them 
without errors. Unlike them, our AutoCattlogger is a non-monolithic, 
modular system built from a small set of components that perform spe

cific tasks. This modular design allows us to upgrade specific compo
nents such as the instance mask or keypoint detectors if the need arises.

In a conventional barn, the composition of the cattle herd changes 
regularly as new cows are added and older ones are removed. A useful 
cattle recognition system must be able to overcome this ‘herd adapt
ability’ problem. Many methods including the more recent ones still use 
neural-networks [27,14,16,28,29] or other models such as SVMs [23] to 
predict cow identities as individual classes. These pretrained classifiers 
cannot adapt to changing herds without expensive, time consuming and 
data hungry model retraining. Retraining on new herds also demands in
tense data annotation efforts. Moreover, neural-network classifiers are 
constrained to identify only a fixed number of cow individuals if the 
model architecture is frozen.

Systems that were developed to solve this herd adaptability prob
lem include those that use embeddings from Deep Metric Learning [24], 
[30], and those that use a predefined embedding space [2]. The idea be
hind the DML systems in [30], [24] and all its derivatives [1,31,32] is to 
learn an embedding model that clusters images from the same individ
ual together while pushing images from different individuals far apart in 
its embedding space, using a suitable loss function. Embeddings for pre
viously unseen cattle are then generated using the same trained model 
in the same embedding space. A cow-instance that needs to be iden
tified is first transformed into a vector in this embedding space using 
the trained model. This embedding vector is then used to predict the 
identity of the cow-instance using the embeddings from a support-set of 
training instances and algorithms such as K-nearest neighbors.

However, a simpler approach to solve the herd adaptability problem 
is using a predefined embedding space for identity representation as 
done by the systems in [2] and its derivatives [5,6,4] and our AutoCat
tleID. The idea is to first correct all cow instances for pose and lighting, 
and then transform them into a barcode of predefined dimensions. This 
makes learning or unlearning cattle identities as easy as adding or delet
ing these barcodes. A cow instance to be identified is first converted into 
a barcode, which is then matched to its nearest barcode from the set of 
training instances to get the identity prediction.

For a theoretical understanding of why using predefined cow
barcode features for cattle identification is better than using features 
from DL or DML, we must look at the problem from the reverse perspec
tive. Training Multi Layered Perceptrons, Convolutional Neural Net
works, or transformers to read everyday barcodes or QR codes, implies 
having them memorize an impossibly large number of patterns. Using 
DML for the task implies training the embedding-generator models to 
sort all possible barcodes into separable bins. Both these approaches 
make the problem intractable.

We postulate that once all non-uniformities are eliminated from an 
image of a cow, its appearance can be reduced to a representation like 
an everyday barcode. Using neural-networks to detect a fixed number 
of keypoints that have similar appearance across all cows is definitely a 
more tractable problem. These keypoints can then be used to eliminate 
non-uniformities in cow size and pose as done by our AutoCattlogger. 
Experimental results proving that our AutoCattleID is better than the 
DML method [24] is provided in Sec. 6.1.

In addition, DML methods are not directly interpretable. The authors 
of [30] present example images where their identification system errs. 
While most of them can be attributed to their system lacking a pose cor
rector, they do show a few instances where their system decides cows 
with large differences in coat-patterns to be the same. The authors of 
[32] also present example images where their system gets confused be
tween two different cows that look clearly different. They even have 
examples where cows with large white regions are predicted as a cow 
that is almost completely black, and vice versa. There is no deterministic 
explanation available for this behavior, and one can only speculate. The 
cow to barcode relationship established by the AutoCattlogger ensures 
the desired interpretability of representations.

Our Eidetic Cattle Recognition system [2] was the first to involve 
keypoints in identifying cattle. Later methods such as [25] that iden
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Fig. 3. Block diagram depicting the parts of the cow-to-barcode system. The oriented bounding box of each detected instance, and the cow-barcode if generated are 
passed to the cattle tracker. The figure in the top-right corner of the block diagram shows the ten keypoints on the back of the cow used for pose correction.

tify cattle using only the relative locations of keypoints were developed. 
While they perform reasonably well without depending on the color 
of cows, these methods could be sensitive to major errors in the de
tected locations of the keypoints that we know from experience can 
be introduced by keypoint detectors. Their design prevents them from 
using any keypoint error correction strategies as used by our AutoCat
tlogger. Additionally, they too train their classifiers using DML, which 
again generates non-interpretable intermediate representations, unlike 
our cow-barcodes. The solution in [26], of using keypoints to first esti
mate pose, and then creating a smaller subset of train-embeddings based 
on the pose for predicting the cattle identity using nearest neighbor 
matching, is resource-intensive. 

Further, all the DL and DML based identification methods require 
large amounts of annotated training data, which is labor intensive to 
acquire. The system in [1] and [31] is designed to reduce human anno
tation effort by tracking cows and collecting all instances from the same 
track (or tracklet) under the same identity. The authors of [31] claim 
that their system can be used to label an entire herd with a few minutes 
of human annotation effort to combine tracklets of the same individual 
cows. The recognition system in [32] also needs to train from instances 
from multiple cameras to improve its accuracy. Meanwhile, the AutoCat
tlogger eliminates this problem entirely and practically reduces cattle 
annotation efforts to ZERO. This is because the AutoCattlogger is not 
data hungry, and can learn the identity of a cow from instances of a sin
gle cow track. It can also learn the identity of a cow instantly even from 
a single training image as demonstrated in Sec. 6.1.

3. Method

The AutoCattlogger system ingests unannotated, unsegmented videos 
of cattle in the top view and computes tracks for each individual cattle. 
Representative features for each of these individuals are then com
puted from their respective tracks. These features are then stored as 
the learned identity information of that individual. The same system 
can also be used to search for a given individual in an unsegmented 
video, or to identify an individual from a given track.

The AutoCattlogger is composed of two building blocks -- the cow
to-barcode system that converts cow instances into barcodes in a pre
defined feature space, and the cattle tracker. These components, along 
with the input and outputs of the AutoCattlogger namely the Cattlog, 

the cattle tracks, and the start and end time-stamps of each track, are 
all shown in the block diagram in Fig. 1. Explanation of the working 
of the components of the AutoCattlogger is in Sec. 3.1 and Sec. 3.2. In 
Sec. 3.3, we explain how the barcodes from multiple instances of the 
tracked cows are combined to form a single barcode for each individ
ual cow, which collectively form the Cattlog. Finally in Sec. 3.4, we 
explain the functioning of AutoCattleID for identifying cattle using the 
cattlog-barcodes.

3.1. Cow-to-barcode system

The cow-to-barcode subsystem is a modular system with checks and 
balances that is based on the Eidetic Cattle Recognition system [2,5]. 
Its working is shown in Fig. 3. This cow localizer first localizes all cows 
in the frame using instance masks and ten keypoints per instance. For 
this, it uses a Mask R-CNN model with a ResNet50-FPN backbone [33], 
and an HRNet Keypoint Detector [34]. An example image of a cow with 
all ten keypoints are shown in the same figure. Further, note that the 
mask and keypoint detectors are independent of individual identities, 
and hence are not re-trained when cows are added or deleted.

The cow localizer also handles keypoint detection errors such as 
missing and misplaced keypoints. To handle missing keypoints, the lo
calizer uses an interpolator that leverages axial symmetry of the cow 
in the top view to estimate the left/right side keypoints. To estimate a 
missing keypoint on the spine of a cow, the interpolator selects a point 
on a second-order polynomial curve fit through keypoints detected on 
the spine. To classify an instance as having misplaced keypoints, the lo
calizer uses a rules-checker with hand-crafted rules based on a shape 
model of the cow. This shape-model is defined by bounds on the ratio 
of distances between pairs of keypoints, ratio of angles between pairs 
of keypoint triplets, and distance of keypoints from the edge of the in
stance mask. Each rule checks a detected set of keypoints for a breach 
of bound. If any rule is broken, the instance is deemed unfit to be used 
for identification.

The localizer then applies a keypoint rectifier to recover some of 
these unfit instances. This keypoint rectifier, introduced in [5], applies a 
rules-checker as above and identifies the misplaced keypoint(s) by iden
tifying the pattern in the list of broken rules. All misplaced keypoints are 
deleted, and then reinserted using the interpolator from above.
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Next, the system applies a color-corrector from [6] to the video frame 
to reduce the effect of specular highlights from non-uniform scene illu
mination. This is needed because specular highlights on black regions 
on the cows can cause it to appear white and reduce the fidelity of its 
computed barcode.

This color-corrector uses a precomputed scene illumination map as 
pixel-level black-point values to apply black-point-correction to a given 
video-frame. These illumination maps are computed by using cows with 
fully black coats as Black-Mirror Light-Probes (BMLPs). Specifically, we 
measure and accumulate the pixel values on the surface of these cows 
as they move around in the scene. So, a farmer has to just make a black 
cow walk under the camera when recalibration of the lighting model 
is needed. Further, this color corrector is very effective as it samples 
the ground-truth non-uniform illumination directly from the scene and 
does not rely on illumination models learned from some other datasets. 
It is also fast because it does not compute image statistics or use neural
networks during inference.

The pose corrector uses the detected instance mask, keypoints, and 
the color-corrected video frame to compute images of the cow instances 
in a canonical pose with a straight spine and a fixed image-size as 
shown in Fig. 3. The bar-code generator pixelates and binarizes the 
pose-corrected images using a predefined threshold to produce the cow
barcodes.

These barcode images have a size of 512 × 1024px with blocks of 
size 16 × 16px. The barcodes are further serialized and stored as 2048 
bit bit-vectors which serve as the identifying features for the individual 
cows.

3.2. The cattle tracker

We apply a simple online Multi Object Tracker (MOT) to the unseg
mented videos to compute the trajectories for each individual cow. This 
tracker uses only an appearance model and does not include a motion 
model. The tracker tracks cattle by detection. That is, it compiles the 
detection outputs from the cattle localizer in Fig. 3 from every video 
frame into individual tracks. Because we work with top-view videos, 
chances of multiple tracked objects occluding each other are minimal. 
This implies that a simple tracker is adequate as the chance of identity 
switching is negligible.

Each detected cow instance is a track-point. A track is a list of track
points that our tracker decides to be of the same individual. Initially, the 
tracker opens a new track for every new track-point. Each track-point 
found in the later frames are matched with one of the open tracks and is 
added to it. A track is closed when no matching track-points are found 
in a few consecutive frames.

Each track-point always stores the video-name, frame number, and 
the corners of the oriented bounding box of the cow instance. It stores 
the cow-barcode only if the instance has all keypoints detected without 
errors. So, track-points of partly visible cow instances entering or exiting 
the scene are still attached to their tracks, but without any barcode in
formation. For each track, cow-barcodes from specific track-points that 
contain them are averaged to form the cattlog-barcode, and this is saved 
along with the track information. The procedure to compute the cattlog
barcode is explained in Sec. 3.3.

AutoCattlogger uses a cattle object detector with a low confidence 
threshold to reduce false negatives and improve the detection recall met
ric of the tracker. This is to ensure that no cow is missed. This however 
increases false positives, leading to creation of tracks without any ac
tual cows in them. But, all such false-positive tracks are easily rejected 
by checking for existence of at least one of their track-points with a 
stored cow-barcode. This improves the detection precision metric of the 
tracker. Together, this scheme ensures very high cattle object detection 
and tracking accuracy, and is another example of checks and balances 
in our design.

Further, the tracks can also store additional information about the 
entry and exit directions of the cow in the scene to help filter unwanted 

tracks. If the ground truth identities of the individual cows are available, 
as in our dataset (Sec. 4.2), we attach them to their respective tracks.

To match the track-points on a given frame with an existing open 
track, we follow the standard approach of using a bipartite graph match
ing algorithm. Specifically, we apply the Jonker–Volgenant algorithm 
[35] which performs maximum-weight-full-bipartite graph matching by 
formulating it as a Linear assignment problem. The bi-partite graph is 
constructed by considering track-points in the current frame as vertices 
in the first partition, and the last seen track-points of all open tracks as 
vertices in the second partition. The IoU values between pairs of ori
ented bounding-boxes of the track-points form the edge weights of the 
bi-partite graph. We open a new track for every track-point that has no 
found match, and close every open track that has no matching track
point. After completely processing all frames of all given videos, we 
close all the open tracks.

3.3. The cattlog

We define the process of computing the identifying features for the 
individual cows as ‘cattlogging’. For every closed track with a cow, a 
bit-wise statistical mode is computed from a selected few of its barcodes 
to obtain the mode-barcode called the cattlog-barcode. The cattlog
barcodes are stored as a 2048 bit bit-vectors which serve as the identi
fying feature vectors for the cows.

The statistical mode averaging helps to even out the effects of scene 
illumination and reduce the influence of variation in locations of de
tected keypoints. The cattlog-barcodes from all tracks computed from 
the videos used for training the cattle recognition system are saved in 
the automatically generated Cattlog (the cattle-catalog).

The barcodes selected to compute the cattlog-barcode are the Top 
20% of track-points based on the proximity of the centers of their ori
ented bounding boxes to the center of the video frame. Because we use 
top view cameras, such filtering ensures that we obtain cow instances 
with minimal perspective distortion, and in full view. The keypoint in
terpolator of the cow localizer (Fig. 3) can forcefit keypoints when parts 
of cows are beyond the edge of the video frame. So, using instances 
closer to the center of the frame prevents cattlogging from instances 
with forcefitted keypoints.

3.4. AutoCattleID

AutoCattleID, the cattle recognition application built atop the Au
toCattlogger leverages the contextual information present in the cattle 
videos in the form of cattle tracks. To recognize any cow from a video, 
AutoCattleID first computes the track information of the cow as it walks 
across the scene. It then matches the cow barcode at every accumulated 
track-point with its nearest neighboring cattlog-barcode using the Ham
ming distance metric. It then declares the identity associated with the 
cattlog-barcode with the highest number of matches to be the predicted 
identity.

4. Datasets and data collection

This section details the collection and curation of the video datasets 
and the ground-truth track annotations used to evaluate the AutoCatt
logger system. Details of datasets used to train the components of the 
AutoCattlogger, and the datasets used for evaluating the cattle recogni
tion systems from our previous works [2,5,6] are also provided in the 
in Apx. B and Apx. C for completeness.

4.1. Data procurement

We mount a top-view camera in the holding area of the Purdue Dairy 
so it can continuously record a path along which cows walk in a sin
gle file after being milked. The recorded videos have a resolution of 
1920×1080 px, frame rate of 30FPS, use H.264 encoding, and are stored 

Smart Agricultural Technology 12 (2025) 101561 

5 



M. Ramesh and A.R. Reibman 

Table 1
Number of cows that are common between any two days. The 
numbers on the principle diagonal represent the number of 
cow individuals present on each corresponding day.

S22-Day1 S22-Day2 S23-Day1 S23-Day2 
S22-Day1 153 148 81 80 
S22-Day2 148 169 93 90 
S23-Day1 81 93 177 149 
S23-Day2 80 90 149 175 

as contiguous segments that are each an hour long. We call these the raw 
videos or the hour-long videos. Most of these hour-long videos are gen
erally empty as the cows are milked only twice a day. So, we retain only 
those videos that were recorded during the milking hours. Separate sets 
of these hour-long videos are used to create the datasets for evaluating 
the AutoCattlogger system, as explained next.

4.2. The raw videos datasets

Sets of continuous, hour-long videos with cows in them were 
recorded on two consecutive days of Summer (June) 2022, and two 
days a month apart in June and July of Summer 2023. We refer to these 
sets of videos by S22-Day1, S22-Day2, S23-Day1, and S23-Day2. Work
ers in the Purdue Dairy recorded the ground-truth cow-labels in the 
same order in which the cows walked by under the top-view camera, in 
a CSV file called the ‘human-record’. We call the ground-truth labels the 
‘cow IDs’ (short for cow identities), which are usually unique four digit 
numbers seen on the ear-tags of the cows. The four sets of hour-long 
videos from the four different days, together with their human-record 
annotations constitute the Raw Videos Datasets. We use these datasets 
to create the cow-tracks for evaluating our AutoCattlogger system.

The experiments in Sec. 6.1, 6.3 and 6.4 use these datasets. Note that 
not all cows are present in the videos of all the days. Table 1 gives the 
number of cows that are common across any two given days.

4.3. Ground-truth track annotations

The tracker used by our AutoCattlogger is sufficiently accurate to 
retrieve every single cow from the set of videos that it ingests. Since 
the videos in the Raw Videos Datasets also have cows that are undoc
umented in the human-record, we automatically filter the data using 
the entry and exit directions, and consider only those cows that ap
pear within the duration of ground-truth recording. The number of cow 
tracks found after this filtering is the same as the number of cows in the 
human-record. After forming this one-to-one association, we annotate 
every required track with its cow ID from the human-record. Detailed 
explanation of the operations of the cattle-tracker, contents of a track
object, and the track filtering techniques are in Sec. 3. We use the videos 
in the Raw Videos Datasets in conjunction with the above ground-truth 
track annotations to evaluate the AutoCattlogger, using the evaluation 
procedure detailed in Sec. 5.

5. Evaluation method and metrics

This section details the evaluation methodology and metrics used to 
assess the performance of the AutoCattlogger. The tracking system is 
sufficiently accurate to retrieve every single cow from the set of videos 
that it ingests. So, we evaluate only the quality of the identifying barcode 
features that are generated by the AutoCattlogger in the experiments in 
Sec. 6.

Performance consistency of downstream video analytics tasks built 
on top of the AutoCattlogger requires the computed barcodes of cows to 
be consistent across days. To measure this consistency, we evaluate the 
AutoCattlogger using the downstream task performance of cattle iden
tification by utilizing the video data of the same cows from multiple 

days in our datasets. In doing so, we not only prove the robustness of 
AutoCattlogger to time-varying factors such as background, illumina
tion, and cow sizes across years, but also prove its worth in supporting 
a cattle identification system.

For this evaluation, we use the Cattlog from one of the days of our 
datasets as our training barcodes to recognize cows in tracks from the 
other days using AutoCattleID (Sec. 3.4).

We evaluate the cattle recognition performance using two metrics: 
the track level accuracy that measures the performance of AutoCattlog
ger based recognition (AutoCattleID) considering the video context, and 
the instance level accuracy that measures the performance of the same 
on random instances drawn without any video context. In cases where 
there are no common denominators available to compute the accuracy 
as a percentage, we use the number of correct identifications metric 
in place of the instance level accuracy. For all these metrics, higher 
numbers indicate better performance, and better cattle identification 
performance indicates the ability of AutoCattlogger to generate consis
tent barcodes for the same cow.

1. Track Level Top-K accuracy: The track level top-K accuracy mea
sures the proportion of times the correct cow ID is among the top 
K predictions at the track level. The top-K predictions at the track 
level are obtained by collecting the predicted identity for every in
stance in the track and then arranging them in decreasing order 
of frequency of occurrence. The maximum number of different ID 
predictions for the track instances among all the tracks is the max
imum meaningful value of K. Therefore, increasing the value of K 
beyond this maximum value will not increase track-level accuracy. 
The experiments in Sec. 6.1, 6.2, and 6.3 use this metric.

2. Instance level Top-K accuracy: This is a standard classification 
accuracy metric. The instance level top-K accuracy is the propor
tion of times the correct cow ID is among the top-K predictions at 
the instance level. These top-K predictions for a given cow instance 
are the top-K nearest neighbors in the Cattlog. The experiments in 
Sec. 6.1, and 6.3 use this metric.

3. Number of correct identifications: As the name suggests, this 
metric represents the total number of instances for which the pre
dicted cow ID is the correct cow ID. The experiments in Sec. 6.2
and Sec. 6.4 use this metric because the total number of instances 
available for generating the barcodes varies among the recognition 
systems that are being compared resulting in no common denomi
nator.

The track level top-K accuracy is analogous to the video level Top-K 
accuracy metric used to present the results in [2,5]. The only differ
ence is that the recognition systems in [2] and [5] were evaluated on 
human-cut video segments that contain only one cow each, and here, the 
AutoCattlogger automatically finds the tracks of each cow. So, in Sec. 6, 
we compare the Track level Top-K accuracy values from AutoCattleID 
with the Top-K Video level accuracy values from [2] and [5]. Since both 
these metrics measure the accuracy at the level of cow-individuals, we 
collectively refer to them by ‘Cow Level Top-K Accuracy’.

Note that, due to the sheer number of instances in our datasets, 
the instance level accuracy uses a denominator that is in the order of 
103 or 104 instances. This makes them vulnerable to biases from eas
ily identifiable cows lingering in the scene for longer durations. So, the 
instance-level accuracy can be misleadingly high even if there are mul
tiple cow individuals that are never correctly identified. However, these 
cows that are never correctly identified will not bias the track-level ac
curacy. Hence, the track-level accuracy presents a normalized version 
of the recognition performance.

In our datasets, we find three cows with completely black backs. 
These cows were assigned the same fully black barcode, which corre
sponds to an all zero bit-vector. So, in all our evaluations, we treat the 
recognition of a black cow as any other black cow as a correct recogni
tion. We call this ‘discounted evaluation’.
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Table 2
Experimental results from comparison with Deep Metric Learning method for cow identification [24]. The AutoCattleID method proposed in this paper is marked 
with an asterisk (*). All the support-set instances come from S22-Day1. The highest accuracy value in each result column is highlighted in bold.

Training Information Instance level Top-1 Accuracy (%) Cow/track level Top-1 Accuracy (%) 
(% correctly identified instances) (% correctly identified cows) 

Case Method Train & Val. # Support-set S22-Day2 S23-Day1 S23-Day2 S22-Day2 S23-Day1 S23-Day2 
# Datasets Instances (7698 inst.) (6613 inst.) (4024 inst.) (148 cows) (81 cows) (80 cows) 
1 DML [24] OpenCows2020 [24] 7642 52.34 20.02 23.88 88.51 45.68 37.50 
2 DML [24] S22-Day1 7642 84.71 36.82 49.06 93.92 58.02 60.00 

& S22-Day2 
3 Auto (20% images 1471 90.48 84.83 85.98 95.27 92.59 91.25 

CattleID* per cow) 
Experimental cases on One Shot Learning 
4 DML [24] OpenCows2020 [24] 153 30.94 11.89 14.89 56.08 22.22 22.50 
5 Auto (1 image per cow) 153 87.62 83.47 87.40 95.27 92.59 92.50 

CattleID 

6. Experiments and results

This section presents the results of evaluating the AutoCattlogger 
based on cattle recognition performance. The experiments in this section 
are designed to answer the following research questions.

1. Is our approach of using a predefined embedding space of cow-barcodes 
better than using an embedding space obtained from Deep Metric Learn

ing for cattle identification? The results in Sec. 6.1 show how our 
approach is better.

2. Is our tracker based AutoCattleID better than our own previous ap

proaches? This is answered in Sec. 6.2.
3. Can AutoCattleID maintain its performance when cross-evaluated on 

multi-year data? This is answered in Sec. 6.3.
4. How well does AutoCattleID perform when parts of the AutoCattlogger 

are removed? This ablation study is in Sec. 6.4.

Finally, we conclude this section with the discussion of our results in 
Sec. 6.5.

6.1. AutoCattleID vs. Deep metric learning

In this section, we compare the performance of our method with 
that of the Deep Metric Learning cow identification method [24] on 
our datasets. We choose this method among those discussed in Sec. 2, 
because this is the only other method designed to adapt to new indi
viduals without the need for model retraining. This method is also the 
foundation for other subsequent works from the same authors including 
[1,31,32].

Here, it is important to note the difference between the dataset used 
to train the embedding model itself using some contrastive learning 
technique, and the training dataset from the new herd that is used to 
get the support set of embeddings for cow identification. For conve
nience, we call the latter dataset the support-set and call the embeddings 
derived from it the support-embeddings. Furthermore, for experiments 
with the DML models involving our data, the instances in the support
set, testing set, and the training set where needed, are generated by the 
AutoCattlogger itself. All cow instances that the AutoCattlogger utilized 
for generating a barcode are cropped to their oriented bounding boxes 
to form the samples in the datasets mentioned above.

We present five experimental cases in this section. The instances in 
the support-sets for all cases are sampled from S22-Day1. This implies 
that the support-embeddings for the DML cases and the Cattlogs for the 
AutoCattleID cases are created from instances sampled from the S22
Day1 dataset. All cases are evaluated on the instances sampled from 
S22-Day2, S23-Day1, and S23-Day2.

Case 1 explores the adaptability of a learned DML embedding space 
to a completely new herd. This case uses the embedding model from 
OpenCows2020 dataset to generate the support-embeddings for the 

cows in our S22-Day1 dataset with 7642 instances from 153 cows. Case 2 
tests the accuracy of the DML system when we train the embedding 
model on cows from our own herd using the S22-Day1 dataset. The 
weights from the epoch that resulted in the best accuracy on the S22
Day2 validation dataset with 7698 instances from 148 cows are selected 
as the final model weights. The support-embeddings also come from the 
same set of 7642 instances from S22-Day1. Case 3 presents the results 
from our preferred AutoCattlogger based cattle identification method -- 
AutoCattleID -- that uses only the top 20% of instance per cow based on 
their proximity to the center of the frame to learn its identity.

Next, to demonstrate the one-shot learning ability of our AutoCat
tleID method, we include cases that force the selected methods to learn 
cow identities using just one instance per cow. This ability is useful when 
very little training data is available for some or all of the cows. For each 
of the 153 training cows, AutoCattlogger automatically fetches this in
stance from the track-point closest to the center of the frame to avoid 
image distortions. Both Case 4 and 5 use this support-set. Case 4 uses 
the same DML embedding model from Case 1, but generates the support
embeddings from only one image per cow. Exp 4 also uses a K value of 
1 instead of the default value of 5 for K-NearestNeighbors matching to 
predict the cow identity [24]. In Case 5, we make the AutoCattlogger 
learn the cow identities from the same set of 153 images as in Case 4.

The results of the comparison are presented in Table 2 with both 
the Instances and Cow/Track level Top-1 accuracy metrics. For all cases 
on DML cattle identification, the ‘Train & Val. Datasets’ column has the 
name of the dataset used to train the embedding model, and the valida
tion set used to select the best model weights. For cases 1 and 4, separate 
training and testing dataset of the OpenCows2020 dataset were used 
for training and validation. Further, since our AutoCattlogger does not 
involve training embedding-models, the ‘Training Dataset’ column has 
additional information about the training datasets.

The DML model trained on all training instances of the Open
Cows2020 dataset produced validation accuracies of 99.8% (instance 
level) and 100% (cow level) when evaluated on the test set of the Open
Cows2020 dataset [24]. However, we see from Case 1 in Table 2 that 
this learned embedding space on the smaller dataset with 46 cows does 
not adapt well to our dataset with 153 cows. From Case 2, we observe 
that training the DML embedding model on all training instances of our 
own S22-Day1 dataset produces good results on S22-Day2. However, 
this performance dips greatly when evaluated on data from the same 
cows a year later. The accuracy results from our proposed method in 
Case 3 are very good, even on data from a year later. From the results 
of Case 4 and 5, we see that our AutoCattleID method outperforms DML 
by a huge margin. This proves that our AutoCattlogger can learn from 
single images of cows when their videos are not available.

Note that for both the AutoCattleID cases, Case 3 and Case 5, the 
color corrector of the AutoCattlogger uses illumination maps from the 
evaluation days (see Fig. 3). This calibrates the system to accommodate 
the variations in scene illumination conditions. The system automat
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Table 3
Number of correct identifications. The results 
for the recognition system in BMLP, and Au
toCattleID include 65 discounted instances -- 
because they both find three equivalent com
pletely black cows in the training set which get 
to share the same fully black barcode.

Cattle ID # correct 
Systems identifications 
ECR [2] 1211 
SURABHI [5] 2279 
BMLP [6] 4198 
AutoCattleID 7042 

ically generates these illumination maps once we mark a cow to be 
completely black. More details on this strategy are presented in Sec. 6.3.

These experimental results prove that by using a predefined embed
ding space of cow-barcodes, AutoCattlogger enables us to build very 
efficient and accurate cattle recognition systems. Further, we found that 
using additional training images per cow in Case 3 rather than just one 
per cow in Case 5 helps reduce noises due to lighting and perspective 
variations, and obtain better quality cow-barcodes.

6.2. AutoCattleID vs. Our previous works

The Eidetic Cattle Recognition (ECR) system [2] that identifies cows 
using only one training instance underwent multiple improvements to 
reach its current form -- AutoCattleID. In this section, we show that the 
current iteration of our cattle recognition system based on AutoCattlog
ger performs better than all the previous iterations.

All versions of our cattle recognition system in this comparison are 
evaluated on cut-videos of S22-Day2, which are re-encoded segments 
of the hour-long videos with only one cow in them (Apx. C). Also, the 
Cattlogs for all versions are generated from cut-videos of S22-Day1. Cut
videos are used in this section because the previous versions of our cattle 
recognition system lack the ability to track individual cows. Thus, the 
Cattlog for AutoCattleID is generated by running the AutoCattlogger on 
the same set of re-encoded cut-videos from S22-Day1 as used by our 
previous works. Also, for consistency, here we use the illumination map 
from S22-Day1 to color correct video frames from S22-Day2 just like 
our previous work [6].

For comparing the performance of these system versions on cow in
stances, we use the total number of correct identifications metric due 
to the lack of a common denominator for comparison. This is because 
these different versions of cattle recognition systems use different cow 
localizers, and hence the number of cow instances available for barcode 
generation (the denominator) varies.

Table 3 compares the total number of correct identifications on the 
cut-videos of the common cows on S22-Day2, from all our works on 
cattle recognition. We observe a dramatic improvement in performance 
from version to version, culminating with the current method.

The plot in Fig. 4 presents the Cow Level Top-K Accuracy values. 
This Cow Level Top-K Accuracy refers to the Top-K Video Level Accuracy 
metric for all our previous work, and to the analogous Track Level Top-K 
Accuracy metric for the results from AutoCattleID. This Top-K accuracy 
metric reaches 100% for the first time ever for a K value of 3.

6.3. Multi-year cross-evaluation

In Sec. 6.1, we used the Cattlog from S22-Day1 to identify cows in all 
the other days in our datasets. In this section, we apply the same evalu
ation strategy to Cattlogs from every available day in our multi-year 
datasets. We thus cross-evaluate AutoCattleID on data from multiple 
years and provide detailed results.

The aim of these evaluations is to verify that the recognition sys
tem can maintain its accuracy despite possible variation in cow sizes 

Fig. 4. Comparison of Cow-level Top-K Recognition accuracy values from ECR 
[2], SURABHI [5], BMLP [6], and the current AutoCattleID.

Fig. 5. Variation in coat color of the same cow on the four different days due to 
changes in illumination conditions.

Fig. 6. The scene illumination maps from our four different data days. Observe 
the variation in hue and intensity at the same points in the illumination maps 
from the different days.

due to growth or pregnancy, scene backgrounds, and illumination con
ditions. This is a more robust evaluation than the traditional ‘leave one 
day out’ evaluation. Our system learns the identities from only one day, 
and AutoCattleID is evaluated on all the other days.

We note that the scene illumination can vary considerably across 
months due to factors such as seasonal changes and weather if the barn 
gates are open to outside light, changing of lamps in the dairy etc. An 
example of variation in color of the coat of the same cow on differ
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Fig. 7. Track-level Top-K Accuracy values for training data from different days. Track-level accuracy measures the performance of AutoCattleID on cows considering 
the video/track context.

ent days due to changes in illumination conditions is shown in Fig. 5. 
Therefore, we make accommodations for these scene lighting variations 
for improved AutoCattleID accuracy. So, unlike Sec. 6.2 where we used 
the illumination maps from S22-Day1 for color correcting videos from 
S22-Day2, here, and similar to Sec. 6.1, we compute and use the illumi
nation maps directly from the evaluation days. These illumination maps 
are shown in Fig. 6. Additionally, to evaluate real-world performance, in 
this section, we run experiments directly on the two Raw Videos Datasets 
(Sec. 4.2).

The track level results are in Fig. 7 and the instance level results are 
shown in Fig. 8. The plots in Fig. 7 reveal that the cow level Top-1 ac
curacy is consistently above 90%. In more practical terms, this means 
that for over 90% of the tracked cows, AutoCattleID correctly identifies 
them as the most likely candidate from the database. The Top-K accu
racy eventually rises beyond 90% with K, and also reaches 100% in two 
cases.

Upon evaluating the recognition system on out-of-context images, 
from the plots in Fig. 8, we find the instance level Top-1 accuracy hov
ering around the 80 to 90% interval. This accuracy is almost always 
above 95% for 𝑘 = 5.

6.4. Ablation study

To determine the contribution of each component of the AutoCatt
logger, we measure the number of correct identifications by AutoCat
tleID by removing the components one at a time. Specifically, we con
duct an ablation study where AutoCattleID uses the Cattlog from the 
raw-videos of S22-Day1 and is evaluated on all the other days in our 
raw-videos datasets (Sec. 4.2). This study measures the performance of 
AutoCattleID when the keypoint rectifier of the cow localizer in Fig. 3, 
and the color corrector are removed.

Recall from Sec. 3.3 that the AutoCattlogger uses only the top 20% 
of track-points based on their nearness to the center of the camera frame 
for cattlogging. This is to avoid errors due to perspective distortions and 
forcefitted keypoints. We also study the consequences of ignoring this 
strategy to include all available instances for cattlogging.

Again, as mentioned in Sec. 5, these results will not be presented as 
percentages as all the rows do not share a common denominator. The 
number of correctly localized instances available for identification (the 
denominator for accuracy measurement) is lower when the keypoint 
rectifier is removed.

The results from all experiments in this ablation study, along with 
the baseline results from the full AutoCattlogger system are in Table 4. 
From the results, we see that the performance drops only slightly when 
the keypoint rectifier is removed. This shows that the accuracy of the 
HRNet based keypoint detector is adequate. Omission of the color cor
rector leads to different levels of performance dips for different days. 
This means that the color corrector can help save a good number of in
stances from the troubles of non-uniform scene lighting.

Lastly, we see that using all available instances to create the cattlog
barcode has a strong negative impact. As explained earlier, the keypoint 
detector tries to forcefit keypoints on plausible looking partial images 
of cows as they cross the frame boundaries. Looking at cows from an off
normal angle may also hide parts of their coat patterns. So, by selecting 
only the 20% of instances closest to the center of the video frame, our 
method filters many unsuitable instances out before creating the cattlog
barcode.

It is also interesting to note the slight difference in performance 
when cattlogging and evaluating on raw videos versus the re-encoded 
cut-videos. The performance on cut-videos as seen in the last row of Ta
ble 3, 7042, is slightly higher than that on raw videos as seen in the first 
entry of Table 4, 6965. In both these cases, the Cattlogs are generated 
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Fig. 8. Instance-level Top-K Accuracy values for training data from different days. Instance-level accuracy measures the performance of AutoCattleID on cow instances 
without the video/track context.

Table 4
Results of the ablation study. The values in the table represent the 
‘Number of correct identifications’.

Cattlog from S22-Day1 
Description S22-Day2 S23-Day1 S23-Day2 
Full system 6965 5610 3460 
Without keypoint rectifier 6944 5603 3450 
Without color corrector 6687 5407 3459 
Cattlogging from all instances 6094 4576 2983 

using data (be it raw or cut-videos) from S22-Day1, and the recognition 
system is evaluated on data (be it raw or cut-videos) from S22-Day2. 
From further inspection, we found that the cow-localizer (Fig. 3) pro
vided more correctly localized instances from MJPG encoded cut-videos 
(Apx. C) than from the H.264 encoded raw videos (Sec. 4.2). This could 
be attributed to the keypoint (and mask) detector of the cow-localizer 
being trained on JPEG encoded images as mentioned in Apx. B. Thus, 
differences in encoding type between training data and evaluation data 
for a deep-learning based keypoint detector can negatively impact its 
performance [36].

6.5. Discussion

The results above demonstrate that the barcodes generated by the 
AutoCattlogger are mostly consistent, even from videos recorded after 
a year. It is fascinating to see a system that uses a simple identity fea
ture space can perform so well. However, despite the impressive Top-K 
accuracy numbers, we still need a 100% Top-1 accurate recognition sys
tem for it to be viable for real-world deployment. In its current state, 

the system could be used to assist human observers by producing Top-K 
predictions for a given cattle instance.

The system is dependent on the proper functioning of its compo
nents. Sometimes, errors creep in despite the checks and balances that 
we have built into the system. Fig. 9 shows an example where the cat
tle tracker identified two cows in close proximity as just one cow. This 
leads to track-ID switching in the subsequent frames. However, this can 
be improved by using a better cattle mask detector, by improving the 
keypoint rules-checker from Sec. 3.1, or by using a slightly more so
phisticated tracker. The modularity of the AutoCattlogger allows easy 
alterations of such components.

Again, fully black cows play an important role in our system. Al
though [31,1] exclude black cows entirely during evaluation, we use 
them to generate scene illumination maps to help identify all the other 
cows better. The results would look very much the same even if we ex
cluded the three black cows from evaluation.

7. Conclusion

With a user centric approach, we address the needs of a dairy farmer 
with continuously changing herd by developing an automatic cattle 
identity registration system, the AutoCattlogger. This is enabled by the 
use of a predefined and interpretable identity space that allows us to 
directly add and delete identities. The AutoCattlogger is modular and 
allows us to upgrade its components such as the keypoint and mask de
tectors, the keypoint rectifier, and even the identity space if necessary. 
We find that a cattle recognition application based on the AutoCattlog
ger -- AutoCattleID -- performs well in identifying cattle even after they 
have aged a year. All this performance can be harnessed with zero train
ing time and no human annotation effort.
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Fig. 9. An example where the mask detector detects two cows that are very close together as a single individual, resulting in a track-ID switch in the subsequent 
frames.

Further, the AutoCattlogger utilizes video context that is commonly 
ignored by other cattle recognition systems. This video context gets em
bedded in the cattle-track information. Specifically, the AutoCattlogger

• uses track information to select the best instances for cattlogging, 
and,

• via AutoCattleID, uses a majority vote on track-point identity pre
dictions to estimate the cow identity during inference.

Future work could aim for improving Top-1 cattle recognition accu
racy by including more identifying features per individual cow. It could 
include an improved tracker with a motion model as in [37], [38], and 
[39] complementing our appearance model to overcome the identity 
switching problem discussed above in Sec. 6.5. Additionally, it could 
also use depth features to distinguish between cows having the same 
fully black coat patterns.
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Appendix A. Details of training the models

The mask detector uses a Mask R-CNN [33] model with a ResNet50
FPN backbone. This was trained using the Detectron2 [40] framework, 
on NVIDIA A6000 GPUs (NVIDIA, Santa Clara, CA, USA) for 50,000 
iterations with a batch size of 8. This model is the same as the one used 
in [2]. The keypoint detector uses an HRNet [34] model trained using 
the MMPOSE [41] framework on the same NVIDIA A6000 GPUs for 210 
epochs with a batch size of 6.

The embedding models of the Deep Metric Learning methods dis
cussed in Sec. 6.1, were trained on the same NVIDIA A6000 GPUs with 
a batch size of 16 and for 100 epochs -- as per the descriptions in the 
source paper [24].

Appendix B. Datasets for training sub-components

The AutoCattlogger uses instance mask and keypoint detector models 
that were established in our previous works [2,5,6]. These mask and 
keypoint detectors were trained on the Cow Keypoints Dataset -- with 
keypoint and mask annotations. The training and validation images for 
this dataset were sampled from the videos in S22-Day1 and S22-Day2 
respectively. This training set also has images sampled from raw-videos 
from the holding-area in Summer 2021, and the barn area in Summer 
2022. The barn area is where cows can walk unconstrained by fences. 
All these images are encoded in JPEG format.

Appendix C. Datasets for older cattle recognition systems

The cattle recognition systems in our previous works did not have the 
capability to track individual cows in video frames. They used segments 
from the raw videos datasets from Sec. 4.2, with each segment contain
ing only one cow walking across the scene. These video segments are 
called ‘cut-videos’, and are encoded in MJPG format. Our older recog
nition systems used one or more sampled images for each cow from 
cut-videos of S22-Day1 to create their Cattlogs. The recognition systems 
were evaluated on cut-videos from S22-Day2. During this evaluation, we 
ensured that only those cows in S22-Day2 that were also in the training 
day S22-Day1 were used.

The experiments in Sec. 6.2 are run on this dataset of cut-videos. 
Further, no data from the year 2023 was used in our previous works. 
So, we do not have cut-videos from Summer 2023.

Data availability

The data that has been used is confidential.
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