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ABSTRACT 
 
 Electrical impedance tomography (EIT) is a promising tool for the structural 
health monitoring (SHM) of composites that have been modified to be piezoresistive 
by the addition of carbon-based nanofillers. However, most studies have formulated 
the EIT problem to minimize an error vector in the least-squares sense while 
simultaneously using a least-squares term for regularization. This approach has 
important limitations in the context of SHM such as being extremely sensitive to 
outlier data due to damaged or faulty electrodes. Utilizing a least-squares term for 
regularization also makes EIT unable to image discontinuous conductivity losses 
such as those induced by fracture events. More sophisticated techniques that 
surmount these limitations have been studied in medical and mathematical venues, 
but these methods have not been thoroughly explored for piezoresistive imaging in 
SHM. Therefore, this article explores the effect of different error minimization and 
regularization norms on the ability of EIT to image impact damage in a carbon black 
(CB)-modified glass fiber/epoxy laminate. 
 
 
INTRODUCTION 
 

Structural health monitoring (SHM) has great potential in aerospace applications 
[1] where the consequences of a catastrophic failure can be significant. A promising 
approach to SHM is through the use of self-sensing materials wherein some intrinsic 
property of the structure itself is monitored to identify damage. To this end, 
piezoresistive nanocomposites have shown considerable potential [2]. In this 
approach, nanofillers such as carbon nanotubes (CNTs), carbon nanofibers (CNFs), 
or carbon black (CB) are dispersed throughout a polymeric matrix. With sufficiently 
many nanofillers, the material becomes electrically conductive. Furthermore, the 
electrical conductivity of nanofiller-modified polymers intrinsically depends on 
mechanical effects such as strain and damage. This means that strain or damage can 
be identified by monitoring changes of electrical conductivity in the material. 



Beyond just detecting the occurrence of damage, it is desirable to spatially locate 
and image damage. For this, electrical impedance tomography (EIT) has been utilized 
for piezoresistive visualization in numerous material systems such as cementitious 
materials [3] [4] [5] [6] [7], nanocomposite thin films [8] [9] [10] [11], carbon fiber 
reinforced composites [12], and nanofiller-modified composites [13] [14] [15] [16] 
[17] [18] [19]. Interest in EIT for conductivity-based SHM is based on several 
features. First, EIT is low cost. Second, EIT is capable of rendering images in nearly 
real time. And third, there is no possibility of EIT exacerbating existing damage 
through mechanical interrogation. Nonetheless, EIT does have some important 
limitations. For example, the prevailing EIT formulation is extremely sensitive to 
outlier data and is incapable of resolving discontinuous, fracture-induced 
conductivity losses. To appreciate the source of these limitations, it is necessary to 
have some understanding of the EIT formulation. EIT is typically formulated as a 
regularized minimization problem in which the minimization and the regularization 
terms both take on a least-squares form. Consistent with least-squares minimization, 
outlier measurements substantially affect the results. Furthermore, utilizing a square 
term for regularization promotes spatially smooth conductivity distributions. This is 
at odds with discrete damage events that result in discontinuous conductivity 
changes. Despite these limitations, this particular EIT formulation has been most 
commonly used in the SHM and NDE communities because it is the most readily 
implemented.   

Although these issues have been relatively unexplored in SHM venues, they have 
been dutifully treated by the medical and mathematical EIT communities [20] [21] 
[22]. In these studies, different minimization and regularization schemes have been 
explored to increase the robustness of EIT in the presence of outlier data and to 
produce images with discontinuous conductivity changes. Therefore, the objective of 
this article is to investigate the effect of different error minimization and 
regularization norms on the ability of EIT to image impact damage-induced 
conductivity changes in a CB-modified glass fiber/epoxy laminate.  

The remainder of this investigation is organized as follows. First, the general 
formulation of EIT will be presented. Next, four approaches with different 
minimization and regularization combinations will be outlined. These different 
formulations are then used to produce images from previously published data on low 
velocity impact damage in a glass fiber/epoxy laminate with CB filler [17]. This will 
elucidate the effect of different EIT formulations on damage identification in a fiber-
reinforced composite. Next, the imaging process is repeated with the inclusion of a 
strong, artificially-induced outlier measurement in order to study the robustness of 
each formulation in the presence of a faulty or damaged electrodes. Lastly, a brief 
summary and conclusion is presented. 
 
 
ELECTRICAL IMPEDANCE TOMOGRAPHY 
 
 EIT images the internal conductivity distribution of a domain. The domain to be 
imaged is lined with electrodes along its periphery, and current is injected between 
electrode pairs while the resulting voltage is measured between electrode pairs not 
actively involved in the current injection. EIT seeks to determine the conductivity 
distribution that gives rise to the observed boundary voltages for the prescribed 



current injections. This can be formulated as a minimization problem that minimizes 
the difference between a vector of experimentally measured voltages, 𝑽𝑽, and another 
vector of numerically predicted voltages, 𝑭𝑭(𝜎𝜎). The process of numerically 
predicting the voltages is referred to as the forward problem and is typically 
performed using the finite element method [23]. The minimization between the 
measured and predicted voltages is achieved by iteratively updating the conductivity 
distribution, 𝜎𝜎, supplied to the forward operator until the norm of 𝑽𝑽 − 𝑭𝑭(𝜎𝜎) is 
acceptably low.  
 Rather than recovering the absolute conductivity distribution, it is standard to 
utilize time difference data. This means that voltage measurements are collected from 
the domain to be imaged at one time and again at some later time, 𝑡𝑡1 and 𝑡𝑡2 
respectively. It is assumed that some event (e.g. damage) has occurred between the 
measurements that results in a conductivity change in the domain. In this light, define 
the vector 𝒚𝒚 as the difference between experimentally measured voltages at times 𝑡𝑡1 
and 𝑡𝑡2 as shown below in equation (1). 
 
 𝒚𝒚 = 𝑽𝑽(𝑡𝑡2) − 𝑽𝑽(𝑡𝑡1) (1) 
 

An analogous voltage difference vector can be formed from the numerical 
simulation as 𝑭𝑭(𝝈𝝈+ 𝒙𝒙) − 𝑭𝑭(𝝈𝝈). Note that the conductivity distribution, 𝝈𝝈, has been 
boldfaced to indicate that it has been discretized via the finite element method. 
Furthermore, the conductivity difference between times 𝑡𝑡1 and 𝑡𝑡2 is expressed as 𝒙𝒙. 
Next, linearize 𝑭𝑭(𝝈𝝈+ 𝒙𝒙) by performing a Taylor series expansion as 𝑭𝑭(𝝈𝝈+ 𝒙𝒙) ≈
𝑭𝑭(𝝈𝝈0) + 𝑱𝑱𝑱𝑱. In the preceding, 𝑱𝑱 is the sensitivity matrix and formed as 𝑱𝑱 =
𝜕𝜕𝑭𝑭(𝝈𝝈0) 𝜕𝜕𝝈𝝈⁄  where 𝝈𝝈0 is an initial estimate of the conductivity distribution. With this 
in mind, the regularized EIT minimization can be formally stated as follows. 

 
 arg min

𝒙𝒙
‖𝑱𝑱𝑱𝑱 − 𝒚𝒚‖𝑚𝑚𝑚𝑚 + 𝜆𝜆‖𝑹𝑹𝑹𝑹‖𝑛𝑛𝑛𝑛 (2) 

 
In equation (2), 𝑹𝑹 represents a generic regularization term the contribution of 

which is controlled by the scalar 𝜆𝜆. Furthermore, the subscript 𝑚𝑚 and 𝑛𝑛 terms 
represent the norms of the error minimization and regularization terms. The 
superscript 𝑚𝑚 and 𝑛𝑛 terms represent the power to which the norm is taken. In the 
following, different minimization and regularization combinations using 𝑚𝑚 = 2 and 
𝑛𝑛 = 2, 𝑚𝑚 = 2 and 𝑛𝑛 = 1, 𝑚𝑚 = 1 and 𝑛𝑛 = 2, and 𝑚𝑚 = 1 and 𝑛𝑛 = 1 will be 
investigated. Each combination of error minimization and regularization norms has 
different advantages and limitations making them more or less well-suited for strain 
or damage imaging and more or less robust to outlier data due to damaged electrodes. 

 
L2 ERROR NORM AND L2 REGULARIZATION NORM 
 

First, consider equation (2) with 𝑚𝑚 = 𝑛𝑛 = 2. Both the error minimization and 
regularization take the form of a least-squares problem as shown in equation (3). 
Because the forward operator has been linearized, this minimization can be solved in 
one step. The explicit solution to the conductivity change is shown in equation (4). 

 



 arg min
𝒙𝒙

1
2
‖𝑱𝑱𝑱𝑱 − 𝒚𝒚‖22 + 𝜆𝜆

2
‖𝑳𝑳𝑳𝑳‖22 (3) 

 
 𝒙𝒙 = (𝑱𝑱𝑇𝑇𝑱𝑱 + 𝜆𝜆𝑳𝑳𝑇𝑇𝑳𝑳)−1𝑱𝑱𝑇𝑇𝒚𝒚 (4) 
 
In the preceding, the regularization term 𝑹𝑹 has been replaced with the discrete 

approximation of the Laplace operator, 𝑳𝑳. This minimization and regularization 
scheme is most commonly used in SHM literature [3] [6] [7] [8] [9] [10] [11] [12] 
[13] [14] [15] [16] [17] [18]. This particular formulation filters out highly oscillatory 
conductivity changes giving rise to smoothly varying images. 

 
L2 ERROR NORM AND L1 REGULARIZATION NORM 
 

Next, revisit equation (2) with 𝑚𝑚 = 2 and 𝑛𝑛 = 1 which corresponds to 
minimizing the error term in the least-squares sense while treating the 𝑙𝑙1-norm of the 
regularization term. This approach often employs total variation regularization in 
order to permit discontinuous conductivity reconstructions. The primal-dual interior 
point method (PDIPM) [21] [22] [24] is typically used to find 𝒙𝒙 in this approach by 
solving for the conductivity change as the primal problem while a secondary or dual 
optimization problem is simultaneously solved. Furthermore, the conductivity 
change, 𝒙𝒙, is not solved for in one step. Rather, 𝒙𝒙 is found by iteratively updating it 
by some small increment, 𝛿𝛿𝒙𝒙. Let the dual variable be denoted as 𝒗𝒗. The primal 
minimization problem is shown in equation (5) and the corresponding dual problem 
is shown in equation (6). 

 
 arg min

𝒙𝒙

1
2
‖𝑱𝑱𝑱𝑱 − 𝒚𝒚‖22 + 𝜆𝜆‖𝑻𝑻𝑻𝑻𝑻𝑻‖11 (5) 

 

 arg max
𝒗𝒗

�
1
2
‖𝑱𝑱𝑱𝑱 − 𝒚𝒚‖22 + 𝜆𝜆𝒗𝒗𝑇𝑇𝑻𝑻𝑻𝑻𝑻𝑻 ∶  |𝑣𝑣𝑖𝑖| ≤ 1
𝑱𝑱𝑇𝑇(𝑱𝑱𝑱𝑱 − 𝒚𝒚) + 𝜆𝜆𝑻𝑻𝑽𝑽𝑇𝑇𝒗𝒗 = 0

 (6) 

 
In equations (5) and (6), 𝑻𝑻𝑻𝑻 represents the discrete approximation of the total 

variation. In its continuous form, the total variation is 𝑇𝑇𝑇𝑇(𝑥𝑥) = ∫ |∇𝑥𝑥| dΩ 
Ω  where Ω 

denotes the domain being imaged. A description of how to form its discrete version 
can be found in reference [21] by Borsic et al. Updates to both the primal and dual 
variables can be found in references [21] [22]. This approach is expected to be 
vulnerable to outlier data but capable of reconstructing discontinuous conductivity 
changes. 
 
L1 ERROR NORM AND L2 REGULARIZATION NORM 
 

Next, consider equation (2) with 𝑚𝑚 = 1 and 𝑛𝑛 = 2. This amounts to minimizing 
the 𝑙𝑙1-norm of the error while treating the 𝑙𝑙2-norm of the regularization. The discrete 
Laplace operator is again used for regularization. Similar the previous case for 𝑚𝑚 =
2 and 𝑛𝑛 = 1, a dual optimization problem is formed. The primal and dual problems 
can be respectively stated as follows where 𝒛𝒛 is the new dual variable [22]. The primal 



and dual variable updates can be solved for simultaneously as described in reference 
[22]. 

 
 arg min

𝒙𝒙
‖𝑱𝑱𝑱𝑱 − 𝒚𝒚‖11 + 𝜆𝜆

2
‖𝑳𝑳𝑳𝑳‖22 (7) 

 

 arg max
𝒛𝒛

�𝒛𝒛
𝑇𝑇(𝑱𝑱𝑱𝑱 − 𝒚𝒚) + 𝜆𝜆

2
‖𝑳𝑳𝑳𝑳‖22  ∶  |𝑧𝑧𝑖𝑖| ≤ 1

𝑱𝑱𝑇𝑇𝒛𝒛 + 𝜆𝜆𝑳𝑳𝑇𝑇𝑳𝑳𝑳𝑳 = 0
 (8) 

 
Because of this particular combination of norms, this approach is expected to be 

robust to outlier data while promoting spatially smooth conductivity changes. 
 

L1 ERROR NORM AND L1 REGULARIZATION NORM 
 

Lastly, consider the case for 𝑚𝑚 = 1 and 𝑛𝑛 = 1. This corresponds to minimizing 
the 𝑙𝑙1-norm of the error and the 𝑙𝑙1-norm of the regularization. To solve this problem, 
one primal parameter, 𝒙𝒙, and two dual parameters, 𝒗𝒗 and 𝒛𝒛, are constructed as follows 
[22]. The primal and dual iterative updates can be obtained from reference [22]. 

 
 arg min

𝒙𝒙
‖𝑱𝑱𝑱𝑱 − 𝒚𝒚‖11 + 𝜆𝜆‖𝑻𝑻𝑻𝑻𝑻𝑻‖11 (9) 

 

 arg max
𝒛𝒛,   𝒗𝒗

�𝒛𝒛
𝑇𝑇(𝑱𝑱𝑱𝑱 − 𝒚𝒚) + 𝜆𝜆𝒗𝒗𝑇𝑇𝑻𝑻𝑻𝑻𝑻𝑻 ∶  |𝑧𝑧𝑖𝑖| ≤ 1, |𝑣𝑣𝑖𝑖| ≤ 1

𝑱𝑱𝑇𝑇𝒛𝒛 + 𝜆𝜆𝑻𝑻𝑽𝑽𝑇𝑇𝒗𝒗 = 0
 (10) 

 
Due to the use of the 𝑙𝑙1-norm for both the error minimization and regularization 

terms, this approach is expected to be robust to outlier data while also capable of 
imaging discontinuous conductivity changes. 

 
 

APPLICATION TO CARBON BLACK-MODIFIED GLASS FIBER/EPOXY 
 
To explore the effect of different error and regularization norms on damage 

identification in fiber-reinforced composites, the previously described EIT 
formulations are applied to a glass fiber/epoxy laminate that has been modified with 
CB nanofillers and subjected to a low-velocity impact [17]. This specimen was 
manufactured using unidirectional E-glass (225 g/m2 areal weight), 0.5 wt.% high-
structure CB filler, a stacking sequence of [[0/90]6/0]s, and measured 101 mm × 152 
mm × 4 mm. The specimen was instrumented with a 16-electrode measurement 
system and impacted via drop-tower at 50 J. Further experimental details can be 
found in the original manuscript by Tallman et al. [17]. The post-impacted specimen 
is shown in Figure 1. Due to the impact, a visible indentation can be seen at the impact 
location. Crack damage is also visible on the surface of the plate. 

 



 
Figure 1. CB-modified glass fiber/epoxy laminate with visible indentation at the impact location and 

crack damage. 
 
 
This damage state is visualized via EIT using all combinations of error 

minimization and regularization norms. The result of these different error and 
regularization norms can be seen in Figure 2. Furthermore, because the damage is 
expected to result in a conductivity loss, 𝒙𝒙 is constrained to be non-negative for each 
combination of 𝑚𝑚 and 𝑛𝑛. 

 

 
Figure 2. Impact damage induced conductivity losses in CB-modified glass fiber/epoxy laminate 

composite as imaged with EIT using all error minimization and regularization norms. 
 
 
An interesting observation can be made from Figure 2. That is, although it might 

be expected that conductivity changes due to impact damage should be discontinuous 
(i.e. complete cessation of conductivity due to fractures), the images corresponding 
to 𝑛𝑛 = 1 are qualitatively no better than the smoothly varying images corresponding 
to 𝑛𝑛 = 2. This may be due to the fact that impact damage in a fiber-reinforced 
composite is a complicated collection of micro-cracks, fractures, and delaminations. 
These damages are seemingly more concentrated in the immediate vicinity of the 
impact but become less concentrated away from the impact location. As such, the net 
effect of the impact is likely smoothly varying from highly concentrated cracking 
near the impact location to much sparser cracking away from the impact location. 
Inasmuch, images using the 𝑙𝑙2-norm on the regularization best capture this. 

 
 



INCLUSION OF FAULTY ELECTRODE DATA 
 

Lastly, the effect of faulty data due to damage electrodes is considered. Although 
care was taken in collecting the original data such that it is free of outliers, the 
consideration of outlier data is important in SHM applications because damaged 
electrodes may generate erroneous data. Here, the original experimental data is 
manipulated to include one strong outlier so that the effect of this on each error 
minimization and regularization norm combination can be investigated. Figure 3 
shows the effect of a strong outlier measurement on the imaging of impact damage 
in the same glass-fiber/epoxy laminate. 

 

 
Figure 3. Impact damage induced conductivity losses in CB-modified glass fiber/epoxy laminate 
composite as imaged with EIT using all error minimization and regularization norms and with the 

inclusion of a strong outlier measurement due to a faulty or damaged electrode. 
 
 
As can be seen from Figure 3, images using the 𝑙𝑙2-norm of the error minimization 

do not produce any sort of physically meaningful image with the inclusion of an 
outlier measurement. On the other hand, the images using the 𝑙𝑙1-norm for the error 
minimization are unaffected. This consistent with the expectations of each error norm 
and demonstrates the vulnerability of EIT formulations using 𝑙𝑙2-norms for error 
minimization in SHM. 

 
 

SUMMARY AND CONCLUSIONS 
 

This manuscript has considered the effect of different error minimization and 
regularization norms for damage identification via EIT in glass fiber/epoxy 
laminates. To this end, four different combinations of error and regularization norms 
were used for visualizing impact-induced damage in a glass fiber/epoxy laminate 
modified with CB filler. All combinations of error and regularization norms 
accurately located the impact location. However, a qualitative assessment indicated 
that methods using the 𝑙𝑙2-norm for regularization more satisfactorily captured the 
crack damage that resulted from the impact. At first glance, this may seem counter 
intuitive since the impact results in cracks, fractures, and delaminations all of which 
represent a discontinuous conductivity loss. However, it is speculated that while these 
damage events do indeed individually represent discontinuous conductivity losses, 
they are collectively acting as a complicated network of small damages. This network 
is very dense in the immediate vicinity of the impact and gradually becomes sparser 



away from the impact location. Therefore, the net conductivity change is smoothly 
varying. 

Lastly, the effect of a strong outlier measurement on image reconstruction was 
investigated because of the possibility of damaged electrodes in SHM applications. 
For this, EIT images were reformed with the inclusion of one strong outlier. This 
significantly affected the images using the 𝑙𝑙2-norm for error minimization to the point 
that damage-induced conductivity changes were not discernable. Conversely, images 
produced using the 𝑙𝑙1-norm for error minimization were not affected by the inclusion 
of a strong outlier. 

Based on this investigation, it can be concluded that robust SHM systems should 
make use of the 𝑙𝑙1-norm for error minimization in EIT. However, the norm of the 
regularization term may vary depending on the specific application. Therefore, a 
robust SHM system should have both 𝑙𝑙1 and 𝑙𝑙2-norms available to it. 
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