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Abstract

Cerebrospinal fluid (CSF) plays a critical role in metabolic waste clearance from the

brain, requiring its circulation throughout various brain pathways, including the ven-

tricular system, subarachnoid spaces, para-arterial spaces, interstitial spaces, and

para-venous spaces. The complexity of CSF circulation has posed a challenge in

obtaining noninvasive measurements of CSF dynamics. The assessment of CSF

dynamics throughout its various circulatory pathways is possible using diffusion mag-

netic resonance imaging (MRI) with optimized sensitivity to incoherent water move-

ment across the brain. This review presents an overview of both established and

emerging diffusion MRI techniques designed to measure CSF dynamics and their

potential clinical applications. The discussion offers insights into the optimization of

diffusion MRI acquisition parameters to enhance the sensitivity and specificity of dif-

fusion metrics on underlying CSF dynamics. Lastly, we emphasize the importance of

cautious interpretations of diffusion-based imaging, especially when differentiating

between tissue- and fluid-related changes or elucidating structural versus functional

alterations.
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1 | INTRODUCTION

Cerebrospinal fluid (CSF) envelops and protects the brain while circulating through ventricles, subarachnoid spaces, and paravascular areas

(Figure 1). It plays a crucial role in maintaining brain homeostasis and clearing metabolic waste products. Previously, disruptions in CSF circulation

were thought to be primarily associated with medical conditions such as hydrocephalus, Chiari malformation, and intracranial hypertension, with

no strong links to neurodegenerative diseases. However, with recent scientific developments that have improved researchers' abilities to study

CSF circulation, there is increasing evidence that altered CSF dynamics may be linked to neurodegeneration. For example, in 2012–2013, Iliff,

Abbreviations: Δ, diffusion time; 3D TSE, three-dimensional turbo-spin echo; ADC, apparent diffusion coefficient; CSF, cerebrospinal fluid; DTI, diffusion tensor imaging; DWI, diffusion-
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Nedergaard, and their colleagues published a series of studies that unveiled the crucial role of CSF in eliminating metabolic waste products from the

brain through a proposed fluid pathway known as the glymphatic system.1–4 In this intricate system, CSF flows from the subarachnoid spaces into

the brain through para-arterial spaces surrounding cerebral arteries (Figure 1, ① ! ②). The CSF actively exchanges with interstitial fluid (ISF) and

effectively flushes away waste materials residing between brain cells (Figure 1, ② ! ③). Subsequently, the fluid drains waste from the para-venous

or perineural spaces (Figure 1, ③ ! ④), eventually coursing into the cervical lymph nodes through the meningeal lymphatic vessels and/or nasal

lymphatics.5–9 This pathway is of particular significance because CSF transport can efficiently clear toxic waste proteins that may play a pathological

role in neurodegenerative diseases, such as amyloid-beta in Alzheimer's disease. This discovery implies that dysfunction in the fluid dynamics and cir-

culation may be a common disease pathway for various neurodegenerative diseases, making it an attractive target for therapeutic interventions.7,10,11

Over the past decade, the discovery of the glymphatic system has sparked substantial interest in neuroscience, prompting investigations into its

mechanisms, dynamics, and mechanical drivers, and how it changes with normal aging and in neurodegenerative diseases.

The study of glymphatic fluid transport is reliant on in vivo brain imaging because the system's fluid pathways do not withstand tissue fixa-

tion.12 Two-photon imaging has made ground-breaking discoveries of the paravascular CSF pathways, although it is limited to rodent studies and

surface-level brain observations. Moreover, it is susceptible to confounds arising from invasive intracranial injections and tracer size dependen-

cies.13,14 Various magnetic resonance imaging (MRI) techniques have been proposed to study CSF circulation and dynamics, including contrast-

enhanced MRI,15–17 spin-labeling,18,19 functional MRI,20–23 and phase-contrast imaging.24–27 While these techniques have provided valuable

insights into CSF flow patterns, they also exhibit limitations. For instance, contrast-enhanced MRI requires the injection of contrast agents, which

restricts its frequent use in human studies, spin-labeling can only visualize CSF outflow from specific labeling regions, functional MRI measures

are limited to global CSF fluctuations at the fourth ventricle, and phase-contrast imaging solely captures intravoxel coherent flow.

Diffusion MRI offers a noninvasive means of detecting incoherent water movement across the brain and has become one of the most widely

used research techniques for studying CSF dynamics. Diffusion MRI employs a pulsed-gradient spin-echo (PGSE) sequence with motion-sensitive

gradients, commonly referred to as Stejskal–Tanner diffusion encoding, which provides increased sensitivity to water displacement in the forms

of both diffusion and incoherent flow. Traditionally, diffusion MRI has been employed to assess the brain's microstructure by measuring the

restricted water diffusivity within neurons and axons, often using a b-value of 1000 s/mm2 or higher. Considering the physical properties and

dynamics of CSF, diffusion MRI is well-suited to image CSF. CSF possesses physical properties similar to water with low protein content and vis-

cosity, resulting in long T2 (�2000 ms)28 and T1 (�4000 ms)29 relaxation times at 3 T. Consequently, the T2-weighted contrast in the spin-echo

diffusion sequence provides exceptional sensitivity to CSF, with the potential to specifically detect CSF while suppressing signals from blood and

tissue by employing a longer echo time (TE). In terms of CSF dynamics, its circulation results from an interplay of different dynamic behaviors,

including thermally driven self-diffusion, slow flow associated with circulation, and fluid movement across barriers (e.g., the blood–brain barrier)

through filtration and absorption. Diffusion-based imaging can be optimized to be sensitive to all these CSF dynamics. Accordingly, diffusion MRI

has been used to investigate most CSF circulation pathways including ventricles, subarachnoid spaces, para-arterial spaces, interstitial spaces, and

para-venous spaces. As a result, a wide array of diffusion models and acquisition parameters have been devised to assess these distinct pathways.

F IGURE 1 Schematic overview of CSF circulation. (A) CSF circulation within the ventricular system and SAS. (B) The microscopic CSF
circulation pathway that has been proposed by the glymphatic system hypothesis. CSF circulates from the SAS ① into the para-arterial space ②,
then enters the interstitial space ③, and exits through the para-venous space ④. 4V, fourth ventricle; CA, cerebral aqueduct; CSF, cerebrospinal
fluid; ISF, interstitial fluid; LV, lateral ventricle; SAS, subarachnoid space; PVS, paravascular space. (Created with BioRender.com).
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This work aims to present a comprehensive review of established and emerging diffusion MRI techniques for assessing fluid dynamics,

accompanied by relevant clinical studies. The structure of this review paper is as follows: in Section 2, we describe the distinctive behavior of CSF

along various pathways and examine existing theoretical and experimental evidence for using diffusion MRI to quantify these pathways. Section 3

provides an overview of diverse diffusion MRI techniques, organized according to the characteristics of diffusion models. Within this section, we

discuss the advantages and limitations associated with each technique. Lastly, we shed light on the opportunities and challenges of applying diffu-

sion MRI to study CSF dynamics.

2 | FLUID DYNAMICS AND THE FEASIBILITY OF DIFFUSION MRI ASSESSMENT

This section reviews the unique fluid dynamics, shown in Figure 2, across various cerebral compartments, including the ventricles, subarachnoid

spaces, paravascular space (PVS), and interstitial spaces visualized in Figure 1. It summarizes the applicability of diffusion imaging in measuring

these dynamics by drawing from existing theoretical frameworks, experimental investigations, and validation efforts. This section serves as the

foundational basis for the subsequent diffusion MRI investigations discussed in Section 3. Note: Given the spatial limitations of diffusion MRI, dif-

ferentiating between perivascular and paravascular spaces solely based on their anatomical definitions can be challenging.30–32 Upon reviewing

the literature, these terms appear to be used interchangeably by authors, although there may be debates regarding their specific references. In this

review, an attempt was made to align with the authors' description by using either perivascular or paravascular terminology as presented in

their work.

2.1 | CSF motion in the ventricles and subarachnoid space

In ventricles and subarachnoid space, the CSF dynamics are dependent on the rhythmic movement of the ventricular wall surface,33,34 the pulsa-

tions of cerebral arteries and the brain,34–39 as well as respiration.19,40–42 Depending on the location, the slow flow of CSF may be dominated by

incoherent flow (Figure 2C, also known as the laminar flow, nonuniform flow, or pseudorandom flow) or coherent flow (Figure 2D), which are both

measurable with MRI techniques.

F IGURE 2 Schematic representation of the different types of water movement within a single voxel in relation to their locations in the brain.
(A) Slow diffusion, driven by thermally driven random motion, is typically confined to a restricted microstructure environment like axons, myelin,
and glial cells. Measurement of the slow diffusion within the tissue microstructure is the primary focus of conventional diffusion MRI techniques.
(B) Fast diffusion occurs with less microstructural restriction in areas like interstitial fluid and CSF. Capillary blood, flowing within randomly
orientated capillary segments (bottom-right corner), collectively exhibits random motions and may be viewed as pseudodiffusion, often modeled

as a fast diffusion compartment in multi-compartment models. (C) Incoherent flow refers to spins within a voxel moving in the same direction at
varying velocities; this is also known as laminar or pseudorandom flow. Incoherent flow, such as CSF flow in ventricles and SAS, can be measured
using diffusion MRI acquired at lower b-values (b < 500 s/mm2). (D) Coherent flow occurs when all the spins within a voxel move in the same
direction with the same velocity. Faster coherent flow, like CSF in the aqueduct, typically has speeds of approximately 5 cm/s and is usually
measured using phase-contrast MRI. Very slow coherent flow in the ventricles and SAS (< 1 cm/s) can be measured using the phase contrast of
the diffusion sequence (detailed in Section 3.4). CSF, cerebrospinal fluid; DWI, diffusion-weighted imaging; IVIM, intravoxel incoherent motion;
MRI, magnetic resonance imaging; SAS, subarachnoid space. (Created with BioRender.com).
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Incoherent flow refers to spins moving within a voxel at varying velocities, either linearly aligned as in laminar flow or randomly oriented as in

turbulent flow. The spins accumulate different phases (dephasing) when motion-encoding gradients are applied. This results in a reduction in signal

magnitude, detectable through diffusion-weighted imaging (DWI). CSF motion in the ventricles and subarachnoid space is generally characterized as

incoherent flow mixed with local stirring induced by the oscillating dynamics due to physiological pulsations. Diffusion MRI has demonstrated its abil-

ity to capture the extent of incoherent flow and stirring, although it does not directly measure flow velocity. For example, Bito et al. conducted a

mathematical framework illustrating how diffusion imaging at a low b-value (e.g., b < 250 s/mm2) can detect this incoherent flow.43 Their calculations

showed that the apparent diffusion coefficient (ADC) measures the variance in flow velocity distribution or the intensity of local fluid stirring, which

is further dependent on diffusion times.44 Their human results using b = 100 s/mm2 reveal elevated ADC in regions known for irregular CSF flow,

such as the interventricular foramen, basal cisterns, and lateral sulci. Similarly, simulations by Jang et al. established a robust correlation between dif-

fusivity and CSF flow velocity, affirming a positive relationship between measured diffusivity and flow velocity in the presence of incoherent laminar

flow.45 Further support for diffusion imaging's utility in assessing CSF incoherent flow arises from studies on normal pressure hydrocephalus (NPH)

patients, consistently showing reduced diffusivity associated with disrupted or stagnated CSF circulation.19,46,47 Notably, Le Bihan et al. identified

and discussed the potential of low b-value diffusion imaging for detecting nonuniform CSF flow as early as 1986, observing that the ADC value mea-

sured in CSF significantly exceeds the diffusion coefficient of free water (2.5 x 10�3 mm2/s at 40�).48

By contrast, coherent flow refers to moving spins within a voxel at the same velocity along a consistent direction. For coherently moving

spins, motion-encoding gradients introduce a phase shift proportional to the flow velocity, without altering the signal magnitude. This phenome-

non can be captured using a gradient-echo or spin-echo sequence with motion-encoding gradients, known as phase-contrast MRI. Phase-contrast

MRI has been widely used to measure the coherent CSF flow at the level of the cerebral aqueduct and spinal canal.36,49,50

2.2 | Paravascular fluid and interstitial fluid motion within the parenchyma

From the subarachnoid space, CSF flows into the parenchyma through the PVS. It is then further transported into the interstitial space through

the AQP4 water channel, forming the ISF, which aids in the removal of waste products located between cells. As a result, paravascular fluid and

ISF are the two essential fluid components within the brain parenchyma that hold significant relevance for waste clearance. The PVS is a fluid-

filled area surrounding the cerebrovasculature that is visible on heavily T2-weighted images.51 In contrast to the constrained water diffusion

within axons and neurons, paravascular fluid can move more freely parallel to the blood vessels. This motion is commonly modeled as fast diffu-

sion in multi-compartment diffusion approaches (as reviewed in Section 3.3). Beyond diffusion, paravascular space also acts as a conduit for the

fluid influx and flows slowly in the same direction as adjacent blood flow.52,53 In mice, the flow velocity measures around 20 μm/s near major

cerebral arteries.12,54 However, in humans, the velocity of paravascular flow has not yet been directly measured.

The movement of ISF and its exchange with paravascular CSF holds great research interest because of its central role in flushing interstitial

waste, as posited by the glymphatic system theory. Over time, debates have arisen concerning whether ISF removes waste products through dif-

fusion or convective flow.14,55 Recent evidence has begun to converge toward a consensus, indicating a coexistence of both convection and diffu-

sion mechanisms in ISF dynamics.53,56–58 The extent of their individual contributions is likely contingent upon physiological circumstances.14 In an

effort to explore diffusion imaging's potential to capture the combined convection- and diffusion-driven ISF flow, Komlosh et al. devised an MRI

phantom that replicated the tissue environment with added flow. Their experiments with this flow phantom demonstrated that the introduction

of flow resulted in an increase in the measured diffusion coefficient, with the most significant increments observed in directions parallel to the

flow.59 These findings support the notion that diffusion imaging can detect the combined effects of diffusion and flow, particularly under specific

flow conditions, such as a biologically relevant flow rate of 0.44 mL/min with a Péclet number of 3.31, which is indicative of the convection-

to-diffusion ratio.59 The sensitivity of diffusion imaging in assessing combined diffusion and flow was further corroborated by an animal study,

wherein rats treated with an AQP4 facilitator exhibited a significant increase in the measured ADC within the brain tissue.60 This increase was

consistent with enhanced ISF water transport. Similarly, diffusion imaging has also been employed to detect tissue diffusion changes induced by

AQP4 inhibitors.61 However, the authors noted that the precise mechanisms driving these diffusion changes have yet to be explored, given the

potentially multifaceted effects of AQP4 inhibitors on astrocytes, interstitial flow, and perfusion.

Together, these studies underscore the potential of utilizing diffusion imaging as a valuable tool for investigating CSF physiology in the ventri-

cles, subarachnoid space, and parenchyma. These findings establish the theoretical and experimental basis for the application of diffusion imaging

techniques in the study of CSF dynamics in both normal physiology and pathological conditions, as further discussed in the following section.

3 | CURRENT DIFFUSION MRI APPROACHES

This section reviews existing studies on fluid dynamics using diffusion MRI, which are classified according to their modeling approaches. In certain

cases, a specific approach is tailored to measure a particular fluid pathway, such as diffusion tensor imaging along the perivascular space
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(DTI-ALPS) for assessing the perivenous space within the brain tissue.48 Conversely, there are instances where a single approach can be utilized

to measure multiple pathways, as seen with intravoxel incoherent motion (IVIM), which measures CSF in ventricular, subarachnoid spaces, and

PVS. The organization of this section by diffusion techniques streamlines the presentation of their advantages and limitations. Additionally, we

have included a reference table outlining the techniques based on the pathways they assess (Table 1) and a table summarizing their acquisition

parameters, advantages, and limitations (Table 2).

3.1 | Mono-compartment diffusion model

3.1.1 | Qualitative evaluations using DWI

Taoka et al. reported the utility of diffusion-weighted contrast at a b-value of 500 s/mm2 for evaluating CSF dynamics within the cranium.46,62

Their investigation of ventricles demonstrated that DWI at a b-value of 500 s/mm2 exhibits greater sensitivity to ventricular CSF motions com-

pared with b = 1000 s/mm2. In individuals with ventricle dilation, the DWI of b = 500 s/mm2 showed higher signal intensities compared with

controls, indicating reduced CSF flow in conjunction with ventricle dilatation.46 They extended this approach to a cohort with middle cerebral

artery occlusion, revealing the influence of arterial pulsation on CSF motion.62

In subsequent work by Taoka et al., the authors acquired DWI across multiple b-values and expanded their investigation to encompass

broader CSF-filled spaces within the cranium, including ventricles and subarachnoid spaces.66 Notably, increased CSF motion was observed in

basilar cisterns and lateral sulci compared with frontal and parietal subarachnoid spaces and lateral ventricles. Collectively, these studies propose

that DWI with a lower b-value (< 1000 s/mm2) provides insight into the extent of CSF motion, aligning with prior findings by Le Bihan.48,92

The limitations of these methods include their limited quantitative nature and reliance on subjective scoring to assess CSF signal intensity.

The absence of cardiac gating can introduce DWI signals dependent on the cardiac cycle, potentially complicating results and interpretation.

TABLE 1 Summary of representative diffusion MRI studies examining fluid dynamics, organized by the anatomical location of interest.

Ventricles and subarachnoid space Parenchyma

First author Year Model First author Year Model

Taoka 2019, 2021 Low b-value DWI46,62 Thomas 2018 CSF-free63

Bito 2021, 2023 Low b-value DTI43,44 Sepehrband 2019 CSF-free64

Han 2023 Low b-value DTI65 Debacker 2020 sADC, SIndex61

Jang 2022 Low b-value ADC45 Komlosh 2019 DTI59

Taoka 2021 Multi b-value DWI66 Tuura 2021 DTI67

Našel 2007 DTI47 Alghanimy 2023 DTI60

Le Bihan 1987 IVIM48 Taoka 2017 DTI-ALPS68

Surer 2018 IVIM69 Orzsik 2023 DKI70

Becker 2018 IVIM71 Demiral 2019 IVIM72

Yamada 2023 IVIM73 Jiaerken 2021 NODDI74

Boye 2018 Phase-contrast75 Rau 2021 g-NODDI76

Dong 2023 Phase-contrast77 Wong 2020 Spectral78

Jansen 2020 Phase-contrast79 van der Thiel 2021, 2022 Spectral80,81

Drenthen 2023 Spectral82

Surface paravascular spacea

Ran 2024 Dynamic diffusion83

Harrison 2018 Dynamic diffusion84

Hirschler 2019, 2020, 2022 Dynamic diffusion85–87

Wen 2022 Dynamic diffusion88,89

Abbreviations: ADC, apparent diffusion coefficient; CSF, cerebrospinal fluid; DKI, diffusion kurtosis imaging; DTI-ALPS, diffusion tensor imaging along the

perivascular space; DWI, diffusion-weighted imaging; DTI, diffusion tensor imaging; IVIM, intravoxel incoherent motion; g-NODDI, generalization of

NODDI using a Bayesian approach; MRI, magnetic resonance imaging; NODDI, neurite orientation dispersion and density imaging; sADC, water diffusion

coefficient; SIndex, signature index.
aSurface paravascular space refers to the CSF surrounding the major cerebral and/or pial arteries, also known as the perivascular subarachnoid space.32
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3.1.2 | Diffusion tensor imaging along the perivascular space

Taoka et al. have developed DTI-ALPS to assess perivascular diffusivity of the medullary veins within the white matter.68 This technique utilizes a

conventional DTI scan with a b-value = 1000 s/mm2 to quantify water diffusivity along three primary axes. The method cleverly takes advantage

of the specific anatomical location lateral to the ventricles, where the medullary veins run perpendicular to a large white matter tract. Because of

this anatomical layout, the observed increase in diffusivity parallel to the medullary veins relative to the diffusivity orthogonal to the medullary

veins (not aligned with the major white matter tract) is representative of CSF efflux in the PVS of the medullary veins. They named this measure-

ment the ALPS index, which serves as a potential measure of perivenous CSF efflux. The initial study included an Alzheimer's disease cohort,

where the authors observed that a decrease in the ALPS index was correlated with worse cognitive function and an increase in age.68

Because of the simplicity of the measurement and the ability to retrospectively calculate the ALPS index in large clinical datasets, it has been

quickly adopted to study many cerebral health conditions, including neurodegeneration,68,93–110 cerebrovascular pathologies,111–117

hydrocephalus,118–121 epilepsy,122–128 migraines,129,130 sleep disorders,131–134 and traumatic brain injury.135–137 These studies consistently report

a decline in the ALPS index associated with pathology, as well as with an increase in age.65,138–142

Although the ALPS index has been quickly adopted and studied in many conditions, the specificity of the ALPS index to perivascular diffusiv-

ity remains in question. Because of DTI sensitivity to free-water diffusion and tissue microstructure, it remains unclear how alterations to vascular

and neuronal health, independent of the perivascular system, may be impacting the ALPS index.143 A recent study has provided evidence of white

matter contributions to the DTI-ALPS index, suggesting that the decrease in DTI-ALPS in aging and neurodegeneration may be partially attributed

to changes in white matter radial asymmetry.144 Additionally, alterations to the head position and imaging plane have been found to significantly

impair the ALPS indices reproducibility,145 highlighting a need for future studies to control these imaging parameters. Lastly, it remains unclear if

the ALPS index has a hemispherical dependence because studies have reported disagreements in statistical significance when comparing the left

and right hemispheres.93,112,136

3.1.3 | Diffusion tensor imaging with low b-value

Han and colleagues employed low-b DTI (130 s/mm2 at 30 directions) with a long TE (133 ms) to provide better specificity to CSF dynamics sur-

rounding the middle cerebral arteries.65 This methodology was applied to a cohort of healthy individuals aged 21–75 years at five different time

points throughout 1 day to explore the circadian rhythm dependence of CSF motion. The findings revealed evident anisotropic properties in CSF

motion, but the axial diffusivity (along the long axis of the diffusion tensor) exhibited no discernible dependence on the time of day. The lack of

cardiac cycle information precluded the assessment of cardiac cycle-dependent CSF motion and its association with time-of-day changes remains

unclear.

To gain a deeper understanding of the pseudorandom CSF motion, Bito et al. employed a mathematical approach that modeled the intravoxel

pseudorandom CSF motion as a combination of ordered motion (linear/laminar flow, Figure 2C) and disordered motion (diffusion, Figure 2B).44

They applied low-b DTI (100 s/mm2 in 13 directions) with three diffusion times to fit the model Vv Dr Vv Dr . Vv Dr and demonstrated the feasibil-

ity of investigating the complex CSF dynamics through a novel mathematical framework. This model requires acquisition at multiple diffusion

times, leading to longer acquisition times, thereby limiting its feasibility in studying cardiac cycle-dependent CSF dynamics.

3.2 | Multi-compartment diffusion model

3.2.1 | CSF-free diffusion

The CSF-free diffusion model was initially introduced to enhance the accuracy of tissue diffusion measurements by mitigating the partial volume

effect caused by CSF.146,147 This model has been employed to estimate CSF diffusivity and investigate its alterations under physiological

conditions,63 as well as in the context of aging and dementia.64

The CSF-free diffusion concept necessitates a multi-b-value DWI acquisition.147 It employs a biexponential fitting approach to describe the

diffusion signal decay across various b-values, assuming two compartments: (i) a parenchymal water pool with a diffusivity lower than that of free

water (Figure 2A), characterized by a full tensor; and (ii) an isotropic diffusion water pool with a diffusivity akin to free water at 37�C (Figure 2B).

This dual-compartment model serves to decipher the physiological origins of water diffusion alterations, distinguishing between the CSF and tis-

sue water pools.

In the study by Thomas et al., the biexponential fitting model was utilized to explore the impact of time-of-day on brain tissue diffusivity.63

Similar to the original model, they considered the rapidly diffusing water pool as isotropic with a fixed diffusivity, essentially simulating free water.

Their observations revealed an increase in diffusivity from morning to afternoon, primarily in the subarachnoid spaces around cerebral fissures
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and sulci. This increase was primarily ascribed to the higher volume fraction of free water. They concluded that this variation is due to potential

physiological changes of diurnal fluctuations in structural properties of the brain, possibly linked to the glymphatic system. However, a limitation

arose from the assumption of isotropy and fixed diffusivity in the rapid-diffusion compartment, which does not accurately model the fluid in the

PVS within the parenchyma.

Sepehrband et al. made advancements by proposing a bi-tensor model.64 This novel approach accommodates anisotropic CSF diffusion with-

out predetermined diffusion values. This adaptability allows the rapid-diffusion compartment to encompass various nonparenchymal fluids, includ-

ing both “free water” as found in the subarachnoid space and “moderately free water” in the PVS and ISF. To ensure robust fitting, the

orientation of the nonparenchymal fluid tensor is constrained to align with the tissue tensor's axis, while maintaining a diffusivity higher than that

of the tissue. Their study, which focused on older brains with and without cognitive impairment, revealed that the nonparenchymal fluid compo-

nent increases with age and neurodegeneration. This aligns with the enlarged PVS and larger water pool seen in aging brains.51,148 Notably, they

emphasized that overlooking nonparenchymal fluid may systematically bias DTI findings. Commonly observed increases in mean diffusivity

(MD) and decreases in fractional anisotropy (FA) in neurodegeneration may, in fact, be attributed to changes in the fluid compartment rather than

tissue microstructural changes. Their work highlighted the values of the bi-tensor model in disentangling the distinct influences of parenchymal

and nonparenchymal diffusion factors. Moreover, their findings underscore the critical significance of accounting for nonparenchymal fluid contri-

bution in DTI studies.

A potential limitation of the model is the assumption of the same alignment of PVS as the white matter tract, which may not hold for all white

matter regions. For instance, this assumption may not apply to the PVS of medullary veins, which runs perpendicular to the white matter, as dis-

cussed in the DTI-ALPS model.68 Additionally, the nonparenchymal compartment can be influenced by fluid from multiple sources, including PVS,

ISF, and capillary blood, potentially introducing complexity in its interpretation within clinical cohorts. Despite these considerations, this enhanced

water-elimination model represents a significant advancement in modeling CSF compartments within brain tissue using a multiple-shell diffusion

protocol available in various public databases. The model is particularly valuable for investigating neurodegenerative diseases and distinguishing

diffusion changes stemming from alterations in fluid compartments from those related to tissue microstructural changes, which was demonstrated

by Sepehrband et al.90

3.2.2 | Intravoxel incoherent motion (IVIM) in ventricles and subarachnoid space

IVIM, introduced by Le Bihan et al. in 1987, was designed to distinguish between two tissue compartments within perfused brain tissue149–151:

(i) the fast-diffusion compartment attributed to the flow of water molecules in randomly oriented capillary segments (Figure 2B, capillary); and

(ii) the slow-diffusion compartment resulting from the thermally driven water diffusion (Figure 2A). Remarkably, Le Bihan et al. had also explored

the potential of IVIM for measuring ventricular CSF flow in their earlier work in 1986–1987, demonstrating IVIM's sensitivity to slow CSF flows

(�1 mm/s) characterized by incoherent motion (laminar or turbulent) within ventricular spaces (Figure 2D).48,149

With the renewed interest in fluid dynamics, recent studies have applied cardiac-gated IVIM to investigate the direction and cardiac cycle

dependence of CSF movements in the ventricles of healthy brains.69,71 While Becker et al. focused on lateral ventricles, Surer et al. extended its

examination to broader regions encompassing the spinal canal, fourth ventricle, and basal cistern. Both studies unveiled direction-dependent and

cardiac cycle-dependent IVIM behaviors within the ventricles. Directionally, a higher fraction of fast diffusion (f) and pseudodiffusion coefficient

(D�) were observed along the high-flow direction, exhibiting spatial variability. For instance, in the lateral ventricles, higher f was noted in the

anterior–posterior direction, while in the spinal canal and fourth ventricles, it was evident in the craniocaudal direction.69,71 These observations

align with the expected direction of CSF flow.

Across the cardiac cycle, a significantly higher f was found in systole compared with diastole,69 or exhibited a trend towards being higher,71

consistent with previous studies.152 Notably, neither study observed cardiac cycle dependence or direction dependence in the diffusion coeffi-

cient (D). Becker et al. additionally combined phase-contrast MRI to correlate with flow velocity, establishing a moderate to high positive correla-

tion between f and CSF flow. This reinforced the sensitivity of IVIM metrics to CSF flow dynamics and their potential to quantify CSF flow and

pulsatility in neurological disorders.Yamada et al. expanded the application of the IVIM model beyond the ventricles to include the subarachnoid

space, aiming to investigate patients with NPH,73 a condition characterized by disrupted CSF circulation. Unlike the previous two studies, they

did not utilize cardiac gating in their approach. They consistently found a reduction in f in patients within the ventricles, indicating diminished CSF

flow. This reduction was attributed to weakened ciliary movement and reduced brain pulsation.33,34,39 Within the subarachnoid spaces, reduced

f was identified across central and marginal sulci in the NPH group compared with controls. The authors suggested that this decline reflects stag-

nant CSF flow due to simultaneous ventricle and lateral sulci expansion toward the cranial apex, potentially indicative of glymphatic dysfunction

affecting downstream paravascular flow.39,153–156

In summary, these investigations collectively suggest that IVIM metrics, notably f, offer valuable insights for assessing complex CSF motion in

ventricles and subarachnoid spaces. While the pseudodiffusion coefficient, D�, theoretically provides the most direct assessment of flow velocity,

it exhibits less robustness during the bi-exponential model fitting.157 Generally, the fraction of fast diffusion f and the slow-diffusion coefficient D
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display good stability.158–161 However, it is important to emphasize that when analyzing the subarachnoid space, cautious interpretation of f is

crucial due to the potential partial volume effects with neighboring parenchymal tissue (e.g., gray matter). This is especially relevant at typical

imaging resolutions of ≥ 2�2�2mm3. In the presence of partial volume effects, the observed changes in f may be primarily driven by the extent

of partial volume itself. For example, an increase in f observed with aging in the subarachnoid space could be attributed to an expanded CSF frac-

tion resulting from brain atrophy, rather than indicating an actual alteration in CSF flow.

3.2.3 | IVIM within the parenchyma

Within the parenchyma, IVIM reverts to its classical model, where fast diffusion reflects tissue perfusion. Compared with conventional DTI, the

slow-diffusion coefficient offers a more precise measure of tissue diffusion. In a study, IVIM was applied to investigate sleep-related differences

and the impact of sleep disturbance on IVIM metrics.72 Building on the animal study findings that sleep increases ISF volume by 40%, the authors

hypothesized a corresponding increase in tissue diffusivity.4 Despite finding an increase in whole-brain CSF volume during sleep based on struc-

tural imaging, no alterations in global IVIM metrics were identified. However, the slow diffusion coefficient emerged to be more sensitive in cap-

turing sleep-related changes compared with the rest IVIM metrics, revealing both regional increases and decreases. Concerning sleep

disturbances, no differences in IVIM metrics were observed between sleep-deprived wakefulness and rested wakefulness, suggesting that one

night of sleep deprivation might not impact tissue diffusion. These findings may hint at a more intricate sleep-related glymphatic function in the

human brain compared with rodents. The authors recognized that their maximum b-value of 1000 s/mm2 could potentially limit the exploration

of restricted diffusion in the non-Gaussian ISF or PVS within the parenchyma. They proposed that increasing the b-value to more than 2000 s/

mm2 could amplify sensitivity to non-Gaussian diffusion changes associated with sleep-related alterations.

In line with this, a recent sleep study used high b-value (max. = 2600 s/mm2) diffusion imaging to assess non-Gaussian changes in ISF during

sleep.70 Using the diffusion kurtosis model, the study revealed a global reduction in both mean and radial kurtosis during sleep. This reduction

indicates that water diffusion becomes more Gaussian during sleep, in line with an anticipated increase in interstitial volume fraction. To investi-

gate the origin of reduced diffusion kurtosis—whether it is driven by changes within the interstitial domain or increased fluid exchange across

compartments (CSF-ISF exchange)—the researchers conducted a post-hoc analysis using mean apparent propagator MRI (MAP-MRI) analy-

sis.162,163 Their findings suggest that the observed kurtosis reduction likely originates from increased interstitial volume during sleep, rather than

enhanced exchange, aligning with rodent findings.4 Moreover, their spatial analysis identified regional changes centered on the default mode net-

work, a region most metabolically active when awake and exhibiting slow wave generation during sleep onset, further supporting the model's sen-

sitivity to sleep onset.

In summary, these two studies suggest that diffusion imaging holds the potential for detecting sleep-related ISF changes within the paren-

chyma, with higher b-values potentially providing better sensitivity to non-Gaussian diffusion changes (kurtosis effect) associated with increased

ISF volume during sleep. MAP-MRI could be a useful tool to discern signal origins within intracellular/extracellular domains or across compartment

exchanges.

3.2.4 | Neurite orientation dispersion and density imaging (NODDI) in the parenchyma

NODDI, introduced by Zhang et al. in 2012, is a practical diffusion model to assess axonal density and dendrite fanning.164 NODDI delineates

water diffusion into three compartments: (i) free-water diffusion in a water pool; (ii) restricted diffusion within axons and dendrites; and

(iii) hindered diffusion in the extracellular space. For free-water diffusion, NODDI employs an isotropic Gaussian diffusion model akin to the afore-

mentioned CSF-free diffusion, with a fixed diffusivity of 3.0 � 10�3 mm2/s.

While NODDI has primarily been used to assess alterations in axonal density in neurological and neurodegenerative diseases,165–168 it has

more recently been applied to investigate changes in the free-water content of the human brain.74,76 Jiaerken et al. employed NODDI to examine

the free-water content within and around dilated PVS in normal elderly individuals and elderly individuals with cerebral small vessel disease. Their

findings revealed consistently elevated free-water content in dilated PVS regions across both groups. However, the surrounding regions near

dilated PVS displayed divergent trends, with healthy elderly individuals showing a more pronounced reduction in free-water content.74 This con-

trast implies that the dilated PVS may play a distinct role in healthy subjects versus those with cerebral small vessel disease. In another study, Rau

et al. utilized NODDI to explore periventricular hyperintensities stemming from transependymal CSF leakage in patients with idiopathic NPH

(iNPH). They discovered heightened free-water content in patients compared with controls.76

These studies illustrate NODDI's ability to detect free-water content associated with enlarged PVS and ISF within the parenchyma. NODDI

shares a similar limitation with the CSF-free model by assuming an isotropic and fixed diffusivity for the free-water compartment. This assumption

may not accurately represent the diffusion within the narrow tubular shape of the PVS or the somewhat restricted ISF, potentially limiting NOD-

DI's sensitivity and specificity in studying these fluid components.
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3.2.5 | Spectral diffusion analysis in the parenchyma

In the brain parenchyma, both the IVIM and CSF-free diffusion models assume two water compartments. However, the signal within the fast-

diffusion compartment may originate from various sources with distinct diffusion properties, including microvascular perfusion, interstitial and

paravascular fluid. Recent studies have shown the potential for extracting a third, intermediate diffusion component from cerebral multi-b-value

images using spectral fitting methods.78,80–82,139 This intermediate diffusion component, with diffusivity falling between fast microvascular perfu-

sion and slow tissue diffusion, is believed to primarily represent a combination of interstitial and perivascular fluid, as indicated by its increased

presence in regions with enlarged PVS,80 and in brains affected by cerebral small vessel disease.78 Unlike the two-compartment model, this three-

compartment model may offer improved specificity in capturing changes in paravascular fluid movement. Conducting spectral analysis typically

requires the acquisition of a substantial number of b-values (�15 b-values), and the optimal selection of b-value is discussed by Drenthen et al.82

While fitting two compartments with three unknowns in IVIM can encounter certain robustness challenges (such as for D*), fitting three pools

with five unknowns in the spectral analysis faces similar challenges, which require further investigation.

3.3 | Low b-value dynamic diffusion imaging

While the multi-compartment models provide measurements of the fluid compartments volume fraction and associated diffusion values, these

changes primarily reflect alterations in tissue structures and composition rather than fluid dynamics. For instance, an increased free-water fraction

with elevated diffusivity could arise from an enlarged PVS, but not necessarily indicate changes in fluid dynamics. The dynamics aspect of peri-

vascular fluid may be more relevant to the fluid clearance function within the glymphatic system.

To explore fluid dynamics in the PVS, advancements in diffusion imaging have been made in both preclinical and human studies. Perivascular

CSF flow can be driven by pulsation, respiratory, and low-frequency oscillation.58 Pulsation, in particular, has been considered a major driver for

CSF influx along the peri-arterial space.12 Consequently, it has been extensively investigated using prospective or retrospective gating methods.

Based on the k-space readout approach, these diffusion techniques can be generally classified into either a multishot three-dimensional turbo-

spin-echo (3D TSE) readout or a single-shot 2D echo planar imaging (EPI) readout.

In a pioneering noninvasive preclinical rat study conducted by Harrison et al., DWI using 3D TSE with a b-value of 100 s/mm2 was used to

sensitize the signal to the pulsatile CSF dynamics in the peri-arterial space of the middle cerebral arteries.84 To suppress the nearby arterial blood

with a much shorter T2 than CSF, the authors applied a long echo time (TE = 142 ms). Through prospective gating, they discovered that diffusiv-

ity in the PVS was approximately 300% greater during systole compared with diastole, with the principal diffusion direction matching the arterial

flow direction. Remarkably, the principal diffusion direction observed was found to be in alignment with the direction of arterial blood flow. This

work marked the first noninvasive evidence of pulsation-driven fluid movement in the PVS, with the fluid flow direction mirroring that of the

blood flow. A recent application of this technique in acute hypertension revealed diminished CSF directionality in the angiotensin-II pharmacologi-

cal model, showcasing its potential to advance our understanding of perivascular fluid changes in neurology.91

Expanding on this approach to humans, Hirschler et al. developed a high-resolution 3D TSE sequence with sparse reconstruction (compressed

sensing), implemented on a 7-T MRI scanner.85–87 This sophisticated technique achieved high isotropic resolution (0.45 � 0.45 � 0.45 mm3), all-

owing for the detection of paravascular fluid dynamics, not only near the middle cerebral arteries, but also within the parenchyma.87 Their method

employed a long echo time (TE = 227 or 497 ms) to effectively suppress the signal from adjacent arterial blood. Using this advanced sequence,

they unveiled that CSF movement in the PVS of the human brain is influenced by pulsation, not only near major arteries, but also around smaller

penetrating arteries.86 Additionally, their observations indicated that CSF fluctuations in the PVS, especially those surrounding major arteries,

closely follow the cardiac cycle rather than respiratory patterns.85 Its relatively extended acquisition time (�40 min) poses challenges for its clini-

cal translation. Along this line, Ran et al. introduced a 3D TSE sequence with a modified diffusion preparation strategy.83 Notably, they integrated

an improved multi-directional diffusion-sensitized driven-equilibrium preparation (iMDDSDE) to address first- and second-order movements of

CSF, thereby reducing CSF flow-induced phase errors when combining multishot data. Leveraging compressed sensing techniques, they achieved

a remarkable 1 mm isotropic resolution with complete brain coverage in just 5 min, sampled at four cardiac phases. Results revealed that CSF sur-

rounding the middle cerebral artery exhibited the highest diffusivity among major cerebral arteries, with a decline observed in older adults com-

pared with their younger counterparts. Employing this technique on a cohort with cerebral major artery stenosis showed lower CSF diffusivity in

individuals with acute ischemia stroke.

Overall, the multishot 3D TSE technique offers notable advantages in achieving extra-long echo times for enhanced blood/tissue suppression

and improved image resolution while maintaining a favorable signal-to-noise ratio (SNR). However, a key challenge lies in its inherent limitation to

attain high temporal resolution. This limitation stems from the multishot design, constraining the ability to sample many phases across a cardiac

cycle within a clinically feasible time. Additionally, the use of a series of 180� pulses during extended readouts may result in temporal averaging of

rapidly moving CSF spins. This phenomenon leads to the timings of diffusion preparation and center k-space at different phases of the cardiac

cycle, necessitating careful consideration of pulse-triggering and data-binning strategies.83,86
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Recently, the high temporal resolution of pulsatile CSF dynamics has been achieved using a diffusion-weighted sequence with 2D EPI read-

out.88 This technique, named dynamic diffusion-weighted imaging (dynDWI), captures the CSF dynamics at 50 cardiac phases, revealing detailed

waveform shapes along major CSF pathways across the brain, including the subarachnoid space and ventricles.88 It offers specificity to CSF

dynamics without the need for ultralong echo times or super-resolution techniques and can be completed in less than 6 min. Specifically, the

researchers demonstrated the effectiveness of using a b-value of 150 s/mm2 to suppress signals from fast-flowing blood spins while maintaining

sensitivity to the adjacent CSF. Because the signal of interest involves temporal changes across the cardiac cycle, the contribution of brain tissue

to the signal is minimal, making the cardiac cycle-resolved waveforms specific to CSF dynamics. Consistent with prior findings, their results

emphasized a strong cardiac dependency of CSF dynamics in the subarachnoid space surrounding cerebral arteries. In an aging cohort, the

researchers observed an increase in CSF diffusivity with age and noted alterations in waveform shapes in the older brain, likely reflecting less effi-

cient fluid pumping. Additionally, the higher temporal resolution of dynDWI enabled the study of CSF peak timing, providing relevant insights into

cerebral artery stiffness.89 dynDWI holds significant translational value in uncovering changes in both CSF diffusivity and its waveform shapes.

However, it is noteworthy that a b-value of 150 s/mm2 may not entirely suppress blood flow in all vascular networks. The diffusion gradient's

suppression effect is velocity dependent and may compromise suppression in slow-flowing blood like penetrating arterioles and capillaries. This

aspect requires systematic evaluations.

In summary, low b-value dynamic diffusion imaging has emerged as a promising approach for assessing paravascular fluid dynamics and their

driving forces. Despite its clinical potential, interpreting results requires careful consideration. Specifically, the measured ADC does not directly

quantify flow velocity. An increase in diffusivity could indicate either increased fluid velocity45 or simply intense local fluid mixing.43 Additionally,

the derived tensor direction does not specify whether it is toward or away from a particular point. These nuances should be considered when ana-

lyzing and interpreting dynamic diffusion imaging outcomes.

3.4 | Phase-contrast velocimetry using the “diffusion” sequence

All the previously mentioned approaches rely on the diffusion-weighted contrast in the signal magnitude, arising from the incoherent motion of

water spins, causing a “dephasing” effect and lowered signal magnitude (Figure 2A–C). However, in the case of CSF flow in the ventricles and sub-

arachnoid space, there exist intravoxel coherently moving spins that travel in parallel with roughly the same velocity (Figure 2D). When motion-

sensitive gradients are applied, these spins exhibit a coherent phase shift that is proportional to their flow velocity, allowing for velocimetry. This

is the underlying principle of phase-contrast MRI. Nevertheless, phase-contrast MRI typically has a velocity-encoding (VENC) range of 30–

200 cm/s, and in some cases as low as 1–5 cm/s, which makes it unsuitable for measuring very slow CSF flow in the subarachnoid space or PVS

(< 1 cm/s). On the other hand, PGSE enables longer VENC times and provides more flexibility in setting the VENC values. By employing PGSE

with velocity encoding, which is essentially the same as the Stejskal–Tanner diffusion preparation, it becomes feasible to achieve VENC values in

the range of 1–10 mm/s or even lower. This makes the diffusion sequence suitable for measuring the exceedingly slow CSF flow in both the ven-

tricular and subarachnoid spaces, where velocity is encoded in the phase of the signal.

Attempts have been made using the diffusion gradient preparation and its phase contrast to measure slow CSF flow. Boye et al. conducted a

phantom validation study and showed a good agreement between the measured flow velocity and the ground truth values, demonstrating the

feasibility of using diffusion phase images to measure very slow flow (< 2 mm/s).75 Using this method, they examined the CSF flow velocity in

the perineural space of optic nerves in cases of normal tension glaucoma. Their findings indicated a significantly lower CSF velocity in the disease

group compared with controls, supporting the notion that compromised CSF flow along the optic nerve may contribute to disease mechanisms.

More recently, two studies employed this approach to study CSF flowmetry and its dynamics in the ventricles and subarachnoid spaces of

healthy subjects.77,79 Both studies detected strong cardiac-coupled CSF flow velocity with varying directions throughout the cardiac cycles. While

Jansen et al. used a VENC of 0.1–0.5 mm/s and detected CSF velocity at 0.065 mm/s in the ventricles,79 Dong et al. used VENC values of 10–

30 mm/s and measured velocities of �10 mm/s in the fourth ventricle and �1 mm/s in the subarachnoid space.77 Dong et al. further detected

slow CSF flow coupled to both cardiac pulsations and respiration and highlighted the dominant influence of cardiac pulsations over respiration.

These methods offer a notable advantage in their ability to provide quantitative flow velocity measurements. It demonstrates the potential of

the diffusion imaging sequence for the simultaneous assessment of both diffusion (using signal magnitude) and flowmetry (using signal phase).79

However, phase-contrast measurements are susceptible to artifacts arising from gradient hardware imperfections, eddy currents (due to rapid

switching of motion-encoding gradients), slice and crusher gradient imperfections, etc. These challenges may be more pronounced when detecting

slow flow compared with fast flow. Moreover, the appropriate VENC range for the slow flow in the subarachnoid space remains to be established,

given the substantial discrepancies in VENC observed in recent studies.77,79 An inappropriate VENC setting may lead to phase-wrapping and inac-

curate velocity measurements. Additionally, the phase-contrast flowmetry approach may be limited in assessing flow in the smaller PVS within

the parenchyma, which requires sufficiently high resolution to observe coherent flow within a voxel. For an in-depth discussion of theories and

considerations for measuring slow flow using the PGSE phase regime, readers can refer to Williamson et al.169
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4 | DISCUSSION

The advancements in existing diffusion techniques demonstrate its remarkable versatility in detecting fluid dynamics. By varying b-values, it can

modulate its sensitivity to both diffusion and flow. By altering the direction of the encoding gradient, it can explore the directional dependence of

fluid movement. Through dynamic diffusion imaging, it can assess fluid dynamics and uncover the underlying driving forces. Consequently, diffu-

sion imaging emerges as a powerful tool capable of evaluating fluid dynamics across various pathways, including ventricles, subarachnoid space,

paravascular space, and interstitial space. Moreover, the inclusion of phase information from the same diffusion sequence enables the assessment

of very slow flow velocities, further enhancing the utility and adaptability of diffusion techniques.

While diffusion imaging has yielded novel insights into fluid transport, its heightened sensitivity—advantageous in detecting changes—

simultaneously poses a challenge in the interpretation of results. A change in diffusion metrics may have contributions from various tissue compo-

nents, particularly within the parenchyma. Despite advancements in multi-compartment models, the specificity of diffusion metrics remains some-

what inadequate. This necessitates thorough consideration of potentially confounding factors that may underlie the observed changes, to avoid

overinterpretation.

The cautious interpretation becomes particularly pertinent when studying disease cohorts, as changes can occur across the spectrum of tissue

components, including neurons, axons, glial cells, ISF content, paravascular fluid content, capillary perfusion, and even the extent of the partial vol-

ume effect due to cerebral atrophy. While it is tempting to link diffusivity changes directly to PVS and associated glymphatic function, failure to

consider other confounders could undermine the credibility of these discoveries in the long term. Therefore, incorporating validation strategies

into study designs is advisable. By recognizing the complex diffusion signal origins and embracing comprehensive validation approaches, the inter-

pretation of diffusion imaging findings can become more robust and informative.

Furthermore, it is crucial not to equate changes in diffusivity with altered fluid flow. Changes in diffusivity may reflect changes in structure or

water restriction, unrelated to fluid circulation or glymphatic flow. For instance, an enlarged PVS in aging or disease may lead to changes in diffu-

sivity and the volume fraction of the fast-diffusion compartment. However, these changes may not correlate with modifications in fluid influx or

efflux within that space or alterations in glymphatic function. Caution is warranted to avoid conflating “morphological change” with “functional
change.”

Lastly, careful determination of diffusion imaging parameters (e.g., repetition time [TR], TE, diffusion times) is important to investigate the

detailed properties of CSF. Longer TE values can better suppress blood signal (tissue blood T2 ≈ 150 ms), but excessively long TE (e.g., > 200 ms)

may compromise the SNR with an EPI readout. TR is generally set at longer than 2 s to accommodate the longer T1 recovery of CSF (T1 ≈ 3 s)

and ensure adequate SNR. Multiband techniques enable a shorter TR of less than 2 s to reduce scan time, albeit at the cost of longitudinal magne-

tization and SNR. When directionality is not a focus and a trace image suffices, incorporating isotropic diffusion weighting can eliminate the need

for encoding in three distinct directions, significantly truncating the scan time by one-third.170 Another parameter requiring scrutiny and control is

the diffusion time (Δ). The diffusion time governs the average distance traversed by spins during imaging and influences measured ADC values

when displacement is non-Gaussian, as in incoherent flow (Figure 2D). In such cases, the measured ADC monotonically increases with Δ.43 Cau-

tion should be exercised when comparing ADC values acquired at varying diffusion times, even with the same b-value.

In conclusion, diffusion MRI has emerged as a potent tool for noninvasively probing CSF dynamics within the human brain, a previously over-

looked signal pool that has now gained paramount importance in the context of brain health. Given the rapidly growing application of diffusion

MRI in CSF research, it is imperative to approach result interpretation with caution, especially when confronted with the need to distinguish

between tissue- and fluid-related changes or to elucidate structural versus functional alterations. Future research efforts may prioritize the devel-

opment of diffusion MRI techniques capable of providing enhanced signal specificity to the fluid compartment. This potential avenue holds signifi-

cant promise for further exploration and advancement in the field.
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