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ABSTRACT 
 
 Because of its ability to spatially resolve damage without invasive 
measurements, electrical impedance tomography (EIT) has tremendous potential for 
the health monitoring of nanocomposites wherein networks of nanofillers impart 
conductive properties to an otherwise insulating matrix. Matrix cracking will sever 
the conductive network thereby manifesting as abrupt, local changes in 
conductivity. However, EIT is insensitive to abrupt, local changes in conductivity. 
Furthermore, experimental EIT requires a burdensome number of sensors. This 
paper explores how the piezoresistivity of nanocomposites can be exploited to 
enhance the sensitivity of EIT to abrupt, local changes in conductivity while 
decreasing its sensor requirements.  
 
 
INTRODUCTION 
 

Fibrous composites are increasingly prevalent structural materials due to their 
high strength-to-weight ratio, but their laminar construction makes them susceptible 
to delamination. Delamination is preceded by matrix cracking which can be 
initiated through manufacturing defects, fastening and joining, critical geometry 
configurations, and low velocity impacts [1]. Accurate and expedient matrix 
monitoring remains a crucial yet challenging aspect of structural identification in 
fibrous composites. 

Composites manufactured with carbon nanotube (CNT) or carbon nanofibers 
(CNF) fillers have demonstrated potential for damage detection [2] [3] [4], strain 
sensing [5] [6] [7] [8] [9], and damping enhancement [10] [11] [12]. The 
conductivity of nanocomposites depends upon the formation of a well dispersed and 
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connected network of nanofillers within a matrix material. Any mechanical 
perturbation which changes network parameters such as filler orientation or inter-
filler spacing will change the composite’s conductivity. The dependence of 
electrical diffusive properties on mechanical state is known as piezoresistivity [13]. 
Matrix cracking will sever the connection between neighboring fillers. This will 
create a region of greatly reduced conductivity the location of which coincides with 
the damage. Therefore, monitoring the conductivity of nanocomposites offers 
insight into their damage state. 

Recently, EIT has received excellent treatment as a health monitoring technique 
for nanocomposites [5] [6] and cementitious structures [14]. EIT images the internal 
conductivity distribution of a structure using periphery current injections and 
voltage measurements. However, mathematically, EIT is a highly rank deficient 
inverse problem whose regularization gives preference to smeared or distorted 
conductivity distributions. If the conductivity change due to matrix cracking is 
small enough, this smearing makes the damage indistinguishable from the 
background conductivity. Furthermore, accurate EIT images typically require from 
sixteen to thirty-two sensing electrodes. An ideal health monitoring scheme should 
be easily implementable, but it is difficult to discern damage if too few electrodes 
are used. This research explores the influence of incorporating globally known 
conductivity changes into the EIT imaging technique to increase sensitivity to 
abrupt, local conductivity changes while minimizing the number of electrodes to 
capture damage. While it is possible to predict global conductivity changes of 
arbitrarily strained domains [13], we restrict our attention to artificially imposed 
conductivity changes on two-dimensional domains. 

 
 

ELECTRICAL IMPEDANCE TOMOGRAPHY FORMULATION 
 
 EIT maps the internal conductivity distribution of a structure by minimizing the 
difference between a forward operator which predicts electrode voltages as they 
depend upon the internal conductivity and experimentally measured voltages in an 
augmented least-squares sense via a Newton-Raphson method [15].  
 
 𝑚𝑖𝑛 𝑽% − 𝑭 𝜎 ) + 𝑮 𝜎  (1) 
 
Where 𝑽% is a vector of measured boundary voltages, 𝑭 𝜎  is a vector of boundary 
voltages calculated by the forward operator for an estimated conductivity 
distribution 𝜎, and 𝑮 𝜎  is a penalty function to regularize the minimization. This 
minimization process seeks to recover the conductivity coefficients of Kirchhoff’s 
law for conduction within a continuum given by: 
 
 𝜵 ⋅ 𝜎𝜵𝜙 = 0. (2) 
 
And subject to the complete electrode model boundary conditions: 
 
 𝜎𝜵𝜙 ⋅ 𝒏 = 2
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 𝜎𝜵𝜙 ⋅ 𝒏𝜕𝛺 = 0. (4) 
 
Where 𝜙 is the domain electric potential, 𝒏 is an outward pointing normal, 𝑧6 is the 
contact impedance between the lth electrode and the domain, and 𝑉6 is the voltage 
on the lth electrode.  

The forward problem is most expediently solved by finite elements where the 
conductivity coefficient in equation (1) now becomes a vector of unknowns, and 
EIT seeks to recover the conductivity of each element. Treated in more detail in 
[15], the forward problem is discretized in the following manner: 
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𝐴; is the standard diffusion stiffness matrix, Φ is a vector of the domain potentials, 
𝑉 is a vector of the electrode voltages, 𝐼 is a vector of the current injections applied 
to electrode pairs (i.e. the first injection pattern could be specified as 𝐼 =
1 −1 0 ⋯ 0 >), 𝐸6 is the electrode area in three-dimensions or electrode 

length in two-dimensions, and 𝑤C are the finite element interpolation functions. The 
solution to equation (5) is determined only up to an arbitrary constant voltage which 
is remedied by enforcing that the sum of the electrode voltages to be zero. 

The conductivity distribution is recovered by first supplying a conductivity 
vector estimate and then iterating upon it to minimize a voltage error vector. 
Retaining only the linear terms of a Taylor series expansion, the minimization 
routine takes the following form: 

 
 𝑽% − 𝑭 𝝈 − R𝑭 𝝈

R𝝈
𝚫𝝈 = 𝟎, (9) 

 
 𝑱𝚫𝝈 = 𝑽V. (10) 

 
Denoting the partial derivative of the forward operator with respect to the 
conductivity vector as the sensitivity matrix or 𝑱 and the difference between the 
forward operator voltage vector and the measured voltage vector as 𝑽V = 𝑭 𝝈 −
𝑽%, equation (9) takes the form of equation (10). Ideally, the conductivity update 
could be recovered as 𝚫𝝈 = 𝑱>𝑱 W2𝑱>𝑽V, but 𝑱 is severely rank deficient requiring 
the penalty function in equation (1) to eliminate non-physical solutions. The explicit 
solution to equation (1) follows from Tikhonov regularization, and the conductivity 
update takes the following form: 
 
 𝚫𝝈 = 𝑱>𝑱 + 𝛼)𝑳>𝑳 W2𝑱>𝑽V. (11) 



 
 

	
Figure 1. Schematic of EIT setup. Current is injected and voltage is measured between neighboring 

electrode pairs. 
 
 
There are many clever approaches to selecting 𝑳 (refer to [15]), but a common 
choice is 𝑳>𝑳 = 𝑰 where 𝑰 is the identity matrix. However, voltage measurements 
are least sensitive to changes of conductivity on interior elements. This typically 
results in boundary elements undergoing large fluctuations in conductivity during 
the reconstruction process. In order to counter this, we employ a regularization 
technique which is larger for elements further removed from the center of the 
domain thereby adding greater penalty to their fluctuation. This can be expressed by 
making 𝑳>𝑳 a diagonal matrix with off-diagonal terms set to zero and diagonal 
terms set to 1 + 𝑟V where 𝑟V is the distance from the center of the domain to the 
centroid of the eth element. Lastly, the sensitivity matrix is formed in a manner not 
unlike the diffusion stiffness matrix as follows: 
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Here, ij is a single index of 𝑱 and refers to the integral of the inner product between 
the gradient of the voltage due to the injection at the ith electrode pair and the 
gradient of the voltage due to the unit current injection between the jth electrode 
measurement pair. The k index refers to the element over which the integral is 
evaluated. 
 
 
INCORPORATING GLOBAL CONDUCTIVITY CHANGES 
 

Understanding the relationship between strain and conductivity of nanofiller 
networks is an active area of research [7] [8] [16] [17]. Recently, a method of 
predicting conductivity changes at every point of a domain subjected to arbitrary 
strains as a function of filler volume fraction, critical volume fraction, inter-filler 
spacing, and principals strains has been developed [13]. The ability to model global 



conductivity changes due to strain motivates our method to enhance EIT through 
strain coupling. We endeavor to address the rank deficiency of the aforementioned 
sensitivity matrix by incorporating known conductivity changes. 

To assess the validity of incorporating known conductivity changes into EIT 
imaging, we consider artificial conductivity changes that do not represent physical 
strains. However, for convenience, we will refer to a globally imposed, artificial 
conductivity change as a strain field. Let the changed conductivity vector be 
denoted as 𝝈 and be related to the unchanged conductivity vector as 

 
 𝝈 = 𝑮𝝈. (13) 
 

The artificial conductivity change we impose on the eth element takes the form: 
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Where 𝜎g is the initial conductivity estimate, 𝑥tV and 𝑦tV are the coordinates of the 
centroid of the eth element, and 𝐿 and 𝐻 are the length and height of the rectangular 
domain which is being imaged. The integer values 𝑚 and 𝑛 are the same for every 
element but change for different strain fields. This makes 𝑮 a diagonal matrix of 
dimension equal to the number of elements with diagonal entries given by equation 
(14). Figure (2) provides an example of two different strain fields. Following the 
development of equations (9) and (10) but with 𝝈, the following can be expressed: 
 
 𝑱𝚫𝝈 = 𝑽V. (15) 
 
The imposition of a strain field results in a new sensitivity matrix, voltage error 
vector, and change in conductivity to be recovered. However, in light of equation 
(13), this can be recast as 
 
 𝑱𝑮𝚫𝝈 = 𝑽V. (16) 
 
 

	
 
Figure 2. Two representative strain fields with the underlying reconstruction mesh are shown, m = 1 
and n = 2 on the left while m = 2 and n = 3 on the right. Electrodes are shown along the periphery. 

The reference conductivity is 1 S/m. 
 



 
The same change in conductivity vector is now to be solved for in both equations 
(10) and (16). This process can be repeated for arbitrarily many strain fields 
resulting in the following expression: 
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Superscripts in equation (17) refer to the nth strain field. The augmented sensitivity 
matrix can be inverted and the conductivity change vector recovered by again 
employing Tikhonov regularization. 
 
 
ENHANCED DAMAGE IDENTIFICATION WITH STRAIN COUPLING 
 

In lieu of experimental data, we test our method by reconstructing a damaged 
reference finite element mesh. Employing reference meshes is common practice in 
developing EIT routines, and, to avoid pitfalls associated with EIT development, 
the reference mesh is more refined (~3000 elements) than the reconstruction mesh 
(~2000 elements). Furthermore, we set 𝛼) = 1.0𝑒W{ for every simulation. 
Adjusting 𝛼) from simulation to simulation during the developmental stage to 
obtain optimal results is considered poor practice since in experimental settings the 
optimal solution is unknown [15]. Damage is simulated by making the reference 
mesh a multiply connected domain as shown in figure (3). Lastly, we use a 
reference or undamaged conductivity value of 𝜎g = 1.0	𝑆/𝑚, constant contact 
impedance of 𝑧6 = 1000	Ω𝑚), and unit current injections.  
 

 

	
	

Figure 3. Left: SVD plots comparing the rank deficiency of the sensitivity matrices at zero, three, 
six, and nine strains for sixteen electrodes. Right: Reference finite element mesh. 

	
	



Singular value decomposition (SVD) can be employed to assess the rank of the 
sensitivity matrices by plotting the natural logarithm of the singular values 
normalized by the first singular value of the sensitivity matrix against singular value 
number. The rank of the sensitivity matrix corresponds to the singular number at 
which the log of the normalized singular values drops suddenly. The singular values 
for the sixteen electrode scheme with zero, three, six, and nine strain fields are 
plotted in figure (3). 

 
 

	
	

Figure 4. Comparison of damage detection with varying strain fields and electrodes. These results 
indicate that both the damage localization and clarity improve as the number of strain fields 

increases for any specified number of electrodes. 
 
 
SUMMARY AND CONCLUSIONS 
 

We have developed a method of enhancing damage identification via EIT by 
incorporating global conductivity changes such as those achievable through 
piezoresistive nanocomposites. Figure (4) shows that for any number of electrodes, 



better images are obtained as the number of strain fields incorporated increases. 
Furthermore, we note that damage can be identified using as few as four electrodes 
with the addition of as few as three strain fields. Using four electrodes and nine 
strain fields produces images on par with a sixteen electrode scheme with no 
strains. As noted in the introduction, an important limitation of EIT in health 
monitoring is its cumbersome experimental setup which depends upon many 
electrodes for accurate imaging. We have shown that this limitation can be 
circumvented by addressing the rank deficiency of the sensitivity matrix through 
strain coupling. 
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