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Abstract

Background: The systemic low-frequency oscillation (sLFO) functional (f)MRI signals 

extracted from the internal carotid artery (ICA) and the superior sagittal sinus (SSS) are found to 

have valuable physiological information.

Purpose: 1) To further develop and validate a method utilizing these signals to measure the delay 

times from the ICAs and the SSS. 2) To establish the delay time as an effective perfusion 

biomarker that associates with cerebral circulation time (CCT). 3) To explore within subject 

variations, and the effects of gender and age on the delay times.

Study Type: Prospective.

Subjects: In all, 100 healthy adults (Human Connectome Project [HCP], age range 22–36 years, 

54 females and 46 males), 56 healthy children (Adolescent Brain Cognitive Development project) 

were included.

Field Strength/Sequence: Echo planar imaging (EPI) sequence at 3T.

Assessment: The sLFO fMRI signals from the ICAs and the SSSs were extracted from the 

resting state fMRI data. The maximum cross-correlation coef ficients and their corresponding 

delay times were calculated. The gender and age differences of delay times were assessed 

statistically.

Statistical Tests: T-tests were conducted to measure the gender differences. The Kruskal–

Wallis test was used to detect age differences.

Results: Consistent and robust results were found from 80% of the 400 HCP scans included. 

Negative correlations (–0.67) between the ICA and the SSS signals were found with the ICA 

signal leading the SSS signal by ~5 sec. Within subject variation was 2.23 sec at the 5% signi 

ficance level. The delay times were not signi ficantly different between genders (P = 0.9846, P = 
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0.2288 for the left and right ICA, respectively). Signi ficantly shorter delay times (4.3 sec) were 

found in the children than in the adults (P < 0.01).

Data Conclusion: We have shown that meaningful perfusion information (ie, CCT) can be 

derived from the sLFO fMRI signals of the large blood vessels.

Level of Evidence: 1

Technical Efficacy Stage: 1

FUNCTIONAL MAGNETIC RESONANCE IMAGING (fMRI) is widely used in 

neuroscience for exploring brain functions and networks. The blood oxygen level-dependent 

(BOLD) is the main contrast used in fMRI, which relies on the change in the concentration 

of deoxyhemoglobin in the blood.1,2 Therefore, the BOLD fMRI signal is a blood-related 

signal that indirectly detects neuronal activations through neurovascular coupling.3 In detail, 

regional brain activation increases cerebral blood flow, bringing in highly oxygenated blood. 

This leads to an increase in the oxyhemoglobin concentration and a decrease in 

deoxyhemoglobin concentration at the site of the activation. Since deoxyhemoglobin is 

paramagnetic, a decrease in deoxyhemoglobin leads to an increase in the BOLD fMRI 

signal. The BOLD signal reflects slow neurovascular coupling, not representing the fast 

signals such as the neuronal activities. For the resting state data (no task is given), the signal 

is con fined in the low-frequency range (0.01–0.08 Hz).4–8 In addition to BOLD contrast, 

there are other sources of signal in the fMRI data, which can stem from: the inflow effect, 

proton density effect, and partial volume effect. These effects are reflective of physiological 

processes. They can influence the fMRI signal directly and can also couple with the 

deoxyhemoglobin concentrations (eg, a change in cerebral blood flow) and affect the BOLD 

signal.9–11

The systemic low-frequency oscillation (sLFO) signals are from some physiological 

processes (still not clear). They are widely presented in the fMRI signals and are in the same 

frequency band as most of the resting state BOLD signals of neuronal origins. Highly 

correlated sLFOs are found in the fMRI data throughout the brain with delays.12 The delay 

times between these sLFOs in different cerebral regions are primarily consistent with blood 

arrival time differences obtained from bolus tracking, ie, dynamic susceptibility contrast 

MRI.13 In a previous study,14 a novel method was developed to study the sLFO fMRI 

signals in the large arteries (ie, internal carotid artery: ICA) from resting state data. The 

study con firmed that 1) the sLFO signals have an extracerebral origin; 2) they travel through 

the arteries (ICA), capillaries (GMean), and veins (ie, superior sagittal sinus: SSS); and 3) 

the delays between the sLFO signals from ICA and the SSS are consistent with the cerebral 

circulation time (CCT: time of bolus traveling from the ICA to the SSS). However, those 

findings were only derived from one subject’s fMRI data. The repeatability of this method 

needs to be established. Moreover, it is of great interest to explore its applications in 

assessing the age/gender differences in the cerebrovascular parameters, such as CCT. Lastly, 

the source of the sLFO signal in fMRI is still not clear.
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Materials and Methods

In this study we applied the method (with improved registration) on a large population of 

healthy adults (Human Connectome Project [HCP]) to further validate it. More important, 

we explored the potential of using the delay time (from the ICA to the SSS), which is 

derived from the fMRI data without a contrast agent, as a useful biomarker for brain 

perfusion (although internal jugular vein [IJV] is more commonly used to determine delay 

time, inconsistencies in identifying the IJV with our current method led to the use of the SSS 

instead). To demonstrate this, the corresponding gender differences and within-subject 

variations in the delay times were assessed. Moreover, we applied the method on the fMRI 

data of children (Adolescent Brain Cognitive Development data [ABCD]) to assess the 

impact of age differences on the delay times.

Data Acquisition

We acquired the unprocessed resting state scans from 1206 WU-Minn HCP subjects (HCP: a 

study aiming to assess the heritability of human brain functional connectivity, drawn from 

1206 healthy twins and nontwin siblings aged 22–3515; https://

www.humanconnectome.org/), as well as T1-and T2-weighted images (T1w and T2w). We 

used “100 unrelated healthy subjects” categorized and offered by the HCP website, which 

includes 400 scans in total (four resting state scans per person). We also acquired the 

children’s imaging data from the ABCD study (ABCD: a study aiming to track the brain 

development on 10,000 9–10 years old from childhood through adolescence16; https://data-

archive.nimh.nih.gov/abcd) with the following criteria: 1) age: ~9 years old; 2) scanner: 

Siemens 3T (Erlangen, Germany); 3) imaging: resting state fMRI, T1w and T2w. With these 

criteria, we ended up with 56 subjects (34 boys and 22 girls) at the time of the request. 

Eighteen subjects were excluded based on 1) unidentifiable ICAs in either structure or 

functional images; 2) significant artifacts in the fMRI data (eg, ghosting artifact, missing 

slices). Data that represent an example of a middle-age subject were acquired from the 

MyConnectome dataset (http://myconnectome.org/wp/), which originally aimed to 

characterize brain function and metabolism fluctuations of an individual (45 years old) over 

a long time. Note that the MyConnectome data used here are for data visualization purposes, 

which cannot represent a specific age group. The acquisition parameters of these data are 

shown in Table 1. A request of reanalysis of the publicly available data was submitted to the 

university’s Institutional Review Board (IRB) office, which determined that IRB approval 

was not necessary.

Procedures

It is difficult to identify the large blood vessels directly from the fMRI data because of the 

low spatial resolution and lack of proper contrast. We must rely on the T1w and the T2w 

images (due to the inflow effect) to identify the vessels (ie, ICA and SSS), generate the 

masks, and use these masks to extract the corresponding fMRI signals. The fMRI signals 

from the ICAs and the SSS were then cross-correlated to obtain the time delays for each 

subject. The detailed steps can be found in the following sections.
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Vessel Masks Identification

Even though large blood vessels can be identified directly from the T1w and the T2w 

images, the low contrast sometimes affects accuracy. Through experimental trials, it was 

found that the image calculated using the equation T1w2
T2w − T1w

T2w2  greatly improved the 

contrast between the large blood vessels and the surrounding tissues (updated from a 

previous method14). An example of the high-resolution masks (ICA and SSS) obtained from 

the equation are shown in Fig. 1a, in which the SSS is shown in blue while the ICAs are 

shown in red. The corresponding MatLab (MathWorks, Natick, MA) programs can be found 

online (https://github.com/TonglabPurdue/Systematic-low-frequency-oscillation-in-fMRI/

blob/master/Delay_Map_fMRI/Blood_vessels_signal_extraction.m).

fMRI Preprocessing

All of the fMRI data were preprocessed using FSL (FMRIB Software Library17) to correct 

the motion artifact and conduct registration between the high-resolution images (eg, T1w) 

and the low-resolution images (ie, resting state fMRI). Afterwards, the high-resolution 

vessel masks (as described in the previous section) were registered to the subject’s own 

resting state fMRI data (Fig. 1b) to produce low-resolution vessel masks. (Given the short 

repetition time [TR] duration, less than 1 sec, and the use of multiband echo planar imaging 

[EPI] acquisition, slice timing correction is not necessary here, as the HCP preprocessing 

pipeline suggested.18)

Time Series Extraction and Correlation

The low-resolution vessel masks were applied to the fMRI data to extract the corresponding 

time series for different blood vessels. In this step, the FSL function, “fslmeants –w,” was 

used. The option command “w” represents “weighted,” which minimizes the registration 

error (ie, the voxel with less registration certainty has low weight). Figure 1c shows an 

example of the weighted-average time series for the SSS. Finally, a bandpass filter (0.01–

0.08 Hz) from MatLab (zero-lag 4th-order Butterworth filter) was applied to these time 

series to filter for the low-frequency signals with a fixed time window from –10 to +10 sec 

(the range was selected based on the real cerebral circulation time, which is about 5 sec). 

Afterwards, cross-correlation was performed on the low-frequency fMRI time series (whole 

time series were used in both HCP [14:33 min] and ABCD [5:06 min] data) for the ICA and 

the SSS to calculate the maximum cross-correlation coefficients (MCCC) and their 

corresponding delay times (Fig. 1d). For each subject, the signals from both the left and the 

right ICAs were cross-correlated with that from the SSS.

Minimizing Spurious Correlation

The spurious correlation is always a concern in all correlation studies, especially in cross-

correlation studies.19,20 To minimize this in our study, a statistically meaningful threshold 

had to be established. We calculated the MCCCs among intentionally mismatched time 

series from different subjects of the HCP data. The values of these MCCCs (from totally 

unrelated time series) only reflect the spurious errors in the calculation. In particular, 1) We 

ranked the subjects in random orders; 2) From this order, we calculated the MCCCs from 
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one subject’s ICA data with the following subject’s SSS data (eg, subject 1’s ICA data with 

subject 2’s SSS data). The mismatched MCCCs were calculated from subject 1 to subject 

100 (each subject had four resting state scans). The whole procedure (two steps) was iterated 

1000 times. The MCCC threshold was then determined to minimize the spurious correlation. 

The threshold determined here is the only criterion for selecting qualified data that were 

used for further analyses, such as gender comparison, within-subject delay time variation 

analysis, and age comparison.

Analyses of Qualified Data

The MCCC and delay time differences caused by gender differences (F: 54, M: 46) were 

tested. The standard deviation (SD) of MCCC and delay times from multiple scans were 

calculated in each subject to represent the within-subject variation. We only selected the 

subjects who had three or four qualified fMRI data (passing the threshold) to get meaningful 

SDs. The number of selected subjects was 78 out of 100 (all from the qualified data). The 

distributions of these SDs and the corresponding log-logistic fitting curves were plotted. To 

assess the age differences, we calculated the delay times (ICA and SSS) for 38 9-year-old 

children (ABCD data) and compared them with the delay times of young adults from the 

HCP dataset (~30 years old). As a representation of the middle-age group, the results from 

the MyConnectome project (45-year-old single male subject with 45 resting fMRI scans) 

from a previous study14 was also included. It is to be noted that about 50% of the 

MyConnectome data were recorded after the subject had coffee. These portions of the data 

were excluded since the coffee could become a confounding variable affecting vascular flow.

Model Simulation

Due to the lack of deoxyhemoglobin in large arteries, BOLD is unlikely to be the main 

contrast in fMRI signal from ICAs. We hypothesized that the “partial volume effect” could 

be the origin of the sLFOs instead of the BOLD contrast. Compared with other resting state 

analyses, the unique features of this fMRI study are as follows: 1) large blood vessels are the 

focus of the study. The diameters of ICAs and SSSs are about 5 mm, which covers 2–3 

voxels (voxel size: 2 × 2 × 2 mm in HCP data). 2) When studying large vessels, the oxygen 

saturation (Y) is fixed. For example, the Y in the ICA is about 100%, while it is about 60% 

in the SSS. It is different from the common BOLD effect, where the Y changes according to 

neuronal activation. Therefore, we employed a model proposed by Haacke et al11 to test the 

hypothesis.

Statistical Analysis

We performed t-tests on the MCCC and delay time to test gender differences. As for the age 

difference, since the qualified data do not follow normal distributions, multicomparison was 

achieved using the Kruskal–Wallis test at a 1% significance level.

Results

Spurious Correlation

The distribution of the total MCCCs (around 400,000) is shown in Fig. 2a, in which the 

MCCCs are mostly clustered around –0.2 and 0.2. Figure 2b shows the P-values associated 
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with the MCCCs. In the cases that the MCCC < –0.3 (or MCCC > 0.3), the P-value is less 

than 0.008 (ie, significant). Therefore, we selected –0.3 as our threshold of the MCCC to 

prevent spurious correlations (most of our results have negative MCCCs; data with MCCCs 

> 0.3 are explained in the Discussion). Furthermore, in the bottom panel (Fig. 2c) the 

distribution of the corresponding delay times of all MCCCs is shown. The delay times are 

evenly distributed within the cross-correlation window (ranging from – 10 to 10 sec), which 

was predicted based on the fact that all the time series are unrelated. The two high 

concentrations of delay times at the boundaries (–10 sec and 10 sec) are the result of the 

cross-correlation window, which “forced” the delay times outside the window to “pile” up at 

the boundary. This result not only offers a sufficient threshold, but also demonstrates that the 

spurious correlation would lead to an even distribution of delay times. Thus, highly uneven 

delay distributions, as shown in Fig. 3, are less likely the result of spurious correlation.

Robustness Results From HCP Data

Figure 3 demonstrates the scatterplots and histograms of the MCCCs and their 

corresponding delay times between the ICAs (both sides) and the SSSs among 100 subjects. 

Each subject has four resting state scans, resulting in 400 data points in total. The data points 

that do not pass the criteria are represented as blue crosses (–0.3 < MCCC < 0.3, ~15%) and 

black circles (MCCC > 0.3, ~5%), while the qualified data points (MCCC < –0.3) are 

represented as red circles. About 80% (left ICA: 79.8%; right ICA: 79.5%) of the data points 

passed the criteria. For the rest of the study, we only used these qualified data. The mean and 

the SD of the MCCCs and the delay times are: 1) –0.67 ± 0.17 (MCCC) and –5.21 ± 1.27 

sec (delay time) for the left ICA and the SSS; 2) –0.63 ± 0.17 (MCCC), –5.45 ± 1.35 sec 

(delay time) for the right ICA and the SSS. There was no apparent difference between the 

results obtained for the left and the right ICAs, which is expected due to the anatomical 

symmetry in the blood flows of healthy subjects. The result validates that both identification 

and registration were correctly done. A negative delay time indicates that the sLFO fMRI 

signal from the ICA leads that of the SSS. Since SSS is long, there are slight differences in 

delay times (<1.5 sec) from different sections of the SSS (eg, the anterior part and the 

posterior part). However, given the inconsistency of the length of the identifiable SSS masks 

across subjects, we used the entire identified SSS to improve the signal-to-noise ratio (SNR). 

As a comparison, an example of X-ray angiography data (see Supplemental Material Fig. 

S2) is provided showing a flow of contrast bolus injected directly into the ICA. The series of 

images show the propagation of the contrast flowing through the right ICA, middle cerebral 

and anterior arteries, capillary bed, and the SSS. The bolus passage time from the ICA to the 

middle section of the SSS is roughly 4.5 sec (judging by the falling edges of the curves in 

the bottom graph of Supplemental Material Fig. S2). The MCCC and delay time scatterplot 

is shown in Fig. 3e. The qualified data (MCCC < – 0.3) were clustered around where the 

delay time is around 5 sec. Data within two red lines (–0.3 < MCCC < 0.3) were considered 

statistically insignificant, which is also reflected in their corresponding delay times 

spreading across the whole time window (from –10 sec to 10 sec). As for data with MCCC > 

0.3, there is a small portion clustered around 2.5 sec, which is probably due to the 

“periodical effect”14; a detailed explanation is given in the Discussion.
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Gender Comparison and Within-Subject Delay Time Variation

Figure 4a shows the delay time distribution (between the left ICA and the SSS) comparison 

between males and females (from the qualified data). The data for the females is shown on 

the left in red. In this figure, the delay times for both genders are normally distributed. The 

two-tailed t-test shows that there is no significant difference between the two genders in 

terms of their delay times (P = 0.9846, P = 0.2288 for left and right side, respectively; only 

the results from the left ICAs are shown). Figure 4b,c shows the distribution of within-

subject MCCC and delay time variation and their corresponding fitting curves (normal for 

MCCC and log-logistic for delay time), which is represented by the SD of the MCCCs/delay 

times obtained from the three to four fMRI scans of each subject (78 out of 100 subjects’ 

data were used). For all 78 subjects, the MCCC and the delay time variation at the 5% 

confidence level is 0.26 and 2.23 sec, respectively.

ABCD Data

Similar to Fig. 3, Fig. 5 shows the plots and histograms of the MCCCs and their 

corresponding delay times between the ICAs (both sides) and the SSSs from the ABCD 

dataset (38 subjects; 140 scans in total). About 53% (left ICA: 57.1%; right ICA: 49.3%) of 

the data points passed the criteria. About 32% of data (blue crosses) have positive MCCCs 

that are greater than 0.3. The mean and the SD of the MCCCs and delay times from the 

qualified data are: 1) –0.60 ± 0.16 (MCCC) and –4.39 ± 3.53s (delay time) for the left ICA 

and the SSS; 2) –0.62 ± 0.13 (MCCC), –4.58 ± 2.62 sec (delay time) for the right ICA and 

the SSS. The delay times are shorter compared with the results of the HCP, while no 

differences were found between using the left ICA and the right ICA in the calculations.

Delay Times Associated With Age

The delay time variations related to age differences were statistically analyzed using the 

subjects from the ABCD and the HCP dataset. Figure 6a shows boxplots of the delay times 

with age and gender (results from ABCD: 9–10 years old, HCP: 22–36 years old). Since we 

did not include other age groups in this study, the corresponding result of the 

MyConnectome project (single 45-year-old male subject) from a previous study was shown 

and serves as an example of a middle-age subject. The mean and SD of the delay times for 

the ABCD (38 subjects), the HCP (100 subjects), and the MyConnectome (one subject with 

45 scans) are –4.48 ± 3.13 sec, –5.33 ± 1.31 sec, –7.20 ± 0.94 sec, respectively. The results 

show significant differences between each other (all three P-values are less than 0.01, with 

Bonferroni correction) (Fig. 6b). The linear fits, as represented by the dotted trend lines 

(female in red, male in blue in Fig. 6a) clearly demonstrate a positive correlation between 

the delay time and age, indicating that the delay time becomes larger with age (ie, the fitting 

is valid even without MyConnectome results).

Model Simulation

Figure 7 shows the simulation result of fMRI signal S(λ, φb) as λ (ie, vessel dilation) goes 

from 0 to 1 in the cases of artery (red) and vein (blue). We found that an increase in λ would 

always lead to an increase in the blood fMRI signal (ie, Sb) and a decrease in the gray matter 

fMRI signal (ie, Sg), shown as the blue and red dots in Fig. 7b,c. However, in the case of a 
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highly oxygenated artery (Fig. 7c), the vessel dilation triggers a much bigger fMRI signal 

increase compared with that of a vein (deoxyhemoglobin in the vein is the main reason). As 

a result, the overall fMRI signal increases in the ICA and decreases in the SSS (as long as λ 
< 0.8) as these vessels dilate. In summary (Fig. 7d), we found that the vessel dilation in 

pixels causes opposite fMRI signal changes depending on the vessel type. The detailed 

information of the model can be found in the Supplemental Materials.

Discussion

In this study we demonstrated that 80% of the data (400 resting state scans) have significant 

negative cross-correlation coefficients (< −0.3) between the sLFOs from the ICAs and the 

SSSs among the 100 unrelated healthy subjects’ fMRI data from the HCP with the 

corresponding delay times about –5 sec (the sLFO signal of the ICA leads that of the SSS). 

These features demonstrate the robustness of the underlying physiology among healthy 

subjects. The delay time (~5 sec) matches the CCT obtained by other methods. For example, 

Hoffmann et al21 found that the CCT was 5.6 ± 1.7 sec, without significant side-to-side 

differences among healthy subjects using an ultrasound method with a galactose-based echo-

contrast agent (ie, Levovist). Most recently, Liu et al22 found the CCT interval between the 

ICA and the IJV for the start time and the peak filling time was 6.3 ± 1.3 sec, and 7.8 ± 2.5 

sec, respectively, using ultrasound with the contrast agent Sonovue in 67 healthy subjects 

(33–72 years old). The X-ray angiography data offers direct convincing evidence, in which 

the contrast bolus was directly injected into the ICA and followed throughout the brain. 

Moreover, the result that no significant difference between the two genders in delay times 

matches the previous CCT study using contrast-enhanced Doppler sonography.21 In this 

study we focused on the sLFOs in the large blood vessels. However, these signals are widely 

presented in the BOLD throughout the whole brain. Previous fMRI studies have validated 

the finding and used the sLFOs to track cerebral blood flow throughout the brain.12,14,23 The 

small within-subjects delay time variation indicates that the delay time is a consistent 

parameter that does not change with time under the same condition due to the autoregulation 

of the cerebral blood flow.24,25 Shorter delay times from the ABCD, compared with those 

from the HCP, implied that the delay times are shorter in children (~9 years old) than in 

young adults (~30 years old), which is consistent with previous studies. Wu et al26 found 

that cerebral vascular peak velocities in the ICAs reached a maximum at ~6 years of age and 

declined thereafter (with slower rate after ~20 years of age). A similar trend was also 

observed in large veins, such as the SSS, but with a smaller magnitude. Decreased cerebral 

peak velocities in the large blood vessels could prolong the CCTs. They did not find any 

significant differences in any cerebral and cardiac flow/structure parameters between 

genders, which also matches the observations in our study.

Our simulation result shows that the same volume change in ICAs and SSSs can cause 

opposite fMRI signals due to the partial volume effect. One possible physiological process 

that produces the spontaneous oscillation in the tone of blood vessel walls (volume) is 

vasomotion, which is independent of the heartbeat, respiration, and neuronal activations. It 

has been shown that vasomotion can travel to different regions of the human brain cortex 

along blood vessels.27 A similar traveling wave was also found in mice.28 Other 

physiological processes related to the cardiac pulsation may have effects on the sLFO 
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signals. However, no direct links were found between aliased cardiac pulsation wave and 

heart rate variability with the sLFOs.29

Even though most data show significant negative cross-correlations present between sLFOs 

from ICAs and SSSs, there is still a small portion of the data that does not. The possible 

reasons are as follows. First, the “periodic-effect,”14 in which some of the sLFOs are 

dominated by one low-frequency component. The MCCC calculated from this periodic 

signal can be either positive or negative (influenced by factors such as noise) with the 

corresponding delay times differing by half of the period. The ABCD data are more affected 

by this than the HCP data. Second, the low SNR in the arterial fMRI signal. Some 

contributing factors for the low SNR are: 1) Motion: ICA, as one of the largest arteries 

leading to the brain, is prone to the motion of the vessel wall, eg, heart pulsation. 2) The 

short section of the ICA in the fMRI scan: since arteries are not the focus of many studies, 

the fMRI scan has limited coverage of the ICAs. 3) Low-intensity fMRI signal in the 

arteries. These factors are even more problematic for the ABCD data. It is well known that 

motion artifact is a big problem in young children’s data. More important, their ICAs are 

much narrower compared with those of adults, which makes it harder to identify them 

accurately. Furthermore, the fewer voxels present in the children’s ICA (due to the small 

size) decreases the effectiveness of averaging. Lastly, shorter signal length (shorter scan 

time) in ABCD than that in HCP data decreases the SNR. All these factors lead to less 

percentage of qualified data and the larger within-subject variation in the ABCD data.

There are some limitations in this study. First, based on the pipeline of the HCP,18 an 

unwarping procedure is necessary on the T1w, T2w, and the fMRI data to correct for the 

gradient distortion. However, the correlation results did not improve. One possible reason is 

that the interpolation of the imaging data as the result of gradient correction decreases the 

SNR, leading to the suboptimal outcomes. Since we do not fully understand this issue, the 

gradient distortion correction was not utilized in this study. Second, in the age comparison 

the sample size in the children (ABCD data) is less than that in the young adults (HCP). 

Also, a healthy middle-age population is needed to have a complete comparison of the aging 

effect. Lastly, an improved method is necessary to consistently identify the IJV for future 

analysis.

In conclusion, we have demonstrated the potential that the sLFO fMRI signals can be used 

as an intrinsic contrast bolus to track the cerebral blood flow. Moreover, we found that the 

delay times: 1) are highly consistent in each subject; 2) have no significant gender difference 

(among healthy young subjects); and 3) become longer with age. Lastly, from the 

simulations of the fMRI signal, the sLFOs likely reflect the partial volume changes in the 

blood vessels caused by vasomotion. This study deepens our understanding of the fMRI 

signal and demonstrates a method to derive perfusion parameters, such as the CCT, from 

fMRI data. This could potentially be used to assess some cerebrovascular diseases, such as 

stroke, Alzheimer’s, dementia, and steno-occlusive arterial disease,30–32 in addition to 

functional activations.
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FIGURE 1: 
The flow chart of the data processing and analytical procedure. (a) High-resolution masks of 

the superior sagittal sinus (SSS) and the internal carotid arteries (ICAs) generated from T1-

and T2-weighted images. (b) Low-resolution masks of the SSS and the ICAs (registered 

from high-resolution masks). (c) An example time series extracted from the fMRI signal of 

the SSS. (d) The example sLFOs from fMRI signals of the ICA and the SSS after filtering 

(0.01–0.08 Hz).
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FIGURE 2: 
Results in the maximum cross-correlation coefficients (MCCCs) and their corresponding 

delay times using mismatched time series from different subjects randomly selected.

Yao et al. Page 13

J Magn Reson Imaging. Author manuscript; available in PMC 2020 April 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 3: 
The scatterplots of the MCCCs (in (a,c)) and their corresponding delay times (in (b,d)) of 

100 subjects (each subject had four scans, resulting in four points for each subject in the 

graph). The results using the data from the left ICAs and SSSs are shown at the top (a,b), 

while the results using the data from the right ICAs and SSSs are shown at the bottom (c,d). 
Red circles are the results with MCCC < –0.3 (left: 79.8%, right: 79.5%). Black circles are 

the results with MCCC > 0.3 (left: 6%, right: 4.8%). Blue crosses are the results with –0.3 < 

MCCC < 0.3 (left:14.2%, right:15.7%). The corresponding distribution is displayed next to 

each plot. The scatterplot for the MCCCs and the delay times are shown in (e).
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FIGURE 4: 
The distribution of delay times between male (blue) and female (red) are shown in (a) 
(results using data from left ICAs and SSSs). The probability density of within subject 

MCCC and delay time variations and their respective fitting curves (dashed line) are shown 

in (b,c).

Yao et al. Page 15

J Magn Reson Imaging. Author manuscript; available in PMC 2020 April 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 5: 
The scatterplots of the MCCCs (in (a,c)) and their corresponding delay times (in (b,d)) of 

ABCD data (38 subjects). The results using the data from left ICAs and SSSs are shown at 

the top (a,b), while the results using the data from right ICAs and SSSs are shown at the 

bottom (c,d). Red circles are the results with MCCC < –0.3 (left: 57.1%, right: 49.3%). 

Black circles are the results with MCCC > 0.3 (left: 29.3%, right: 34.3%). Blue crosses are 

the results with –0.3 < MCCC < 0.3 (left:13.6%, right:16.4%). The corresponding 

distribution is displayed next to each plot.
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FIGURE 6: 
The age effects on delay times from different groups. Boxplots of delay times with age and 

gender (results from ABCD (Adolescent Brain Cognitive Development)): 9–10 years old, 

HCP (Human Connectome Project): 22–36 years old and MyConnectome: 45 years old; 

MyConnectome result serves as an example of a middle-age subject) are shown in (a). 
Statistical multicomparison using a Kruskal–Wallis test at the 1% significance level and the 

corresponding box plot are shown in (b).
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FIGURE 7: 
The simulation results of the partial volume effects on fMRI signal. Illustration of the partial 

volume effect of the large blood vessel is shown in (a). The variations of simulated 

intravascular (Sb), gray matter (Sg), and combined the fMRI signals caused by partial 

volume change are shown in (b) for the vein and (c) for the artery. The changes of the 

combined fMRI signals (in arteries and veins) is shown again in (d).
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