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Independent component analysis (ICA) is widely used in resting state functional connectivity studies. ICA is a
data-driven method, which uses no a priori anatomical or functional assumptions. However, as a result, it still
relies on the user to distinguish the independent components (ICs) corresponding to neuronal activation, pe-
ripherally originating signals (without directly attributable neuronal origin, such as respiration, cardiac pulsation
and Mayer wave), and acquisition artifacts. In this concurrent near infrared spectroscopy (NIRS)/functional MRI
(fMRI) resting state study,we developed amethod to systematically and quantitatively identify the ICs that show
strong contributions from signals originating in the periphery. We applied group ICA (MELODIC from FSL) to the
resting state data of 10 healthy participants. The systemic low frequency oscillation (LFO) detected simulta-
neously at each participant's fingertip by NIRS was used as a regressor to correlate with every subject-specific
IC time course. The ICs that had high correlation with the systemic LFO were those closely associated with pre-
viously described sensorimotor, visual, and auditory networks. The ICs associated with the default mode and
frontoparietal networks were less affected by the peripheral signals. The consistency and reproducibility of the
results were evaluated using bootstrapping. This result demonstrates that systemic, low frequency oscillations
in hemodynamic properties overlay the time courses of many spatial patterns identified in ICA analyses, which
complicates the detection and interpretation of connectivity in these regions of the brain.

© 2013 Elsevier Inc. All rights reserved.
Introduction

Functional connectivity is commonly defined as the coordination of
activity across brain regions. It has been widely investigated using func-
tional MRI (fMRI), by detecting temporal correlations of the BOLD signal
between brain regions during task activations and in resting state condi-
tions (Friston et al., 1996). Resting state functional connectivity studies
provide information regarding spontaneous activity that is generated in-
trinsically and naturally within the brain (Biswal et al., 1995; Fox and
Raichle, 2007), and as it requires little participation, it is the preferred ap-
proach for studying functional brain activity among certain populations
of individuals, including cognitively impaired patients who may not be
able to perform tasks.

There are two widely used methods for analysis of functional con-
nectivity in fMRI data (Rosazza et al., 2012). The first method is
seed-based analysis (Biswal et al., 1995; Fox et al., 2006; Raichle et al.,
2001; Vincent et al., 2008), in which a region of interest (ROI) or seed
voxel is selected based on an a priori hypothesis of anatomical and/or
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functional relationships in the brain. The time course obtained from
the ROI is correlated with that of other voxels in the brain. The second
method is independent component analysis (ICA), a completely data-
driven approach to separate the signals into statistically independent
components (Beckmann et al., 2005; Calhoun et al., 2005; Damoiseaux
et al., 2006; Kiviniemi et al., 2003; McKeown and Sejnowski, 1998). A
number of studies have shown that these two methods yield results
with significant similarities (Rosazza et al., 2012; Van Dijk et al., 2010).
One benefit of ICA is that it does not require a priori anatomical assump-
tions or subjective selection of seed areas. Another benefit is that it can,
to some extent, isolate sources of noise. In spite of these advantages, a
major concern with ICA is that it requires the user to make a subjective
determination whether a component represents a neuronal signal, an-
other type of signal, or an artifact (Cole et al., 2010).

Many attempts have been made to develop methods to categorize
ICA components accurately and objectively, but they have not been
adopted as standard practice (Perlbarg et al., 2007; Sui et al., 2009;
Tohka et al., 2008). Instead, visual inspection is the most commonly
usedmethod for component selection (Kelly et al., 2010). In order to im-
prove this method and help reduce the false negative rate, criteria for
identifying those independent components (ICs) representing artifactual
noise were recently outlined and include irregular spotted patterns,
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extra-cerebral locations, and motion-related ring patterns (Kelly et al.,
2010; Tohka et al., 2008). In addition, the time courses corresponding
to these components have easily recognizable features, such as temporal
spikes, dominance in the high frequency region (>0.1 Hz), and high re-
peatability in a fixed pattern. However, beyond these easily identifiable
“noise” ICs, there aremany other ICs (especially from ICA group analysis),
which have symmetrical patterns, reside mostly in the cortex, and have
smooth time courses that are dominated by energy in the low frequencies
(≤0.1 Hz).Many of these ICs are commonly regarded as resting state net-
works (RSNs). Therefore, it is necessary and critical to understand the pe-
ripheral physiological contributions to these ICs.

Birn et al. (2008a) studied the effects of respiration-related low
frequency oscillations (LFOs) on the RSNs derived from ICA of resting
state data (Birn et al., 2008a). They found that ICA frequently confused
the respiration-related IC with the default mode network (DMN), a
widely accepted RSN. In most cases, the time course associated with
DMNwas significantly correlatedwith changes in the respiration volume
per time. This work demonstrated that even the most accepted RSNs
might have significant peripheral physiological contributions. Our recent
work confirmed this idea with a concurrent near infrared spectroscopy
(NIRS)/fMRI resting state study, which demonstrated that the BOLD
fMRI signal obtained from many brain voxels is highly correlated with
the LFOs (0.01 Hz–0.15 Hz) that were measured simultaneously at pe-
ripheral sites (e.g. fingertip) by NIRS (Tong et al., 2012a). Moreover, by
using cross correlation between these two signals, we showed that the
LFO is not static, but instead, travels with the blood circulation and ar-
rives at different brain voxels at different times. Interestingly, the areas
affected by this dynamic systemic blood fluctuationwere shown to over-
lap significantly with many well-known RSNs. Since this systemic LFO
corresponded to variations in parameters that directly affect the BOLD
fMRI signal (e.g., blood flow, oxygenation, and volume), and these varia-
tions are in the same low frequency band as the RSN fluctuations, we
postulated that many RSNs are likely to be influenced by this peripheral
physiology.

Using the systemic LFO measured in the periphery (fingertip) by
NIRS to identify the physiological component in RSNs (based on BOLD
fMRI) offers several advantages: 1) Both the NIRS and the BOLD fMRI
signals are blood-related, and therefore sensitive to changes in blood
flow, volume and oxygenation; 2) The systemic LFO measured at the
fingertip is a direct measurement of the physiological hemodynamic
fluctuations within the same frequency band as BOLD fMRI (0.01–
0.15 Hz), but without any mathematical assumption or modeling; and
3) The systemic LFO identified by NIRS has no aliased contribution
from respiratory or cardiac pulsation (i.e., due to the high temporal
resolution of NIRS, we can filter out all the high frequency signals
>0.2 Hz). Therefore, the effects arising only from this systemic LFO,
which has been shown to have significant impact on BOLD fMRI, can
be singled out and identified easily. Recently, functional connectivity
has been investigated using functional NIRS (fNIRS) only (Lu et al.,
2010; Mesquita et al., 2010; Sasai et al., 2011; Zhang et al., 2010b). Con-
sistent RSNs have been found by both seed-based (Lu et al., 2010) and
independent component (Zhang et al., 2010a) analyses. Due to the
fact that fNIRS can only probe the networks on the surface of the cortex
and is sensitive to the extracerebral systemic physiological fluctuations,
the potential impact of our results on RSN studies using fNIRS alonemay
be even greater.

In the present concurrent NIRS/fMRI resting state study, we extend-
ed our previous research, in which we performed the resting state fMRI
on healthy participants while using NIRS to measure the physiological
signals at the fingertip, and combined it with a novel method to quanti-
fy the contribution of systemic LFO to a full set of RSNs identified by ICA
in the resting state data. We also used a bootstrapping method to test
the consistency and reproducibility of these physiologically correlated
ICs and to assess the effects of dimensionality in the ICA process. To
the best of our knowledge, the method we used is the first attempt to
assesswhich RSNs aremost affected by physiological signals originating
in the periphery in an objective and systematic manner. Importantly,
our results are not limited by the analytical method we used in this
study (i.e., ICA) because the physiologically correlated RSNs we identi-
fied are consistent with well-established RSNs (Beckmann et al., 2005;
Damoiseaux et al., 2006; Smith et al., 2009).

Materials and methods

Protocols and instrumentation

Concurrent NIRS and fMRI resting state studies were conducted in
10 healthy volunteers participating in an ongoing protocol (4M, 6F,
average age ± SD, 30 ± 7 years). Participants were asked to lie
quietly in the scanner and view a gray screen with a fixation point
in the center. The Institutional Review Board at McLean Hospital ap-
proved the protocol and volunteers were compensated for their
participation.

AllMRdatawere acquired on a Siemens TIMTrio 3T scanner (Siemens
Medical Systems, Malvern, PA) using a 32-channel phased array
head matrix coil (200 time points, TR/TE = 3000/30 ms, flip angle
90°, matrix = 64 × 64 on a 224 × 224 mm FOV, 50 2.5 mm slices
with 0.625 mm gap parallel to the AC–PC line extending down
from the top of the brain). Physiological waveforms (pulse oximetry,
and respiratory depth) were recorded using the scanner's built-in
wireless fingertip pulse oximeter and respiratory belt.

MRI-compatible NIRS optical probes, each with one collection
fiber and one pair of illumination fibers (1.5 cm separation between
collection and illumination fibers), were used to record NIRS signals.
One probe was placed over the tip of the left middle finger (the
other handwas holding the “squeeze ball” to signal theMR technician),
one probe was placed on the left big toe, and in 7 participants, an addi-
tional probe was placed on the right big toe, as shown in Figs. 1a and b.
NIRS data were recorded using an ISS Imagent instrument (ISS, Inc.,
Champaign, IL) at 690 and 830 nm. The sampling rate of the NIRS data
acquisition ranged from 6.25 to 12.5 Hz (in all cases the cardiac wave-
form was fully sampled). FMRI data were collected for 10 min; NIRS
data were recorded continuously during this time, and before and after
the resting state fMRI acquisition.

Data preprocessing was conducted on both NIRS and fMRI data.
For the NIRS data, each pair of raw NIRS time courses (690 and
830 nm data) was converted into three time courses representing
temporal changes of the oxy-, deoxy and total hemoglobin concen-
tration (Δ[HbO], Δ[Hb] and Δ[tHb], respectively) using the Modified
Beer–Lambert law (Delpy et al., 1988; Kocsis et al., 2006) in Matlab
(The Mathworks, Natick, MA). For the BOLD fMRI data, regular pre-
processing steps in FSL (Smith et al., 2004), including motion correc-
tion, slice timing correction, and spatial smoothing (5 mm) were
performed.

Systemic low frequency oscillation analyses

Previously we have established that LFOs measured at the fingertip
by NIRS are systemic blood signals that travel to different body parts
(including the brain) with different time delays (Tong and Frederick,
2010; Tong et al., 2012a). As a first step, we conducted the same analy-
ses on these 10 participants. The detailed analytical procedure can be
found in the previous work (Tong et al., 2012a). In short, a bandpass fil-
ter was used to isolate LFO signals (0.01–0.15 Hz) spectrally from si-
multaneously recorded NIRS data (i.e., Δ[tHb]) from the fingertip and
the toe. In the studies of LFOs (including ours), the range of the low fre-
quencies is commonly set to be 0.01–0.1 Hz. However, recent studies
indicated that BOLD resting state signals are more broadband than pre-
viously thought (Niazy et al., 2011). Since thiswork is to understand the
impact of the LFOs on the RSNs, we expanded the frequency band to
0.01–0.15 Hz. In our analyses we use Δ[tHb] because the LFO is closely
associated with changes in blood flow and volume, which have been
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Fig. 1. Experimental setup. NIRS probes (made in-house) with one source-detector (1.5 cm separation) pair was placed on the participant's finger (a) and toe (b). The LFO signals
(Δ[tHb]) of the finger (red) and toe (green) from one participant are shown in (c), together with a temporally shifted version of the finger data (dotted black line). A.U. is arbitrary
unit.
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shown to be represented best by Δ[tHb] (Hoshi et al., 2001). Moreover,
Δ[tHb] has much higher signal to noise ratio (SNR) than Δ[Hb]. Cross
correlationwas conducted between theΔ[tHb] recorded at thefingertip
and toe to demonstrate LFOs travel in the periphery, while a set of time-
shifted versions of the LFO signal (181 temporal traces covering−14.4
to +14.4 s with time shift 0.16 s) was generated from the Δ[tHb]
recorded at the fingertip, and downsampled to the TR of the fMRI data
(3 s) to demonstrate that LFOs travel in the brain. The large temporal
span is chosen to compensate mainly for the delay of LFOs between
the finger and the brain and variations in participants' peripheral
blood circulations. A set of general linear model (GLM) analyses of the
fMRI data (Fig. 2) was performed to determine the relationship be-
tween the time shift and fit strength in each voxel with the fingertip.
The results of this group of analyses (z-statistic maps) were combined
(max z-statistics map) to visualize all the voxels that had been signifi-
cantly affected at any time by the LFOs as they passed through the
brain. As this systemic LFO travels further along the peripheral vascula-
ture, it may have decreased magnitude and accumulate other physio-
logical noise (leading to lower SNR), as seen in the comparison
between fingertip and toe signal in Fig. 1(c). Therefore, we only used
the LFO (Δ[tHb]) recorded at the fingertip, instead of that from the
toe, to study the correlation between the peripheral and the brain.
Combined RSN analyses

In order to evaluate whether these systemic LFOs affect different
RSNs and to what extent, we conducted analyses in the following
steps as shown in Fig. 3. Multivariate Exploratory Linear Optimized De-
composition into Independent Components (MELODIC) ICA from FSL
(Beckmann and Smith, 2004; Beckmann et al., 2005) was used on
these 10 participants' datasets. Fifty-five ICs were automatically gener-
ated by the ICA procedure. The dual regression method (Filippini et al.,
2009) (from FSL) was then applied to the group results to calculate the
corresponding subject-specific ICs for each participant. These subject-
specific IC (i.e., 55 ICs) patterns were used as regressors in a spatial
GLM to extract the corresponding subject-specific time course for each
of the 55 ICs. The last step calculated the cross correlation between the
subject-specific time course for each IC with downsampled NIRS Δ[tHb]
recorded at the fingertip of the same participant (the max lag in the
cross correlation is set to be ±14.4 s, that has been shown to fully
cover the time delays between the NIRS Δ[tHb] and BOLD fMRI).

The maximum cross correlation coefficient (MCCC) between each
IC time course and Δ[tHb] from the fingertip was selected for each
participant. The averaged MCCCs were obtained from 10 participants
andwere plotted in descending orderwith their corresponding standard
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Fig. 2.Max z-statistics maps of the same participant (as in Fig. 1) overlaid on the standard brain showing areas highly correlated with LFOs collected at the fingertip in (a). The color
bar indicates the colors corresponding to the z value from 3 to 6. Two points (1 and 2) in the brain were chosen as shown in the blue circles (a), in order to compare the temporal
traces at low frequency measured at the fingertip (by NIRS) and those measured at the brain (by BOLD fMRI). Their corresponding temporal traces of BOLD (in blue) were plotted in
(b) and (c) with Δ[tHb] of the fingertip (in red) and its temporal shifted versions (in dotted black lines).
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deviations (std). To estimate the noise level in the calculation, cross cor-
relation was also calculated between subject-specific time courses for
each IC and temporally-uncoupled NIRS Δ[tHb] recorded at the fingertip
of the same participant, however at a much later time (480 s later than
the start of the fMRI scan). The resulting MCCCs were plotted in the
same graph as comparison.

Lastly, we conducted the spatial correlation (R) between all 55 ICs
with the well-known RSN templates (Beckmann et al., 2005; Smith et
al., 2009) using fslcc from FSL. The threshold correlation in fslcc was
set to 0.3 (R > 0.3).
Reproducibility analyses

The analyses described above were implemented to identify the ICs
that have high MCCCs with the fingertip data (NIRS Δ[tHb]), or in other
words, to identify those ICs that are greatly affected by systemic blood
fluctuations. In order to demonstrate the reproducibility of the procedure
for identifying the physiologically correlated ICs, we not only used a
bootstrapping method according to Damoiseaux et al. (2006), but we
also tested the effects of choosing dimensionality other than 55 (in
group ICA) on the spatial patterns of the physiologically correlated ICs.



Fig. 3. The flow chart of the analytical process (together with corresponding intermediate results) to identify the ICs derived from group-ICA that have high correlations with the
NIRS Δ[tHb] recorded at the finger.
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The bootstrapping method (Damoiseaux et al., 2006) was employed
as shown in Fig. 4. Six participants were selected randomly (without
repeat) to form a subgroup of the original base group of 10 participants.
The analytical procedure in Fig. 3was applied to identify the top 10 phys-
iologically correlated ICs (in terms of correlation value) from the sub-
group. Then the spatial correlation (R; calculated by fslcc in FSL) was
calculated between the top 10 ICs from the base group and those from
the subgroup. An IC of the base group is considered to be reproduced if
the magnitude of R (calculated between this IC and any other top 10
ICs from the subgroup) is greater than 0.3. The process was repeated
50 times between the base group and 50 unique subgroups (selected
by bootstrapping, out of 210 possible combinations). The reproducibility
(RP) of an IC from the base group is defined as RP = n/50, where n is the
number of its appearances in the top 10 ICs of the subgroups, and 50 is
the number of subgroups. In some instances an IC in the base group
might be split into more than one IC in the subgroup, which would
only be counted as one. The ICs from the base groupwith high reproduc-
ibility (RP > 0.8) are shown.

To demonstrate that the analysis procedure for identifying physiolog-
ically correlated ICs is not limited to a dimensionality of 55,we tested the
reproducibility of our results with dimensionality set to other values.
Using the entire group (the original 10 participants), the dimensionality
was varied to set the number of ICs equal to 25, 35, 45, 70, 85 and even
100, while the remainder of the steps in the analyses was kept the same.

Denoising using Regressor Interpolation at Progressive Time Delays
(RIPTiDe)

In order to remove the effect of the peripheral physiological sig-
nal from the brain data, we used a modified version of the RIPTiDe
physiological denoising method we have described previously
(Frederick et al., 2012a). A temporally oversampled cross correlation
followed by a Gaussian peak fitting was used to determine the maxi-
mum correlation time between the LFO component of theNIRS total he-
moglobin waveform and the BOLD data at each voxel (Frederick et al.,
2012b). This voxel specific time shift was then applied to the LFO
(NIRS Δ[tHb]) regressor, and the time course was resampled to match
the fMRI data. This generated a four dimensional dataset that was used
as an input to film_gls as a voxel specific regressor. The four dimensional
regressor file was then scaled by the resulting voxelwise beta values
from the GLM fit and subtracted from the original data to generate a
“denoised” dataset. Lastly, the analyses in Fig. 3 were redone with the
denoised fMRI data and the results were compared with the original
ones.

Effects of cardiac pulsation

Given that other peripheral processes such as cardiac pulsation af-
fect the BOLD fMRI signal, we determined if the analytical procedure
outlined in Fig. 3 could be used to identify the ICs that are mostly affect-
ed by cardiac pulsation (the respiration signal is not always detectable
by the NIRS finger probe (Tong et al., 2012b), thus we were unable to
apply this process to respiration). The cardiac pulsation data were
extracted from the finger data (NIRS,Δ[tHb]), and it was downsampled
according to the TR of fMRI (3 s). However, this new temporal trace
cannot be directly used in place of the LFO finger data in the process
(Fig. 3). This is because: 1) compared to systemic LFOs that influence
the BOLD signal directly (i.e., 0.01–0.15 Hz), cardiac pulsation (~1 Hz)
is aliased in the BOLD signal (~0.33 Hz); 2) the cardiac pulsation wave
is a dynamic wave that moves much more rapidly than the blood



Fig. 4. The illustration of the bootstrapping analytical procedure that calculates the reproducibility of the ICs that showed high correlations with the finger data.
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carrying it. The time step of the correlation calculationwould be limited
to that of the BOLD signal (3 s, the same as the TR), far longer than the
time it takes the cardiac pulse to travel through the whole brain (~1 s),
thus using one largely aliased temporal regressor will not be able to
catch all the voxels on the passage of this wave in the brain (i.e. cross
correlation). To estimate the correlation accurately, we used the follow-
ing steps: 1) extract series (i.e. 25 time courses) of temporally shifted
cardiac pulsation data from the finger data (NIRS, Δ[tHb]) with the
temporal shifts as small as 0.08 s (thus the whole series covers about
0.08 ∗ 25 = 2 s); 2) downsample each temporal trace according to the
TR of fMRI (3 s); 3) calculate the correlation between each downsampled
NIRS temporal trace and the temporal trace from each IC; and 4) pick the
maximum correlation coefficient for each IC. This maximum correlation
coefficient is used to replace the MCCC. The ICs having significantly
high correlation were identified as the ICs correlated to cardiac activity.
Results

Temporal correlations between LFOs from the periphery and brain

Fig. 1(c) shows the LFOs (Δ[tHb]) recorded by NIRS at the fingertip
(left middle finger, Fig. 1(a)) and the toe (left, Fig. 1(b)) of one represen-
tative participant. These two signals have high temporal correlation and
a clear time-shift between these signals can be observed. The amount of
time shift can be obtained by calculating the cross correlation. In the
presented example the shift was 3.06 s, which indicates that the LFOs ar-
rive at the finger 3.06 s earlier than they arrive at the toe. Similar obser-
vations were also made between NIRS measures of the LFOs in the
fingertip and BOLD fMRI measures of those in the brain. Figs. 2(b–c)
show the LFOs (Δ[tHb]) recorded by NIRS at the fingertip and the
BOLD signals from two example voxels, from the same participant.
The correlation coefficients are high and the temporal shifts are t =
+2.04 s and t = −2.16 s, respectively. This demonstrates that using
the arrival time of LFO at the finger as reference, the LFO in the brain ar-
rives at voxel one 2.16 s earlier, and at voxel two 2.04 s later.
Identified RSNs

Fig. 5(a) shows the averaged MCCCs (black dots, error bars indicate
stds) between each IC time course and the within-subject Δ[tHb] from
the fingertip in the 10 participants. The results are displayed in de-
scending order. The estimated error (red) was calculated using the
same procedure between each IC time course and the within-subject
temporally uncoupled Δ[tHb] finger data. The resulting stds were with-
in r = ±0.3, as indicated by the gray shade in the graph of Fig. 5(a) (the
mean and std of the red dots is 0.002 ± 0.054). The top 7 ICs' MCCCs
represent correlations between IC time course and fingertip Δ[tHb]
that are significantly different from the error (using false discovery
rate (FDR) to correct for multiple comparisons between the averaged
MCCCs from real data and those from uncoupled data, p b 0.05)
(Benjamini and Yekutieli, 2001; Groppe et al., 2011). A subset of the
ICs with high spatial correlations with previously described RSNs
(Beckmann et al., 2005; Smith et al., 2009) is labeled in Fig. 5(a).
Among them, several well-known RSNs, including DMN and visual
networks are listed. For example, when compared to Smith and col-
leagues' RSN template (Smith et al., 2009), high correlations can be
found between numerous ICs generated in our 55 component resting
state analysis and their templates, including all visual RSNs (e.g. IC 26
(R = 0.73), IC 10 (R = 0.60) and IC 34 (R = 0.58)), the DMN (e.g. IC
44 (R = 0.56)), the auditory system (e.g. IC 49 (R = 0.50)), and both
frontoparietal RSNs (e.g. IC 36 (R = 0.58) and IC 5 (R = 0.51)). Com-
parison with Beckmann's template (Beckmann et al., 2005) showed
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Fig. 5. Averaged MCCCs (black dots) between each participant's IC time course (55 ICs) and Δ[tHb] measured at the fingertip were plotted in descending order with their error bars
(a). To estimate the noise level, averaged MCCCs between the IC time courses and temporally uncoupled Δ[tHb] (data collected 480 s later) were calculated for each IC (red squares
in (a)). The blue circle marks the ICs with significant correlations with the data from the fingertip. The ICs that have high spatial correlations (R ≥ 0.5) with templates from Smith et
al. (2009) or Beckmann et al. (2005) are labeled with the black arrows with their corresponding names (S and B). Panel (b) shows a corresponding histogram showing the distri-
butions of the averaged MCCCs for the real (black line) and temporally uncoupled data (red blocks). Panel (c) shows averaged time delays (black dots) between each participant's IC
time course (55 ICs) and Δ[tHb] measured at the fingertip plotted with their error bars in the same order as in (a). The temporally uncoupled NIRS data was used to estimate the
noise level (red squares and bars in (c)). The blue square in (c) marks the top 7 ICs with significant correlations with the data from the fingertip as shown in (a).
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high correlation with the medial visual cortical areas (e.g. IC 26
(R = 0.79)), the lateral visual cortical areas (e.g. IC 10 (R = 0.54)),
the right lateralized dorsal visual stream (e.g. IC 36 (R = 0.50)),
the visual–spatial (e.g. IC 44 (R = 0.62)) corresponding to the DMN
of Smith (R = 0.79), the auditory system (e.g. IC 49 (R = 0.60), IC 17
(R = 0.30)), and the sensory motor system (e.g. IC 15 (R = 0.56), IC
17 (R = 0.35)). A detailed table of the spatial correlation results is pro-
vided as Supplemental Materials (Table 1).

The histogram in Fig. 5(b) shows the corresponding distribution of
the averaged MCCCs calculated from the real data (white bars) and
the noise estimates (red bars). We expected that the distribution of
the average MCCCs would be Gaussian if there were no intrinsic cor-
relations between the IC time course and the finger data. However, as
our results in the histogram show, there are clearly distinct ICs with
high averaged MCCCs. This validates the noise estimate procedure
we employed (using participant's own temporally uncoupled data in-
stead of random noise), as the distribution of correlation values was
neither Gaussian nor zero-mean.

Fig. 5(c) shows the averaged time delays (black dots, error bars in-
dicate stds) instead of averaged MCCCs between each IC's temporal
trace and the LFOs from NIRS Δ[tHb] (averaged from 10 participants).
The results are displayed in the order given in Fig. 5(a). The estimated
error (red) was calculated using the same procedure between each IC
time course and thewithin-subject temporally uncoupledΔ[tHb] finger
data, as in Fig. 5(a). The stds of the delays calculated from the real re-
gressors (black error bars, average std = 2.3 s) of the first 5 delays (in
blue square) are much smaller than the estimates from the uncoupled
data (red error bars, average std of noise estimate = 10.2 s) with the
averaged time delays ranging from −4.2 s to 1.5 s. The reference for
the timedelay calculation is set to be zero,when the LFO signal is detected
at the fingertip. A negative time means the LFO signal arrives earlier
than it reaches the fingertip. The time delay of the last IC in Fig. 5(c) is
−0.9 ± 3.5 s.

Fig. 6 shows the spatial patterns of the top 10 ICs (identified in
Fig. 5; i.e., those that have the highest averaged MCCCs), together
with their IC number as result of the MELODIC procedure and corre-
sponding averaged MCCC values. The IC patterns enclosed in the red
boxes are those that were significantly different from the noise estimate
(corrected formultiple comparisons). Fig. 6 also shows the IC spatial pat-
tern with the highest negative MCCC with the finger data (as the lower
right-most panel, numbered 1 with text in yellow). The spatial patterns
of the top 5 ICs (those that have the highest averagedMCCCs) calculated
with different dimensionalities (70 ICs, 85 ICs and 100 ICs) are shown as
Fig. 1 in the Supplemental Materials.

Reproducibility

The ICs numbered 1–7 in Fig. 5(a) have averaged MCCCs ranging
from 0.34 to 0.52, and are significantly different from the estimates
of noise. The ICs numbered from 8 to 10 in the same figure are not
considered significant by the t-test. However, there are two reasons
for including them in further analyses of reproducibility. First, the
order of ICs shown in Fig. 5(a) is from a single MELODIC analysis with
one dimensionality (i.e. 55); repeating the same analysis with the
same or different dimensionality can change the rank order slightly in
Fig. 5(a) or produce merged or split ICs. Multiple analyses have been
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run to confirm that the top 10 ICs in Fig. 5(a) are representative and
cover the variability associated with different ICA runs. Second, to esti-
mate the noise of theMCCCs, we conducted the same analytical process
Fig. 6. The IC patterns corresponding to the first 10 ICs that show high positive correlations wi
correlation with the peripheral data is also shown in the last panel. In each small graph, the IC
delays are displayed. The graphs in the red box are the ICs that were significant different from
(in Fig. 3), now between subject-specific IC time course and participant's
own delayed finger data (instead of the simultaneously recorded finger
data). The delay time was chosen to be 480 s in this case. However, if
th the peripheral data (see Fig. 5(a), blue circle). The IC pattern with the highest negative
number (generated by MELODIC), its corresponding averaged MCCC and averaged time
the noise (corrected for multiple comparison by FDR).
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we change the delay time, the noise estimate (red dots) may change
slightly, which will change the results of significance testing. Multiple
tests have also been run with different time delays to confirm that
these effects of time delay only affect the top 10 ICs. These slight differ-
ences in the analyses, make it necessary to include the top 10 ICs from
both the base group and the subgroups into the bootstrapping procedure
(introduced in Fig. 4) to identify the physiologically correlated ICs with
certainty.

Fig. 7 shows the ICs of the base groups that have been repeatedly
identified in the 50 subgroups as physiologically correlated ICs. The
four panels represent four sets of different results in which the di-
mensionality of the analysis of the base group was set differently. In
each panel, the ICs with the high reproducibility (RP > 40/50) are
shown with either the positive or the negative correlations with the
fingertip data. In this analysis, the dimensionality was initially estimated
by MELODIC automatically, yielding 55 ICs. In resting state analyses, di-
mensionalities of 20 to 120 ICs are commonly used (Beckmann et al.,
2005; Smith et al., 2009). Higher dimensionality can separate ICs that
might merge together when dimensionality is lowered. Since our goal
was to separate the physiologically correlated ICs from the other ICs, it
is logical to favor higher dimensionality analyses, which are better able
to separate ICs that have similar signals. Therefore we used a fixed
number of components, namely 55 ICs for all subgroups (six partic-
ipants), which is the number of ICs automatically generated by
MELODIC analysis when the dimensionality was not fixed. For the
base group (10 participants), we next applied several commonly
a b

Fig. 7. The physiologically correlated patterns of the ICs, which are highly reproducible (RP >
set to 55 (a), 45 (b), 35 (c) and 25 (d).
used dimensionalities (25, 35, 45, 55) to assess if and how the dif-
ferences in dimensionality affect the physiologically correlated IC
patterns. In Fig. 7, we can observe that the similar set of IC patterns
(panels a–d) were identified regardless of the different dimension-
alities used in the base groups. For example, the similarity existed in
1) the second IC pattern in Fig. 7(a) is visible as the second IC in all
other panels (Figs. 7(b–d)); 2) the third IC pattern in Fig. 7(a) also
returns as the third IC pattern in all other panels (Figs. 7(b–d)); 3) the
fourth IC pattern in Fig. 7 (a) can be found as the first IC pattern in all
other panels (Figs. 7(b–d)); the fifth IC in Fig. 7(a) is visible as the 4th
IC in all other panels (Figs. 7(b–d)).
Denoising

Fig. 8 shows the sameplot as in Fig. 5(a,b), but nowusing BOLD fMRI
data that have been denoised by the RIPTiDemethod using NIRSΔ[tHb]
from the finger. Compared to Fig. 5(a), the averaged MCCCs between
each IC time course (after denoising) and the within-subject Δ[tHb]
from the fingertip aremuch smaller (−0.26–0.15) and not significantly
different from thenoise estimate (−0.14–0.15). The positions of several
ICs, which had high correlations in Fig. 5(a) and had been repeatedly
identified as in Fig. 7, are labeled in Fig. 8(a) by the black arrows. The
histogramof Fig. 8(b) shows the similarity of the distributions of the av-
eraged MCCCs calculated from the real denoised data (white bars) and
the noise estimates (red bars).
c d

40/50) as calculated from the bootstrapping method (panels a–d). Dimensionality was
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Fig. 8. Averaged MCCCs (black dots) between each participant's IC time course (55 ICs) after denoising procedure and Δ[tHb] measured at the fingertip were plotted in descending
order (according to their MCCCs) with their error bars (a). To estimate the noise level, averaged MCCCs between the IC time courses and temporally uncoupled Δ[tHb] (480 s late)
were calculated for each IC (red squares in (a)). A corresponding histogram shows the distributions of the averaged MCCCs for the real (black line) and temporally uncoupled data
(red blocks).
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Table 1 compares the top 5 IC patterns identified in Fig. 7(a) (analysis
with dimensionality of 55 ICs) before and after the denoising procedure.
All 5 ICs in Fig. 7(a) were identified in the results ofMELODIC analyses of
denoised data (the left column in Table 1). The spatial correlations found
between the corresponding ICs vary, ranging from R = 0.74 to 0.95, as
shown in the middle column in Table 1. The percentage changes of the
number of activated voxels between the corresponding ICs range from
−31.7% to +22.7% (right column in Table 1). Negative percentage
means the IC pattern from denoised data contains fewer voxels. The IC
with the biggest change in area is marked in red.

Impact of cardiac pulsation

The result of using the regressors generated from the time courses of
cardiac pulsation is shown in Fig. 9(a), in which the averagedmaximum
correlation coefficients and their stds (10 participants) are plotted in de-
scending order according to the stds. From Fig. 9(a), there were no ICs
with averaged maximum correlation coefficients that were significantly
different from the noise estimate. However, the stds from some averaged
maximum correlation coefficients were large. For instance, the averaged
maximumcorrelation coefficients of the first 4 ICs in Fig. 9(a) are not sig-
nificant (from−0.11 to 0.03) yet their stds aremuch larger (from0.47 to
0.58) than the noise estimate (average std of noise estimate = 0.13).
The corresponding IC patterns (with highest std) are shown in Fig. 9(b).

Discussion

Physiological correlation

The possible origin and characteristic of the systemic LFO have been
discussed extensively in our previous work (Tong et al., 2012b). The
main focus of this work is to understand its impact on the detection of
the RSNs, especially the ones produced by ICA. The present results indi-
cate that the time courses of a number of BOLD fMRI ICs in the brain
Table 1
Comparisons (in spatial correlation and number of voxels) between the corresponding
ICs before and after the denoising procedure. The ICs displayed here are the same ICs as
shown in Fig. 7(a), in the same order.

Corresponding ICs Spatial Correlation (fslcc)
between the 
corresponding ICs 

Difference of the numbers  
of the voxels in the  
corresponding ICs 

IC30 (IC32) 0.88 +22.7%
IC15 (IC34) 0.95 −12.4%
IC17 (IC45) 0.95 −2.4%
IC35 (IC10) 0.74 −31.7%
IC26 (IC13) 0.94 +0.7%
have significant correlations (both positive and negative) with the
NIRS Δ[tHb] data collected from the finger, and therefore contain signif-
icant contributions from nonneuronal sources. In fact, the spatial pattern
of the first IC (i.e., IC 35) in Fig. 6 showed clearly recognizable regions in-
volved in blood flow, including the superior sagittal sinus, straight sinus,
and inferior sagittal sinus. Accordingly, this IC produced the highest av-
eraged MCCC (r = 0.52) with the fingertip data, as expected, thus val-
idating the sensitivity of the method of identification. Similar vascular
patterns can also be found in IC pattern 3 (i.e., IC 30). Moreover, many
ICs in Fig. 5 could be identified with previously reported RSNs. For in-
stance, our peripherally correlated IC15, IC17 and IC26 (see Fig. 6),
were also highly correlated (R > 0.3) with the sensorimotor, auditory,
and visual RSNs characterized by Beckmann et al. (2005) and Smith et
al. (2009). In contrast, the ICs consistent with executive control RSNs,
such asDMNand the frontal parietal network, appear to be less correlated
with the systemic LFO, suggesting that the effect of the systemic LFO on
RSNs may vary widely. Therefore, of equal importance to distinguishing
the ICs that have time courses with large contributions from systemic
LFO, a nonneuronal signal, this method also identifies which ICs have a
smaller contribution from the systemic LFO, shown in Fig. 5(a).

All the ICs identified in Fig. 5 were derived from a single analysis.
The ICs with high reproducibility (RP > 40/50) among 50 subgroups
(bootstrapping) are shown in Fig. 7. In addition to the IC that clearly
represents the cerebral vasculature (the first and fourth IC patterns in
Fig. 7(a) and the first IC pattern in Figs. 7(b–d)), the method identified
threemore ICswith high repeatability, corresponding to the sensorimo-
tor (second IC pattern in Figs. 7(a–d)), visual (fifth IC pattern in Fig. 7(a)
and fourth IC pattern in Figs. 7(b–d)), and auditory RSNs (third IC
pattern in Figs. 7(a–d)). The commonality among these sensory RSNs
is that they all have high blood capillary density (or vascular density;
Biswal et al., 2007). Harrison et al. (2002) demonstrated that density
of blood vasculature is high in the primary sensory areas, including
motor cortex, the speech related regions (Wernicke's and Broca's area)
and visual cortex. They also showed that the areas with high density
are likely to be “activated” in functional tasks. In resting state studies,
these same primary sensory areas are among themostly identifiable net-
works using either seed-based analysis or ICA. Actually, the first resting
state network ever found was the bilateral motor cortex (Biswal et al.,
1995). Our contribution in this study is to point out that these same pri-
mary sensory cortices have high correlationswith the systemic peripher-
al LFO in resting state. As we have shown previously (Fig. 2) as well as in
some of our other studies (Tong and Frederick, 2010; Tong et al., 2012a),
the systemic LFOs are: 1) closely related to the blood signal (blood flow
and volume); 2) moving through the brain dynamically, thus affecting
different parts of the brain at different times. The high blood capillary
distribution in the primary sensory cortices contributes to the high
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Fig. 9. Averaged MCCCs (black dots in (a)) between each participant's IC time course (55 ICs) and series of temporally shifted Δ[tHb] downsampled from NIRS data (high-pass filtered,
>0.6 Hz), were plotted in descending order according to their error bars (i.e. std). To estimate the noise level, averagedMCCCs between the IC time courses and timely uncoupledΔ[tHb]
(480 s late) were calculated for each IC (red squares in (a)). The pattern of the IC that had the highest variations in MCCCs (first IC in (a)) is shown in (b). The green circle highlights the
medulla oblongata.
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correlations by preferentially accentuating systemic hemodynamic fluc-
tuations. Furthermore, the symmetry of these cortices on the cerebral
vasculature results in the same time delays of the systemic LFOs arriving
at these areas. For example, the time delays for the systemic LFOs in the
left and right motor cortices are the same, due to the symmetry of the
two bilateral motor cortices. However, the time delays are likely to be
different when compared to other networks; for example, the visual cor-
tex may be farther or closer to the source of the systemic LFO in the vas-
culature. This is also demonstrated by the work of Bright et al. (2009).
They showed the regional heterogeneity in the vascular response
using a novel breathing paradigm. These are the reasons that the prima-
ry sensory networks can be identified easily and separately. In Figs. 5(c)
and 6, the ICs 2, 5, and6 are associatedwith sensorymotor, auditory and
visual networks respectively. The averaged temporal delays of these ICs
are −0.9 s, −4.2 s and +0.3 s. This supports the argument that the
LFOs arrive at different networks with different time delays. Moreover,
it seems that the temporal order of arrival of the LFOs is auditory, sensory
motor, then visual cortex, which matches the overall front to back pat-
tern of LFO arrival time we see consistently in arrival time maps (Tong
and Frederick, 2010).

These ICs in Fig. 7 are still likely to have neuronal contributions.
This is supported by the fact that the temporal traces from these areas,
even though highly correlated with the systemic LFOs with different
temporal shifts, are not temporally shifted copies of each other. This sup-
ports the existence of the local oscillations in addition to these systemic
components. However, due to the significant impact of the systemic LFOs
to these areas, the RSNs of these primary sensory networks are obscured.
We employed our previously developed physiological denoisingmethod
(Frederick et al., 2012a), in hopes of understanding the nature of these
physiologically correlated ICs,mainly located in the primary sensory cor-
tices. The results are briefly discussed in the next session.

An interesting observation is the existence of an IC with a negative
averagedMCCC (i.e., last IC pattern in Figs. 6 and 7). This IC is the only one
that has been repeatedly identified as having the negative correlations
with the systemic LFO (Figs. 6 and 7). This IC pattern represents mostly
white matter in the brain, but it is unclear why temporal oscillation of
white matter as measured by BOLD fMRI is negatively correlated with
the systemic blood fluctuation (for 55 ICs, the averaged time delay for
this white matter IC is −0.9 s as shown in Fig. 6 last IC pattern). Aslan
et al., have recently found that CBF in the white matter is inversely cor-
related with the gray matter's temporal synchrony (Aslan et al., 2011),
which matches our finding. Although it is tempting to envision
anticorrelation as resulting from a misalignment of two regular wave-
forms in time (knowing the vascular transit time in the white matter
is longer than that in the graymatter; van Gelderen et al., 2008), it is im-
portant to note that the LFO signal is a pseudorandom, multifrequency
signal; as such there is no such thing as “180 degrees out of phase”—
anticorrelation implies an actual negative correlation of the BOLD with
the NIRS data, rather than a phase shift. Therefore we hypothesize that
the mechanism by which the NIRS signal correlates with the white mat-
ter BOLD signal is different than that in the graymatter. One explanation
consistent with the data is that the white matter serves as a cerebral
blood reservoir, whose purpose is to meet the cerebral circulatory de-
mands of the “more critical” gray matter. This means that less blood
would flow to thewhitematter if the graymatter demandsmore. How-
ever, this is simply conjecture, and more studies are needed to clarify
this issue. Lastly, even though thewhitematter IC has been consistently
identified to have a negative correlation, its correlation coefficient is rel-
atively low. This is probably due to the fact that the blood supply to the
white matter is significantly lower (~25%) than that to the gray matter
(Mezer et al., 2009), thus leading to lower SNR.

Physiological correction

The results in Fig. 8 demonstrate the effectiveness of the RIPTiDe
method in removing systemic LFOs from BOLD data. After the denoising
procedure, no ICs have high correlationswith theNIRSΔ[tHb]. Specifical-
ly, the ICs associated with motor, visual and auditory networks, which
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previously had quite high correlations with the systemic physiological
signal, no longer rank high in Fig. 8(a). Moreover, the distribution
of maximum correlation coefficients, as shown in the histogram in
Fig. 8(b) shows no significant difference between the distribution
of the MCCCs (after denoising procedure) and the random distribu-
tion of estimated noise calculated from the temporally uncoupled
NIRS data.

Table 1 summarizes the differences of the top 5 ICs (from Fig. 7(a))
before and after the denoising procedure. It is interesting to note that
after the NIRS LFOs were regressed out from the BOLD fMRI using
RIPTiDe, these IC patterns are still clearly identifiable. This is sup-
ported by the high spatial correlations (the middle column in Table 1)
calculated between the corresponding ICs (before and after the denoising
procedure). The most likely explanation is that these functionally linked
areas of the brain also have similar vascularization; this will of necessity
mean that there will be strong correlation within the networks due to
the commonphysiological variation thatwill overlay, and to somedegree
obscure, the variation due to correlated neuronal activity.

The effect of removing the physiological noise affects all of these
networks differently. One IC has a very significant decrease in size
(−31.7%) (Table 1)—the IC that is very clearly outside the brain and
associated with cerebral vasculature (IC4 in Fig. 7(a)). This demon-
strates that the systemic LFOs' (identified by NIRS) effect on the BOLD
signal, is most pronounced in voxels in and near the cerebral vascula-
ture. However, the IC pattern (IC4 in Fig. 7(a)) is still detectable, even
with much smaller size. This is not surprising; there are doubtless
other physiological fluctuations (from respiration, cardiac pulsations
and arterial gas tension or concentrations) that affect the voxels of
this primarily vascular IC similarly. These different physiological pro-
cesses affect the BOLD fMRI through blood circulation independently,
so while removing one of these effects (NIRS systemic LFOs) reduces
correlation with the region, we are still able to detect the similar but
smaller IC pattern. This idea is also supported by our previous study
(Frederick et al., 2012a), in which we found that the noise regressors
generated from simultaneously recorded NIRS signal account for dif-
ferent portions of the variation in the BOLD fMRI than those from
RETROICOR (Glover et al., 2000) and respiratory fluctuations (Birn
et al., 2006).

For the remaining 4 ICs in Table 1, the changes in network size are
both positive and negative, some of them quite significant (IC 30
increases in size by 22.7%). This is presumably accompanied by signif-
icant changes in network strength. More analyses and more partici-
pants are needed to fully understand the issue, but the degree to
which the overlying global vascular signal modifies the networks will
depend on the specifics of the vascular networks within these brain re-
gions; therefore removing the physiological signal will affect the quan-
titation of the underlying functional networks differently. The
heterogeneity of the effect highlights the importance of removing this
physiological noise—comparing the relative strengths of resting
state networks between subjects or between states will be most sen-
sitive when the confounding effects of overlying, global hemodynamic
variations are removed. Moreover, as a result, we found the improve-
ments in the other networks too. For example, the DMN moved from
IC 44 (before denoising) to IC 2 (after denoising), meaning more phys-
iological variance has been removed.

Dimensionality

Varying the dimensionalities of the analysis of the complete sub-
ject group resulted in the identification of ICs that were consistent
with those when the dimensionality was set to 55. For example, the
ICs shown in Figs. 7 (b–d) were almost one-to-one matches to those
shown in Fig. 7(a). Another observation made with the dimensionality
analysiswas that small dimensionality causes ICs tomerge, as expected.
For instance, the IC1 shown in Figs. 7(b–d) appears to be the result of
merging ICs 1 and 4 from Fig. 7(a). This observation is supported by
the spatial correlation analysis that was not shown. Moreover, IC3 and
IC4 in Figs. 7(b–d) are slightly larger compared to their counterparts
IC3 and IC5 in Fig. 7(a), likely due to this low dimensionality-related
merging effect. While using a higher dimensionality (e.g., 70–100 as
shown in the Supplemental Materials; Fig. 1) creates less merging, sim-
ilar ICs were identified as those seen in the 55-dimensionality analysis.
Therefore, the peripherally correlated IC patterns identified are essen-
tially the same regardless of the dimensionality. Altogether, these find-
ings demonstrate the robustness of the peripherally correlated ICs.

Cardiac signal from NIRS

In our analyses on the effects of cardiac pulsation, there were no
ICs with averaged maximum correlation coefficients that were signif-
icantly different from the noise estimate (Fig. 9). However, beyond
the facts that the cardiac pulsation wave is smaller than LFOs (1:4)
and it is largely aliased into the BOLD fMRI, there is one major differ-
ence in the LFOs and cardiac pulsation wave, which is that the cardiac
signal is highly periodic and oscillates at a much higher frequency
(~1 Hz). Thus, the maximum correlation coefficients calculated be-
tween the ICs' temporal traces and a series of NIRS cardiac regressors
(shifted by 0.08 s) can be either positive or negative. This explains the
large stds observed in Fig. 9, since some subjects have high positive
correlation coefficients while some have high negative ones; this is
likely due to small variations in the temporal alignment of the heavily
aliased cardiac variations with the BOLD signal in different voxels. In
this case, the ICs with large stds are the ICs that have high correlations
with the cardiac pulsation wave (but because of misalignment, vary
between large positive and negative extremes—this effect is shown
in Fig. 2 in the Supplemental Material). Fig. 9(b) shows the corre-
sponding pattern for the IC with the largest std (the patterns for the
top 4 ICs with largest stds are shown in Fig. 3 in the Supplemental
Materials). The area marked with the green circle (Fig. 9(b)) mostly
overlaps the medulla oblongata, a portion on the brainstem. The me-
dulla oblongata controls autonomic nervous activity and regulates
basic autonomic functions, such as respiration and heart rate. The
fact that our method is able to identify ICs associated with the medulla
oblongata as having a high correlation with the cardiac pulsation is ex-
tremely interesting. However, it is also well known that higher physio-
logical fluctuations are also present in the brainstem (Beissner et al.,
2011). This finding should be explored further using fMRI techniques
with higher temporal resolution (see below) and effective denoising
procedures.

Future studies

It is well known that the variations in heart rate (Chang et al., 2009;
Shmueli et al., 2007) and respiration volume (Birn et al., 2006; Kastrup
et al., 1999; Liu et al., 2002) also contribute to the BOLD signal in the low
frequency band. Our future work will generate the LFOs corresponding
to respiration volume changes (Birn et al., 2008b) as well as heart rate
changes (Chang et al., 2009), and compare them with our systemic
LFOs measured at the fingertip. We hypothesize that results from
those studies will show empirically if these three effects are related or
if they are distinct from one another. Furthermore, we will apply the
denoising methods described in this paper to further remove the phys-
iological fluctuations caused by respiration and cardiac pulsation from
BOLD fMRI resting state data, in order to determine the extent to
which the ICs are influenced by these physiological signals. Further-
more, resting state data using multiband EPI sequence (Feinberg et al.,
2010) are now being collected. The much shorter TR (~0.4 s) used in
the scanwould help dramatically in the denoising procedure, specifically
for the physiological fluctuations from the respiration and cardiac pulsa-
tion due to the fact that these procedures are fully sampled in the fast se-
quence. Application of thismethod to high temporal resolution datamay
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yield further insight into the interaction of physiological signals with
BOLD data in the brain.

Conclusion

Using correlations between NIRS-measured concurrent systemic
LFOs in Δ[tHb] from the fingertip and BOLD fMRI signal changes in rest-
ing state ICs,we have shown that not all the RSNs identifiedwith ICA are
affected by the systemic LFOs equally. Some of themwere strongly cor-
related with the peripheral signals. A bootstrapping method has been
used to confirm that physiologically correlated RSNs are mostly the
RSNs associatedwith primary sensory cortices, includingmotor, audito-
ry and visual cortex. Other RSNs associated with executive functions,
such as DMN, are not strongly correlated with the systemic LFOs. We
observe that these primary sensory RSNs contain significant contribu-
tions from the global blood-borne LFO signal due to their high blood
capillary distribution and structural symmetry in the cerebral vascula-
ture. We further show that RIPTiDe denoising can effectively reduce
the influence of these signals on connectivity measurements.

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.neuroimage.2013.03.019.
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