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We create an automatic Holstein cattle cataloging system called the AutoCattlogger to address the dynamic
needs of dairy farms with frequently changing herds. This system instantly registers the identities of cattle by
tracking them passing underneath a camera. The AutoCattlogger saves the identities of each individual cow
in a predefined, interpretable representation space as barcodes, which allows for direct addition or deletion of
cow identities without expensive model retraining. Thus, this system only requires a farmer to make a new cow
walk under a camera for its identity to be instantly learned. Additionally, it is also capable of one-shot learning
from single images of cows when videos are not available, has built-in illumination calibration functionality,
and is robust to varying cow poses. The AutoCattlogger supports AutoCattleID, which is a cattle identification
functionality that yields consistently high Track-level Top-1 recognition accuracy of above 90% even after a year
on unannotated, unsegmented dairy videos. This demonstrates the robustness of our system to long-term changes
in cow sizes and scene lighting conditions, which is a hard problem for Deep Metric Learning based recognition
methods. The AutoCattlogger, with its tracks and identities, can thus serve as the foundation for many cattle
video analytics tasks such as video retrieval, weight estimation, and primarily, cattle recognition.

1. Introduction Unlike curated datasets, real-world barns come with limited data, and
limited time and workforce available to collect and annotate this data.
Moreover, dairy farms regularly take in new cows, and have older ones
removed. A good recognition system must be able to quickly adapt to
the changing herd without the need for expensive computation.
However, almost all recent computer-vision cattle identification
methods use either Deep Learning (DL) or Deep Metric Learning (DML)
approaches, which cannot operate within the aforementioned limita-
tions of a real-world setting. The DL methods approach cattle identifica-
tion as a multi-class classification problem and force neural network sys-
tems to memorize the appearances of hundreds of cows. These systems

Computer vision systems can improve the efficiency of cattle herd
management in dairy farms. Dairy farms in the Americas usually have
hundreds of cows, and require significant labor resources to manage
the herd. The dairy workers must regularly monitor and record sev-
eral attributes for individual cows. These attributes include symptoms
of health issues such as lameness, abnormalities such as reduced feed in-
take, weight and body condition, and estrus behavior. Automating these
monitoring tasks will reduce labor and operational expenses, while po-
tentially increasing operational reliability. Using computer vision meth-
ods for automation further ensures ease of use and lower cost of equip-

ment.

The task of cattle identification underpins all other automation sys-
tems mentioned above. The weight, body condition, behavior or any
other recorded characteristic, must always be associated with an in-
dividual cow. Designing a robust and reliable computer vision cattle
identification system is thus an important first step towards developing
herd management systems.

A good computer vision cattle identification system satisfies accu-
racy requirements even within the limitations of a real-world setting.
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cannot learn to identify new individuals without modification to their
neural network architecture, and expensive model retraining. Identifi-
cation systems that use DML, train neural networks to generate feature
embeddings for cow instances using variants of contrastive loss func-
tions. These systems can learn the identities of new individuals without
modifications to the neural network architecture and without requiring
any retraining. However, similar to DL systems, they too require large
amounts of annotated training data to achieve the required levels of per-
formance. Satisfying this requirement is difficult in a real-world setting.
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Fig. 1. Block diagram of the AutoCattlogger. In this diagram, the boxes indicate the operators, the illustrations indicate the form of data, and the arrows indicate data
flow. The AutoCattlogger tracks each cow passing underneath a top-view camera and instantly generates its identifying feature vector and saves it in the ‘Cattlog’.
The track information along with its start and end times for each cow is also returned.

On the contrary, our system, the AutoCattlogger, is designed to work
within the limitations of the real-world while also achieving commend-
able cattle identification performance. The AutoCattlogger is built by
combining an ID-agnostic cattle tracker inspired from [1], with a Cow-
to-barcode conversion system developed from the Eidetic Cattle Recog-
nition system [2]. This unique combination results in a system that not
only automatically labels each cow instance, but also instantly regis-
ters their identities for recognition. This means that as soon as a new
cow walks past our camera, our system is ready to recognize the cow.
Further, the AutoCattlogger is also capable of learning identity repre-
sentations from single training images per cow. This one-shot learning
capability is useful when farmers need to quickly add a cow to the
catalog without having to make it walk under a camera. Thus, the Au-
toCattlogger builds a cattle identity catalog by seamlessly blending the
three steps of data collection, annotation and training, requiring virtu-
ally zero human effort in the process.

The block diagram in Fig. 1 shows the inputs and outputs of the
AutoCattlogger along with a high level overview of the components in-
volved. The AutoCattlogger ingests raw videos, which are unsegmented
and unannotated videos of cows from a top-view camera. In our data,
these videos have cows walking in a single file after being milked. Op-
tionally, a list of the ground-truth identities (ear-tag numbers) of these
cows in the order in which they appear can also be provided. The Auto-
Cattlogger has three main outputs — the Cattlog of cow-barcodes serving
as the identity model of all the seen cows, the path information of each
cow as tracks, and the start and end frame numbers for each track.

Since cattle recognition and tracking provide a foundation for the
different herd management tasks mentioned earlier, many video ana-
lytics applications can be built on top of the AutoCattlogger. These are
shown in Fig. 2. Of these, this paper addresses Cattle Recognition, with
the Automatic Cattle Identifier, also called AutoCattleID, which is an
application that utilizes video context information embedded in the cat-
tle tracks. Cattle weight estimation from side-view videos [3] is another
application. The start and end points of each cattle-track can be used to
obtain video clips of individual cows from synchronized side-view cam-
eras observing the same scene. The side-view weight estimator in [3]
can then be applied to the obtained video clips to automatically log the
weight estimates of each cow in the herd. A basic version of the Auto-
Cattlogger was also used to retrieve video clips of individual cattle in

[4].
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Fig. 2. Cattle video analytics stack built atop the AutoCattlogger. Blocks with
italicized text represent data, be it raw or processed. Blocks with normal text
represent the application tools built primarily on top of the underlying data.

AutoCattleID utilizes the foundational principle of the ECR system
[2], which is to use stochastic, learning-based models to replicate tasks
which humans are intuitively good at, and to use deterministic algo-
rithms that are not learning-based to perform tasks which computers
are historically good at. Accordingly, AutoCattleID uses a learning-based
model to identify parts of a cow’s anatomy via keypoints, and uses deter-
ministic algorithms to memorize the appearances of hundreds of cows
and find the best match. Further, the AutoCattlogger is designed with
checks and balances that prevent it from blindly accepting every out-
put of the learning-based detectors. Rules based on a shape model are
used to verify the validity of the detected keypoints before they are al-
lowed to be used for cattle pose correction. Further, the cow-barcodes
are interpretable intermediate representations that enable designers to
directly compare them with pose-corrected cow instances and pinpoint
representational errors. This explainability of system input-output rela-
tionship allows us to accurately identify sources of errors and design
parts such as the aforementioned color-corrector to address them.
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The AutoCattlogger builds on top of our previous efforts in the do-
main of cattle recognition which introduced a barcode based cattle
recognition system [2], a keypoint rectifier [5], and an illumination cal-
ibration system [6]. Our key contributions in this paper are:

We combine the cow-to-barcode system from our previous works
[2,5,6] which translates unique coat patterns into binary represen-
tations, with an object tracker to create the AutoCattlogger. The
AutoCattlogger is thus a modular, track-based, automatic and an
instant cattle identity registration system. This system, presented
in Sec. 3, reduces human effort to just making cattle walk below a
camera and noting down their ear-tag numbers.

The AutoCattlogger, despite being designed to learn cattle identity
representations from videos, is also capable of one-shot learning
from images of cows when videos are not available. This is demon-
strated in Sec. 6.1.

We present AutoCattleID, an improved cattle recognition applica-
tion built atop the AutoCattlogger, in Sec. 3.4. AutoCattleID uses
contextual information from the cattle tracks for identifying indi-
vidual cows, unlike other candidate systems that totally neglect this
crucial information.

We demonstrate that AutoCattleID is robust to long-term changes
in cow appearance even after a year (See Sec. 6.3.). This makes it
more accurate than Deep Metric Learning-based methods as shown
in Sec. 6.1.

We study the related works next in Sec. 2.
2. Related works

Automatic recognition and tracking of cattle provide avenues to
many cattle analytics applications including their health tracking, be-
havior monitoring, milk production at an individual level. Moreover,
automation of these tasks ensures savings in cost, time and labor. The
primary functions supported by the AutoCattlogger are cattle tracking
and identification. Since the AutoCattlogger uses a very simple online vi-
sual Multi Object (cattle) Tracker (MOT) inspired by [1], in this section,
we discuss the related works only in the domain of cattle recognition.

Cattle recognition techniques have come a long way since the tradi-
tional methods of branding, ear-notching and ear-tagging. Newer meth-
ods such as ones that use RFID tags [7] are also intrusive, expensive,
and easily susceptible to wear and tear in the harsh barn environments.
Methods that recognize cattle using muzzle-prints [8-11] or retinal pat-
terns [12] are just too slow to sample instances. Also, they cannot be
automated. So, they require expensive human labor for implementation.

Lately, many computer-vision based cattle recognition algorithms
have emerged which identify cattle from their faces [13-18], ear-tags
[19-22], coat patterns in the side-view [23] or top-view [24,2], or key-
points on their backs [25,26]. Because they are executed on computers,
they are automation friendly. However, some have operational limita-
tions. Identifying cattle from their faces would mean that the algorithm
must wait till the face of the required animal is facing the camera. These
faces could also easily be occluded by other cattle, fences or other ob-
jects in between them and the camera. The same problems also affect
computer-vision methods that identify cattle by reading their ear-tag
numbers. Using the side view presents challenges such as occluding
fences and other animals, which need extra processing to remove. Using
top-view for identification has no such limitations. The backs of cattle
are always visible without obstruction to a top-view camera.

Of the top-view based identification systems in the literature, many
[27,16,28,29] use monolithic neural networks that perform end-to-end
cattle identification or provide the embeddings for identity classifica-
tion. These monolithic systems are burdened to localize cows within
their (already) detected bounding-boxes, and then identifying them
without errors. Unlike them, our AutoCattlogger is a non-monolithic,
modular system built from a small set of components that perform spe-
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cific tasks. This modular design allows us to upgrade specific compo-
nents such as the instance mask or keypoint detectors if the need arises.

In a conventional barn, the composition of the cattle herd changes
regularly as new cows are added and older ones are removed. A useful
cattle recognition system must be able to overcome this ‘herd adapt-
ability’ problem. Many methods including the more recent ones still use
neural-networks [27,14,16,28,29] or other models such as SVMs [23] to
predict cow identities as individual classes. These pretrained classifiers
cannot adapt to changing herds without expensive, time consuming and
data hungry model retraining. Retraining on new herds also demands in-
tense data annotation efforts. Moreover, neural-network classifiers are
constrained to identify only a fixed number of cow individuals if the
model architecture is frozen.

Systems that were developed to solve this herd adaptability prob-
lem include those that use embeddings from Deep Metric Learning [24],
[30], and those that use a predefined embedding space [2]. The idea be-
hind the DML systems in [30], [24] and all its derivatives [1,31,32] is to
learn an embedding model that clusters images from the same individ-
ual together while pushing images from different individuals far apart in
its embedding space, using a suitable loss function. Embeddings for pre-
viously unseen cattle are then generated using the same trained model
in the same embedding space. A cow-instance that needs to be iden-
tified is first transformed into a vector in this embedding space using
the trained model. This embedding vector is then used to predict the
identity of the cow-instance using the embeddings from a support-set of
training instances and algorithms such as K-nearest neighbors.

However, a simpler approach to solve the herd adaptability problem
is using a predefined embedding space for identity representation as
done by the systems in [2] and its derivatives [5,6,4] and our AutoCat-
tleID. The idea is to first correct all cow instances for pose and lighting,
and then transform them into a barcode of predefined dimensions. This
makes learning or unlearning cattle identities as easy as adding or delet-
ing these barcodes. A cow instance to be identified is first converted into
a barcode, which is then matched to its nearest barcode from the set of
training instances to get the identity prediction.

For a theoretical understanding of why using predefined cow-
barcode features for cattle identification is better than using features
from DL or DML, we must look at the problem from the reverse perspec-
tive. Training Multi Layered Perceptrons, Convolutional Neural Net-
works, or transformers to read everyday barcodes or QR codes, implies
having them memorize an impossibly large number of patterns. Using
DML for the task implies training the embedding-generator models to
sort all possible barcodes into separable bins. Both these approaches
make the problem intractable.

We postulate that once all non-uniformities are eliminated from an
image of a cow, its appearance can be reduced to a representation like
an everyday barcode. Using neural-networks to detect a fixed number
of keypoints that have similar appearance across all cows is definitely a
more tractable problem. These keypoints can then be used to eliminate
non-uniformities in cow size and pose as done by our AutoCattlogger.
Experimental results proving that our AutoCattleID is better than the
DML method [24] is provided in Sec. 6.1.

In addition, DML methods are not directly interpretable. The authors
of [30] present example images where their identification system errs.
While most of them can be attributed to their system lacking a pose cor-
rector, they do show a few instances where their system decides cows
with large differences in coat-patterns to be the same. The authors of
[32] also present example images where their system gets confused be-
tween two different cows that look clearly different. They even have
examples where cows with large white regions are predicted as a cow
that is almost completely black, and vice versa. There is no deterministic
explanation available for this behavior, and one can only speculate. The
cow to barcode relationship established by the AutoCattlogger ensures
the desired interpretability of representations.

Our Eidetic Cattle Recognition system [2] was the first to involve
keypoints in identifying cattle. Later methods such as [25] that iden-
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Fig. 3. Block diagram depicting the parts of the cow-to-barcode system. The oriented bounding box of each detected instance, and the cow-barcode if generated are
passed to the cattle tracker. The figure in the top-right corner of the block diagram shows the ten keypoints on the back of the cow used for pose correction.

tify cattle using only the relative locations of keypoints were developed.
While they perform reasonably well without depending on the color
of cows, these methods could be sensitive to major errors in the de-
tected locations of the keypoints that we know from experience can
be introduced by keypoint detectors. Their design prevents them from
using any keypoint error correction strategies as used by our AutoCat-
tlogger. Additionally, they too train their classifiers using DML, which
again generates non-interpretable intermediate representations, unlike
our cow-barcodes. The solution in [26], of using keypoints to first esti-
mate pose, and then creating a smaller subset of train-embeddings based
on the pose for predicting the cattle identity using nearest neighbor
matching, is resource-intensive.

Further, all the DL and DML based identification methods require
large amounts of annotated training data, which is labor intensive to
acquire. The system in [1] and [31] is designed to reduce human anno-
tation effort by tracking cows and collecting all instances from the same
track (or tracklet) under the same identity. The authors of [31] claim
that their system can be used to label an entire herd with a few minutes
of human annotation effort to combine tracklets of the same individual
cows. The recognition system in [32] also needs to train from instances
from multiple cameras to improve its accuracy. Meanwhile, the AutoCat-
tlogger eliminates this problem entirely and practically reduces cattle
annotation efforts to ZERO. This is because the AutoCattlogger is not
data hungry, and can learn the identity of a cow from instances of a sin-
gle cow track. It can also learn the identity of a cow instantly even from
a single training image as demonstrated in Sec. 6.1.

3. Method

The AutoCattlogger system ingests unannotated, unsegmented videos
of cattle in the top view and computes tracks for each individual cattle.
Representative features for each of these individuals are then com-
puted from their respective tracks. These features are then stored as
the learned identity information of that individual. The same system
can also be used to search for a given individual in an unsegmented
video, or to identify an individual from a given track.

The AutoCattlogger is composed of two building blocks - the cow-
to-barcode system that converts cow instances into barcodes in a pre-
defined feature space, and the cattle tracker. These components, along
with the input and outputs of the AutoCattlogger namely the Cattlog,

the cattle tracks, and the start and end time-stamps of each track, are
all shown in the block diagram in Fig. 1. Explanation of the working
of the components of the AutoCattlogger is in Sec. 3.1 and Sec. 3.2. In
Sec. 3.3, we explain how the barcodes from multiple instances of the
tracked cows are combined to form a single barcode for each individ-
ual cow, which collectively form the Cattlog. Finally in Sec. 3.4, we
explain the functioning of AutoCattleID for identifying cattle using the
cattlog-barcodes.

3.1. Cow-to-barcode system

The cow-to-barcode subsystem is a modular system with checks and
balances that is based on the Eidetic Cattle Recognition system [2,5].
Its working is shown in Fig. 3. This cow localizer first localizes all cows
in the frame using instance masks and ten keypoints per instance. For
this, it uses a Mask R-CNN model with a ResNet50-FPN backbone [33],
and an HRNet Keypoint Detector [34]. An example image of a cow with
all ten keypoints are shown in the same figure. Further, note that the
mask and keypoint detectors are independent of individual identities,
and hence are not re-trained when cows are added or deleted.

The cow localizer also handles keypoint detection errors such as
missing and misplaced keypoints. To handle missing keypoints, the lo-
calizer uses an interpolator that leverages axial symmetry of the cow
in the top view to estimate the left/right side keypoints. To estimate a
missing keypoint on the spine of a cow, the interpolator selects a point
on a second-order polynomial curve fit through keypoints detected on
the spine. To classify an instance as having misplaced keypoints, the lo-
calizer uses a rules-checker with hand-crafted rules based on a shape
model of the cow. This shape-model is defined by bounds on the ratio
of distances between pairs of keypoints, ratio of angles between pairs
of keypoint triplets, and distance of keypoints from the edge of the in-
stance mask. Each rule checks a detected set of keypoints for a breach
of bound. If any rule is broken, the instance is deemed unfit to be used
for identification.

The localizer then applies a keypoint rectifier to recover some of
these unfit instances. This keypoint rectifier, introduced in [5], applies a
rules-checker as above and identifies the misplaced keypoint(s) by iden-
tifying the pattern in the list of broken rules. All misplaced keypoints are
deleted, and then reinserted using the interpolator from above.
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Next, the system applies a color-corrector from [6] to the video frame
to reduce the effect of specular highlights from non-uniform scene illu-
mination. This is needed because specular highlights on black regions
on the cows can cause it to appear white and reduce the fidelity of its
computed barcode.

This color-corrector uses a precomputed scene illumination map as
pixel-level black-point values to apply black-point-correction to a given
video-frame. These illumination maps are computed by using cows with
fully black coats as Black-Mirror Light-Probes (BMLPs). Specifically, we
measure and accumulate the pixel values on the surface of these cows
as they move around in the scene. So, a farmer has to just make a black
cow walk under the camera when recalibration of the lighting model
is needed. Further, this color corrector is very effective as it samples
the ground-truth non-uniform illumination directly from the scene and
does not rely on illumination models learned from some other datasets.
It is also fast because it does not compute image statistics or use neural-
networks during inference.

The pose corrector uses the detected instance mask, keypoints, and
the color-corrected video frame to compute images of the cow instances
in a canonical pose with a straight spine and a fixed image-size as
shown in Fig. 3. The bar-code generator pixelates and binarizes the
pose-corrected images using a predefined threshold to produce the cow-
barcodes.

These barcode images have a size of 512 x 1024px with blocks of
size 16 X 16px. The barcodes are further serialized and stored as 2048
bit bit-vectors which serve as the identifying features for the individual
cows.

3.2. The cattle tracker

We apply a simple online Multi Object Tracker (MOT) to the unseg-
mented videos to compute the trajectories for each individual cow. This
tracker uses only an appearance model and does not include a motion
model. The tracker tracks cattle by detection. That is, it compiles the
detection outputs from the cattle localizer in Fig. 3 from every video
frame into individual tracks. Because we work with top-view videos,
chances of multiple tracked objects occluding each other are minimal.
This implies that a simple tracker is adequate as the chance of identity
switching is negligible.

Each detected cow instance is a track-point. A track is a list of track-
points that our tracker decides to be of the same individual. Initially, the
tracker opens a new track for every new track-point. Each track-point
found in the later frames are matched with one of the open tracks and is
added to it. A track is closed when no matching track-points are found
in a few consecutive frames.

Each track-point always stores the video-name, frame number, and
the corners of the oriented bounding box of the cow instance. It stores
the cow-barcode only if the instance has all keypoints detected without
errors. So, track-points of partly visible cow instances entering or exiting
the scene are still attached to their tracks, but without any barcode in-
formation. For each track, cow-barcodes from specific track-points that
contain them are averaged to form the cattlog-barcode, and this is saved
along with the track information. The procedure to compute the cattlog-
barcode is explained in Sec. 3.3.

AutoCattlogger uses a cattle object detector with a low confidence
threshold to reduce false negatives and improve the detection recall met-
ric of the tracker. This is to ensure that no cow is missed. This however
increases false positives, leading to creation of tracks without any ac-
tual cows in them. But, all such false-positive tracks are easily rejected
by checking for existence of at least one of their track-points with a
stored cow-barcode. This improves the detection precision metric of the
tracker. Together, this scheme ensures very high cattle object detection
and tracking accuracy, and is another example of checks and balances
in our design.

Further, the tracks can also store additional information about the
entry and exit directions of the cow in the scene to help filter unwanted
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tracks. If the ground truth identities of the individual cows are available,
as in our dataset (Sec. 4.2), we attach them to their respective tracks.

To match the track-points on a given frame with an existing open
track, we follow the standard approach of using a bipartite graph match-
ing algorithm. Specifically, we apply the Jonker—Volgenant algorithm
[35] which performs maximum-weight-full-bipartite graph matching by
formulating it as a Linear assignment problem. The bi-partite graph is
constructed by considering track-points in the current frame as vertices
in the first partition, and the last seen track-points of all open tracks as
vertices in the second partition. The IoU values between pairs of ori-
ented bounding-boxes of the track-points form the edge weights of the
bi-partite graph. We open a new track for every track-point that has no
found match, and close every open track that has no matching track-
point. After completely processing all frames of all given videos, we
close all the open tracks.

3.3. The cattlog

We define the process of computing the identifying features for the
individual cows as ‘cattlogging’. For every closed track with a cow, a
bit-wise statistical mode is computed from a selected few of its barcodes
to obtain the mode-barcode called the cattlog-barcode. The cattlog-
barcodes are stored as a 2048 bit bit-vectors which serve as the identi-
fying feature vectors for the cows.

The statistical mode averaging helps to even out the effects of scene
illumination and reduce the influence of variation in locations of de-
tected keypoints. The cattlog-barcodes from all tracks computed from
the videos used for training the cattle recognition system are saved in
the automatically generated Cattlog (the cattle-catalog).

The barcodes selected to compute the cattlog-barcode are the Top
20% of track-points based on the proximity of the centers of their ori-
ented bounding boxes to the center of the video frame. Because we use
top view cameras, such filtering ensures that we obtain cow instances
with minimal perspective distortion, and in full view. The keypoint in-
terpolator of the cow localizer (Fig. 3) can force-fit keypoints when parts
of cows are beyond the edge of the video frame. So, using instances
closer to the center of the frame prevents cattlogging from instances
with force-fitted keypoints.

3.4. AutoCattleID

AutoCattleID, the cattle recognition application built atop the Au-
toCattlogger leverages the contextual information present in the cattle
videos in the form of cattle tracks. To recognize any cow from a video,
AutoCattlelD first computes the track information of the cow as it walks
across the scene. It then matches the cow barcode at every accumulated
track-point with its nearest neighboring cattlog-barcode using the Ham-
ming distance metric. It then declares the identity associated with the
cattlog-barcode with the highest number of matches to be the predicted
identity.

4. Datasets and data collection

This section details the collection and curation of the video datasets
and the ground-truth track annotations used to evaluate the AutoCatt-
logger system. Details of datasets used to train the components of the
AutoCattlogger, and the datasets used for evaluating the cattle recogni-
tion systems from our previous works [2,5,6] are also provided in the
in Apx. B and Apx. C for completeness.

4.1. Data procurement

We mount a top-view camera in the holding area of the Purdue Dairy
so it can continuously record a path along which cows walk in a sin-
gle file after being milked. The recorded videos have a resolution of
1920 % 1080 px, frame rate of 30FPS, use H.264 encoding, and are stored
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Table 1

Number of cows that are common between any two days. The
numbers on the principle diagonal represent the number of
cow individuals present on each corresponding day.

S22-Dayl S22-Day2 S23-Dayl S$23-Day2
S22-Dayl 153 148 81 80
S22-Day2 148 169 93 90
$23-Dayl 81 93 177 149
S$23-Day2 80 90 149 175

as contiguous segments that are each an hour long. We call these the raw
videos or the hour-long videos. Most of these hour-long videos are gen-
erally empty as the cows are milked only twice a day. So, we retain only
those videos that were recorded during the milking hours. Separate sets
of these hour-long videos are used to create the datasets for evaluating
the AutoCattlogger system, as explained next.

4.2. The raw videos datasets

Sets of continuous, hour-long videos with cows in them were
recorded on two consecutive days of Summer (June) 2022, and two
days a month apart in June and July of Summer 2023. We refer to these
sets of videos by S22-Day1, S22-Day2, S23-Day1, and S23-Day2. Work-
ers in the Purdue Dairy recorded the ground-truth cow-labels in the
same order in which the cows walked by under the top-view camera, in
a CSV file called the ‘human-record’. We call the ground-truth labels the
‘cow IDs’ (short for cow identities), which are usually unique four digit
numbers seen on the ear-tags of the cows. The four sets of hour-long
videos from the four different days, together with their human-record
annotations constitute the Raw Videos Datasets. We use these datasets
to create the cow-tracks for evaluating our AutoCattlogger system.

The experiments in Sec. 6.1, 6.3 and 6.4 use these datasets. Note that
not all cows are present in the videos of all the days. Table 1 gives the
number of cows that are common across any two given days.

4.3. Ground-truth track annotations

The tracker used by our AutoCattlogger is sufficiently accurate to
retrieve every single cow from the set of videos that it ingests. Since
the videos in the Raw Videos Datasets also have cows that are undoc-
umented in the human-record, we automatically filter the data using
the entry and exit directions, and consider only those cows that ap-
pear within the duration of ground-truth recording. The number of cow
tracks found after this filtering is the same as the number of cows in the
human-record. After forming this one-to-one association, we annotate
every required track with its cow ID from the human-record. Detailed
explanation of the operations of the cattle-tracker, contents of a track-
object, and the track filtering techniques are in Sec. 3. We use the videos
in the Raw Videos Datasets in conjunction with the above ground-truth
track annotations to evaluate the AutoCattlogger, using the evaluation
procedure detailed in Sec. 5.

5. Evaluation method and metrics

This section details the evaluation methodology and metrics used to
assess the performance of the AutoCattlogger. The tracking system is
sufficiently accurate to retrieve every single cow from the set of videos
that it ingests. So, we evaluate only the quality of the identifying barcode
features that are generated by the AutoCattlogger in the experiments in
Sec. 6.

Performance consistency of downstream video analytics tasks built
on top of the AutoCattlogger requires the computed barcodes of cows to
be consistent across days. To measure this consistency, we evaluate the
AutoCattlogger using the downstream task performance of cattle iden-
tification by utilizing the video data of the same cows from multiple
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days in our datasets. In doing so, we not only prove the robustness of
AutoCattlogger to time-varying factors such as background, illumina-
tion, and cow sizes across years, but also prove its worth in supporting
a cattle identification system.

For this evaluation, we use the Cattlog from one of the days of our
datasets as our training barcodes to recognize cows in tracks from the
other days using AutoCattleID (Sec. 3.4).

We evaluate the cattle recognition performance using two metrics:
the track level accuracy that measures the performance of AutoCattlog-
ger based recognition (AutoCattleID) considering the video context, and
the instance level accuracy that measures the performance of the same
on random instances drawn without any video context. In cases where
there are no common denominators available to compute the accuracy
as a percentage, we use the number of correct identifications metric
in place of the instance level accuracy. For all these metrics, higher
numbers indicate better performance, and better cattle identification
performance indicates the ability of AutoCattlogger to generate consis-
tent barcodes for the same cow.

1. Track Level Top-K accuracy: The track level top-K accuracy mea-
sures the proportion of times the correct cow ID is among the top
K predictions at the track level. The top-K predictions at the track
level are obtained by collecting the predicted identity for every in-
stance in the track and then arranging them in decreasing order
of frequency of occurrence. The maximum number of different ID
predictions for the track instances among all the tracks is the max-
imum meaningful value of K. Therefore, increasing the value of K
beyond this maximum value will not increase track-level accuracy.
The experiments in Sec. 6.1, 6.2, and 6.3 use this metric.

2. Instance level Top-K accuracy: This is a standard classification
accuracy metric. The instance level top-K accuracy is the propor-
tion of times the correct cow ID is among the top-K predictions at
the instance level. These top-K predictions for a given cow instance
are the top-K nearest neighbors in the Cattlog. The experiments in
Sec. 6.1, and 6.3 use this metric.

3. Number of correct identifications: As the name suggests, this
metric represents the total number of instances for which the pre-
dicted cow ID is the correct cow ID. The experiments in Sec. 6.2
and Sec. 6.4 use this metric because the total number of instances
available for generating the barcodes varies among the recognition
systems that are being compared resulting in no common denomi-
nator.

The track level top-K accuracy is analogous to the video level Top-K
accuracy metric used to present the results in [2,5]. The only differ-
ence is that the recognition systems in [2] and [5] were evaluated on
human-cut video segments that contain only one cow each, and here, the
AutoCattlogger automatically finds the tracks of each cow. So, in Sec. 6,
we compare the Track level Top-K accuracy values from AutoCattleID
with the Top-K Video level accuracy values from [2] and [5]. Since both
these metrics measure the accuracy at the level of cow-individuals, we
collectively refer to them by ‘Cow Level Top-K Accuracy’.

Note that, due to the sheer number of instances in our datasets,
the instance level accuracy uses a denominator that is in the order of
103 or 10* instances. This makes them vulnerable to biases from eas-
ily identifiable cows lingering in the scene for longer durations. So, the
instance-level accuracy can be misleadingly high even if there are mul-
tiple cow individuals that are never correctly identified. However, these
cows that are never correctly identified will not bias the track-level ac-
curacy. Hence, the track-level accuracy presents a normalized version
of the recognition performance.

In our datasets, we find three cows with completely black backs.
These cows were assigned the same fully black barcode, which corre-
sponds to an all zero bit-vector. So, in all our evaluations, we treat the
recognition of a black cow as any other black cow as a correct recogni-
tion. We call this ‘discounted evaluation’.
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Table 2
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Experimental results from comparison with Deep Metric Learning method for cow identification [24]. The AutoCattleID method proposed in this paper is marked
with an asterisk (*). All the support-set instances come from S22-Day1. The highest accuracy value in each result column is highlighted in bold.

Training Information

Instance level Top-1 Accuracy (%)
(% correctly identified instances)

Cow/track level Top-1 Accuracy (%)
(% correctly identified cows)

Case Method Train & Val. # Support-set $22-Day2 $23-Dayl S$23-Day2 S22-Day2 $23-Dayl $23-Day2
# Datasets Instances (7698 inst.) (6613 inst.) (4024 inst.) (148 cows) (81 cows) (80 cows)
1 DML [24] OpenCows2020 [24] 7642 52.34 20.02 23.88 88.51 45.68 37.50
2 DML [24] $22-Dayl 7642 84.71 36.82 49.06 93.92 58.02 60.00
& S22-Day?2
3 Auto (20% images 1471 90.48 84.83 85.98 95.27 92.59 91.25
CattleID* per cow)
Experimental cases on One Shot Learning
4 DML [24] OpenCows2020 [24] 153 30.94 11.89 14.89 56.08 22.22 22.50
5 Auto (1 image per cow) 153 87.62 83.47 87.40 95.27 92.59 92.50
CattleID

6. Experiments and results

This section presents the results of evaluating the AutoCattlogger
based on cattle recognition performance. The experiments in this section
are designed to answer the following research questions.

1. Is our approach of using a predefined embedding space of cow-barcodes
better than using an embedding space obtained from Deep Metric Learn-
ing for cattle identification? The results in Sec. 6.1 show how our
approach is better.

2. Is our tracker based AutoCattleID better than our own previous ap-
proaches? This is answered in Sec. 6.2.

3. Can AutoCattleID maintain its performance when cross-evaluated on
multi-year data? This is answered in Sec. 6.3.

4. How well does AutoCattleID perform when parts of the AutoCattlogger
are removed? This ablation study is in Sec. 6.4.

Finally, we conclude this section with the discussion of our results in
Sec. 6.5.

6.1. AutoCattleID vs. Deep metric learning

In this section, we compare the performance of our method with
that of the Deep Metric Learning cow identification method [24] on
our datasets. We choose this method among those discussed in Sec. 2,
because this is the only other method designed to adapt to new indi-
viduals without the need for model retraining. This method is also the
foundation for other subsequent works from the same authors including
[1,31,32].

Here, it is important to note the difference between the dataset used
to train the embedding model itself using some contrastive learning
technique, and the training dataset from the new herd that is used to
get the support set of embeddings for cow identification. For conve-
nience, we call the latter dataset the support-set and call the embeddings
derived from it the support-embeddings. Furthermore, for experiments
with the DML models involving our data, the instances in the support-
set, testing set, and the training set where needed, are generated by the
AutoCattlogger itself. All cow instances that the AutoCattlogger utilized
for generating a barcode are cropped to their oriented bounding boxes
to form the samples in the datasets mentioned above.

We present five experimental cases in this section. The instances in
the support-sets for all cases are sampled from S22-Day1. This implies
that the support-embeddings for the DML cases and the Cattlogs for the
AutoCattleID cases are created from instances sampled from the S22-
Dayl dataset. All cases are evaluated on the instances sampled from
S22-Day2, S23-Dayl, and S23-Day2.

Case 1 explores the adaptability of a learned DML embedding space
to a completely new herd. This case uses the embedding model from
OpenCows2020 dataset to generate the support-embeddings for the

cows in our $22-Day1 dataset with 7642 instances from 153 cows. Case 2
tests the accuracy of the DML system when we train the embedding
model on cows from our own herd using the S22-Dayl dataset. The
weights from the epoch that resulted in the best accuracy on the S22-
Day?2 validation dataset with 7698 instances from 148 cows are selected
as the final model weights. The support-embeddings also come from the
same set of 7642 instances from S22-Dayl. Case 3 presents the results
from our preferred AutoCattlogger based cattle identification method —
AutoCattleID — that uses only the top 20% of instance per cow based on
their proximity to the center of the frame to learn its identity.

Next, to demonstrate the one-shot learning ability of our AutoCat-
tleID method, we include cases that force the selected methods to learn
cow identities using just one instance per cow. This ability is useful when
very little training data is available for some or all of the cows. For each
of the 153 training cows, AutoCattlogger automatically fetches this in-
stance from the track-point closest to the center of the frame to avoid
image distortions. Both Case 4 and 5 use this support-set. Case 4 uses
the same DML embedding model from Case 1, but generates the support-
embeddings from only one image per cow. Exp 4 also uses a K value of
1 instead of the default value of 5 for K-NearestNeighbors matching to
predict the cow identity [24]. In Case 5, we make the AutoCattlogger
learn the cow identities from the same set of 153 images as in Case 4.

The results of the comparison are presented in Table 2 with both
the Instances and Cow/Track level Top-1 accuracy metrics. For all cases
on DML cattle identification, the ‘Train & Val. Datasets’ column has the
name of the dataset used to train the embedding model, and the valida-
tion set used to select the best model weights. For cases 1 and 4, separate
training and testing dataset of the OpenCows2020 dataset were used
for training and validation. Further, since our AutoCattlogger does not
involve training embedding-models, the ‘Training Dataset’ column has
additional information about the training datasets.

The DML model trained on all training instances of the Open-
Cows2020 dataset produced validation accuracies of 99.8% (instance
level) and 100% (cow level) when evaluated on the test set of the Open-
Cows2020 dataset [24]. However, we see from Case 1 in Table 2 that
this learned embedding space on the smaller dataset with 46 cows does
not adapt well to our dataset with 153 cows. From Case 2, we observe
that training the DML embedding model on all training instances of our
own S22-Dayl dataset produces good results on S22-Day2. However,
this performance dips greatly when evaluated on data from the same
cows a year later. The accuracy results from our proposed method in
Case 3 are very good, even on data from a year later. From the results
of Case 4 and 5, we see that our AutoCattleID method outperforms DML
by a huge margin. This proves that our AutoCattlogger can learn from
single images of cows when their videos are not available.

Note that for both the AutoCattleID cases, Case 3 and Case 5, the
color corrector of the AutoCattlogger uses illumination maps from the
evaluation days (see Fig. 3). This calibrates the system to accommodate
the variations in scene illumination conditions. The system automat-
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Table 3

Number of correct identifications. The results
for the recognition system in BMLP, and Au-
toCattleID include 65 discounted instances —
because they both find three equivalent com-
pletely black cows in the training set which get
to share the same fully black barcode.

Cattle ID # correct
Systems identifications
ECR [2] 1211
SURABHI [5] 2279

BMLP [6] 4198
AutoCattleID 7042

ically generates these illumination maps once we mark a cow to be
completely black. More details on this strategy are presented in Sec. 6.3.

These experimental results prove that by using a predefined embed-
ding space of cow-barcodes, AutoCattlogger enables us to build very
efficient and accurate cattle recognition systems. Further, we found that
using additional training images per cow in Case 3 rather than just one
per cow in Case 5 helps reduce noises due to lighting and perspective
variations, and obtain better quality cow-barcodes.

6.2. AutoCattleID vs. Our previous works

The Eidetic Cattle Recognition (ECR) system [2] that identifies cows
using only one training instance underwent multiple improvements to
reach its current form — AutoCattleID. In this section, we show that the
current iteration of our cattle recognition system based on AutoCattlog-
ger performs better than all the previous iterations.

All versions of our cattle recognition system in this comparison are
evaluated on cut-videos of S22-Day2, which are re-encoded segments
of the hour-long videos with only one cow in them (Apx. C). Also, the
Cattlogs for all versions are generated from cut-videos of S22-Day1. Cut-
videos are used in this section because the previous versions of our cattle
recognition system lack the ability to track individual cows. Thus, the
Cattlog for AutoCattlelD is generated by running the AutoCattlogger on
the same set of re-encoded cut-videos from S22-Day1 as used by our
previous works. Also, for consistency, here we use the illumination map
from S22-Dayl to color correct video frames from S22-Day2 just like
our previous work [6].

For comparing the performance of these system versions on cow in-
stances, we use the total number of correct identifications metric due
to the lack of a common denominator for comparison. This is because
these different versions of cattle recognition systems use different cow
localizers, and hence the number of cow instances available for barcode
generation (the denominator) varies.

Table 3 compares the total number of correct identifications on the
cut-videos of the common cows on S22-Day2, from all our works on
cattle recognition. We observe a dramatic improvement in performance
from version to version, culminating with the current method.

The plot in Fig. 4 presents the Cow Level Top-K Accuracy values.
This Cow Level Top-K Accuracy refers to the Top-K Video Level Accuracy
metric for all our previous work, and to the analogous Track Level Top-K
Accuracy metric for the results from AutoCattleID. This Top-K accuracy
metric reaches 100% for the first time ever for a K value of 3.

6.3. Multi-year cross-evaluation

In Sec. 6.1, we used the Cattlog from S22-Day1 to identify cows in all
the other days in our datasets. In this section, we apply the same evalu-
ation strategy to Cattlogs from every available day in our multi-year
datasets. We thus cross-evaluate AutoCattleID on data from multiple
years and provide detailed results.

The aim of these evaluations is to verify that the recognition sys-
tem can maintain its accuracy despite possible variation in cow sizes
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Cow-level Top-K Accuracy Values
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Fig. 4. Comparison of Cow-level Top-K Recognition accuracy values from ECR
[2], SURABHI [5], BMLP [6], and the current AutoCattleID.

S22-Dayl  S22-Day2  S23-Dayl  S23-Day2

Fig. 5. Variation in coat color of the same cow on the four different days due to
changes in illumination conditions.

S22-Day1 S22-Day2

S23-Day1 S23-Day?2
Fig. 6. The scene illumination maps from our four different data days. Observe
the variation in hue and intensity at the same points in the illumination maps
from the different days.

due to growth or pregnancy, scene backgrounds, and illumination con-
ditions. This is a more robust evaluation than the traditional ‘leave one
day out’ evaluation. Our system learns the identities from only one day,
and AutoCattleID is evaluated on all the other days.

We note that the scene illumination can vary considerably across
months due to factors such as seasonal changes and weather if the barn
gates are open to outside light, changing of lamps in the dairy etc. An
example of variation in color of the coat of the same cow on differ-
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Fig. 7. Track-level Top-K Accuracy values for training data from different days. Track-level accuracy measures the performance of AutoCattleID on cows considering

the video/track context.

ent days due to changes in illumination conditions is shown in Fig. 5.
Therefore, we make accommodations for these scene lighting variations
for improved AutoCattleID accuracy. So, unlike Sec. 6.2 where we used
the illumination maps from S22-Day1 for color correcting videos from
S22-Day2, here, and similar to Sec. 6.1, we compute and use the illumi-
nation maps directly from the evaluation days. These illumination maps
are shown in Fig. 6. Additionally, to evaluate real-world performance, in
this section, we run experiments directly on the two Raw Videos Datasets
(Sec. 4.2).

The track level results are in Fig. 7 and the instance level results are
shown in Fig. 8. The plots in Fig. 7 reveal that the cow level Top-1 ac-
curacy is consistently above 90%. In more practical terms, this means
that for over 90% of the tracked cows, AutoCattleID correctly identifies
them as the most likely candidate from the database. The Top-K accu-
racy eventually rises beyond 90% with K, and also reaches 100% in two
cases.

Upon evaluating the recognition system on out-of-context images,
from the plots in Fig. 8, we find the instance level Top-1 accuracy hov-
ering around the 80 to 90% interval. This accuracy is almost always
above 95% for k =5.

6.4. Ablation study

To determine the contribution of each component of the AutoCatt-
logger, we measure the number of correct identifications by AutoCat-
tleID by removing the components one at a time. Specifically, we con-
duct an ablation study where AutoCattleID uses the Cattlog from the
raw-videos of S22-Day1 and is evaluated on all the other days in our
raw-videos datasets (Sec. 4.2). This study measures the performance of
AutoCattleID when the keypoint rectifier of the cow localizer in Fig. 3,
and the color corrector are removed.

Recall from Sec. 3.3 that the AutoCattlogger uses only the top 20%
of track-points based on their nearness to the center of the camera frame
for cattlogging. This is to avoid errors due to perspective distortions and
force-fitted keypoints. We also study the consequences of ignoring this
strategy to include all available instances for cattlogging.

Again, as mentioned in Sec. 5, these results will not be presented as
percentages as all the rows do not share a common denominator. The
number of correctly localized instances available for identification (the
denominator for accuracy measurement) is lower when the keypoint
rectifier is removed.

The results from all experiments in this ablation study, along with
the baseline results from the full AutoCattlogger system are in Table 4.
From the results, we see that the performance drops only slightly when
the keypoint rectifier is removed. This shows that the accuracy of the
HRNet based keypoint detector is adequate. Omission of the color cor-
rector leads to different levels of performance dips for different days.
This means that the color corrector can help save a good number of in-
stances from the troubles of non-uniform scene lighting.

Lastly, we see that using all available instances to create the cattlog-
barcode has a strong negative impact. As explained earlier, the keypoint
detector tries to force-fit keypoints on plausible looking partial images
of cows as they cross the frame boundaries. Looking at cows from an off-
normal angle may also hide parts of their coat patterns. So, by selecting
only the 20% of instances closest to the center of the video frame, our
method filters many unsuitable instances out before creating the cattlog-
barcode.

It is also interesting to note the slight difference in performance
when cattlogging and evaluating on raw videos versus the re-encoded
cut-videos. The performance on cut-videos as seen in the last row of Ta-
ble 3, 7042, is slightly higher than that on raw videos as seen in the first
entry of Table 4, 6965. In both these cases, the Cattlogs are generated
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Fig. 8. Instance-level Top-K Accuracy values for training data from different days. Instance-level accuracy measures the performance of AutoCattleID on cow instances

without the video/track context.

Table 4
Results of the ablation study. The values in the table represent the
‘Number of correct identifications’.

Cattlog from S22-Day1

Description S22-Day2 $23-Dayl S$23-Day2
Full system 6965 5610 3460
Without keypoint rectifier 6944 5603 3450
Without color corrector 6687 5407 3459
Cattlogging from all instances 6094 4576 2983

using data (be it raw or cut-videos) from S22-Day1, and the recognition
system is evaluated on data (be it raw or cut-videos) from S22-Day2.
From further inspection, we found that the cow-localizer (Fig. 3) pro-
vided more correctly localized instances from MJPG encoded cut-videos
(Apx. C) than from the H.264 encoded raw videos (Sec. 4.2). This could
be attributed to the keypoint (and mask) detector of the cow-localizer
being trained on JPEG encoded images as mentioned in Apx. B. Thus,
differences in encoding type between training data and evaluation data
for a deep-learning based keypoint detector can negatively impact its
performance [36].

6.5. Discussion

The results above demonstrate that the barcodes generated by the
AutoCattlogger are mostly consistent, even from videos recorded after
a year. It is fascinating to see a system that uses a simple identity fea-
ture space can perform so well. However, despite the impressive Top-K
accuracy numbers, we still need a 100% Top-1 accurate recognition sys-
tem for it to be viable for real-world deployment. In its current state,
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the system could be used to assist human observers by producing Top-K
predictions for a given cattle instance.

The system is dependent on the proper functioning of its compo-
nents. Sometimes, errors creep in despite the checks and balances that
we have built into the system. Fig. 9 shows an example where the cat-
tle tracker identified two cows in close proximity as just one cow. This
leads to track-ID switching in the subsequent frames. However, this can
be improved by using a better cattle mask detector, by improving the
keypoint rules-checker from Sec. 3.1, or by using a slightly more so-
phisticated tracker. The modularity of the AutoCattlogger allows easy
alterations of such components.

Again, fully black cows play an important role in our system. Al-
though [31,1] exclude black cows entirely during evaluation, we use
them to generate scene illumination maps to help identify all the other
cows better. The results would look very much the same even if we ex-
cluded the three black cows from evaluation.

7. Conclusion

With a user centric approach, we address the needs of a dairy farmer
with continuously changing herd by developing an automatic cattle
identity registration system, the AutoCattlogger. This is enabled by the
use of a predefined and interpretable identity space that allows us to
directly add and delete identities. The AutoCattlogger is modular and
allows us to upgrade its components such as the keypoint and mask de-
tectors, the keypoint rectifier, and even the identity space if necessary.
We find that a cattle recognition application based on the AutoCattlog-
ger — AutoCattleID — performs well in identifying cattle even after they
have aged a year. All this performance can be harnessed with zero train-
ing time and no human annotation effort.
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Fig. 9. An example where the mask detector detects two cows that are very close together as a single individual, resulting in a track-ID switch in the subsequent

frames.

Further, the AutoCattlogger utilizes video context that is commonly
ignored by other cattle recognition systems. This video context gets em-
bedded in the cattle-track information. Specifically, the AutoCattlogger

« uses track information to select the best instances for cattlogging,
and,

+ via AutoCattleID, uses a majority vote on track-point identity pre-
dictions to estimate the cow identity during inference.

Future work could aim for improving Top-1 cattle recognition accu-
racy by including more identifying features per individual cow. It could
include an improved tracker with a motion model as in [37], [38], and
[39] complementing our appearance model to overcome the identity
switching problem discussed above in Sec. 6.5. Additionally, it could
also use depth features to distinguish between cows having the same
fully black coat patterns.
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Appendix A. Details of training the models

The mask detector uses a Mask R-CNN [33] model with a ResNet50-
FPN backbone. This was trained using the Detectron2 [40] framework,
on NVIDIA A6000 GPUs (NVIDIA, Santa Clara, CA, USA) for 50,000
iterations with a batch size of 8. This model is the same as the one used
in [2]. The keypoint detector uses an HRNet [34] model trained using
the MMPOSE [41] framework on the same NVIDIA A6000 GPUs for 210
epochs with a batch size of 6.

The embedding models of the Deep Metric Learning methods dis-
cussed in Sec. 6.1, were trained on the same NVIDIA A6000 GPUs with
a batch size of 16 and for 100 epochs — as per the descriptions in the
source paper [24].
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Appendix B. Datasets for training sub-components

The AutoCattlogger uses instance mask and keypoint detector models
that were established in our previous works [2,5,6]. These mask and
keypoint detectors were trained on the Cow Keypoints Dataset — with
keypoint and mask annotations. The training and validation images for
this dataset were sampled from the videos in S22-Dayl and S22-Day2
respectively. This training set also has images sampled from raw-videos
from the holding-area in Summer 2021, and the barn area in Summer
2022. The barn area is where cows can walk unconstrained by fences.
All these images are encoded in JPEG format.

Appendix C. Datasets for older cattle recognition systems

The cattle recognition systems in our previous works did not have the
capability to track individual cows in video frames. They used segments
from the raw videos datasets from Sec. 4.2, with each segment contain-
ing only one cow walking across the scene. These video segments are
called ‘cut-videos’, and are encoded in MJPG format. Our older recog-
nition systems used one or more sampled images for each cow from
cut-videos of S22-Day]1 to create their Cattlogs. The recognition systems
were evaluated on cut-videos from S22-Day2. During this evaluation, we
ensured that only those cows in S22-Day?2 that were also in the training
day S22-Dayl were used.

The experiments in Sec. 6.2 are run on this dataset of cut-videos.
Further, no data from the year 2023 was used in our previous works.
So, we do not have cut-videos from Summer 2023.

Data availability
The data that has been used is confidential.
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