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Abstract: BOLD functional MRI (fMRI) data are dominated by low frequency signals, many of them of
unclear origin. We have recently shown that some portions of the low frequency oscillations found in
BOLD fMRI are systemic signals closely related to the blood circulation (Tong et al. [2013]: Neuro-
Image 76:202–215). They are commonly treated as physiological noise in fMRI studies. In this study,
we propose and test a novel data-driven analytical method that uses these systemic low frequency
oscillations in the BOLD signal as a tracer to follow cerebral blood flow dynamically. Our findings
demonstrate that: (1) systemic oscillations pervade the BOLD signal; (2) the temporal traces evolve as
the blood propagates though the brain; and, (3) they can be effectively extracted via a recursive proce-
dure and used to derive the cerebral circulation map. Moreover, this method is independent from
functional analyses, and thus allows simultaneous and independent assessment of information about
cerebral blood flow to be conducted in parallel with the functional studies. In this study, the method
was applied to data from the resting state scans, acquired using a multiband EPI sequence (fMRI scan
with much shorter TRs), of seven healthy participants. Dynamic maps with consistent features resem-
bling cerebral blood circulation were derived, confirming the robustness and repeatability of the
method. Hum Brain Mapp 35:5471–5485, 2014. VC 2014 Wiley Periodicals, Inc.
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INTRODUCTION

Functional MRI (fMRI) has been widely used in studies
of brain function [Bandettini et al., 1992; Ogawa et al.,

1992]. fMRI measures of the Blood Oxygen Level Depend-
ent (BOLD) signal are often thought of primarily as a mea-
sure of neuronal activation. However, BOLD is not a
direct measurement of neuronal activation; it is a blood-
related signal reflecting local and systemic changes in
blood flow, volume, and oxygenation. To the extent that
neuronal activations are responsible, BOLD signal changes
are mediated by neurovascular coupling. However, other
physiological processes (e.g., respiration and cardiac pulsa-
tion) that change blood flow, volume or oxygenation, can
also influence the BOLD signal [Buxton, 2002; Huettel
et al., 2009].

The dominant frequency components in BOLD reside in
the low frequency band, which is roughly 0.01–0.1 Hz.
These low frequency oscillations (LFOs) are the focus of
fMRI studies because it is often believed that neuronal
activations, in both task and resting states, are reflected in
this low frequency band as a result of the slow neurovas-
cular coupling, which acts as a low-pass filter [Leopold

Additional Supporting Information may be found in the online
version of this article.

Contract grant sponsor: The National Institutes of Health; Con-
tract grant numbers: K25 DA031769 (YT) and R21 DA032746
(BdeBF).

*Correspondence to: Yunjie Tong, Brain Imaging Center, McLean
Hospital, 115 Mill Street, Belmont, MA 02478.
E-mail: ytong@mclean.harvard.edu

Received for publication 16 December 2013; Revised 19 May 2014;
Accepted 27 May 2014.

DOI: 10.1002/hbm.22564
Published online 23 June 2014 in Wiley Online Library (wileyonli-
nelibrary.com).

r Human Brain Mapping 35:5471–5485 (2014) r

VC 2014 Wiley Periodicals, Inc.



and Maier, 2012] [Cordes et al., 2001; Scholvinck et al.,
2010]. With the repetition time (TR) values that are com-
monly used in fMRI (TR> 2 s), physiological fluctuations
at higher frequencies, such as respiration (0.2–0.4 Hz) and
cardiac pulsation (�1 Hz), are aliased into the LFOs and
thereby confound the “real” neuronal signals [Bhattachar-
yya and Lowe, 2004]. However, in contrast to these aliased
high frequency physiological signals that can be filtered
and removed when using a higher sampling rate (i.e.,
shorter TR), there are also natural, systemic LFOs oscillat-
ing at these frequencies. The origins and functions of these
systemic LFOs are not clear. Some have claimed that spon-
taneous slow variations of the arterial pressure (Mayer
waves) are the main source of the LFOs [Julien, 2006],
while others implicate vasomotion generated from the ves-
sel walls [Aalkjaer et al., 2011]. Fluctuations in arterial CO2

concentration through breathing have also been shown to
affect the BOLD signal at low frequencies [Murphy et al.,
2011; Wise et al., 2004]. Recently, fMRI studies identified
relationships between the LFOs in BOLD, and the varia-
tions in respiration volume and cardiac rate [Birn et al.,
2008; Chang et al., 2009; Shmueli et al., 2007]. Regardless
of the source, these systemic LFOs appear widely in the
BOLD fMRI signal and dominate the signal, especially in
resting state data [Murphy et al., 2013].

In our previous research [Tong and Frederick, 2010;
Tong et al., 2011], we showed that a considerable portion
of LFOs are systemic signals closely associated with cere-
bral blood circulation. Specialized data analysis methods
revealed temporal shifts between BOLD signals from dif-
ferent voxels that indicate the relative arrival time of the
blood-borne LFO signal at each voxel. Similar LFOs
(highly correlated with the BOLD signals) were detected at
peripheral sites (e.g., fingertip and toes) by near infrared
spectroscopy (NIRS) [Tong et al., 2012]. Taken together,
these findings imply that the systemic LFOs are intrinsic
natural signals that travel with the blood to every part of
the body, including the brain. Based on these features of
the LFOs, we have successfully mapped the dynamic cere-
bral blood circulation using a novel method called RIP-
TiDe [Tong and Frederick, 2010]. The method uses the
temporally shifted NIRS signal (changes in total hemoglo-
bin concentration; D[tHB]) measured at some part of the
body (for example the forehead or fingertip) simultane-
ously with fMRI, as regressors to derive a map of the
propagation of the LFOs in the brain from fMRI data.
However, there are limitations to this technique. First,
NIRS instruments are not widely available. Second, the
NIRS signal reflects blood fluctuation either in a superficial
layer of the tissue (i.e., from forehead measurement) or in
the periphery. As the blood flowing to these areas
diverges from that which flows towards the brain, the
shape of the signal might not accurately predict the shape
of cerebral LFOs, despite the temporal shifts. Given the
systematic changes in blood flow in the extremities that
occur as a result of aging [Allen and Murray, 2003] and
the spatially heterogeneous age-dependent changes in cer-

ebral vascular tone and flow resistance [D’Esposito et al.,
2003], this limitation may be exacerbated in studies of older
populations. Third, and most important, the time-shifted
regressors from NIRS are static; however, because of the
complicated and inhomogeneous cerebral vasculature struc-
ture (i.e., arteries, veins, and capillaries), the LFO time-
courses may vary as the blood propagates through the brain.

In this study, we applied a new data-driven method to
resting state BOLD fMRI data to dynamically map blood
circulation in the brain. The regressors used at each time
point to track blood flow were derived from the BOLD sig-
nals themselves using a recursive procedure. Because this
analytical method is based on fMRI data alone (either task
or resting state), it can be performed independently from
the functional analyses and therefore does not interfere
with the fMRI results. Furthermore, it offers additional
information about cerebral blood flow simultaneously
recorded with the functional study. Finally, the sensitivity
of the new method is enhanced by very short TR BOLD
image acquisitions (TR 5 0.4 s [Feinberg et al., 2010]) that
allow full sampling of the heart rate (HR) for subsequent fil-
tering of other known physiological processes, including
HR and respiration.

MATERIALS AND METHODS

Protocols and Instrumentation

fMRI resting state studies were conducted in seven
healthy participants (3M, 4F, average age 6 SD, 27.1 6 8.5
years). In the resting state studies, participants were asked
to lie quietly in the scanner and view a gray screen with a
fixation point in the center. For testing purposes, the rest-
ing state scans lasted 360 s for three participants and 600 s
for four participants. The Institutional Review Board at
McLean Hospital approved the protocol, and participants
were compensated for their participation.

All MR data were acquired on a Siemens TIM Trio 3T scan-
ner (Siemens Medical Systems, Malvern, PA) using a 32-
channel phased array head matrix coil. After acquiring a high
resolution localizer image, (MPRAGE, TR/TI/TE 5 2,530/
1,100/3.31, 256 3 256 3 128 voxels over a 256 3 256 3 170 mm
sagittal slab, GRAPPA factor of 2), multiband echo-planar
imaging (EPI) (University of Minnesota sequence
cmrr_mbep2d_bold R008) data were obtained with the follow-
ing parameters: (TR/TE 5 400/30 ms, flip angle 43�,
matrix 5 64 3 64 on a 220 3 220 mm2 FOV, multiband
factor 5 6, 30 3.0 mm slices with 0.5 mm gap parallel to the
AC-PC (anterior commissure–posterior commissure) line
extending down from the top of the brain.

Analytical Method

Preprocessing

Standard preprocessing steps, including motion correc-
tion, slice time correction, and spatial smoothing (5 mm),
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were applied to the fMRI data in FSL [Smith et al., 2004].
The result was then filtered with a Fourier domain Han-
ning window bandpass filter in MATLAB (The Math-
works, Natick, MA) to select the signal between 0.05 and
0.2 Hz, which is the spectral range of the systemic LFOs
(the justification of this spectral range is in Discussion sec-
tion). Each of the analytical steps described below (sections
Seed Selection through Delays Maps) was performed on
this filtered fMRI data.

Seed selection

To track cerebral blood flow using BOLD fMRI data, we
needed to first select a seed voxel located in a blood ves-
sel. In contrast to typical BOLD fMRI analyses, the BOLD
signal changes caused by neuronal activation are regarded
as “noise” in this computation, and seed regions contain-
ing robust neuronally derived BOLD signal changes
should therefore be avoided. Two reliable locations are: (1)
in the bottom of the axial fMRI scan, a slice with minimal
brain tissue (e.g., gray matter), but with many blood ves-
sels, including the Clival venous plexus, Petrosal vein, Jug-

ular bulb, Basilar artery, and so forth; and (2) in the
middle sagittal slice, where the superior sagittal sinus
curves around the cortex. These vessels are relatively large
and easy to identify. Figure 1a shows the location of the
seed in the bottom slice of the fMRI data from one partici-
pant. We can identify suitable blood vessel seed voxels
using the following steps:

1. In the bottom slice, we search in the area surrounding
the Pons, which is surrounded by large blood vessels.
Figure 1b shows one participant’s fMRI scan (from the
bottom slice) projected onto his own corresponding
structural scan. Red arrows indicate the two veins on
each side of the Pons. In the middle sagittal slice, we
can choose a voxel at the boundary of the cortex.

2. A Fourier transform was performed on the BOLD sig-
nals of the voxels that were preselected in the previous
step. Voxels with separately identifiable components
in the low frequency (<0.2 Hz) and cardiac pulsation
(�1 Hz) domains are likely to be suitable seeds. Figure
1c shows the corresponding temporal trace (red) of
the voxel selected in Figure 1a, while its spectrum

Figure 1.

Orthogonal fMRI image of one participant with red circle indi-

cating the location of the seed (a). The bottom slice of the fMRI

image (axial) projected onto the participant’s own structural

scan (b). Red arrows indicate the potential seed surrounding the

Pons. The temporal trace of the BOLD signal from the seed in

(a) is plotted in red in (c). The blue line is its bandpass filtered

(0.05–0.2 Hz) version. The power spectrum of the original

BOLD signal and the bandpass range is plotted in (d). [Color fig-

ure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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(red) is shown in Figure 1d with distinct peaks in the
low frequency domain, at respiration and cardiac
frequencies.

The criteria to determine if the seeds are “good” or

“bad” are given later in Seed Selection section in Results

and Discussions. In short, it is fairly easy to choose the

suitable seed. If the “bad” seed is identified, it should be

replaced by a new seed.

Recursive regressors

Figure 2a shows the flowchart of the recursive procedure
to extract progressive regressors used later for tracking the
cerebral blood flow. The steps involved are as follows:

1. The single-voxel seed was chosen as described ear-
lier. Its time course was extracted and considered to
be the seed regressor, that is, the regressor with zero
time lag (regressor0).

Figure 2.

(a) Flowchart of the method. The procedure started with the

BOLD time series (TS) of a seed voxel located in a large cere-

bral blood vessel (seed regressor). This TS was then cross-

correlated voxelwise with all the other BOLD signal to select

the voxels that have the highest correlation coefficient (>0.5) at

a time lag of 21 TR (or 11; the sign indicates a search back-

ward or forward in time). The average of these selected BOLD

signals was a distinct regressor with time shift 21 (or 11), that

would replace the seed regressor in the analysis, and would be

used to further identify the next regressor. Recursively, multiple

self-evolving regressors with specific time shifts were generated

until the number of highly correlated voxels (i.e., N) fell below a

predetermined threshold (i.e., 50). (b) Correlation graph, the

number of highly correlated voxels (shown as bars and small

circle connected by dotted line) for each regressor is plotted

against the iteration number of that regressor (black). The sign

(red) in front of each iteration number indicates the iteration

direction. Big blue circle indicates the single-voxel seed regres-

sor (0 iteration), while the dotted blue arrow indicates the

direction of the evolution. Black circle indicates the optimized

seed regressor. (c) Then each regressor (on the left) was used

in the GLM analysis independently. The statistic results (z-maps

on the right) were concatenated to assess the cerebral circula-

tion. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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2. The voxel-wise cross-correlation was calculated between
each BOLD time course and the seed regressor.

3. The BOLD signals that satisfied the two following
conditions were averaged and the averaged result
was the new “regressor.” The two conditions were
that the maximum cross correlation between the
BOLD signal and seed regressor was higher than 0.5,
and the time lag of the maximum cross correlation
occurred at 21 (or 11) TR value. These conditions
ensured that only the highly correlated voxels (>0.5)
that had time lag 21 (or 11) with the seed regressor
would be selected. The TR of the acquisition deter-
mines the temporal resolution of the time lag; in this
case, the time lag of 1 means the time shift is 1 TR,
400 ms. We used the Matlab function xcorr to calcu-
late the maximum cross correlation and its corre-
sponding lags. As a result, negative lag values
correspond to voxels where the blood arrives prior to
arrival at the seed voxel. Defining the sign of the lag
value allowed us to search the voxels in either
upstream (prior to arrival at the seed) or downstream
(after the seed). The averaged time series of these
voxels served as the new “regressor,” representing
the evolved blood signal before (regressor21)(or after,
regressor11) the current one (seed/regressor0).

4. The new regressor (regressor21 or regressor11)
replaced the seed regressor in step 2 and the recur-
sive procedure continues in the direction defined by
the sign of the lag value (21 or 11). Each iteration
generated a new regressor (e.g., regressor21,
regressor22 regressor23 regressor24 . . . if the sign of
the lag is set to be negative at beginning).

5. For each regressor, voxel-wise Pearson’s correlation coef-
ficients were calculated and the number of voxels (i.e., N)
that had high correlations (>0.5) was plotted against its
corresponding regressor in a bar graph, called the corre-
lation graph. It is important to note that, we used cross
correlation to derive each new regressor in step 3, here
we used Pearson’s correlation to assess each regressor.
An example correlation graph for participant 1 is shown
in Figure 2b. Each bar (or small blue circle connected by
the dotted line) indicates the number of highly correlated
voxels. The corresponding regressor is indicated on the
x-axis by its iteration number with a sign showing the
direction. For example, 0 represents the seed regressor
and 24 represents the regressor (i.e., regressor24) that
evolved four steps away from the seed regressor in the
negative direction. These iteration numbers can be con-
verted into time shifts of each regressor by multiplying
by 0.4 s. The big blue circle marks the position of the
single-voxel seed and the dotted arrow indicates the
searching directions of the recursive procedures.

6. The procedure is designed such that it will stop
when the number of voxels (i.e., N) found in step 5 is
less than 50 (i.e., the threshold value). The threshold
is an empirical number approximately 1–2% of the

maximum value (i.e., the highest bar) in the correla-
tion graph. To satisfy the threshold condition means
to reach a point at which the number of voxels highly
correlated with the current regressor is so insignifi-
cant, the process should stop.

7. Normally, the procedures were run in both directions
(search all the negative ones, then the positive ones)
from the seed regressor to catch the full passage of
the blood through the brain (both upstream and
downstream from the seed).

Refinement using seed optimization

The procedure is designed to extract evolving systemic
LFOs at every step. However, the temporal trace of a single-
voxel seed is influenced by the regional fluctuations (in addi-
tional to the systemic fluctuations), which might lead to inac-
curate results (details are given in Optimized Procedure). To
avoid this, a second recursive procedure was run using a new
and robust seed selected from the results of the first one. The
steps involved in this second procedure were as follows:

1. From the correlation graph (e.g., Fig. 2b) of the first
procedure, the regressor that had the most highly
correlated voxels was identified. In Figure 2b, this is
the regressor at 24 (marked by the black circle).

2. The identified regressor (e.g., regressor24) was then
used as the seed regressor in the second procedure.

All the regressors and results discussed later in this arti-
cle were based on this procedure of optimized seed, unless
otherwise noted. We will refer to these two procedures as
“the first procedure” and “the optimized procedure” in
the rest of the manuscript.

Dynamic z-statistics maps

The next step in our method involves using all the regressors
successively in the general linear model (GLM) analysis of the
fMRI BOLD data (Feat of FSL [Jenkinson et al., 2012; Smith
et al., 2004]), as shown in Figure 2c. Because the trace of the
concatenated z-values is important, rather than the z-values
themselves, no autocorrelation correction was used to boost
the computational efficiency. To prevent motion artifacts, six
motion parameters generated by FSL preprocessing were used
as confound regressors in the GLM analyses. The resulting
z-statistic maps from each regressor are concatenated over
time according to the sequence of the regressors being used
(i.e., from the negative number to the positive number, in our
case). To achieve a Bonferroni correction for the concatenation
of up to 20 z-statistic maps together, a P-value of P< 0.0025
was used (P< 0.0025 5 0.05/20); as a result, the z-threshold
was set to 3.5. For clarity of display, we increased the z-thresh-
old to 4 (P< 0.0001), meaning the max z-value (out of con-
catenated z-statistic maps) must be greater than 4 for this voxel
to be considered significant.
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To clarify the temporal evolution of the pattern (which
is explained in Dynamic Maps section), the thresholded
z-maps were normalized by scaling the maximum value
(of the concatenated z-statistics maps) at each significant
voxel to be 1. The normalized result can then be viewed as
a movie to assess the dynamic flow of the LFOs through
the brain.

Delays maps

The delay maps were generated from the concatenated
maps (4D) and show the dynamic information in one 3D
image. Each voxel was assigned a color that indicates
which time shift corresponds to the maximum z-value for
that voxel. The dynamic evolution of cerebral LFOs can be
assessed by observing the range of color changes in the
map.

Robustness of the method

We tested the robustness of the method with respect to
both different seed selections and different lengths of the
studies. For different seed selections, we applied the first
procedure and the optimized procedure on one participant
with four different seeds. These seeds were not selected
from the prime locations discussed in the Seed Selection
section, but rather from gray matter, white matter, and the
posterior cingulate cortex. The resulting correlation graphs
were compared with that derived from a single-voxel seed
of prime location. For different study lengths, we tested
the method on one participant with 600 s acquisition time.
The whole run was equally divided into three “small”
runs with 200 s length, and the method was applied on
the long run as well as each small run, using the same
seed. The results were compared to assess the temporal
consistency.

RESULTS AND DISCUSSIONS

Optimized Procedure

Figure 3 shows the process and results using the opti-
mized procedure performed on participant 1. The inlet of
Figure 3 shows the location of the seed from the last slice
of the fMRI scan (blue circle). The correlation graph from
the first procedure is shown in Figure 3 (as a shaded
graph), in which the single-voxel seed regressor is indi-
cated by a shaded big blue circle. The correlation graph of
the optimized procedure is shown as solid lines with
squares. The big solid circle indicates the optimized seed.
We can see that there are deviations between the results of
first and the optimized procedure, which are shown as the
differences between the solid and dotted lines. The largest
deviations occur at the seed regressor of a single voxel
(big shaded circles). As we know, most regressors were
generated by averaging the temporal traces of the voxels
selected by the previous regressor (see Fig. 2a). The aver-

aging process emphasizes the commonalities of the signals
in these selected voxels (i.e., systemic LFOs of same time
shift) while eliminating the other signals in the voxel,
including regional neuronal/blood signals, other physio-
logical noise, and so forth. However, if the seed is from a
single voxel, it does not benefit from averaging and thus is
contaminated by the regional fluctuations/noise. This con-
tamination explains the large deviation at the seed regres-
sor observed in Figure 3; it also influences the accuracy of
the next few regressors. The region of interests (ROI) anal-
ysis, which defines a cluster of voxels based on structure/
functional similarities to boost the signal to noise ratio
(SNR), is not suitable because: (1) blood vessels are gener-
ally small compared to the size of the voxel; (2) each blood
vessel has unique shape and direction, which is not well
matched to an ROI of regular shape; and (3) most impor-
tant, the seed is supposed to reflect the travelling systemic
LFOs at one physical point, averaging a cluster of voxels
whose signals may have different time shifts would cancel
the signal instead of strengthening it.

The optimized procedure was developed to solve this
problem. After the first recursive procedure, a second
analysis starts with a new seed regressor, which is the
result of averaging the most voxels selected by the previ-
ous procedure and thus represents the most accurate sys-
temic LFOs shared by these voxels. The new seed can be
regarded as resulting from a special “ROI.” The unique
feature is that this spatially distributed, but temporally
compact ROI is identified by the previous procedure.

Finally, we can see that the time span of the correlation
graph in Figure 3 is about 5.2 s (i.e., 0.4 s 3 13 5 5.2 s),
which is in the range of the cerebral circulation time of

Figure 3.

Correlation graphs of the first and optimized procedure of partic-

ipant 1. Blue circle in the inlet marks the location of the single-

voxel seed from the bottom slice of the image. Correlation graph

of the first procedure is plotted in shade (dotted line with small

circles). Big shaded blue circle indicates the single-voxel seed

regressor (0 iteration). Correlation graph of the optimized proce-

dure is shown as solid line with squares. Big solid blue circle indi-

cates the optimized seed regressor. The iteration numbers with

red directional signs are associated with the regressors in the

optimized procedure. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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healthy participants [Crandell et al., 1973; Schreiber et al.,
2002].

Evolving Regressors

In Figure 4a–f, we compared the regressors (generated
in Fig. 3) at 2 TR intervals. Each regressor is plotted
together with the next regressor of 0.8 s shifted (in shaded
lines). These maps demonstrate the great similarity
between the regressors with little time difference (i.e.,
0.8 s). However, the regressors are not static. In Figure 4g,
the regressors of time shift 0 and 4.8 s are plotted. There is
a clear difference in these two regressors with a 4.8 s time
shift. The difference is the cumulative effect from the
regressors’ evolution over many steps that occur during
this relatively long time period. This can be further dem-
onstrated by the correlation coefficients calculated between

the seed regressor and the rest of the regressors (all from
the optimized procedure), as shown in Figure S1 in Sup-
porting Information Materials. A clear decline of the corre-
lation coefficients is observed as the regressor evolved
away from the seed regressor in all participants.

Physiologically, the possible reasons for the evolution of
the regressors are: (1) as the systemic LFOs travel with the
blood though the brain, they arrive at different voxels at dif-
ferent times, and (2) the signal detected at each voxel is the
integrated signal from all the paths of the blood flow that
lead towards that point (i.e., the summation of many signals
with different delay times and amplitudes). Therefore, the
systemic LFO signal may vary in both time delays and ampli-
tudes according to its location in the cerebral vasculature.

Finally, the impacts of motion on the evolving regressors
have been assessed by calculating the correlation coeffi-
cients between all the regressors and six motion

Figure 4.

The regressors of participant 1 generated by the optimized procedure. Each regressor is plotted

together with the next regressor of 0.8 s shift (in shaded lines) for comparison (a–f). The first

and the last regressor (separated by 4.8 s) are plotted in (g). [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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parameters (from FSL preprocessing) for each participant
[Jenkinson et al., 2002]. The results are shown in Figure S2
in Supporting Information Material. Each graph shows the
averages and standard deviations of the correlation coeffi-
cients calculated between the corresponding motion
parameters (x-axis) and all the regressors of the partici-
pant. In general, the correlation coefficients are very small
(<0.1), indicating motion did not influence the regressors
in this resting state study.

Dynamic Maps

Figure 5a shows the normalized z-maps as the result of
the GLM analyses according to the temporal shift in the
corresponding regressor. The dynamic changes in the acti-
vation patterns represent cerebral blood flow. For example,
in the sagittal view, the initial activation patterns are
observed in areas densely populated with or supported by
large arteries, such as polar frontal arteries, medial frontal
arteries, and so forth. They gradually move towards the

areas of the vascular drainage systems, such as the supe-
rior sagittal sinus and straight sinus. In the coronal view,
the patterns shift from posterior cerebral arteries near
superior aspects of the brain to the middle and then end
in the superior sagittal sinus at top and transverse sinuses
at the base of the brain. Finally, in the axial view, the pat-
tern of activations start at the center of the cerebellum and
move in two directions (anterior and posterior), ending in
the transverse sinus (or Tentorial veins) and Clival venous
plexus (or Jugular bulb). Arrows in the graphs of the last
column of Figure 5a indicate the directions of the apparent
blood flow in the corresponding orthogonal views. Figure
5b shows the participant’s own phase contrast magnetic
resonance angiogram (PC-MRA) (velocity encoding factor
of 30 cm/s) as a comparison, from which good matches,
especially in the draining system (superior sagittal sinus,
transverse sinus, etc.), were observed.

To demonstrate the utility of the normalization proce-
dure, the z-values of two example voxels (indicated by the
blue and red arrows in Fig. 5a) from the concatenated

Figure 5.

Normalized z-maps of participant 1 are displayed in sequence in

orthogonal views (a). In the last graphs of each row, the move-

ment of the patterns is pointed out by red arrows in the corre-

sponding view. The phase contrast magnetic resonance

angiogram of the same participant is shown in (b). The original

z-values (before normalization) of two example voxels (as indi-

cated in (a)) are plotted in (c) with matching colors. [Color fig-

ure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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results before normalization are shown in Figure 5c. The
voxels were selected to reflect different temporal stages in
the procedure (i.e., early vs. late). Voxel 1 is likely from
Clival venous plexus, while voxel 2 is in the area of Poste-
rior cerebral arteries. The traces reflect typical changes in
the z-values as a result of using the regressors of different
temporal shifts. To assess the dynamic evolution, the
important information (in each voxel) is the arrival time of
the LFOs wave (peak position of the trace in Fig. 5c)
and the duration of its passage through this voxel (width
of the trace in Fig. 5c), not the z-values themselves. In fact,
the large range of the z values is probably due to the vary-
ing blood content in the voxels. This makes it difficult to
display the results, and decreases the sensitivity of the
dynamic map because voxels with high z-values stay acti-
vated much longer. This issue is improved by normalizing
the z-values from each significant voxel (i.e., max z> 4).
From the normalized z-maps in Figure 5a, the activated
voxels in each graph are seen to be distributed throughout
the brain. This result is interesting because the temporal
traces of remote voxels that are located as far away as the
prefrontal cortex and posterior cerebellum can be highly
correlated with the same regressor. This indicates that the
LFO components of the BOLD signals from these voxels
evolved roughly the same way. The LFOs are “piped” into
the brain though big arteries (e.g., internal carotid artery)
with no phase shift. They then follow different paths (arte-
rioles, capillaries, etc.) as branches of the cerebral vascula-
ture diverge. It is expected that each signal would evolve
independently as it travels along its own path. The obser-
vation that some of them have evolved in a similar way,

and at a the similar pace, is probably due to the uniform-
ity in the fundamental structures of the cerebral blood sys-
tem, likely reflecting the self-invariant properties of fractal
structures found throughout biological systems [Herman
et al., 2001; Reishofer et al., 2012].

The blood flow patterns can be seen dynamically in the
movie (top video in Supporting Information Movie S1),
which shows the temporal evolution over numerous differ-
ent coronal and axial views (marked by the cross on the
sagittal image). The movie is shown in a 0.15 s/frame rate
(a factor of 2.67 speedup) for clarity (the actual rate is
0.4 s/frame and the total time is about 5.2 s). The passage
of the LFOs is clearly depicted in the movie. In addition to
the passage shown in Figure 5, we also observed in axial
images that the patterns started from middle areas (heavily
supported by the middle cerebral arteries) to the drainage
veins located at anterior and posterior of the brain (superior
sagittal sinus) and the walls of the lateral ventricles.

A time delay map in which the time delays are encoded
as colors is shown in Figure 6. In brief, cerebral blood
flows in sequence, from earliest to latest arrival times
shown in light blue, blue, red, and yellow. As a result,
drainage systems are mostly colored with red and yellow,
indicating they are located towards the end of the blood
passage. In contrast, the areas with light blue are mostly
in the top middle section of the brain fed mostly by mid-
dle cerebral arteries.

Figure 7 shows similar graphs to those presented in Fig-
ures 3 and 6 for the rest of the participants. In Figure 7a, a
big blue circle marks the single-voxel seed from the first
procedure, and a big black circle marks the optimized

Figure 6.

Delay maps of participant 1 are shown in orthogonal views, with different colors, indicating the

difference in temporal delay. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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seed. The shapes of the correlation curves are subject-
specific, resembling Gaussian or skewed Gaussian shapes.
The durations are around 4–6 s. The time-delay maps (Fig.
7b) show mostly consistent patterns as described in Figure
6. However, there are still clear differences across the par-
ticipants. First, the colors, even those associated with the
same structures, are different. This is mainly due to the
fact that both the transit times of the LFOs and temporal
delays of the seeds are different for each participant. Sec-
ond, even though some main vessels (e.g., superior sagittal
sinus) are commonly observed, some others (e.g., straight
sinus) are not visible in all the participants. This discrep-
ancy is probably due to the inter-subject variations in the
vasculature and cerebral blood flows. Future studies with
increased spatial resolutions can be used to further investi-
gate the causes.

Seed Selection

As we mentioned previously, the seed should be
selected from the blood vessels. However, blood vessels
are hard to identify from BOLD fMRI. In Materials and
Methods section, we offered several suggestions to
increase the likelihood of finding a “good” seed. Figures 3
and 7a show the correlation graphs of “good” seeds from
all the participants. From a “good” seed, the first proce-
dure will generate roughly 10–20 evolving regressors,
mostly on one side of the seed regressor in the correction
graph, covering 4–8 s (if TR 5 0.4 s). The correlation graph
of these regressors should resemble a Gaussian or skewed
Gaussian shape. We speculate the reason to be that the
correlation graph roughly indicates the volume of the
region reached by the systemic LFOs in sequence. The

Figure 7.

Correlation graphs of the rest of the participants are plotted in (a).

The blue bars and the blue dotted lines indicate the correlation

graphs of the first procedures, while the black lines with squares

indicate the correlation graphs of the optimized procedures. Big

blue and black circles mark the single seed regressors and optimized

seed regressors, respectively. Delay maps of the corresponding par-

ticipants are shown in (b). [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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Gaussian shaped curves (from the healthy participants)
reflect to some degree the underlying vascular structure—
arteries, capillaries, and veins—where the capillaries have
the largest spatial distribution. However, more evidence is
needed to support our hypotheses.

In every participant, the “good” seeds were all from
veins (judging from the direction in which correlations
with the brain were found). This is presumably because
the BOLD signal is much more sensitive to the veins
[Menon, 2012], and moreover, the main arteries with
highly oxygenated blood (�100%) are almost invisible to
BOLD fMRI. Because of these factors, the dynamic pat-
terns calculated from BOLD fMRI are biased towards the
draining venules and veins, sampling more from venous
outflow than from arterial inflow.

If a “bad” seed is chosen, three things might happen: (1)
no voxel is highly correlated with the seed regressor, in
which case the recursive procedure would not even start;
(2) the procedure runs for a few steps before it stops (due
to the threshold condition: N< 50) and the corresponding
correlation graph would stay flat, with no Gaussian-like
shape produced; or (3) some regional dynamic patterns
could be caught. Because a particular “bad” seed may be
heavily contaminated by the regional signal, the recursive
procedure may catch dynamic regional fluctuations, such
as local blood circulation, and so forth. These regional
dynamic fluctuations are transient and not stable. An
example of a seed from the ventricle is provided in Sup-
porting Information Figure S3, where we can see that there
is a sharp spike (1.2 s duration) instead of a smooth Gaus-
sian shape in the correlation graph.

In general, “good” seeds are fairly easy to locate using
the suggestions we offered in Materials and Methods sec-
tion, and the “bad” seeds should always be replaced. As
we discuss in next section, because the method is very
robust, many seeds, even those from non-ideal locations,
work equally well.

Robustness of the Method

Figure 8 shows the results of both the first procedure
and the optimized procedure performed on participant 1
(as does Fig. 3), with four different seeds, two in gray mat-
ter (Fig. 8a,b), one in white matter (Fig. 8c), and one in the
posterior cingulate cortex (Fig. 8d). The exact locations of
these seeds are indicated by the blue circles in the axial
images in each graph. The correlation graphs that resulted
from the first procedure are plotted in red (on left), while
the final correlation graphs as result of optimized proce-
dure are plotted in blue (on right) for each seed. The cor-
relation graph from a “good” seed (the same as that
shown in Fig. 3) is also included—as “standard” (in black
shaded lines)—to serve as a basis for comparison. We can
observe the following from the figure:

1. The seeds initially chosen were not ideal. Because
they were not selected from the prime locations, it is
likely that they reflect relatively large contributions
from the regional fluctuations, which caused a large
deviation in the correlation curve (red vs. black line).
This effect could influence up to three neighboring
regressors.

2. As shown in the graphs on the left side of the figure
(in red), even with these non-ideal seeds, the recur-
sive procedure nonetheless “corrected” them gradu-
ally, leading to an overall shape that is similar to the
“standard” (black line). This demonstrates that the
recursive method is robust, and able to progressively
extract systemic LFOs, even if small, from these seeds
and generate accurate regressors in a few steps. At
the same time, given that these seeds were selected
from a variety of brain regions, it implies a wide dis-
tribution of these systemic LFOs in the brain.

3. Also evident from the graphs on the left side of the
figure (again, in red), the seeds in the correlation
graph (big red circles) are in different locations rela-
tive to the whole curve. This indicates that there are
temporal shifts between the systemic LFOs in these
seeds due to their specific locations relative to the
cerebral circulation paths, which further demon-
strates the method’s sensitivity to temporally shifted
signals.

4. The good matches between the blue lines and the
“standard” in the graphs on the right side of the fig-
ure indicate that the optimized procedure is effective
in correcting the relatively large deviations caused by
these seeds, as demonstrated by the consistency in
the results regardless of the seed. In the right graphs
of Figure 8c,d, small shifts were needed to match two
correlation graphs (causing misaligned dots). These
mismatches are caused by the temporal delay
between two different initial seeds. For example, the
temporal delay between two different initial seeds
(from the same dataset) can be 0.2 s (not constrained
by the TR). The corresponding regressors derived
from these two seeds are then off by 0.2 s from each
other, resulting in two correlation graphs misaligned
temporally by 0.2 s. In Supporting Information Mate-
rial, the corresponding video resulting from the seed
in Figure 8a (Supporting Information Movie S1, at the
bottom) is shown side-by-side with the movie gener-
ated from the seed of Figure 3 to demonstrate the
consistency in the dynamic patterns.

We used the short TR in this study, which had several
benefits. First, the TR determines the time resolution of the
dynamic map (TR 5 evolving step in time). The cerebral
circulation time of cerebral blood flow is about 4–7 s
[Crandell et al., 1973; Ibaraki et al., 2007; Schreiber et al.,
2002], as shown in Figure 3. With a TR value of 2 or 3 s,
only two to four time points can be generated, which
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dramatically reduces the resolution in dynamic maps.
However, due to the low frequency (�0.1 Hz) of the blood
signal we tracked, the BOLD signal with longer TR (2–3 s)
should have enough information. Therefore, we can over-
sample the BOLD signal of long TRs (e.g., 2 s) with much
smaller TRs (e.g., 400 ms) to increase the time resolution
and then apply the method to the new data to calculate
the dynamic map. We have tested this strategy on other
resting state data with longer TR (51.5 s) and were able to
successfully map out similar flow patterns (see Supporting
Information Movie S2), which further demonstrates the
robustness of the method and greatly broadens its applica-
tions. Another benefit of using short TR is that it allows
other physiological noise arising from respiratory and car-
diac signals to be fully sampled and then filtered out of
the data, thereby conferring more accurate results. To
summarize the main thrust of these points: although using

the short TR is not necessary for the objective of tracking
LFOs, doing so leads to greater accuracy in the results
obtained.

Finally, we show in Figure S4 in Supporting Information
Material the four dynamic patterns side-by-side, which
were derived from different temporal sections of a long
study (600 s). In general, the dynamic patterns are stable
among these results, and similar numbers of recursive
steps were automatically generated. However, there are
some visible differences in the pattern. There are a few
possible explanations for these discrepancies. First, when
calculating the voxel-wise cross correlation, the resulting
coefficients reflect the average values over the length of
the temporal traces used. Therefore, the resulting flow
map does not correspond to one particular time point;
rather, it is the averaged result of the entire systemic
LFOs’ duration. For example, the results in Figure S4 of

Figure 8.

Correlation graphs of participant 1 derived from four different

single-voxel seeds (a–d). The locations of the seeds are marked

by big blue circle in the axial images. The red lines on the left

show the correlation graphs of the first procedures with the big

red circles indicating the seed regressors. The blue lines on the

right show the correlation graphs of the optimized procedures.

In all the graphs, shaded black lines show the correlation graphs

derived from a “good” seed (as shown in Fig. 3). [Color figure

can be viewed in the online issue, which is available at wileyonli-

nelibrary.com.]
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Supporting Information material reflect the averaged flow
patterns of the 600 s, first 200 s, middle 200 s, and last
200 s, respectively. As we know, the flow patterns are
dynamic even in resting states. This is why the result from
the first 200 s is similar to that from the middle 200 s,
albeit with subtle differences. Another factor is that the
results from shorter duration scans are more prone to
physiological noise. Sporadic motion artifacts happening
in the first 200 s, for example, would significantly affect
the results of that section, but not the other sections. In
addition, the effect of sporadic motion on the whole time-
course (600 s) is smaller because long runs tend to average
out the sporadic noise.

Applications

Figures 6 and 7b show the delay maps for each partici-
pant. We can see that most of the voxels are highly corre-
lated with the systemic LFOs at certain time shifts,
indicated by the color. This correlation demonstrates that
the majority of the voxels are affected by these systemic
LFOs, especially in resting state studies, in which the neu-
ronal signal is relatively small. Most current denoising
methods use static or temporally shifted static noise
regressors [Birn et al., 2008; Carbonell et al., 2011; Chang
et al., 2009; Frederick et al., 2012]. However, as we now
know, the systemic LFOs evolve, a phenomenon that is
clearly demonstrated in Supporting Information Figures S4
and S1. Using static noise regressors may not thoroughly
remove these changing systemic LFOs. The evolving
regressors, however, can be used to remove this dynamic
noise more efficiently, increasing the sensitivity in detect-
ing neuronal BOLD signals. Furthermore, we found that
some resting state networks were affected by these sys-
temic LFOs [Tong et al., 2013] in a certain sequence that
matched the blood flow. This finding indicates that the
signals from these networks could be greatly influenced
by the various temporal shifts of the LFOs. We believe
that the method tested in this study can be used to effec-
tively identify the non-neuronal LFOs and, thus, dramati-
cally improve both the SNR for BOLD data, and the
accuracy of RSN detection and quantification.

A major benefit of this method is that it is an automatic,
data driven procedure; aside from selecting the seed voxel,
no additional measurements or interventions are needed.
Moreover, the information on cerebral flow is calculated
using ordinary BOLD fMRI data; no special MRI sequence
is required. Therefore, the method we propose can be
applied to any future or existing resting state studies. On
top of the resting state results, the method also provides
additional valuable information about the cerebral blood
flow at no cost. This could become extremely useful for
studies on aging populations, stroke, Alzheimer’s disease,
and so forth, which are known to affect the cerebral vascu-
lature. It can also be modified to track regional blood flow
changes caused by task activations. The modified version

is currently being developed and tested on data from vis-
ual stimulations.

The method offers several advantages over perfusion
MRI using exogenous contrast agent (e.g., DSC MRI), the
most significant drawbacks of which are invasiveness and
potential toxicity of the contrast agent. These features of
perfusion MRI necessitate careful subject screening and
monitoring before and during the procedure [Knutsson
et al., 2010]. First, this method is pure analytical and can
be widely applied to nearly all the fMRI data. Second, it
offers whole brain coverage. Finally, it can roughly assess
the direction and duration of the flow through out brain.
As the method uses fMRI data, its temporal and spatial
resolution are decided by those of BOLD signal. Normally,
they are lower than those of DSC MRI. However, they can
be greatly improved by multiband sequence (which can be
used to increase either the temporal or the spatial resolu-
tion significantly).

Limitations

Although the method is very promising and the proce-
dure is already robust, there are several areas in need of
improvement at this early stage. First and foremost is to
validate the method. The movement of LFOs in the brain
resembles the cerebral blood flow by its dynamic patterns
and duration. To date, we have conducted phase contrast
angiographic MRI on two participants, and our results fur-
ther confirm that the voxels highlighted by this procedure
match the major vessels of the brain (primarily the veins).
At the time of writing, we are commencing a follow-up
study with other quantitative MR flow methodologies—
specifically, dynamic susceptibility contrast (DSC MRI)
and ASL—to further validate this method.

Because the origin and function of the LFO signal
remain unclear [Sassaroli et al., 2012; Tanaka et al., 2006;
Wise et al., 2004; Zuo et al., 2010], its spectral range is not
well-defined. In addition, the neuronal activation meas-
ured by BOLD fMRI is in a similar spectral band, which
makes it hard to isolate systemic LFOs in the brain. In our
previous research, we used NIRS to measure the LFOs in
the periphery (i.e., finger and toe) while participants
underwent fMRI scanning. We found the LFOs (i.e.,
D[tHb]) measured at finger (or toe) were highly correlated
with many BOLD signals in the brain, with a time shift
[Tong et al., 2012], which confirms that the LFOs are sys-
temic. We further explored the spectral feature of these
LFOs by correlating only the signals from the finger and
those from the toe (neither has neuronal signals). The
highest correlations were found between the spectral range
0.05–0.2 Hz (unpublished data), which was the range used
in this study. Obviously, more studies are needed for a
full understanding of the systemic LFOs and their spectral
features, and there is likely to be variation between indi-
vidual subjects. For this study, however, the rough range
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chosen was sufficient and effective in producing the
dynamic maps.

The whole process is not fully automatic. First, the ini-
tial seed selection is manual. It relies on the researcher to
identify the seed from big blood vessels. However, there
are several existing data-driven fMRI methods which
could help to automate the step using principal compo-
nent analysis [Behzadi et al., 2007], spatial independent
component analysis [Perlbarg et al., 2007], amplitude of
LFOs analysis [Zou et al., 2008], and canonical autocorrela-
tion analysis [Churchill and Strother, 2013] to identify
physiological regions and their corresponding temporal
traces. We will evaluate these methods for incorporation
into our method. Second, to terminate the recursive proce-
dure, we selected an empirical threshold (i.e., 50; as dis-
cussed in Recursive Regressors section). However,
sometimes, it failed to terminate the procedure before the
number of voxels selected (i.e., N) increased again. This is
probably due to the pseudo-periodic feature of the LFOs
signals. For example, the periodic signal of LFOs (�0.1
Hz) is oscillating approximately every 10 s. In that case,
we have to monitor the number of highly correlated voxels
in the correlation graph (such as Fig. 3 and 7a) closely. If
the number starts to increase again after it reaches the
minimum, we will stop it manually.

CONCLUSION

The present report describes a recursive procedure to
extract the evolving systemic LFOs from BOLD fMRI and
how it can be used to dynamically map cerebral blood
flow. We have shown that the dynamic patterns—derived
by application of our method to resting state data from
seven healthy participants—resemble cerebral blood flow
with respect to both paths of flow and cerebral circulation
times. The utility of our method is likely to be particu-
larly attractive for researchers interested in cerebral blood
circulation changes during functional studies, as it does
not require special MR acquisition parameters or exoge-
nous contrast agents. Thus, the cerebrovascular informa-
tion detailed above can be extracted from typical fMRI
datasets in parallel with functional analyses. Moreover,
this study demonstrates the evolution of the systemic
LFOs and an effective way to extract them, a capability
which will dramatically improve the denoising procedure
used in fMRI to reveal the actual neuronal signals in the
BOLD.
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