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Abstract
Objective. Assessing an infant’s brain development remains a challenge for neuroscientists 
and pediatricians despite great technological advances. As a non-invasive neuroimaging tool, 
functional near-infrared spectroscopy (fNIRS) has great advantages in monitoring an infant’s 
brain activity. To explore the dynamic features of hemodynamic changes in infants, in-pattern 
exponent (IPE), anti-pattern exponent (APE), as well as permutation cross-mutual information 
(PCMI) based on symbolic dynamics are proposed to measure the phase differences and coupling 
strength in oxyhemoglobin (HbO) and deoxyhemoglobin (Hb) signals from fNIRS. Approach. 
First, simulated sinusoidal oscillation signals and four coupled nonlinear systems were employed 
for performance assessments. Hilbert transform based measurements of hemoglobin phase 
oxygenation and deoxygenation (hPod) and phase-locking index of hPod (hPodL) were calculated 
for comparison. Then, the IPE, APE and PCMI indices from resting state fNIRS data of preterm, 
term infants and adults were calculated to estimate the phase difference and coupling of HbO and 
Hb. All indices’ performance was assessed by the degree of monotonicity (DoM). The box plots 
and coefficients of variation (CV) were employed to assess the measurements and robustness 
in the results. Main results. In the simulation analysis, IPE and APE can distinguish the phase 
difference of two sinusoidal oscillation signals. Both hPodL and PCMI can track the strength 
of two coupled nonlinear systems. Compared to hPodL, the PCMI had higher DoM indices in 
measuring the coupling of two nonlinear systems. In the fNIRS data analysis, similar to hPod, 
the IPE and APE can distinguish preterm, term infants, and adults in 0.01–0.05 Hz, 0.05–0.1 Hz, 
and 0.01–0.1 Hz frequency bands, respectively. PCMI more effectively distinguished the term 
and preterm infants than hPodL in the 0.05–0.1 Hz frequency band. As symbolic time series 
measures, the IPE and APE were able to detect the brain developmental changes in subjects 
of different ages. PCMI can assess the resting-state HbO and Hb coupling changes across 
different developmental ages, which may reflect the metabolic and neurovascular development. 
Significance. The symbolic-based methodologies are promising measures for fNIRS in estimating 
the brain development, especially in assessing newborns’ brain developmental status.

Keywords: brain development, symbolic dynamic, fNIRS, in-pattern exponent and anti-pattern 
exponent, permutation cross mutual information
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1. Introduction

Evaluating brain development is always a challenge in neuro-
science and a clinical concern for the pediatricians. Existing 
studies indicate that earlier exposure to the extra-uterine 
environ ment (Watanabe et  al 2017), postmenstrual age 
(Arimitsu et  al 2018), birth weight (Streimish et  al 2012), 
and the intrauterine/neonatal insults (Mwaniki et  al 2012, 
Thomason et al 2017) may influence preterm infants’ brain 
developmental trajectories. Preterm infants have a higher 
rate of neurodevelopmental diseases than term infants (Volpe 
2009, Watanabe et  al 2017). However, present studies still 
lack effective methods to access neonates’ brain development 
status.

Functional near-infrared spectroscopy (fNIRS) is an optical 
brain imaging tool used in neuroscience. With the portable 
and non-invasive characteristics, as well as the merit of being 
tolerated by infants and children, the fNIRS is more suitable 
for assessing neonates’ brain development (Quaresima et al 
2012, Issard and Gervain 2018). fNIRS also allows bedside 
monitoring for long periods. All these features give unique 
advantages of fNIRS over functional Magnetic Resonance 
Imaging (fMRI) in the studies of newborns (Benavides-Varela 
et al 2017, Issard and Gervain 2017).

In developmental neuroscience, fNIRS studies of infants 
have shown that the hemodynamic response has canonical 
and non-canonical responses and changes with age in dif-
ferent cognitive tasks and brain regions (Lloyd-Fox et  al 
2017, Issard and Gervain 2018). In term and preterm infants, 
Watanabe et al found that the time-averaged phase differences 
between oxyhemoglobin (HbO) and deoxyhemoglobin (Hb) 
in spontaneous low-frequency oscillation (<0.1 Hz) were 
highly correlated with the chronological age (CA) (Watanabe 
et  al 2017). The phase of oxygenation and deoxygenation 
hemoglobin (hPod) changes from in-phase to anti-phase as the 
CA increases. More fluctuations in hPod values were found 
in early preterm infants than in late preterm and term infants 
before 40 weeks postmenstrual age. However, early preterm 
infants had a slower development at later CAs (i.e. after eight–
13 weeks). Furthermore, Taga et al employed the hPod and the 
phase-locking index of hPod (hPodL) to investigate the spatial 
variation in infants’ developing brain cortex (Taga et al 2018). 
They found that hPod exhibited spatial dependency in dif-
ferent brain development stages. Significant hPodL  increases 
occurred in three-month-old infants compared to the neonate 
group. All these studies suggest that the dynamic phase differ-
ence between HbO and Hb have potential value in assessing 
the development of underlying neurovascular functions, as 
well as hemodynamic and metabolic changes, in infants.

In these studies, the instantaneous phase estimated in hPod 
and hPodL  methodologies are based on the Hilbert transform, 
which is based on the assumption that the signal has narrow 
frequency band and stationary (Cohen et  al 1999, Oliveira 
and Barroso 1999). However, brain development is a complex 
process that may be influenced by nonlinear circulatory and 
neurovascular developmental changes in different states, espe-
cially in infants (Norman and O’Kusky 1986, Franceschini 
et  al 2007, Roche-Labarbe et  al 2010). Many studies have 

shown that brain activities’ dynamic responses measured 
by fNIRS signals are very likely to be nonlinear (Khoa et al 
2008, Pouliot et al 2012). Nonlinearity from neural activity, 
blood flow, and metabolism makes the evaluations based on 
linear analyzing methods inadequate (Bießmann et al 2011, 
Fantini 2014, Sassaroli et al 2016). Moreover, oscillations are 
a prevalent feature of neuronal and hemodynamic recordings. 
Some methods used to analyze these physiological oscilla-
tions assume that they are largely sinusoidal (Cole and Voytek 
2017). However, physiological oscillations are usually pseudo-
periodic and contain multiple physiological fluctuations (Cole 
and Voytek 2017). Phase synchronization measurement is an 
important methodology used to interpret the mechanisms of 
electrophysiological and hemodynamic variations in cognitive 
neuroscience and mental diseases. Unfortunately, most phase 
synchronization analytical methods based on the Fourier 
transform and Hilbert transform cannot optimally represent a 
non-stationary signal (Li et al 2011).

The biological system’s nonlinear characteristics have 
motivated researchers to investigate its underlying mech-
anism via nonlinear methodologies. Various measure-
ments have been proposed for fNIRS signal analysis, such 
as wavelet phase coherence (Tan et al 2016), graph theory 
(Homae et al 2010), entropy (Gu et al 2017, Perpetuini et al 
2018), and mutual information (Dalmis and Akin 2015, Yin 
et  al 2015). In all these nonlinear measures, the symbolic 
dynamic analysis is an important nonlinear measurement, 
which has been widely applied to physiological system 
analysis (Edwards et  al 2001, Daw et  al 2003, Ray 2004, 
Bießmann et al 2011). A central procedure of the symbolic 
dynamic analysis is discretizing unprocessed time-series 
records into a corre sponding sequence of symbols by com-
paring neighboring time-series (Bandt and Pompe 2002). 
Amigo et al stated that the signal’s ordinal patterns are not 
only ad hoc symbols but also contain quantitative informa-
tion regarding the underlying data’s temporal scale (Amigo 
et al 2015). Due to the advantages described above, various 
symbolic dynamic-based measurements, such as permuta-
tion entropy, symbolic transfer entropy, and permutation 
min-entropy, have been widely used in neurological disease 
diagnosis and brain state monitoring (Martini et  al 2011, 
Ferlazzo et al 2014, Zunino et al 2015), especially in fNIRS 
recording analysis (Gu et al 2017). A multi-scale symbolic 
information-theory approach has also been proposed to dis-
criminate delayed synchronization and anticipated synchro-
nization (Montani et al 2015). In this study, we propose two 
new exponents based on the patterns of symbolic dynamics, 
namely in-pattern exponent (IPE) and anti-pattern exponent 
(APE), to measure the phase relationship between HbO and 
Hb.

Although many synchronization measurements have been 
proposed, detecting the weak couplings in physiological 
recordings remains challenging considering the complex, 
nonlinear, and nonstationary characteristics of a physiolog-
ical system (Palus and Vejmelka 2007, Bahraminasab et  al 
2008). Symbolic dynamic-based permutation analysis and 
conditional mutual information were proposed to estimate the 
weak coupling in two cardiorespiratory series (Bahraminasab 
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et al 2008). The similar approaches have been used to esti-
mate neuronal population coupling during seizures (Li and 
Ouyang 2010) and EEG oscillations in patients under anes-
thesia (Liang et  al 2015). It was suggested that the permu-
tation cross mutual information (PCMI) approach can track 
time-dependent coupling strength changes, which is associ-
ated with a better anti-noise effect. This encouraged us to uti-
lize the PCMI in measuring HbO and Hb coupling in fNIRS 
and apply it to distinguishing brain development at different 
stages.

In this study, we used the IPE and APE, as well as PCMI, 
which are derived from symbolic dynamics and information 
theory to assess the brain development changes at different 
stages. These methods were applied to the same data as the 
hPod and hPodL  methods proposed in the previous literature 
(Watanabe et al 2017, Taga et al 2018). The whole process is 
described below: section 2 presents IPE, APE, PCMI, hPod, 
hPodL  and statistical analysis methods used in detail. In sec-
tion 3, comparisons are made based on simulated sinusoidal 
oscillations, coupled nonlinear models are described in detail. 
An analysis of fNIRS recordings in preterm and term infants 
and adults based on these measures is detailed in section 4. 
Finally, the discussion and conclusions are presented in 
section 5.

2. Methods

2.1. IPE and APE

Symbolic dynamic measurements used to encode nonlinear 
systems based on time-series analysis have been system-
atically described in previous studies(Daw et al 2003, Ray 
2004). In this study, we explored the temporal interrelation-
ship of specific patterns in two time-series (i.e. HbO and Hb 
signals). The resulting exponent was used to evaluate the 
degree of in-phase or anti-phase in these two time-series. 
The percentage of in-phase and anti-phase measurements 
was calculated as an exponent to measure synchroniza-
tion in these two time-series. We termed these two indices 
IPE and APE, to separate from the phase measures of the 
Hilbert transform. An algorithm of the diagram was shown 
in figure 1. When the embedding dimension m = 3, there are 
3! = 6 patterns (as shown in figure 1(A)). We termed these 
6 patterns as M # 1 to M # 6. For these 6 patterns, the anti-
pattern pairs and in-pattern pairs were shown in figure 1(B). 
The calculation of IPE and APE is straightforward. For two 
time series, such as HbO and Hb, the symbolic patterns can 
be constructed at each time point using a moving window. 
Then, the number of in-pattern pairs Ni and anti-pattern 
pairs Na can be achieved. If the data length is L, the max-
imum number of in-pattern pair or anti-pattern pairs would 
be L − m + 1. Finally, the IPE and APE can be calculated as 
shown below:

®
IPE = Ni

L−m+1 × 100%
APE = Na

L−m+1 × 100%. (1)

When m � 4 the symbolic patterns can describe more 
sophisticated signals, however, the in-pattern pairs and anti-
pattern pairs will become much more complicated than when 
m = 3. Since the hemodynamic changes are relatively slow, 
the choice of m = 3 is sufficient. A more detailed descrip-
tion of the parameter selection was shown in supplementary 
appendix B (stacks.iop.org/JNE/15/066013/mmedia).

2.2. Permutation cross mutual information (PCMI)

Mutual information is a measurement of synchronization 
based on information theory, which calculates the amount of 
shared information between two time-series (Paluš 1996). The 
PCMI proposed by Li et al (Li and Ouyang 2010) has been 
applied to estimate the synchronization between two EEG 
signals (Liang et al 2015, 2016b). The details of PCMI are 
described as follows:

 (i)  A phase space reconstruction method was used to 
construct the vectors Xt[xt, xt+τ , . . . , xt+mτ ] and 

Figure 1. The diagram of anti-pattern and in-pattern percent 
measurements. (A) The motifs of the order 3 (3!). (B) The lists of 
the anti-pattern and in-pattern pairs. (C) Two original hemodynamic 
parameters (HbO and Hb) epochs of 30 s segments. In the time point 
near 5 s, the patterns of HbO and Hb are anti-pattern with each other 
(M # 1 versus M # 6). While the patterns of HbO and Hb are in-
pattern with each other at the time near 20 s (M # 6 versus M # 6). 
(D) The in-pattern and anti-pattern percent of the signal in (C).

J. Neural Eng. 15 (2018) 066013
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Yt[yt, yt+τ , . . . , yt+mτ ] based on two time series of x(t) 
and y(t), t = 1, 2, . . . n where m  and τ  are the embedding 
dimension and time lag, respectively.

 (ii)  Xt  and Yt were ranked in increasing order, [xt+(j1−1)τ � 
xt+(j2−1)τ � · · · � xt+(jm−1)τ ] and [yt+(j1−1)τ � yt+(j2−1)τ � 
· · · � yt+(jm−1)τ ], respectively.

 (iii)  Probability distribution functions of the time series x(t) 
and y(t) were calculate based on the emerged probability 
of ordinal patterns and termed p(x) and p(y).

The entropy of Xtand Yt is defined as follows:

H(X) = −
J∑

j=1

pj(x) log pj(x) (2)

and

H(Y) = −
J∑

j=1

pj(y) log pj(y) (3)

 (iv)  The joint probability function of Xtand Yt is termed as 
p(x, y). The joint entropy of H(X, Y) is defined as

H(X, Y) = −
∑
x∈X

∑
y∈Y

p(x, y) log p(x, y). (4)

 (v)  The PCMI of time series Xtand Yt is described as

PCMI(X; Y) = H(X) + H(Y)− H(X, Y). (5)

The embedding dimension m is crucial in PCMI calculation, 
same as the lag τ  that is the number of sample points spanned 
by each section of the motif (Li and Ouyang 2010). A detailed 
description of the parameters’ selections is shown in supple-
mentary appendix C.

2.3. hPod and hPodL

hPod and hPodL  are the two measurements of phase syn-
chronization. The hPod algorithms described in Watanabe 
et  al (2017) are similar to the spatial analytic phase differ-
ence index presented in Pockett et al (2009). And the hPodL  
measurement is a classical phase-locking value proposed by 
Lachaux et al (1999) and has been widely used in the neuro-
physiological signal analysis (Li et al 2011, Wang et al 2014). 
Considering two time-series of x(t) and y(t), the calculations 
of hPod and hPodL  are described as below.

 (1)  The analytic signal representation of x(t) and y(t) was 
calculate based on the Hilbert transform.

®
xa(t) = x(t) + jHT[x(t)]
ya(t) = y(t) + jHT[y(t)] . (6)

Where the HT[·] is the Hilbert transform.
 (2)  The signal’s instantaneous phase (IP) was estimated:

ϕx(t) = tan−1 Im(xa(t))
Re(xa(t))

and ϕy(t) = tan−1 Im(ya(t))
Re(ya(t))

.

 (3)  hPod was calculated based on the IP. Because the IP is 
wrapped around [−π,π], we needed to unwrap the IP on 
the real axis. Firstly, we estimated the absolute difference 
between the IP of ϕx and ϕy, termed ∆ϕxy. Then, ∆ϕxy 
was projected into the interval [0,2π]. Finally, to achieve 
a consistent phase range with the measure in Watanabe 
et al (2017), the phase differences in the [0, π] range were 
projected into the [π,2π] range.

 (4)  hPodL  was calculated. The measurement of hPodL  is 
defined as:

hPodL =
1
N

∣∣∣∣∣
N∑

t=1

e j∆φxy(t)

∣∣∣∣∣ . (7)

Where the N is the length of the time series x(t) and y(t). The 
hPodL  is bounded between 0 and 1.

2.4. Statistical analysis

The aim of this study was to (1) evaluate the performance of 
symbolic measurements (i.e. IPE, APE, and PCMI) in assessing 
the brain developmental stages, and (2) compare them with cal-
culated hPod and hPodL . Given the indices of hPod are angle 
values (i.e. different from numerical values), a circular statis-
tics toolbox was used to perform statistical analysis (Berens 
2009). The Watson–Williams test was used to evaluate whether 
the mean phase of two or more groups is identical, and the 
parametric Watson–Williams multi-sample test was used to 
determine the significant differences between groups. For 
other indices, the Liliefors test (lillietest.m) was performed 
to determine whether the data had a normal distribution. 
Kruskal–Wallis test (kruskalwallis.m) and multiple comparison 
tests (multcomare.m) were used to determine the significant 
differences between the indices in different age groups. The 
Bonferroni correction was used to prevent multiple comparison 
problems with p  <  0.05/(number of channels). The coefficient 
of variation (CV), calculated from the ratio of the standard devi-
ation (SD) over the mean, was employed to assess the index 
stability in brain development measurements (Li et al 2008).

3. Stimulation and results

3.1. The simulated signals

To evaluate IPE’s and APE’s performance in phase differ-
ence estimation, we simulated two time-series by combining 
two sinusoid waves with different frequencies across three 
situations (i.e. in-phase, anti-phase, and orthogonal-phase). 
Furthermore, two random time-series were used to assess the 
index’s performance in evaluating the noise signals’ impact. 
All the formulas are described as follows:

J. Neural Eng. 15 (2018) 066013
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 (1)  In phase sinusoid equations

®
x(t) = 20 sin(0.4πt) + 15 sin(0.2πt)
y(t) = 0.3x(t). (8)

 (2)  Anti-phase sinusoid equations

®
x(t) = 20 sin(0.4πt) + 15 sin(0.2πt)
y(t) = 20 sin(0.4πt − π) + 15 sin(0.2πt − π). (9)

 (3)  Orthogonal-phase sinusoid equations

®
x(t) = 20 sin(0.4πt) + 15 sin(0.2πt)
y(t) = 20 sin(0.4πt + 0.5π) + 15 sin(0.2πt + 0.5π).

 (10)

Random signals were generated by the MATLAB function 
randn.m. The amplitude of the signal y(t) is three times larger 
than x(t). The data length of all the simulation signals is 500 s.

3.2. The coupling models

In this study, we employed four models to evaluate the cou-
pling performance of PCMI and hPodL . The coupling strength 
of bivariate dynamics was controlled by one continuous 
parameter. The first is the Rossler–Lorenz model (Andrzejak 
et al 2003):




ẋ1 = −6 (x2 + x3)

ẋ2 = 6 (x1 + 0.2x2)

ẋ3 = 6 [(x1 − 5.7) x3 + 0.2]
ẏ1 = 10 (−y1 + y2)

ẏ2 = 28y1 − y2 − y1y3 + εx2
2

ẏ3 = y1y2 − 8
3 y3.

 (11)

The coupling strength parameter ranged from ε = 0 to ε = 5 
in a step of 0.2. The discrete time series Xn and Yn from x1 
and y1 were resampled at the sampling rate at 40 Hz (Liang 
et al 2015).

The second model system consisted of two coupled 
Henon maps proposed in the literature (Schiff et al 1996). 
The third and fourth models were made by two coupled 
Rossler (Palus and Stefanovska 2003) and Lorenz systems 
(Kreuz et al 2007), respectively. In this study, the coupling 
strength parameter in Henon was ranged from 0 to 0.8 with 
a step of 0.01. The coupling strength parameters in Rossler 
and Lorenz systems were set from 0 to 2 in step of 0.025 
(Liang et al 2016a).

3.3. Evaluation of the model

We hypothesized that an increased coupling strength is linearly 
correlated with increased of synchronization. The degree of 
monotonicity (DoM) was used to evaluate the dependence of 
hPodLand PCMI measures on the coupling strength ε (Kreuz 
et al 2007).

The formula of DoM is as follows:

DoM =
2

r(r − 1)

r−1∑
i=1

r∑
j=i+1

sign(sj − si). (12)

Where si and sj are the coupling measure indices (i.e. hPodL

and PCMI) at monotonously-increased coupling strengths. 
i, j = 1, 2 . . . , r  where the parameter r  is the number of the 
discretized coupling strengths. If indices of s monotonically 
increased with the enhancing coupling strength ε, then si < sj, 
i � j. DoM = 1 when the sequence of s1, s2, · · · , sr is strictly 
monotonous increases with the enhanced coupling strengths, 
while DoM = −1 when the indices monotonically decrease 
with the increasing coupling strengths.

3.4. Results

To compare IPE’s and APE’s performance with hPod via the 
phase relationship between two time-series, we employed sim-
ulated and random noise signals. hPodL  and PCMI were also 
compared in estimating coupling strength in different coupled 
models. We studied the anti-phases, in-phases, and orthog-
onal-phases of two sinusoidal signals, which were shown in 
figures  2(A), S1(A) and S2(A), respectively. Two random 
noise signals, which had random phase and no coupling 
between them, were used for assessment (see figure S3(A)). 
The hPod index was able to accurately reflect anti-phases, in-
phases, and orthogonal-phases (see figures  2(B), S1(B) and 
S2(B)). Like hPod, the IPE and APE can precisely measure 
the same phase difference between these three situations. 
The IPEs were equal to 1 and 0 in in-phase and anti-phase 
patterns, respectively (see figures  2(D) and S1(D)). For the 
orthogonal phase relationship, IPE and APE were distributed 
around 0.42, which means the percent of anti-patterns and in-
patterns in this situation is close to 0.5 (see figure S2(D)). All 
these results illustrate that the IPE and APE have similar per-
formance in measuring phase differences.

For the coupling strength measurement, the hPodL  indices 
remained 1 at in-phase, anti-phase, and orthogonal-phase sce-
narios (see figures 2(C), S1(C) and S2(C)). The analysis of 
parameter selection presented in supplementary appendix C 
shows that PCMI with an embedding dimension of m = 3, 
combined with lag τ = 11 is the optimal selection. The PCMI 
indices in in-phase, anti-phase, and orthogonal-phase patterns 
were about 1.68, 1.68, and 0.64, respectively. Unlike hPodL , 
the PCMI measurement regards the orthogonal-phase pattern 
to be a different coupling pattern from the in-phase and anti-
phase patterns. We calculated the cross-correlation index of 
these two orthogonal-phase signals and we found that the 
correlation coefficient was equal to 0 when the lag  =  0 s. The 
different results for PCMI, hPodL , and cross-correlation may 
be derived from the different calculation principles and mech-
anisms while estimating synchronization (Liang et al 2016b).

Furthermore, the random noise simulation showed that the 
hPod indices were randomly distributed around the circle (see 
in figure S3(B)). The hPodL  indices calculated from this time 
course are ranged from 0 to 0.2, which means that the two 
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time-series are not correlated with each other. Hence, in this 
situation, the hPod values are invalid. The IPE and APE of 
these two random noise signals ranged in 0.1–0.3 and 0.3–0.5, 
respectively. The PCMI indices ranged from 0.02 to 0.1.

Additionally, to analyze the indices’ range in all these 
measures at random time series, we calculated 500 pairs 
random noise segments. The distributions of hPodL , as well as 
the sums of IPE, APE (SPE), and PCMI were presented in fig-
ures 3(A)–(C), respectively. Based on these distributions, we 
proposed a significant threshold for each measure (p  <  0.01) 
to avoid spurious results. The significant thresholds of hPodL , 
SPE and PCMI are 0.20, 0.64 and 0.19, respectively.

hPodL ‘s and PCMI’s performance in tracking the cou-
pling strength was assessed further in four coupled non-
linear systems. Figures  4(A) and (B) showed the two 
simulated datasets in a coupled Rossler–Lorenz system, 
where coupling strength varied from 0 to 5 with a step 

of 0.2. The time series at the coupling strength of ε = 0 
and 5 were presented in figures 4(C) and (D). Figure 4(E) 
showed the hPodL , and PCMI of a coupled Rossler–Lorenz 
system at different coupling strengths. All three indices 
showed a rising trend with an increase in coupling strength. 
However, we also observed an abrupt increase in the cou-
pling strength value around 2.2 that gradually decreased 
when the coupling strength value was greater than 3.5 in 
the hPodL  curve (figure 4(E)).

DoM was used to evaluate hPodL‘s and PCMI’s depend-
ence on the coupling strength. DoM values of hPodL  and 
PCMI for the coupled Hénon, Rössler, Lorenz, and Rossler–
Lorenz (R–L) systems were shown in figure 5. All the DoM 
values were shown in table  1. Notably, the DoM values of 
PCMI were higher than those of hPodL  in every model. The 
results illustrate that the PCMI more accurately assessed cou-
pling strength than hPodL .

Figure 2. The comparison of the hPod and symbolic dynamic based measurements. (A) Two in-phase time series. (B) The hPod indices of 
the two time series in (A). (C) The hPod length of the time series in (A). (D) The anti-pattern percent and in-pattern percent values of the 
two time series. (D) The PCMI indices of the two time series.

Figure 3. The histogram distributions of hPodL  (A), SPE (B) and PCMI (C) derived from the 500 random time series epochs.
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4. Applications in fNIRS

4.1. fNIRS data recordings

We analyzed data from ten term infants (six boys and four 
girls), and ten preterm infants (five boys and five girls) during 
sleep. A detailed description of the participants was presented 

Figure 4. The simulation data generated based on the coupled Rossler–Lorenz model. (A) and (B) are the time series from the variables of 
v1 and w1 in Rossler–Lorenz model with dt = 0.025. (C)–(D) Time series of Xn and Yn at two specific coupling strength ε = 0 and 5.  
(E) The hPodL  and PCMI indices versus different coupling strength of Rossler–Lorenz system.

Figure 5. The DoM of hPodL  and PCMI indices for the coupled 
Henon, Rossler, Lorenz and Rossler–Lorenz systems.

Table 1. The DoM values of hPodL  and PCMI in measuring the 
model of coupled Henon, Rossler, Lorenz and R–L.

hPodL PCMI

Henon 0.70 0.96
Rossler 0.85 0.94
Lorenz 0.73 0.77
R–L 0.40 0.77
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in table  2. Ethical approval was obtained from the ethical 
committee of Keio University Hospital (No. 20090189), and 
written informed consent was acquired from the participants’ 
parent(s) prior to beginning the test. All the neonates were 
tested in a dimly-lit room when they were in active sleeping 
status as judged by their frequent motor activity and rapid eye 
movements.

A NIRS system (ETG-4000, Hitachi Medical Corporation) 
with 46 channels was used to measure the relative fluctua-
tions of HbO and Hb concentrations (millimolar millimeter 
(mM * mm)). Two sets of 3 * 3 array probes were mounted 
on the left and right temporal regions. And one 3 * 5 holder 
was mounted on the frontal region. The distance between the 
source and detector was about 2 cm. The sampling rate of the 
fNIRS recording was 10 Hz and the wavelengths of NIR lights 
were 695 and 830 nm. fNIRS coverage included frontal and 
temporal areas.

To compare developing and mature brains, we enrolled eight 
adult volunteers (aged 22–40 years, seven male, one female) 
for resting state testing. A fNIRS neuroimaging system (NIRx, 
NIRx Medical Technologies, LLC) was used for the experi-
ment. All the volunteers were asked to close their eyes and 
lay flat on the bed in a dimly-lit room. Volunteers signed the 
written informed consent approved by the Purdue University 
ethics committee. The duration of the resting-state NIRS meas-
urement was 15 min and a total of 20 channels were used to 
cover the prefrontal brain area.

4.2. Data preprocessing

Motion artifact is a major source of noises in fNIRS, espe-
cially in clinical tests. In this study, we used a kurtosis-based 
wavelet filtering for motion artifact correction (Chiarelli et al 
2015). Figure  6 showed the denoising process of HbO and 
Hb from one channel. Figure 6(A) presented the HbO and Hb 
time series before and after denoising. In one example, the 
transient noise caused by motion was detected at around 250 s. 
Figure 6(B) showed an example of motion correction for HbO 
and Hb (between 210 s–270 s). To analyze hemodynamic 
changes in preterm and term infants and adults, we used a 
zero-phase digital filter (Matlab function of filtfilt.m, the order 
of butterworth  =  3) for band-pass filtering. All the data were 
motion corrected and resampled to 2 Hz for the further calcul-
ation (Pinti et al 2015).

In a previous study (Watanabe et al 2017), the authors ana-
lyzed the hPod of three frequency bands: 0.05–0.1 Hz (main 
frequency), 0.01–0.05 Hz (low frequency), and 0.1–5 Hz 
(high frequency, which is dominated by pulsation/respiration 
and not the focus of our study). To be consistent with the pre-
vious study, we analyzed the phase difference and coupling 
of HbO and Hb in the 0.01–0.05 Hz, 0.05–0.1 Hz, 0.01–0.1 
Hz frequency bands. Considering the low cut-off frequency of 
0.01 Hz, the data length of IPE, APE, PCMI, hPod, and hPodL  
used in the calculation was set as 120 s in 0.01–0.05 Hz and 
0.01–0.1 Hz frequency bands. However, in the frequency band 
of 0.05–0.1 Hz, we have found that the minimum length of the 
data (i.e. experiment) can be as short as 30 s, which is pref-
erable in the studies of infants. Detailed evaluations can be 
found in supplementary appendix C and D (we only showed 
PCMI, which is the most complicated parameter).

4.3. Results

Figure 7 showed the distributions of APE versus IPE for pre-
term and term infants and adults in the 0.01–0.05 Hz (A), 
0.05–0.1 Hz (B) and 0.01–0.1 Hz (C) frequency bands. We 
averaged the indices for all the channels and each circle repre-
sented the scatter distribution of one subject. The distributions 
of the adults’ data were clearly separated from the other two 
groups (i.e. term and preterm infants) in all three frequency 
bands. Because IPE and APE are complementary measures, 
the sum of the in-phase pattern and anti-phase proportions is 
close to 1 under the slow oscillations of HbO and Hb. For 
this reason, the IPE and APE indices were mostly scattered 
around the backslash line, which is a feature of the method 
we used and does not reflect physiological information. The 
clear separation of the clustering of IPE and APE along the 
line indicates the power of the method rather than the line 
itself. Figure 8 presented the hpod and hPodLof preterm and 
term infants and adult subjects in the 0.01–0.05 Hz, 0.05–0.1 
Hz, and 0.01–0.1 Hz frequency bands. It was shown that hPod 
indices of adults are near phase π in all these frequency bands, 
while the indices of the term and preterm infants are close 
to 3π/2, especially in the 0.05–0.1 Hz frequency band. The 
results are similar to those in Watanabe et al (2017) and Taga 
et al (2018).

To further investigate the ability of different measures to 
assess brain development, especially in the term and preterm 
infants, the indices of each measurement in each channel 
were considered samples for statistical analysis. A corre-
sponding box plot was presented in figures  9 and 10 for 
each measurement in each frequency band. In this study, the 
number of fNIRS recording channels in neonates (preterm 
and term) and adults are 46 and 20, respectively. To identify 
significant differences between them, we set the p-value at 
p < 0.05/46 = 0.001. The indices were not normally distrib-
uted, so the statistics of the different groups were expressed as 
medians (min-max), as shown in tables 3–5. The box plots in 
figure 9 showed that the hPod, IPE and APE of the term and 
preterm infants and adults differed significantly (p  <  0.0002). 
Notably, hPod, IPE, and APE more precisely demarcated 

Table 2. Demographic characteristics of the neonates.

Characteristics Preterm Term

Total (boy/girl) 10(6/4) 10(5/5)
GA (mean(min-max))
(wk)

32.5 (30.1–33.4) 38.3 (37–39.9)

PNA (day) 23.7 (17–35) 4.2 (3–6)
Birth weight 
(mean(min-max)) (g)

1644.3(1302–1887) 2874.8 (2476–3936)

GA  =  Gestational age.
PNA  =  Post natal age.
wk  =  week.
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Figure 6. The motion denoising and bandpass filtering of HbO and Hb for one channel. (A) The motion artifact detection and denoising 
based on the Kurtosis-based wavelet algorithm. The red and blue curves are the original HbO and Hb, respectively. The cyan and black 
curves are the signals after removal of motion noise. The signals in the time range from 210 s to 270 s (pink rectangle) were contaminated 
by head movement. (B) The enlarged signals from the time range from 210 s to 270 s. (C) The low frequency band signals (0.01–0.1 Hz) of 
HbO (red) and Hb (blue), respectively.

Figure 7. The scatter plot of in-pattern percent versus anti-pattern percent of preterm, term, and adult in 0.01–0.05 Hz (A), 0.05–0.1 Hz  
(B) and 0.01–0.1 Hz (C), respectively.
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different brain development states. The overlaps of these three 
types of measures (i.e. hPod, IPE, and APE) between the 
adults and neonates (i.e. both term and preterm) were smaller 
than those between the term and preterm infants. Compared to 
the phase difference measures, the coupling strength measures 
(i.e. hPodLand PCMI) were less precise in distinguishing the 
preterm and term (see figure 10) neonates except for PCMI in 
the 0.05–0.1 Hz frequency band. The significant p-values of 
all indices were shown in table 6. PCMI with epoch lengths of 
the 30 s, 60 s, and 90 s can distinguish preterm and term stages 
in the 0.05–0.1 Hz frequency band, which is better than the 
parallel measure of hPodL(see figures 10 and S6).

Furthermore, the index assessments’ robustness in different 
states is important in assessing brain development, especially 
in neonates. We calculated the CV of all measurements within 

all subjects in different frequency bands. The CV values were 
shown in tables 7–9. Because the CV value is vulnerable to 
the mean and SD, to compare the CV of IPE, APE, and hPod 
consistently, we projected the hPod indices into the range of 
0–1 (Liang et al 2016b). All the CV values of IPE and APE 
were smaller than those of hPod in all frequency bands and 
the PCMI values in the 0.05–0.1 Hz frequency band, while the 
30 s epoch length had the lowest CVs among all the measure-
ments (0.07, 0.08, and 0.09). These results illustrated that IPE, 
APE, and PCMI had a higher tolerance for noise than hPod 
and hPodL .

Spatial differences are also an important issue in brain 
development evaluation. We analyzed all the measurements in 
the prefrontal and left and right temporal areas of the infants. 
However, in this study, the fNIRS data were collected only 

Figure 8. Vector representation of hPod and hPodL  (length of the vector) for preterm (A), term (B) and adults (C) in 0.01–0.05 Hz, 0.05–
0.1 Hz, and 0.01–0.1 Hz, respectively.
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Figure 9. The statistics of the phase relationship measures indices. (A)–(C) The box plots of the hPod indices for preterm, term, and adults 
in 0.01–0.05 Hz, 0.05–0.1 Hz and 0.01–0.1 Hz, respectively. (D)–(F) The box plots of IPE indices for preterm, term and adults in the 
similar frequency bands with (A)–(C). (G)–(I) The box plots of IPE indices for preterm, term, and adult in the similar frequency bands with 
(A)–(C). The symbol of ‘***’ in each legend means that the p-value p  <  0.001/46  =  0.000 02.

Figure 10. The statistics of the coupling strength measurements indices. (A)–(C) The box plots of hPodL indices for preterm, term, and 
adults in 0.01–0.05 Hz, 0.05–0.1 Hz and 0.01–0.1 Hz, respectively. (D)–(F) The box plots of PCMI indices for preterm, term, and adults in 
the similar frequency bands with (A)–(C). The symbol of ‘***’ in each legend means that the p-value p  <  0.001/46  =  0.000 02.
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from the prefrontal area of adults. Hence, we can only com-
pare the prefrontal area measurements of infants and adults. 
The arrangement of fNIRS channels and brain partition in 
infants are shown in figure S7, and a detailed analysis of all 
measurements was presented in supplementary appendix E. 
There were significant differences in the prefrontal area among 
preterm term neonates and adults based on the phase differ-
ence measurements (i.e. APE, IPE, and hPod) (p  <  0.000 02). 
However, these indices were not consistent with each other 
in distinguishing preterm and term infants in the left and 
right temporal regions. The coupling strength measurements 
(hPodL  and PCMI) can also differentiate between infant and 
adult brains in the prefrontal area, although there was no sig-
nificant difference between preterm and term. Only the PCMI 
in the 0.05–0.1 Hz frequency band more precisely distin-
guished between preterm and term infants in the left and right 
temporal areas (see figure S12).

5. Discussion and conclusions

Although brain development in neonates has been studied for 
a long time, and many fNIRS/fMRI algorithms have been pro-
posed, no widely accepted theory has been established (Gu 
et al 2017, Watanabe et al 2017, Taga et al 2018). The fNIRS 
and fMRI literature indicated that the hemodynamic response 
curve changes with age (Issard and Gervain 2018) and the rela-
tive phase between the HbO and Hb can reflect complex inter-
actions in neurovascular and metabolic development (Fantini 
2002, Obrig and Villringer 2003, Boas et al 2008). There are 

many different ways to measure age-dependent phase changes 
in neonates, especially the phase synchronization methodology 
based on the Hilbert transform (Taga et  al 2000, Imai et  al 
2014). The goal of these studies was to investigate more effec-
tive and robust methodologies to evaluate brain development. 
Motivated by this goal, in this study, we attempted to eval-
uate several novel methods (i.e. IPE, APE, and PCMI) based 
on symbolic dynamics and information theory in assessing 
brain development. IPE’s, APE’s and PCMI’s performance 
were compared to those of hPod and hPodL  indices in both 
simulated and real fNIRS data. Results indicated that IPE and 
APE can effectively demarcate preterm and term infants and 
adults, and had smaller CV indices in all three different fre-
quency bands than hPod. Furthermore, PCMI was superior in 
distinguishing neonates and adults than hPodL , especially in 
the 0.05–0.1 Hz frequency band. A comparison and statistical 
analysis based on coupled nonlinear models also showed that 
symbolic dynamics-based measurements made more accurate 
predictions in tracking coupling strength.

One possible explanation is that IPE, APE, and PCMI are 
calculated based on the time series’ order patterns, which 

Table 4. The statistics of different measurements with preterm, 
term, and adults in 0.05–0.1 Hz.

Preterm Term Adults

Median  
(min-max)

Median  
(min-max)

Median  
(min-max)

hPod 1.48 (1.00–1.99) 1.53 (1.00–1.99) 1.05 (1.00–1.56)
IPE 0.43 (0.16–0.82) 0.48 (0.16–0.85) 0.12 (0–0.39)
APE 0.43 (0.06–0.72) 0.38 (0.05–0.73) 0.75 (0.49–0.99)
hPodL 0.57 (0.03–0.95) 0.58 (0.01–0.97) 0.75 (0.14–0.99)
PCMI 0.95 (0.74–1.17) 1.00 (0.74–1.26) 1.07 (0.91–1.60)

Table 5. The statistics of different measurements with preterm, 
term, and adults in 0.01–0.1 Hz.

Preterm Term Adults

Median  
(min-max)

Median  
(min-max)

Median  
(min-max)

hPod 1.29 (1.00–1.99) 1.41 (1.00–1.99) 1.05 (1.00–1.56)
IPE 0.40 (0.13–0.78) 0.45 (0.12–0.81) 0.16 (0–0.49)
APE 0.49 (0.11–0.79) 0.45 (0.13–0.75) 0.75 (0.42–0.99)
hPodL 0.48 (0.03–0.90) 0.50 (0.01–0.99) 0.73 (0.07–0.99)
PCMI 0.41 (0.17–0.97) 0.42 (0.19–1.00) 0.63 (0.21–1.68)

Table 6. The p-values of different measurements with preterm, 
term, and adults in 0.01–0.1 Hz, 0.05–0.1 Hz and 0.01–0.1 Hz.

Preterm-term Preterm-adults Term-adults

hPod ***/**/*** ***/***/*** ***/***/***
IPE ***/***/*** ***/***/*** ***/***/***
APE ***/***/*** ***/***/*** ***/***/***
hPodL o/o/o ***/***/*** ***/***/***
PCMI o/ ***/ o ***/***/*** ***/***/***

The symbols, ‘o’, ‘*’, ‘**’ and ‘***’ indicate the p-values 
p  >  0.05/46  =  0.001, p  <  0.05/46  =  0.001, p  <  0.01/46  =  0.0002 
and p  <  0.001/46  =  0.000 02, respectively. The combination symbols 
‘***/**/***’ represent the p-values in 0.01–0.05 Hz, 0.05–0.1 Hz and 
0.01–0.1 Hz, respectively. The Kruskal–Wallis test and Multiple comparison 
were applied.

Table 3. The statistics of different measurements with preterm, 
term, and adults in 0.01–0.05 Hz.

Preterm Term Adults

Median  
(min-max)

Median  
(min-max)

Median  
(min-max)

hPod 1.23 (1.00–1.99) 1.37 (1.00–1.99) 1.06 (1.00–1.61)
IPE 0.37 (0.09–0.79) 0.43 (0.06–0.95) 0.18 (0–0.52)
APE 0.56 (0.13–0.85) 0.51 (0.01–0.85) 0.75 (0.42–0.98)
hPodL 0.51 (0.02–0.97) 0.50 (0.04–0.99) 0.73 (0.08–0.99)
PCMI 0.43 (0.16–0.94) 0.41 (0.13–1.04) 0.59 (0.23–1.46)

hPod  =  hemoglobin phase of oxygenation and deoxygenation.
IPE  =  in-pattern exponent.
APE  =  anti-pattern exponent.
hPodL   =  phase-locking index of hPod.
PCMI  =  permutation cross mutual information with m = 3, τ = 11.

Table 7. The CV indices of different measurements with preterm, 
term, and adults in 0.01–0.05 Hz.

Preterm Term Adults

hPod 0.80 0.65 1.08
IPE 0.36 0.32 0.48
APE 0.24 0.29 0.12
hPodL 0.44 0.41 0.25
PCMI 0.34 0.37 0.30
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combines mutual information, symbolic dynamics, and non-
linear system theories. hPod and hPodL  are based on the FFT 
and Hilbert transform, which implicitly assumes that the 
physiological records are sums of periodical stationary sig-
nals. However, IPE, APE, and PCMI are based on the patterns’ 
sequential information, so this symbolic transform focuses on 
the temporal relationship between neighboring points instead 
of the oscillation magnitude (Bandt and Pompe 2002). Hence, 
the phase relationship (APE and IPE) and coupling strength 
(PCMI) obtained from HbO and Hb signals at different stages 
will be presented in symbolic synchronization and mutual 
information. Moreover, compared to FFT and Hilbert trans-
form based algorithms (hPod and hPodL), symbolic dynamics 
and mutual information methodologies are nonparametric and 
required limited computing power (Bahraminasab et al 2008). 
Furthermore, it does not need any underlying assumption 
that the time series or oscillations are stationary or sinusoidal 
(Talebinejad et al 2011). More importantly, mutual informa-
tion and symbolic transform analysis offer a unique perspec-
tive to estimate complex hemodynamic and neurovascular 
changes during brain development (e.g. the coupling strength 
of the HbO and Hb become stronger as the cerebral vascular 
system and neurovascular and metabolic functions develop). 
Lastly, as described in our previous studies, the symbolic 
dynamic and mutual information measures were insensitive 
to the time series’ amplitude, making them more tolerant to 
noise (Abásolo et  al 2006, Ferenets et  al 2006, Liang et  al 
2015). Therefore, all these merits indicated the great potential 
of IPE, APE, and PCMI to be outstanding nonlinear measure-
ments in evaluating brain development changes using fNIRS 
signals.

Although fNIRS can not measure neuronal activation 
directly, it can measure HbO and Hb concentration changes, 
which can be caused by changes in blood flow/volume, or 
neuronal activation through the neurovascular coupling. 
In this study, we systematically measured phase changes 
between Hb and HbO among infants during sleep (no stimu-
lation). We will interpret the results from the perspective of 

the cerebrovascular development. From a previous study, it is 
known that brain development will cause the following vas-
cular changes. (1) increased blood volume due to growing cap-
illary density; (2) increased capillary and venous blood flow; 
and (3) increased mean arterial pressure (limited by cerebral 
auto-regulation (Greisen 2005)). In addition to these vascular 
changes, Franceschini et al found that there were regionally 
specific increases in oxygen consumption in healthy infants 
during their first year (Franceschini et al 2007). Interestingly, 
based on the model (Fantini 2014), increased cerebral blood 
volume has an in-phase contribution to the phase difference 
of HbO and Hb, whereas increases in the partial pressure of 
oxygen, oxygen utilization rate, and speed of blood flow have 
an anti-phase effect (Watanabe et al 2017). In this study, we 
found that infants with a higher post-natal age (preterm infants 
(mean: 23.7 d, range: 17–35 d) have a higher anti-phase trend 
(compared to term infants with mean: 4.2 d, range: 3–6 d). 
Thus, our study implies that growth of the partial pressure of 
oxygen, oxygen utilization rate and speed of blood flow is the 
dominant effect in infants’ development, which outweigh that 
of cerebral blood volume increase. This growth likely stabi-
lizes after six months, resulting in a constant phase differ-
ence between HbO and Hb that are maintained into adulthood 
(Watanabe et al 2017).

We reached the conclusions that the hPod, IPE, and APE 
indices have the similar group mean values in 0.01–0.05 Hz 
and 0.05–0.1 Hz frequency bands, which are consistent with 
a previous study (Watanabe et  al 2017). From the perspec-
tive of coupling measurement, the coupling measure of PCMI 
indices shows a significant difference between term and pre-
term infants only in the 0.05–0.1 Hz frequency band (see 
figures 10 and S6) (p  <  0.0002). However, we do not know 
what underlying physiological changes made the 0.05–0.1 
Hz signal more sensitive to brain development for PCMI. 
Frequency dependence is an open question in fNIRS and fMRI 
resting-state studies. We believe that multimodal studies using 
EEG and fNIRS/fMRI, or animal studies could be exploited to 
deepen our understanding of this issue.

In this study, the most important finding is the identifi-
cation of parameters that can distinguish term and preterm 
infants. For these two groups of infants, channel locations, 
measurement devices, and recording durations were exactly 
the same. The fNIRS measurements of adults only covered the 
prefrontal area, which was not ideal. However, we do not think 
it would change the results for the following reasons. First, 
many studies of healthy adults have observed the same anti-
phase relationship of HbO and Hb oscillations in many regions 
of the brain in both resting and task experiments (Issard and 
Gervain 2017, Lloyd-Fox et al 2017, Watanabe et al 2017). 
The measurements we performed should only be served as an 
example. Second, in this study, we found that the prefrontal 
region gave the most robust results for many parameters (e.g. 
IPE, APE, and hPod). This region was shared by infants and 
adults. Third, although different measurement devices were 
used for infants and adults, all the indices we analyzed were 
based on the phase or symbolic pattern of the signal, which is 
less sensitive to device selection. Finally, in both infants and 

Table 8. The CV indices of different measurements with preterm, 
term, and adults in 0.05–0.1 Hz.

Preterm Term Adults

hPod 0.43 0.37 1.04
IPE 0.26 0.21 0.57
APE 0.25 0.26 0.12
hPodL 0.40 0.36 0.24
PCMI 0.07 0.08 0.09

Table 9. The CV indices of different measurements with preterm, 
term, and adults in 0.01–0.1 Hz.

Preterm Term Adults

hPod 0.67 0.57 1.04
IPE 0.25 0.22 0.51
APE 0.22 0.23 0.11
hPodL 0.40 0.37 0.25
PCMI 0.32 0.32 0..34
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adults, the measurement times extended beyond 2 min, which 
has been proven sufficient to obtain a robust index.

However, there are some limitations that should be 
addressed. First, in this study, the number of datasets is rela-
tively small and the preterm data set only contains early pre-
term neonates. In future studies, more subjects from a wider 
age range should be recruited. Second, the adults’ exper-
imental conditions were different from those of the infants, 
which may make direct comparisons difficult. More consistent 
experimental conditions will be sought in future studies.

In conclusion, the symbolic dynamic-based measures, IPE, 
APE, and PCMI, can measure brain development changes 
based on fNIRS signals. PCMI reflects the coupling strength 
of hemodynamic signals and, to some extent, reveals the 
underlying mechanisms of brain development. The poten-
tial of IPE, APE, and PCMI in estimating brain development 
has been demonstrated in this study. Furthermore, our new 
methods (IPE, APE, and PCMI) can be applied to fMRI data. 
However, instead of measuring HbO and Hb phase differences 
within one channel, these parameters can be used to assess 
coupling strength or phase differences between channels 
(voxels/regions of interest). We believe it will approach inter-
esting brain interactions from a new perspective.
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