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ABSTRACT

Structural health monitoring (SHM) has immense potential to improve the safety of

aerospace, mechanical, and civil structures because it allows for continuous, real-time dam-

age prognostication. However, conventional SHM methodologies are limited by factors such

as the need for extensive external sensor arrays, inadequate sensitivity to small-sized dam-

age, and poor spatial damage localization. As such, widespread implementation of SHM

in engineering structures has been severely restricted. These limitations can be overcome

through the use of multi-functional materials with intrinsic self-sensing capabilities. In this

area, composite materials with nanofiller-modified polymer matrices have received consid-

erable research interest. The electrical conductivity of these materials is affected by me-

chanical stimuli such as strain and damage. This is known as the piezoresistive effect and

it has been leveraged extensively for SHM in self-sensing materials. However, prevailing

conductivity-based SHM modalities suffer from two critical limitations. The first limitation

is that the mechanical state of the structure must be indirectly inferred from conductiv-

ity changes. Since conductivity is not a structurally relevant property, it would be much

more beneficial to know the displacements, strains, and stresses as these can be used to

predict the onset of damage and failure. The second limitation is that the precise shape and

size of damage cannot be accurately determined from conductivity changes. From a SHM

point of view, knowing the precise shape and size of damage would greatly aid in-service in-

spection and nondestructive evaluation (NDE) of safety-critical structures. The underlying

cause of these limitations is that recovering precise mechanics from conductivity presents an

under-determined and multi-modal inverse problem. Therefore, commonly used inversion

schemes such as gradient-based optimization methods fail to produce physically meaning-

ful solutions. Instead, metaheuristic search algorithms must be used in conjunction with

physics-based damage models and realistic constraints on the solution search space. To that

end, the overarching goal of this research is to address the limitations of conductivity-based

SHM by developing metaheuristic algorithm-enabled methodologies for recovering precise

mechanics from conductivity changes in self-sensing composites.
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Three major scholarly contributions are made in this thesis. First, a piezoresistive in-

version methodology is developed for recovering displacements, strains, and stresses in an

elastically deformed self-sensing composite based on observed conductivity changes. For this,

a genetic algorithm (GA) is integrated with an analytical piezoresistivity model and physics-

based constraints on the search space. Using a simple stress-based failure criterion, it is

demonstrated that this approach can be used to accurately predict material failure. Second,

the feasibility of using other widely used metaheuristic algorithms for piezoresistive inversion

is explored. Specifically, simulated annealing (SA) and particle swarm optimization (PSO)

are used and their performances are compared to the performance of the GA. It is concluded

that while SA and PSO can certainly be used to solve the piezoresistive inversion problem,

the GA is the best algorithm based on solution accuracy, consistency, and efficiency. Third,

a novel methodology is developed for precisely determining damage shape and size from

observed conductivity changes in self-sensing composites. For this, a GA is integrated with

physics-based geometric models for damage and suitable constraints on the search space.

By considering two specific damage modes —through-holes and delaminations —it is shown

that this method can be used to precisely reconstruct the shape and size of damage.

In achieving these goals, this thesis advances the state of the art by addressing critical

limitations of conductivity-based SHM. The methodologies developed herein can enable un-

precedented NDE capabilities by providing real-time information about the precise mechan-

ical state (displacements, strains, and stresses) and damage shape in self-sensing composites.

This has incredible potential to improve the safety of structures in a myriad of engineering

venues.
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1. LITERATURE REVIEW

1.1 Introduction

Engineering structures in high-risk applications such as aircraft and bridges can fail catas-

trophically. Figure 1.1 shows two recent examples of structural failure that can potentially

result in significant loss of life. Both of these failures occurred due to the presence of unde-

tected damage. In order to prevent structural failure, damage must be preemptively detected

before it reaches a critical level and preventive measures must be taken. For the two cases

shown in Figure 1.1 , it may be argued that catastrophic failure could have been avoided

through regular inspection and proper maintenance. This can be significantly challenging

for large structures, such as bridges and buildings, as these require meticulous inspection

for small-sized damage over large areas. Structures that incorporate advanced materials,

such as composite airframes and wings, also present challenges. While these materials of-

fer several benefits such as high strength-to-weight ratios and excellent manufacturability,

it is well known that they suffer from matrix cracking, delamination, and fiber breakage.

Even worse, these damage modes are often outwardly invisible. Due to the complexity of

these failure modes, traditional damage tolerant design strategies that rely on intermittent

inspection often prove insufficient for composites because they require a good understanding

of damage initiation and growth mechanisms. Structural health monitoring (SHM) [1 ]–[4 ]

has potential to address this limitation. SHM collectively refers to methodologies, technolo-

gies, and systems that continuously monitor the condition of a structure. Because SHM can

enable real-time damage prognostication, it has incredible potential to improve the safety

of engineering structures. Broadly speaking, SHM may be categorized into two main areas:

conventional SHM, where external sensors are used to interrogate the structure, and SHM

via self-sensing materials, where the materials used to design the structure function as their

own sensors. The forthcoming sections examine both of these areas in detail.
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(a)

(b)

Figure 1.1. Two recent examples of catastrophic structural failure. (a) Mid-
flight engine failure on an Airbus A380 [5 ]. This occurred due to the presence
of an undetected crack in the fan hub. (b) Collapse of a pedestrian bridge in
Taiwan [6 ]. This occurred due to the accumulation of corrosion damage.
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1.2 Conventional SHM

Conventional SHM encompasses a wide range of methodologies and systems that may

be broadly categorized into three main categories: vibration-based SHM, guided wave-based

SHM, and embedded sensor-based SHM. The basic premise of vibration-based SHM [7 ]–[10 ]

is that damage affects the mass, stiffness, and energy absorption properties of the structure

and therefore affects its dynamic response. The most commonly measured dynamic proper-

ties are the resonant frequencies and mode shape vectors. For example, Zhang et al. [11 ]

were able to spatially localize delaminations with high accuracy in simply-supported and

cantilever composite beams by measuring natural frequency shifts. Figure 1.2 , taken from

this study, shows the frequency shift as a function of position along the length of the beam

and delamination size. In some cases, mode shape curvature changes [12 ] and dynamically

measured flexibility changes [13 ] have also be used to locate damage. Vibration-based SHM

is readily applicable to large structures but is often insensitive to small-sized damage. This

is because the low-frequency response of a structure, which is the most practical dynamic

response to measure, is generally not affected by small-sized defects.

Guided wave-based SHM [14 ]–[17 ] uses ultrasonic mechanical wave propagation to detect

the presence of damage. The waves are forced to follow pre-defined paths along the structure

(hence the term ‘guided’) and are dispersed or attenuated when they encounter a disconti-

nuity such as a defect or a crack. In this area, Lamb waves have been used extensively to

study cracks in thin plates and shells. For example, Sherafat et al. [18 ] used guided Lamb

waves to investigate debonding in a composite skin-stringer panel. The waves were generated

using a piezo-ceramic transducer and the authors studied the reflection, transmission, and

scattering of the waves using laser Doppler vibrometry (LDV) when an artificially induced

delamination was encountered. Figure 1.3 , taken from this study, compares the influence

of excitation frequency and mode number on the scattering behavior between the damaged

and undamaged panels. In other cases, Rayleigh waves have been used for damage detec-

tion. For example, Chakrapani and Dayal [19 ] used A- and B-scans to study how Rayleigh

waves undergo mode conversion into Lamb waves when they encounter the leading edge of a

delamination. The authors also proposed a method for determining delamination thickness
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Figure 1.2. Resonant frequency shift of (a) mode 1, (b) mode 2, and (c)
mode 3, as a function of position along the length of the beam (x/L) and
delamination size (a/L) in a simply supported composite beam [11 ].
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Figure 1.3. Influence of excitation frequency and mode number on the scat-
tering behavior of the waves in damaged and undamaged panels [18 ]. The A0
mode is an anti-symmetric mode and the S0 mode is a symmetric mode.

by measuring Lamb wave velocity and dispersion inside the delamination. These studies

show that high-frequency guided waves can be used to detect small-sized defects with good

precision. Also, large areas can be scanned with a relatively small number of ultrasonic trans-

ducers. However, physical integration of the transducers within the structure is required to

generate and catch the waves.

Lastly, consider embedded sensor-based SHM, where the structure is instrumented with

sensors that monitor the local mechanical, electrical, thermal, and chemical condition of the

structure. The most commonly used sensors for composite structures include strain gauges

[20 ]–[22 ], piezoelectric sensors [23 ]–[26 ], and fiber-optic sensors [27 ]–[32 ]. Strain gauges relay
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changes in electrical resistance to the local strain state of the material. These are are ex-

tremely common in experimental testing of composites and other structural materials [33 ].

Piezoelectric sensors consist of materials that convert mechanical effects (such as applied

strain and pressure) into electrical signals. For example, Vitola et al. [34 ] developed a

piezoelectric sensing system for detecting temperature changes and evaluated the perfor-

mance of the sensor on a composite plate subjected to temperature variations. A schematic

of the sensor arrangement and the response of a single sensor to changing temperatures is

shown in Figure 1.4 . In fiber-optic sensing, optical fibers are embedded within the material

and changes in the light transmission properties of the fibers are used to measure the local

strain state. Numerous types of fiber-optic sensors have been explored, each with their own

strengths and weaknesses. Intensity-modulated sensors [35 ] measure changes in the inten-

sity of the transmitted light. These are simple to implement but are susceptible to light

fluctuations. Interferometric sensors [36 ] measure strain by recording phase changes in the

transmitted light. For example, Jothibasu et al. [37 ] developed an interferometric sensor

based on Rayleigh backscattering and used the sensor to successfully detect strains in cross-

ply and unidirectional composites loaded in tension. A schematic of the experimental setup

and the strains measured using the sensor are shown in Figure 1.5 . Interferometric sensors

have excellent sensitivity to small strains but can be difficult to develop into distributed

sensing networks. Fiber Bragg grating (FBG) sensors [38 ] incorporate reflective Bragg grat-

ings that experience wavelength changes when subjected to applied strains. FBGs are simple

to implement but are very sensitive to temperature changes. In general, embedded sensors

have excellent sensitivity to small-sized defects and can detect localized damage with good

accuracy. However, similar to guided wave-based SHM, these sensors need to be physically

integrated within the structure. Additionally, numerous sensors are needed for damage mon-

itoring over large areas. In the case of fiber-optic sensors, this can weaken the material [39 ],

[40 ].

Although conventional SHM is widely used and highly effective, it suffers from several

limitations such as the need for external sensors and actuators, inadequate sensitivity to

small-sized defects, and practical limitations associated with damage monitoring in large

structures. These limitations can be addressed through the use of materials with intrinsic
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Figure 1.4. Performance of a piezoelectric temperature sensing system eval-
uated on a composite plate subjected to temperature variations [34 ]. Top:
Schematic of composite plate showing the sensor locations (indicated by the
S’s). Bottom: Signal received by sensor S2 due to various applied tempera-
tures.
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Figure 1.5. Fiber-optic sensor used to measure tensile strains in composite
laminates [37 ]. Top: Schematic of experimental setup. The fiber-optic sen-
sor was embedded inside the laminate and connected to an optical frequency
domain reflectometry (OFDR) system. Bottom: Strains measured for loading
and unloading cycles of sample A (cross-ply laminate) and sample B (uni-
directional laminate). The different colored lines indicate different applied
displacements.
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self-sensing capabilities. The next section discusses how self-sensing materials can be used

for SHM.

1.3 Self-Sensing SHM

Self-sensing materials possess one or more stimulus-responsive properties that allow them

to ‘sense’ their condition. Changes in these properties can therefore be relayed to changes

in the mechanical, thermal, and even chemical state of the material. As opposed to discrete,

point-based sensors that only provide information local to their vicinity, self-sensing materi-

als can provide information at every point since the material functions as its own sensor. In

the context of SHM, this means that structures incorporating self-sensing materials can en-

able spatially continuous, real-time damage sensing over large areas and complex geometries.

One particular category of self-sensing materials that has attracted considerable research in-

terest for SHM is nanofiller-modified materials. These materials are electrically conductive

because the nanofillers form percolating networks for electron transport. As a representa-

tive example, Figure 1.6 shows scanning electron microscopy (SEM) images of polyurethane

modified with carbon nanofibers (CNFs). When an external mechanical stimulus, such as

strain or damage, is applied to a self-sensing material, it can reorient the nanofiller networks,

affect the tunneling resistance felt by mobile electrons, and cause a change in conductivity.

This self-sensing property, whereby mechanical effects manifest as changes in electrical con-

ductivity, is known as piezoresistivity. The piezoresistive effect is qualitatively illustrated

in Figure 1.7 . Piezoresistivity has been extensively explored in several material systems

including polymer composites [41 ]–[47 ], cements and concrete [48 ]–[51 ], ceramics [52 ], [53 ],

and alloys [54 ]–[56 ]. SHM in piezoresistive materials typically employs one of three methods

for detecting strain and/or damage: 1-D resistance change methods, 2-D resistance change

methods, and tomographic imaging.

1.3.1 1-D Resistance Change Methods

In 1-D resistance change methods, the structure is instrumented with a single pair of

electrodes. The resistance between the electrodes is measured as the structure experiences
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Figure 1.6. Scanning electron microscopy (SEM) images of a self-sensing
CNF-modified polyurethane nanocomposite with different nanofiller volume
fractions [42 ].

Before damage After damage

Figure 1.7. Qualitative illustration of the piezoresistive effect in nanofiller-
modified materials. Right: Nanofillers dispersed inside the material form well-
connected electrically conductive pathways, indicated in red. Left: Damage
occurs and severs the connectivity between proximate nanofillers, indicated in
blue. This manifests as a change in electrical conductivity.
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damage or deformation. Under elastic loading in tension, the resistance increases as the

nanofiller networks are stretched and the distance between neighboring nanofillers increases.

Conversely, under elastic compression, the inter-filler distance decreases as the nanofillers are

pushed closer together and the resistance decreases. In both cases the resistance generally

returns to its original value when the load is removed (assuming the deformations are indeed

purely elastic). At the onset of material failure, the resistance increases dramatically and does

not return to its original value even after the load is removed. Murray et al. [57 ] observed the

reversibility of resistance changes in a unidirectional E-glass composite modified with carbon

nanotubes (CNTs) under elastic deformation using 1-D resistance changes. The composite

was machined into tensile specimens and a single electrode pair was applied to each specimen

to measure the resistance change during tensile loading. It was also observed that as damage

accumulates in the form of transverse matrix cracks and delaminations, irreversible resistance

changes occur due to permanent severing of conductive networks. Similarly, Panozzo et al.

[58 ] developed an analytical model to track the growth of delaminations in a multi-directional

carbon fiber-reinforced epoxy laminate and validated it experimentally using 1-D resistance

changes in a DCB configuration. The electrodes were painted on the top and bottom surfaces

of the DCB and the resistance change was recorded during the test. Generally, 1-D resistance

changes are reported by plotting the normalized resistance change, ∆R/R0, as a function

of the applied load or strain. In this case, the authors reported ∆R/R0 as a function of

delamination extension, as shown in Figure 1.8 . Other work has investigated the use of 1-D

resistance changes for monitoring monotonic [59 ], [60 ] and fatigue [61 ]–[63 ] loading as shown

in Figure 1.9 , studying mechanisms of delamination toughening [64 ], and characterizing the

strain sensitivity of novel material-based sensors [65 ]–[68 ]. Although 1-D resistance changes

are simple to implement and are very useful for detecting the onset and growth of damage,

they provide no information about the location of damage within the structure other than its

mere presence between the electrodes. This limitation can be addressed using 2-D resistance

change methods.
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Figure 1.8. 1-D resistance changes used to measure delamination extension
in a self-sensing DCB specimen [58 ]. Top: (a) Schematic showing specimen
dimensions and electrode arrangement. (b) Photo of experimental setup. Bot-
tom: Normalized resistance change as a function of delamination extension.
Note that the resistance increases as the delamination grows.
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Figure 1.9. 1-D resistance changes used to measure damage growth in a
CNF-modified carbon fiber-reinforced polymer (CFRP) under cyclic fatigue
loading [61 ]. Top: (a) Photo of experimental loading setup. (b) Schematic of
specimen geometry. Bottom: Normalized resistance change plots for (a) 5 Hz
and (b) 0.01 Hz cyclic fatigue frequency.
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1.3.2 2-D Resistance Change Methods

2-D resistance change methods extend the principle of 1-D resistance change methods

by instrumenting the structure with a grid or an array of electrodes rather than a single

pair. The resistance changes between adjacent electrodes are measured before, during, and

after a damage causing event has occurred. Damage can then be detected and spatially

localized by identifying the electrode pair with the largest resistance change. For example,

Naghashpour and Van Hoa [69 ], [70 ] used 2-D resistance changes to detect damage in carbon

fiber-reinforced epoxy modified with multi-walled carbon nanotubes (MWCNTs). Rectan-

gular composite plates with different weight fractions of MWCNT were manufactured and

instrumented with grids of evenly spaced electrodes. The resistance change between the elec-

trodes was used to detect and localize through-hole and impact damage, as shown in Figure

1.10 . Discrete resistance changes between electrodes can be interpolated to produce a spa-

tially continuous resistance change distribution. For example, Viets et al. [71 ] instrumented

the top surface of a MWCNT-modified GFRP composite with a grid of electrodes. They then

used 2-D interpolated resistance changes to produce a continuous resistance change distri-

bution and locate impact damage in the plate, as shown in Figure 1.11 . Similarly, Zhang et

al. [72 ] used 2-D interpolated resistance changes for impact damage assessment in a GFRP

composite modified with carbon black (CB) and copper chloride (CC) fillers. Other work in

this area has specifically studied the effects of delaminations on the electrical properties of

nanofiller-modified composites using 2-D electrode grids and arrays [73 ]–[78 ]. Although 2-D

resistance change methods have much better spatial damage localization capabilities than

1-D resistance change methods, they generally require a dense grid of electrodes for good

resolution. For example, in the case of Viets et al. [71 ], a total of 100 electrodes were used

to produce the image shown in Figure 1.11 . Similarly, Zhang et al. [72 ] used a total of 81

electrodes to produce images that were comparable in quality to ultrasonic C-scans.

1.3.3 Tomographic Imaging

Tomographic imaging techniques continuously image the internal resistivity or conduc-

tivity of a structure. In contrast to 1-D and 2-D resistance change methods which simply
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Figure 1.10. An example of using discrete 2-D resistance changes to detect
impact damage in a MWCNT-modified carbon fiber-reinforced composite plate
[69 ]. The resistance change is largest in the regions where damage has occurred.
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Figure 1.11. An example of using interpolated 2-D resistance changes for
impact damage detection in a MWCNT-modified carbon fiber-reinforced com-
posite plate [71 ]. The black dots indicate the electrode locations and the black
outline indicates the actual impact damage shape obtained via ultrasonic C-
scan. A total of 100 electrodes were used in this study.
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interpolate between discrete resistance measurements, tomographic imaging models the un-

derlying physics of electric diffusion within the structure to produce a spatially continuous

resistance distribution. In this area, electrical impedance tomography (EIT) is a widely used

technique. EIT was originally developed for geospatial imaging [79 ] but it has also found

extensive use in medical imaging [80 ]–[83 ] because it is low-cost, non-invasive, portable,

and has nearly real-time imaging capabilities. Recently, EIT has emerged as a viable SHM

modality for self-sensing materials due to the piezoresistive effect [84 ]. The expansive body

of work in this area may be categorized by the type of structure being interrogated.

The first category of research uses EIT for SHM in structures that are inherently self-

sensing because they incorporate self-sensing materials. Most work in this area has focused

on detecting damage in planar structures such as thin composite plates. For example, Dai

et al. [85 ] used EIT to image cut-outs, cracks, and impact damage in a rectangular CNT-

based aramid nanocomposite. The EIT results for cut-out imaging from this study are

shown in Figure 1.12 . Similarly, Tallman et al. [86 ] used EIT to image through-hole and

impact damage in a GFRP composite modified with carbon black (CB) nanofillers, as shown

in Figure 1.13 . Other work in planar structures has explored the use of EIT for imaging

damage in CNF-modified epoxy [87 ] and CFRP [88 ], [89 ] plates. In non-planar structures,

Thomas et al. [90 ] successfully used EIT for imaging through-hole and impact damage in

self-sensing composite tubes, as shown in Figure 1.14 .

The second category of research uses EIT for SHM in structures that are not inherently

self-sensing but employ external self-sensing media for detecting strain and damage. In this

area, considerable work has been done toward the development of polymer-based sensing

skins and films [91 ]–[95 ]. These skins generally consist of conductive fillers suspended in a

polymer matrix and are therefore piezoresistive. The skins can be applied to both highly-

conductive and non-conductive structures. Any damage or deformation in the structure

causes damage or deformation in the skin and manifests as a change in conductivity. For

example, Hou et al. [92 ] developed a CNT-based sensing skin using a layer-by-layer (LbL)

technique. The skin was then damaged in various locations and EIT was used to image the

resulting conductivity change. The researchers also applied the skin to a ductile polyvinyl

chloride (PVC) test coupon, loaded the coupon in tension, and observed a decrease in the
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Figure 1.12. EIT used to image cut-out damage in a CNT-based aramid
fabric plate [85 ]. Rows (a) to (c) corrspond to the number of square holes cut
out. Column (1) shows top-down photos of the sensor, column (2) shows the
corresponding EIT image, and column (3) shows a temperature distribution
obtained via infrared (IR) thermography.
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Figure 1.13. EIT used to image through-hole and impact damage in GFRP
composites with CB nanofillers [86 ]. Top left: CB-modified GFRP plate with
impact location labeled. Top right: EIT-imaged conductivity change for im-
pacted plate. Bottom: Conductivity change for plate with 3.18 mm diameter
through-hole. The white circle indicates the actual location and size of the
hole.
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Figure 1.14. EIT used to detect through-hole and impact damage in self-
sensing composite tubes [90 ]. Top left to right: EIT images for 4.76 mm, 7.94
mm, and 9.53 mm diameter holes. Bottom left: EIT image for 14 J impact.
Bottom right: EIT image for 14 J and 10 J impacts.
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Figure 1.15. EIT used to detect impact damage in a CNT-based sensing skin
[94 ]. Left column: Photos of the impacted sensing skin. Right column: EIT
images of the front and back of the skin.

conductivity of the skin with an increase in the applied strain. Similarly, Loh et al. [94 ]

developed a CNT-based sensing skin using LbL and used it to detect impact damage, shown

in Figure 1.15 , and corrosion damage in a metallic structure. Other forms of external sensing

media include spray-on sensors for strain sensing [96 ], [97 ] and conductive paint-based sensors

for detecting cracking and corrosion [98 ]–[101 ]. A major advantage of EIT is that it generally

requires fewer electrodes than 2-D interpolated resistance change methods to produce good

quality images. For example, Dai et al. [85 ] used a total of 32 electrodes to produce the EIT

images shown in Figure 1.12 and Tallman et al. [86 ] used 16 electrodes to produce the EIT

images shown in Figure 1.13 .
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2. PROBLEM STATEMENT, RESEARCH GOAL, THESIS

CONTRIBUTIONS, AND THESIS ORGANIZATION

Based on the discussion in the previous chapter, two important observations can be made.

First, self-sensing composites have incredible potential for SHM because they are piezore-

sistive. This means that changes in the mechanical state of the material, due to applied

strains and damage, manifest as measurable changes in electrical conductivity. Second,

EIT offers superior spatial imaging capabilities than interpolated resistance change meth-

ods and is therefore a viable modality for conductivity-based health monitoring. A critical

gap in the current state-of-the-art can also be identified. Although EIT has been exten-

sively used for SHM in self-sensing composites, its application has been mostly limited to

damage detection. That is, most work has focused on imaging damage and strain-induced

conductivity changes. So far there has been very little effort in determining precise me-

chanics from electrical measurements. This limitation exists for two major reasons. First,

considerable research has explored the feasibility of conductivity-based health monitoring in

various self-sensing materials. Consequently, resistance change methods and tomographic

imaging techniques are well-established and have proven to be highly effective at detecting

damage in a plethora of self-sensing material systems. And second, recovering precise me-

chanics from electrical measurements is an extremely challenging inverse problem. This is

because the relation between mechanics quantities, such as strain and damage, and electrical

measurements, such as resistance changes and conductivity, is generally not unique. This

means, for example, that multiple strain states can give rise to the same observed conduc-

tivity change. Therefore, obtaining mechanics information from electrical measurements is

an inverse problem with many possible solutions. Because of this, conventional optimization

strategies such as gradient-based minimization schemes fail to produce physically meaningful

solutions. Herein, we recognize this as a crucial limitation that must be addressed in order

to transform conductivity-based SHM from mere damage detection to much more complete

characterization of the mechanics and damage condition of the structure. In light of this, we

can state the following problem statement, research goals, and contributions of this thesis

work.
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Problem Statement: Self-sensing piezoresistive composites can positively impact the

safety of engineering structures. Coupling piezoresistivity with conductivity-based damage

detection techniques can enable spatially continuous, real-time SHM. However, prevailing

conductivity-based health monitoring provides little-to-no information about the underlying

mechanics of the structure such as the displacements, strains, stresses, and damage mecha-

nisms and shapes. This is a critical limitation because the underlying mechanics, and not

the conductivity, are pertinent to the condition of the structure. For example, conductivity

in itself cannot be used to prognosticate material failure. However, if the stress state in the

material is known, failure can be immediately predicted.

Research Goal: In light of the preceding limitation, the primary goal of this research

is to develop methods for recovering precise mechanics information from conductivity mea-

surements in self-sensing composites.

Thesis Contributions: This thesis makes three important contributions toward the

above research goal.

1. A new method for solving the piezoresistive inversion (conductivity-to-strain) problem

in self-sensing composites is developed. This method integrates a genetic algorithm

(GA) with an analytical piezoresistivity model to inversely compute the displacements,

strains, and stresses using EIT-imaged conductivity changes. Experimental results are

used to demonstrate that this method can be used to accurately predict structural

failure in self-sensing composites.

2. Three prominent metaheuristic algorithms are compared for solving the piezoresistive

inversion problem and the best algorithm is identified. GAs, simulated annealing (SA),

and particle swarm optimization (PSO) are used to solve the piezoresistive inversion

problem. The results from each algorithm are validated against numerical FE and

experimental results and a comparison is drawn between the three algorithms in terms

of solution quality, variability, accuracy, and computational efficiency.

3. A novel technique is developed for precisely determining the shape and size of specific

damage modes in self-sensing composites using EIT-imaged conductivity changes and

boundary voltages. This technique integrates a GA with physics-based models that
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relate damage geometry to material conductivity. The accuracy and precision of this

approach is validated experimentally on self-sensing composite laminates.

The organization of this thesis is as follows. The EIT forward and inverse problems

are first mathematically formulated. Next, conductivity-to-mechanics inverse problems are

discussed and solution strategies for these problems using metaheuristic algorithms are devel-

oped. Two specific problems are addressed: piezoresistive inversion (conductivity-to-strain)

and precise damage shaping (conductivity-to-damage geometry). Self-sensing composites

are then manufactured and experimentally tested in scenarios pertaining to each of these

problems. The metaheuristic algorithm-enabled inversion results are then compared with

experimental results and important insights are drawn. Finally, this thesis ends by summa-

rizing the scholarly contributions, their broader impact for SHM, and recommendations for

future work.
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3. ELECTRICAL IMPEDANCE TOMOGRAPHY

This chapter presents the mathematical formulation of the EIT forward and inverse problems.

As discussed earlier, EIT is a method of imaging the internal conductivity distribution of a

domain using voltages measured at the domain boundary. EIT can be used to spatially image

mechanically-induced conductivity changes in piezoresistive nanocomposites and therefore

has much potential for self-sensing SHM. Additionally, EIT has broad appeal for imaging in

biomedical [102 ], [103 ], robotics [104 ], geospatial applications [105 ] due to the fact that it is

low cost, non-invasive, and can resolve conductivity changes in nearly real-time.

Mathematically, EIT works by minimizing the difference between a vector of experimen-

tally measured boundary voltages and a vector of numerically computed boundary voltages.

The experimental voltages are collected by first lining the periphery of the domain with elec-

trodes. Next, current injections and voltage measurements are most often collected using

one of two injection schemes (note, however, other more sophisticated injection schemes exist

particularly in biomedical applications of EIT [106 ], [107 ]). In the ‘across’ injection scheme,

current is injected between two opposing pairs of electrodes while voltage differences are

measured between the remaining opposing pairs. The current injection is then moved to the

next opposing electrode pair and voltage differences are again measured between the remain-

ing opposing electrode pairs. This continues until all opposing electrode pairs have received

a current injection and a vector of (L/2)(L/2 − 1) voltage differences is obtained, where L

is the total number of electrodes. The across injection scheme is illustrated schematically in

Figure 3.1 . This scheme is more practical for imaging cases where two opposite edges of the

domain are not accessible and thus cannot be instrumented with electrodes. This scheme

may also be advantageous for cases where the conductivity artifact is far from the edge of the

domain because it forces the electrical current to interact with the artifact as it propagates

across the domain [108 ].

For domains where all edges are accessible, the ‘adjacent’ injection scheme is often used.

Current is injected between one pair of adjacent electrodes while voltage differences are

measured between the remaining adjacent electrode pairs. The current injection is then

moved to the next adjacent electrode pair and voltage differences are again measured between
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Figure 3.1. Illustration of first (top) and second (bottom) current injections
for across injection scheme. Two opposite edges of the domain are lined with
electrodes, indicated by the red rectangles. Current is injected between the
first pair of opposing electrodes and voltages differences are measured between
the remaining opposing electrode pairs. The current injection is then moved to
the next opposing electrode pair and voltages differences are again measured.
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the remaining adjacent electrode pairs. This process continues until all adjacent electrode

pairs have received a current injection and a vector of L(L−3) voltage differences is obtained.

The adjacent injection scheme is illustrated schematically in Figure 3.2 .

3.1 Forward Problem

The procedure of computing the numerical boundary voltages for a known domain con-

ductivity is known as the EIT forward problem. Mathematical formulation of the forward

problem begins with Laplace’s equation for steady-state diffusion in the absence of internal

current sources. This is shown in equation (3.1 ), where σij is the domain conductivity and

φ is the domain potential.

∂

∂xi
σij

∂φ

∂xj
= 0 (3.1)

Indicial notation is used here and repeated indices imply summation over the dimension

of the problem. Summation is not implied for indices where electrodes are involved unless

the summation operator is explicitly used. We then enforce two complete electrode model

boundary conditions on equation (3.1 ). These are shown in equations (3.2 ) and (3.3 ). Equa-

tion (3.2 ) simulates contact impedance between the perfectly conducting domain and the

electrodes and equation (3.3 ) enforces conservation of charge by requiring that the sum of

the current through the electrodes is zero. In these equations, zl is the contact impedance

between the lth electrode and the domain, ni is an outward pointing normal vector, El is

the length of the lth electrode, and Vl is the voltage of the lth electrode.

σij
∂φ

∂xi
nj = 1

zl
(Vl − φ) (3.2)

L∑
l=1

∫
El

σij
∂φ

∂xi
nj dSl = 0 (3.3)
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Figure 3.2. Illustration of first (top) and second (bottom) current injections
for adjacent injection scheme. All edges of the domain are lined with elec-
trodes. Current is injected between the first pair of adjacent electrodes and
voltage differences are measured between the remaining adjacent electrode
pairs. The current injection is then moved to the next adjacent electrode pair
and voltages differences are again measured.
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Equations (3.1 ) to (3.3 ) can be solved conveniently via the finite element (FE) method,

as shown in equation (3.4 ). The individual matrices AM , AZ , AW , and AD are formed as

shown in equations (3.5 ) to (3.8 ).

AM + AZ AW

AT
W AD


Φ

V

 =

0

I

 (3.4)

AeM ij =
∫

Ωe

∂wi
∂xk

σkl
∂wj
∂xl

dΩe (3.5)

AZ ij =
L∑
l=1

∫
El

1
zl
wiwj dSl (3.6)

AW li = −
∫
El

1
zl
wi dSl (3.7)

AD = diag
(
El
zl

)
(3.8)

In the preceding equations, Φ is a vector of domain potentials, V is a vector of electrode

voltages, and I is a vector of injected currents. The ith component of the jth column of the

local diffusion stiffness matrix for the eth element is calculated as shown in equation (3.5 ),

where wi is the ith FE interpolation or basis function. In this work, linear interpolation

functions are used by discretizing the domain using triangular elements in two dimensions

and hexahedral elements in three dimensions. The local diffusion stiffness matrices are then

assembled into the global stiffness matrix, AM . Equations (3.6 ) to (3.8 ) account for the

additional degrees of freedom introduced due to the contact impedance of the electrodes. A

detailed solution to these equations is presented in Appendix A .

3.2 Inverse Problem

The EIT inverse problem attempts to recover the conductivity distribution of the domain

interior using the current-voltage behavior observed at the domain boundary. In this work,

difference imaging via a one-step linearization scheme is used to solve the inverse problem.
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Difference imaging is generally robust to experimental noise and modeling errors because it

seeks the conductivity change (or difference) between two states. Therefore, measurement

or modeling errors common to both states are cancelled out when differences are taken.

Other commonly used inversion techniques include the Gauss-Newton iterative method [109 ],

maximum a posteriori (MAP) estimates [110 ], and the primal dual interior point method

(PDIPM) [111 ]. A comprehensive overview of these techniques can be found in reference

[112 ].

Returning to the inverse problem, one set of boundary voltages is collected before the

domain experiences damage or deformation and another set of boundary voltages is collected

after the domain experiences damage or deformation. The goal of the one-step linearized

inverse problem is to then find the conductivity change that minimizes the difference between

the pre- and post-damage voltages. We begin by defining the vector δV as the difference

between the post- and pre-damage voltages collected at times t2 and t1, respectively, as

shown in equation (3.9 ).

δV = V (σ2, t2) − V (σ1, t1) (3.9)

We then define an equivalent numerically computed vector, W (δσ), as shown in equation

(3.10 ). In this equation, F (·) are the numerically computed voltages obtained by solving

the forward problem at the conductivity in the argument, σ0 is the baseline or undamaged

conductivity, and δσ is the conductivity change vector we seek. Quantities that have been

discretized via finite elements have been boldfaced.

W (δσ) = F (σ0 + δσ) − F (σ0) (3.10)

We proceeed by linearizing the first term on the right hand side of equation (3.10 ) using

a Taylor series expansion about σ0 and retaining only the linear terms, as shown in equation

(3.11 ).

F (σ0 + δσ) ≈ F (σ0) + ∂F (σ0)
∂σ

δσ (3.11)
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Substituting equation (3.11 ) into equation (3.10 ) and defining J = ∂F (σ0)/∂σ as the

sensitivity matrix yields equation (3.12 ).

W (δσ) ≈ Jδσ (3.12)

We then seek the conductivity change vector, δσ∗, that minimizes the difference between

W (δσ) and δV . However, J cannot be directly inverted because it is severely rank-deficient.

As such, the inverse problem is ill-posed and Tikhonov regularization is necessary to obtain a

physically meaningful solution. The regularized inverse problem is shown in equation (3.13 ).

Here, L is the regularization term and its contribution is controlled by the scalar parameter

α. Note that equation (3.13 ) minimizes the l2-norm for both the error and the regularization

terms in the least-square sense. In this thesis, the discrete Laplace operator is used as the

regularization term. Other choices for the error and regularization norms have been explored

in literature [113 ], such as the l1-norm and total variation (TV) regularization. However,

the l2-norm is very common in SHM [50 ], [85 ], [86 ] because it has a smoothing effect on

large variations in conductivity. The explicit solution for δσ is shown in equation (3.14 ). In

this thesis, a modified form of equation (3.14 ) is used. This form, shown in equation (3.15 ),

incorporates constraints on δσ based on a priori knowledge of the expected conductivity

change. Equation (3.15 ) will be specialized to specific EIT problems in a later chapter of

this thesis.

δσ∗ = min
δσ

(||δV − Jδσ||22 + α||Lδσ||22) (3.13)

δσ∗ = (JTJ + α2LTL)−1JT δV (3.14)

δσ∗ = min
δσmin≤δσ≤δσmax

1
2


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 J

αL

 δσ −

δV
0


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

2

 (3.15)
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L = Lij =



degree(Ωi) if i = j

−1 if i 6= j and Ωi is adjacent to Ωj

0 otherwise

(3.16)

The discrete Laplace operator is formed as shown in equation (3.16 ). L = Lij is a square

matrix with a dimension equal to the number of elements in the FE mesh. The ith element

in the diagonal is equal to the number of elements that share an edge in two dimensions and

a surface in three dimensions with the ith element. If the ith and jth elements share an edge

in two dimensions or a surface in three dimensions, Lij = Lji = -1. All other components of

L are zero.

Going back to equation (3.12 ), the sensitivity matrix, J , is formed by relating perturba-

tions in the electrode voltages to perturbations in the domain conductivity. The final result

is shown in equation (3.17 ). A closed form derivation of equation (3.17 ) can be found in

Holder [114 ].

JMN e = −
∫

Ωe

∂φM

∂xi
σij
∂φ

N

∂xi
dΩe (3.17)

In the above equation, MN represents a single index of J and is computed as the integral

of the contraction of the gradient of the voltage on the eth element due to the current supplied

by the Mth electrode injection pair and the gradient of the voltage on the eth element due

to the Nth adjoint field [115 ]. The adjoint field is the domain solution for a unit current

injection supplied to the Nth electrode injection pair. Physically, this can be thought of as

the sensitivity of the Nth electrode measurement pair to a conductivity perturbation in the

eth element when current is supplied by the Mth electrode pair. Detailed sensitivity matrix

calculations are given in Appendix B .

3.3 Summary

This chapter presented the mathematical formulation of the EIT forward and inverse

problems. Briefly, the forward problem solves for the boundary voltages for a specified

50



interior conductivity while the inverse problem attempts to recover the interior conductivity

for a known set of boundary voltages. EIT will be used multiple times in this thesis to image

strain- and damage-induced conductivity changes in self-sensing composites. Compared to

1-D and 2-D resistance change methods, EIT offers superior shaping capabilities with fewer

electrodes. This makes it an attractive modality for spatially-continuous SHM in self-sensing

structures.
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4. CONDUCTIVITY-TO-MECHANICS INVERSE PROBLEMS

4.1 Introduction

Although EIT affords better spatial localization than interpolated resistance change

methods, its imaging capabilities are still somewhat indistinct. This can be observed from

Figures 1.13 to 1.15 , where the edges of the damage-induced conductivity artifacts are not

sharply defined. This is due to the fact that the EIT inverse problem is ill-posed and thus

requires regularization to obtain a physically meaningful solution. This leads to a smearing

effect in the reconstructed conductivity change distribution. The lack of sharply defined fea-

tures is viewed as a limitation and as such, there has been considerable work on improving

the spatial resolution of EIT.

One simple method to improve resolution is to use a large number of electrodes to make

the problem less ill-posed. However, this is not always practical for SHM since all edges of a

structure may not be fully accessible for instrumentation. In an effort to circumvent the need

for a large number of electrodes for good resolution, Hassan et al. [116 ] showed via numerical

simulations that the spatial resolution of EIT can be significantly improved by incorporating

non-local conductivity changes via piezoresistivity. This approach was shown to produce

good quality images but was not experimentally validated. Other work has explored different

types of norms for solving the inverse problem [113 ], shape driven difference imaging [117 ],

B-splines [118 ], moving morphable components (MCCs) [119 ], and relaxed regularization

[120 ] for extracting sharp features from EIT images. These approaches, while undoubtedly

powerful, are of limited direct benefit to SHM because they do not model the underlying

mechanics of the structure. Instead, they focus on reconstructing conductivity based on

parameterized geometric shapes or a priori knowledge of the conductivity change. From a

SHM point of view, conductivity is not a structurally-relevant property. It would be much

more beneficial to know the underlying displacements, strains, stresses, and damage sizes

and mechanisms in a structure rather than the size of a conductivity artifact. This leads to

a class of problems known as conductivity-to-mechanics inverse problems, where the goal is

to recover the precise underlying mechanical state of a structure from observed conductivity

changes.
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4.2 Metaheuristic Algorithms

Conductivity-to-mechanics inverse problems are challenging to solve because the mathe-

matical relation between mechanics quantities, such as strain and damage, and conductivity

change is generally not one-to-one. This means that multiple mechanical states can cause

the same conductivity change. Furthermore, mechanics quantities such as displacement and

strain can have multiple components. Consequently, recovering mechanics from observed

conductivity changes is an under-determined inverse problem with several mathematically

feasible solutions. From a mechanics point of view, however, there can only be one feasible

solution (a linear elastic structure can only have one strain state, for example). In order to

surmount these problems, it is necessary to pose conductivity-to-mechanics inverse problems

as constrained ln-norm minimization problems of the form shown in equation (4.1 ).

x∗ = arg min
xmin≤x≤xmax

(||y −M(x)||n) (4.1)

In the above equation, y is an experimentally observed quantity, M(·) is a mechanics-

based model, and x is a quantity that represents the mechanical state. An optimization

strategy can then be used to obtain a solution to equation (4.1 ). However, it is well known

that gradient-based optimization only leads to locally optimum solutions depending on the

initial estimate. A locally optimum solution may not be mechanically feasible. This is il-

lustrated qualitatively in Figure 4.1 , where the function f(x) = ||y − M(x)||n has several

locally optimum solutions but only one of these solutions is physically admissible. There-

fore, in order to find the only physically admissible solution, any optimization strategy for

conductivity-to-mechanics inverse problems requires two key components. First, a meta-

heuristic global search algorithm is needed so that all possible solutions are tested to find

those that satisfy the minimization. In this work, three different metaheuristic algorithms

are used: genetic algorithms (GAs), simulated annealing (SA), and particle swarm opti-

mization (PSO). It is important to note that the goal of this thesis is not to develop new

metaheuristic algorithms but to use existing algorithms to solve challenging conductivity-

to-mechanics inverse problems. The three aforementioned algorithms were chosen because
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Figure 4.1. Qualitative illustration of multi-modality. The function f(x) =
||y − M(x)||n has several minimizing solutions. However, only one solution
(x∗3) is physically admissible. Gradient-based optimization schemes only lead
to the local minimum solution closest to the initial estimate.

they are well-established and widely used to solve global optimization problems. Below, a

brief overview of each of these metaheuristic algorithms is given.

GAs [121 ], [122 ] are a family of global search algorithms inspired by natural evolution.

GAs work by initializing a population of candidate solutions dispersed inside a pre-defined

search space. Each candidate has a numerically defined chromosome and gene. The func-

tion to be minimized, known as the fitness function, is evaluated for each candidate. The

population then evolves and the candidates compete in order to determine which genes will

be passed on to the next generation. Candidates that result in a lower fitness function value

have a higher probability of passing their genes. Additionally, cross-over and mutation take

place to ensure some genetic diversity in the population. This evolutionary process, which is

analogous to natural selection, continues until a certain level of genetic similarity is achieved

in the population. The degree of genetic similarity in the population is quantified via the

bit-string affinity (BSA). Figure 4.2 shows a flowchart for a typical GA. In this thesis, a GA

originally developed by W. A. Crossley and used successfully by Raghavan et al. [123 ] for

nondestructive testing of jet engine turbine blades is used.
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Figure 4.2. Flowchart for a general GA adapted from Sivanandam and Deepa [124 ].
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SA [125 ] is a type of metaheuristic algorithm inspired by the metallurgical process of

annealing, where a metal is heated to a high temperature and then allowed to cool down

slowly so that the atoms attain a minimum energy configuration. Very simply, the SA

algorithm generates a new candidate solution, analogous to the heated state of the metal,

based on a virtual annealing temperature. If the new state is an improvement over the initial

state (based on the fitness function value), then the candidate is accepted. If, however,

the candidate is not an improvement over the initial state then it is only accepted with

a probability based on the Metropolis criterion [126 ]. This allows the SA algorithm to

‘explore’ the search space much more than traditional hill-climbing algorithms that only

accept solutions which improve the state of the system and are therefore more likely to find

locally optimum solutions. This probabilistic procedure of selecting candidates continues

until convergence is satisfied. Figure 4.3 shows a flowchart for a general SA algorithm. In

this work, a MATLAB-based SA algorithm based on the work Ingber [127 ] is used.

Lastly, PSO is an evolutionary algorithm inspired by the behavior of groups of social

organisms such as a flock of birds or a school of fish. The PSO algorithm generates a

population or ‘swarm’ of solutions, individually known as ‘particles’, inside a pre-specified

search space. Each particle has a certain position and velocity. However, the particles do not

move independent from each other. Rather, the trajectory of each particle is guided by the

‘best’ position and velocity of the collective swarm and also the best position and velocity

of each particle. In this manner, the particles share information and the swarm moves

around the search space until convergence is achieved. A schematic showing the movement

of particles in a typical PSO algorithm is shown in Figure 4.4 . In this thesis, a MATLAB-

based PSO algorithm based on the works of Kennedy and Eberhart [129 ], Mezura-Montes

and Coello [130 ], and Pedersen [131 ] is used.

The second component of a solution strategy for conductivity-to-mechanics inverse prob-

lems are physics-based models that relate the mechanical state (displacements, strains,

stresses, and damage) to conductivity changes. These are essential to ensure that only

physically admissible solutions are selected. In the forthcoming sections, specialized models

are discussed in detail for solving two important problems: piezoresistive inversion, where
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Figure 4.3. Flowchart for a general SA algorithm adapted from Yao et al [128 ].
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Figure 4.4. Schematic showing the movement of particles during a typical
PSO search. The trajectory of each particle is described by its position and
velocity. In iteration 1, the particles are randomly dispersed with different
positions and velocities. As the number of iterations increases, the particles
begin to move toward the minimum function value. Convergence is satisfied
when the change in the particle positions and velocities becomes very small,
indicating that the minimum function value has been attained.
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the goal is to recover strains from conductivity changes, and precise damage shaping, where

the goal is to recover precise damage geometry from conductivity changes.

4.3 Piezoresistive Inversion

The goal of piezoresistive inversion is to recover the underlying strain state giving rise to

an observed conductivity distribution in a piezoresistive self-sensing composite. This prob-

lem was first explored computationally by Tallman and Wang [132 ] and later experimentally

by Tallman et al [133 ]. The piezoresistive inversion problem is inherently under-determined

because conductivity is generally treated as a single-valued scalar while strain has six in-

dependent components. The original approach developed by Tallman and Wang [132 ] used

gradient-based optimization via a Gauss-Newton iterative algorithm to find the strain state

that minimized the difference between an observed conductivity and a conductivity predicted

analytically. In the work of Tallman et al. [133 ], the observed conductivity was obtained via

EIT and the analytical conductivity was predicted using a piezoresistivity model. Although

this approach was highly effective and computationally efficient at determining the strain

state, the use of gradient-based optimization implies that it can only be used in certain lim-

ited scenarios where the actual solution is relatively ‘close’ to the initial estimate. To extend

this approach to more general loading scenarios, in this thesis the piezoresistive inversion

problem is solved using metaheuristic algorithms. First, however, it is vital to establish a

model that accurately captures the relation between strain and conductivity in piezoresistive

materials.

4.3.1 Analytical Piezoresistivity Model

The phenomenon of piezoresistivity in self-sensing materials has been widely studied [134 ]

and several types of models have been developed to describe the relationship between con-

ductivity and deformation. These include equivalent resistor network-based models [135 ],

[136 ], computational micromechanics-based models [137 ], [138 ], and tensor-based resistivity-

strain relations [44 ], [139 ]. Herein, we will use an analytical piezoresistivity model developed

by Tallman and Wang [140 ] and based on a nanocomposite conductivity model proposed by
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Takeda et al [141 ]. According to Tallman and Wang [140 ], the conductivity of a nanocom-

posite can be calculated according to the following equation.

σp = σm + 4Pvlf
3πλ2d2

f

[
4lf

πd2
f
σf

+ h2t

Ae2
√

2mφ
exp

(
4πt
h

√
2mϕ

)] (4.2)

In the above equation, σp is the nanocomposite conductivity, σm is the matrix conductiv-

ity, σf is the conductivity of an individual nanofiller, P is the percolation probability given

by P = K(v − vc)ψ, v is the nanofiller volume fraction, vc is the critical nanofiller volume

fraction, lf is the length of a single nanofiller, df is the nanofiller diameter, λ is the nanofiller

waviness ratio, A is the overlapping nanofiller area, t is the average inter-filler spacing given

by t = α(v − vc)β, h is Planck’s constant, e is the elementary charge of a single electron,

and φ is the potential barrier height felt by tunneling electrons. Tallman and Wang [140 ]

expressed v as a function of the infinitesimal strain tensor, εij. Therefore, P and t can also

be expressed as functions of εij and the conductivity of a nanocomposite can be calculated

for an arbitrary strain state. This formulation was then integrated with the FE method to

make the model amenable to multi-scale analysis. Tallman and Wang [132 ] later updated

this model with a sigmoidal relation for t to allow for differentiability. Equation (4.2 ) can be

used to predict the conductivity of any nanofiller-modified polymer by adjusting the values

of α and β in the expression for the average inter-filler spacing for a state of zero strain.

4.3.2 Metaheuristic Algorithm-Enabled Conductivity-to-Strain Problem

The piezoresistive inversion problem, as formulated by Tallman and Wang [132 ], seeks

the strain state that minimizes the difference between an experimentally observed conduc-

tivity and a conductivity predicted analytically. This can be cast as the following ln-norm

minimization problem.

ε∗
ij = arg min

εij

(||σe − σp(εij)||n) (4.3)

In the above equation, ε∗
ij is the strain state we seek, σe is an experimentally observed

conductivity, and σp(εij) is a conductivity predicted using a piezoresistivity model evaluated
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for the strain state in the argument. In this thesis, σe will be imaged via EIT and since EIT

is performed on a FE mesh, σe is a vector quantity due to discretization. Therefore, the

experimentally observed conductivity can be written as the boldfaced vector quantity σe.

Furthermore, since infinitesimal strain can be written as the gradient of the displacement, the

analytically predicted conductivity can be expressed as a function of the global displacement

vector, d. Equation (4.3 ) can then be restated as follows.

d∗ = arg min
d

(||σe − σp(d)||n) (4.4)

The goal of equation (4.4 ) is to recover the global displacement vector, d∗, rather than

strains. Tallman and Wang [132 ] used n = 2 in equation (4.4 ) to ensure differentiability with

respect to strain for gradient-based optimization. In order to integrate this problem with a

metaheuristic algorithm, equation (4.4 ) can be rewritten as equation (4.5 ), shown below.

d∗
m = arg min

dm

(||σe − σp(dm)||n) (4.5)

In equation (4.5 ), dm is a global displacement vector generated using a metaheuristic

algorithm and σp(dm) is a conductivity predicted analytically using the metaheuristic al-

gorithm generated displacement vector. Since metaheuristic algorithms do not compute

gradients, we will use n = 1 in equation (4.5 ). Also, the l1-norm is generally less sensitive to

outlier experimental data, which is not uncommon in EIT. Next, in light of the EIT one-step

linearization scheme, we can express the predicted conductivity as σp(dm) = δσp(dm) + σ0

and the experimental conductivity as σe = δσe+σ0, where σ0 is the baseline or undeformed

conductivity. Substituting these expressions into equation (4.5 ) gives equation (4.6 ).

d∗
m = arg min

dm

(||δσe − δσp(dm)||1) (4.6)

The goal of the preceding equation is to find the displacement vector, d∗, that minimizes

the difference between an experimentally observed conductivity change, δσe, and a con-

ductivity change predicted analytically using a metaheuristic algorithm, δσp(dm). However,

metaheuristic algorithms cannot be used to directly produce displacement fields because they
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are ignorant of mechanics principles such as equilibrium and strain compatibility. Instead,

the global displacement field must be computed using a mechanics-based approach to ensure

equilibrium and compatibility, and the metaheuristic algorithm generated displacement, dm,

must be a subset of the global displacement. This is achieved by formulating a boundary

value problem (BVP). The boundary conditions of the BVP are based on what is known

about the loading and geometry of the structure. The boundary conditions can then be

classified as either ‘known’ or ‘unknown’ and can be either Dirichlet or Neumann. However,

at least one Dirichlet boundary condition must be specified for a physically meaningful solu-

tion. The metaheurstic algorithm then searches for the unknown boundary conditions and

for each candidate boundary condition generated, linear elastic FEM is used to solve the

associated BVP for the global displacement field. This is illustrated schematically in Figure

4.5 . The global displacement field is then used to calculate strains and the conductivity,

σp(dm), is calculated using equation (4.2 ). The fitness function is calculated according to

equation (4.7 ).

f = ||δσe − δσp(dm)||1 (4.7)

|f ∗
n − f ∗

n+1| ≤ 1 × 10−3 (4.8)

The algorithm continues to generate candidate boundary conditions until convergence is

satisfied. The convergence criterion is dependent on the type of algorithm being used. Once

convergence is satisfied, the search stops, the search space is reduced based on the minimum

and maximum values of d∗
m, and a new search initiates inside the updated search space. This

process repeats until the convergence criterion shown in equation (4.8 ) is satisfied, where f ∗
n

is the minimum fitness function value obtained after the nth search. The displacements

obtained at this point are treated as the final converged solution. At this point, having

integrated a metaheuristic algorithm with realistic mechanics (an analytical piezoresistivity

model and linear elastic FEM), the solution strategy for piezoresistive inversion is complete.

In a later chapter of this thesis, this approach will be experimentally validated.
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Figure 4.5. Representative boundary value problem (BVP) for piezoresistive
inversion. The structure has known (blue) and unknown (red) displacement
boundary conditions. The metaheuristic algorithm generates candidates for
the unknown boundary conditions and linear elastic FEM is used to solve
the BVP to obtain the global displacement field. In this case, all boundary
conditions are of the Dirichlet type.
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4.4 Precise Damage Shaping

The goal of the precise damage shaping problem is to recover the geometry and location of

specific damage modes from EIT-imaged conductivity changes. However, there are no well-

defined mathematical relationships between damage shape and material conductivity. This

makes damage shaping a multi-modal inverse problem. As such, gradient-based optimization

schemes cannot generally be implemented. Instead, similar to piezoresistive inversion, two

key components are needed for a solution strategy. First, physics-based models are needed to

realistically describe how specific damage modes affect material conductivity. And second,

metaheuristic algorithms are needed to search for all physically viable solutions. In the

forthcoming sections, geometric models for two specific damage modes —through-holes and

delaminations —are developed and the mathematical formulation of the precise damage

shaping problem is then integrated with these damage models and metaheuristic algorithms.

4.4.1 Geometric Models for Damage Mechanisms

Two parametric representations of damage geometry are developed in this thesis. First,

consider the case of a through hole, which is a circular cavity in the domain where no

conductive material is present. Through holes are commonly used for benchmarking damage

detection capabilities and are likewise used herein. The geometry of a circular through hole

can be described using the parametric representation s = [xc, yc, r], where xc and yc are the

x- and y- coordinates, respectively, of the center of the hole and r is the radius. The region

inside the hole has zero conductivity while the undamaged domain has a conductivity equal

to the undamaged baseline conductivity. This is illustrated schematically in Figure 4.6 .

Next, consider a delamination, which is a separation of the layers of a laminate. The con-

ductivity in the separated region is approximately zero since little or no conductive material

is present here. For the simple case of a laminate consisting of only two layers, this can be

modeled as a thin ‘interface’ region of approximately zero conductivity sandwiched between

the two undamaged layers. Although a delamination can be arbitrarily shaped, in this the-

sis delaminations will be modeled as ellipses. This is not an unrealistic assumption since

delaminations have been modeled as ellipses in prior work on failure of composite structures
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Figure 4.6. Geometric model for a through-hole. The red circle indicates a
through-hole and the black rectangle is the domain. The size and location of
the hole can be described using the x- and y-coordinates of the center of the
hole and the radius of the hole. The interior of the hole has a conductivity of
σ = 0 while the undamaged region has a conductivity equal to the baseline
conductivity, σ0.

65



Figure 4.7. Geometric model for a delamination. The laminate shown con-
sists of a thin ‘interface’ layer sandwiched between two undamaged layers.
The interface layer consists of an elliptical delamination (shown in red) with
a conductivity of approximately zero. The undamaged region in the top, bot-
tom, and interface layers has a conductivity equal to the undamaged baseline
conductivity of the material.

[142 ]–[145 ]. The geometry of an ellipse can be described using the parametric representation

s = [xc, yc, rx, ry], where xc and yc are the x- and y-coordinates, respectively, of the center

of the ellipse and rx and ry are the radii along the x- and y-axes, respectively. This model

is illustrated schematically in Figure 4.7 .

4.4.2 Metaheuristic Algorithm-Enabled Conductivity-to-Damage Geometry Prob-
lem

Going back to the damage shaping problem, the goal is to recover the geometry of a

specific damage mode from observed conductivity changes. In order to integrate this problem

with a metaheuristic algorithm, the vector δF (sm) is defined as shown in equation (4.9 ).

δF (sm) = F (σ(sm)) − F (σ0) (4.9)

In the above equation, F (σ(sm)) are the voltages predicted by solving the EIT forward

problem on a domain containing damage described by the metaheuristic algorithm-predicted

geometry, sm. The goal of the precise damage shaping problem then is to find the optimum
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damage geometry, s∗
m, that minimizes the l1-norm of the difference between δF (sm), given

by equation (4.9 ), and δV , given by equation (3.9 ). This can be stated as the optimization

problem shown in equation (4.10 ).

s∗
m = arg min

smin
m ≤sm≤smax

m

(|δV − δF (sm)|1) (4.10)

f = |δV − δF (sm)|1 (4.11)

|f ∗
n − f ∗

n+1| ≤ 1 × 10−3 (4.12)

The fitness function, f , is calculated according to equation (4.11 ). During a single search,

the metaheuristic algorithm generates candidate solutions for sm within the bounds smin
m and

smax
m to minimize f . The search stops when a pre-specified convergence criterion (dependent

on the algorithm type) is satisfied. The optimum solution is stored, the search space is

updated based on the optimum solution, and a new search initiates within the updated

bounds. This continues until the convergence criterion shown in equation (4.12 ) is satisfied,

where f ∗
n is the minimum fitness function obtained after the nth search. This approach can

now readily be specialized to any type of damage mode by replacing sm with the appropriate

parametric description of damage geometry. Later in this thesis, this approach will be

integrated with the geometric models developed earlier for through-holes and delaminations

via the FE method.

4.5 Summary

This chapter presented a framework for solving conductivity-to-mechanics inverse prob-

lems using metaheuristic algorithms. These problems are extremely challenging because

they are under-determined and multi-modal. As such, gradient-based optimization schemes

that are traditionally used are not applicable here. Instead, the novel solution strategy pro-

posed in this thesis integrates metaheuristic (global search) algorithms with physics-based

mechanics models. This approach was specialized to two specific problems. First, piezore-
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sistive inversion was considered, where the goal is to recover displacements, strains, and

stresses from observed conductivity changes. In this case, a metahueristic algorithm was

integrated with an analytical piezoresistivity model and used to solve an elasticity BVP for

the displacements and strains. Second, the precise damage shaping problem was formulated,

where the goal is to recover the precise shape and size of specific damage modes from ob-

served conductivity changes. Two special damage cases were considered —through-holes and

delaminations —and parameterized geometric models for these damage cases were developed

and integrated with a metaheuristic algorithm. The solution strategies developed for both

problems in this chapter will be experimentally validated later in this thesis
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5. EXPERIMENTAL PROCEDURES

This chapter discusses the experimental work performed in this thesis to validate the pro-

posed metahueristic algorithm-enabled solution strategies for piezoresistive inversion and pre-

cise damage shaping. This includes composite manufacturing, electrical testing for measuring

conductivity, mechanical testing for measuring elastic properties, EIT data collection proce-

dures, digital image correlation (DIC) setup and data collection, through-hole and impact

damage testing, and optical microscopy for destructive evaluation. Two types of self-sensing

composites were manufactured: CNF-modified polymer nanocomposites and CNF-modified

GFRP nanocomposite laminates. The following sections describe the manufacturing and

experimental testing procedures in detail.

5.1 CNF-Modified Polymer Nanocomposites

CNF-modified polymer nanocomposites were manufactured to experimentally validate

the metaheuristic algorithm-enabled piezoresistive inversion methodology. These specimens

were produced without a fiber reinforcement phase. Three types of specimens were manu-

factured: electrical testing specimens, mechanical testing specimens, and an EIT specimen.

5.1.1 Manufacturing Procedure

The manufacturing procedure used was based on the work of Tallman et al [87 ]. Polymer

resin (Fibre Glast 2000) was mixed with the appropriate amounts of Pyrograf III PR-24-XT-

HHT CNFs (Applied Sciences), surfactant (Triton X-100), and acetone in a glass beaker using

a resin-to-acetone volume ratio of 2:1 and a surfactant-to-CNF weight ratio of 0.76:1. Acetone

facilitates mixing by lowering the viscosity and surfactant modifies the surface chemistry to

aid dispersion of the CNFs. The mixture was stirred by hand for 5 minutes and then mixed

in a planetary centrifuge for 3 minutes. Next, the mixture was sonicated for 4 hours in an

ultrasonic bath sonicator at 35 W with an excitation frequency of 45 kHz. After sonication,

the mixture was stirred for 24 hours on a magnetic hot plate stirrer at 600 rpm and a

temperature of 60 ◦C. This allows the acetone in the mixture to evaporate. After stirring,
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the mixture was cooled down to room temperature by placing the glass beaker in shallow

cold water. Next, hardener was added using a resin-to-hardener weight ratio of 100:27 and

air release agent was added using an air release agent-to-total mixture weight ratio of 0.001:1.

The mixture was then stirred by hand for 5 minutes and degassed for 30 minutes at room

temperature in a vacuum chamber. The degassed mixture was then poured into molds that

had previously been coated with a mold release agent (Fibre Glast 1153). The mixture for the

electrical testing specimens was poured into two 3-D printed co-polyester molds measuring

50 mm × 50 mm × 6.35 mm each. The mixture for the EIT specimen was poured into a

single 3-D printed co-polyester mold measuring 200 mm × 50 mm × 4 mm with a centrally

located hole of diameter 12.7 mm. The mixture for the mechanical testing specimens was

poured into two ASTM D638-14 [146 ] dog-bone shaped silicone rubber (Smooth-On) molds.

All molds were then placed in an oven and cured for 5 hours at 60 ◦C.

5.1.2 Electrical Testing and SEM Imaging

Electrical testing specimens with CNF weight fractions of 0.25%, 0.50%, 1.0%, 1.5%, and

2.0% were manufactured according to the previously described procedure. Once fully cured,

the specimens were removed from the 50 mm × 50 mm × 6.35 mm molds by trimming

off the edges of the molds using a water-cooled tile saw. Each specimen was then cut

into four smaller 25.4 mm × 25.4 mm × 6.35 mm squares using the tile saw. Colloidal

silver electrodes were painted on two opposite edges of each square and the resistance, R,

between the electrodes was measured using a digital multi-meter. The conductivity was then

calculated as σ = l/RAe, where l is the distance between the electrodes and Ae is the cross-

sectional area of a single electrode. The conductivities measured for each weight fraction

are plotted in Figure 5.1 . The analytical piezoresistivity model, given by equation (4.2 ), was

then fit to the experimental data by adjusting the values of α and β in the expression for the

average inter-filler spacing. The optimum values were found to be α = 1.58 and β = −0.28.

Additionally, σf = 105 S/m, lf = 50 µm, df = 100 nm, K = 1.0, and ψ = 0.4 were used in

equation (4.2 ).
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Figure 5.1. Experimentally measured and analytically predicted conductivi-
ties of CNF-modified polymer nanocomposite. The analytical piezoresistivity
model, given by equation (4.2 ), was calibrated to the experimental data by
adjusting the values of α and β in the expression for the average inter-filler
spacing. The optimum values were found to be α = 1.58 and β = −0.28.

After electrical testing, some of the squares were manually fractured and a thin platinum

coating was applied to the fracture surface. Scanning electron microscopy (SEM) was then

performed on the fracture surface using a Thermo-Fisher Scientific Teneo system. SEM

images for a 2.0% CNF weight fraction square are shown in Figure 5.2 .

5.1.3 Mechanical Testing

Mechanical testing specimens with 1.0% weight fraction of CNFs were manufactured

according to the previously described procedure and molded into to tensile testing coupons

according to ASTM D638-14 [146 ]. A CNF weight fraction of 1.0% was deliberately chosen

because the EIT testing (described in the next section) utilizes a specimen with a CNF weight

fraction of 1.0%. Each coupon was instrumented with two electrical resistance strain gauges:
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Figure 5.2. SEM images of 2.0% weight fraction nanocomposite. The image
on the top right has CNFs annotated for illustrative purposes. The CNFs are
more clearly visible as cylindrical rod-like structures in the bottom left and
right images.
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one for measuring axial strain and one for measuring transverse strain. Each coupon was then

mounted on a load frame (Instron 8801) and loaded in tension at a constant displacement

rate of 1.5 mm/s until failure. The mechanical testing results are shown in Figure 5.3 . Using

linear curve fitting, the elastic modulus was estimated as E = 2.534 GPa and the Poisson’s

ratio was estimated as ν = 0.35. The failure stress of the material was estimated as SF =

40 MPa.

5.1.4 EIT and DIC Data Collection

A CNF-modified polymer specimen with a nanofiller weight fraction of 1.0% was man-

ufactured for EIT testing, as described earlier. The cured specimen was removed from the

oven and trimmed to 196 mm × 46.5 mm using a water-cooled tile saw. The specimen had

an as-molded thickness of 4 mm. Grip tabs measuring 57 mm × 46.5 mm × 1.72 mm were

applied to the specimen using epoxy adhesive to prevent damage due to the gripping pres-

sure of the load frame. Electrodes were applied by painting 3.175 mm wide colloidal silver

patches along the gauge length of the specimen, on either side of the hole. Next, copper tape

tabs were applied to the silver patches to act as extended electrodes. The copper tape was

then covered with strips of masking tape to ensure good contact with the silver electrodes

during the test. The fully prepared EIT specimen is shown in Figure 5.4 .

The EIT specimen was then mounted on a load frame and the entire tabbed portions

were gripped. The electrodes were connected to a current source (Keithley 6221) and a DAQ

system (National Instruments PXIe-6368) to measure the electrode voltages. A current

magnitude of 10 µA was used for the injections. One set of voltages was collected from

the specimen in its undeformed configuration using the across injection scheme illustrated

in Figure 5.4 . From earlier testing of similar specimens, the displacement at failure was

estimated as uF ≈ 0.8 mm. Based on this, tensile displacements of 31%, 62%, and 93% of

uF were applied and voltage measurements were collected after each applied displacement.

After EIT testing, the specimen was dismounted from the load frame, the electrode

connections were removed, and the specimen was prepared for DIC measurements. For this,

the gauge section was coated with white paint and an ordered speckle pattern was applied

73



Figure 5.3. Mechanical testing results for CNF-modified polymer with 1.0%
weight fraction of CNFs. Top: Axial stress versus axial strain. The elastic
modulus was estimated as E = 2.534 GPa and the failure stress was estimated
as SF = 40 MPa. Bottom: Transverse strain versus axial strain. The Poisson’s
ratio was estimated as ν = 0.35.
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using a dotted roller dipped in black ink. The specimen was again mounted onto the load

frame and gripped. A 5 MP DIC camera system (Correlated Solutions) was set up and

calibrated and the cameras were focused on the gauge section. The specimen was then

loaded in tension at a constant displacement rate of 1.5 mm/s until failure and DIC data

was collected simultaneously.

5.2 CNF-Modified GFRP Nanocomposite Laminates

CNF-modified GFRP nanocomposite laminates were manufactured to experimentally

validate the metaheuristic algorithm-enabled precise damage shaping methodology. Three

types of specimens were manufactured: electrical testing specimens, through-hole testing

specimens, and impact testing specimens.

5.2.1 Manufacturing Procedure

The lay-up procedure used here is based on the work of Tallman et al [86 ]. A CNF-

modified polymer resin mixture with 1.0% weight fraction of nanofillers was prepared using

the procedure described earlier and degassed for 20 minutes in a vacuum chamber. Unidirec-

tional glass-fiber sheets (Fibre Glast Saertex) were then impregnated with the CNF-modified

polymer to produce two laminates with stacking sequences of [0/90/90/0] and thicknesses

of 3 mm. These will be referred to as laminates 1 and 2. The lay-up procedure for each

laminate is as follows. An 18” × 18” aluminum tool was cleaned with acetone and sealant

tape was applied around the edges. A layer of release film and a layer of peel ply were then

laid down on the tool. Next, four 10” × 10” sheets of glass fiber were laid down and impreg-

nated individually with the CNF-modified polymer using a paint brush. This was followed

by laying down another layer of peel ply and a layer of breather fabric. Next, two small

peel ply layers were sandwiched between four small breather fabric layers and laid on top

of the larger breather fabric. The entire lay-up was then vacuum bagged. A cross-sectional

schematic of the lay-up is shown in Figure 5.5 . After applying a vacuum and checking for

leaks, both lay-ups were transferred to an oven and cured for 5 hours at 60 ◦C. After curing,

two specimens measuring 3.25” × 3.25” were cut from each laminate using a water-cooled

75



Figure 5.4. Left: Photo of fully prepared EIT specimen. Electrodes are ap-
plied to the gauge section on opposite sides of the hole and grip tabs are applied
to the top and bottom portions of the specimen. Note that the electrodes are
numbered counter-clockwise. Right: Illustration of first current injection and
voltage measurement according to across injection scheme. Current is injected
in electrode 1 and electrode 24 is grounded.
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Figure 5.5. Cross-sectional schematic of lay-up used to manufacture CNF-
modified GFRP laminates.

tile saw, resulting in a total of four plate-like specimens. One of these is used later for

through-hole testing and the other three are used later for impact testing. A representative

specimen is shown in Figure 5.7 . Additionally, ten smaller specimens measuring 0.25” ×

0.25” were cut out of the remaining material of the 10” × 10” laminates for in-plane and

through-thickness conductivity measurements.

5.2.2 Electrical Testing

In order to estimate the baseline conductivity of CNF-modified GFRP, in-plane and

through-thickness conductivity measurements were collected from each of the 0.25” × 0.25”

specimens cut from laminates 1 and 2. The conductivity in the x-, y-, and z-direction

was measured from each specimen. Figure 5.6 shows a schematic of the specimen and the

coordinate system. To measure the conductivity in the x-direction, the faces of the specimen

with normal vectors pointing in the ±x-direction were fully coated with colloidal silver. The

resistance, R, between the electrodes was measured using a multi-meter and the conductivity

was calculated as σx = lx/RAe, where lx is the length of the specimen in the x-direction and

Ae is the area of a single electrode. This procedure was repeated to measure the conductivity

in the y- and z-directions. The conductivity measurement scheme is illustrated in Figure 5.6 

and the measured values of σx, σy, and σz are listed in Table 5.1 .

5.2.3 EIT Data Collection and Optical Microscopy

The four plate-like specimens measuring 3.25”× 3.25” were used for through-hole testing,

impact testing, and EIT data collection as follows. From the two specimens cut from laminate
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Figure 5.6. Schematic showing the principal coordinate system and the con-
ductivity measurement scheme. Top: Schematic of a 0.25” × 0.25” specimen
showing the coordinate system and the orientations of the individual layers.
The ellipses indicate the fiber cross-sections. Bottom row, left to right: Con-
ductivity measurement scheme in the x-, y-, and z-directions. The filled red
rectangles represent electrodes on the front faces of the specimen and the out-
lined red rectangles represent electrodes on the back faces of the specimen.

Table 5.1. Mean and standard deviations of conductivities measured in the
x-, y-, and z-directions from laminates 1 and 2.

Laminate σx [S/m] σy [S/m] σz [S/m]

1 0.024 ± 0.003 0.023 ± 0.004 (3.5 ± 1.8) × 10−4

2 0.054 ± 0.003 0.057 ± 0.004 (5.6 ± 2.2) × 10−4
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Figure 5.7. Representative 3.25” × 3.25” plate-like specimen. Top: Top-
down view of specimen without electrodes. Bottom: Specimen with colloidal
silver electrodes painted and mounted on acrylic base.

1, one specimen was used for through-hole testing and the other specimen was impacted with

an energy of 25 J. From the two specimens cut from laminate 2, one was impacted with 23

J and the other was impacted with 28 J. EIT data was collected from each specimen by

first painting evenly spaced colloidal silver patches along each edge. Each specimen was

then adhered to an acrylic base using superglue and additional colloidal silver patches were

painted on the acrylic to act as extended electrodes. Figure 5.7 shows a representative

specimen with electrodes applied and mounted on an acrylic base. Each specimen was then

connected to a current source and a DAQ system.
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For the through-hole testing specimen, a current magnitude of 0.25 mA was used. One set

of voltages was collected from the specimen before drilling a hole using an adjacent current

injection scheme. Three circular holes of radii 1.19 mm, 2.38 mm, and 3.18 mm were then

drilled and voltages were collected after drilling each new hole.

For the impact testing specimens, the impact energies (23 J, 25 J, and 28 J) were chosen

deliberately so that a measurable delamination was induced without perforating the speci-

mens. For the 23 J and 28 J impact specimens, a current magnitude of 0.25 mA was used.

For the 25 J specimen, a current magnitude of 0.1 mA was used. One set of voltages was

collected from each specimen before impacting using an adjacent injection scheme. Each

specimen was then mounted on a 6” × 4” aluminum plate with a central square cut-out

measuring 2” × 2”. The aluminum plate was clamped inside a drop tower (CEAST 9340)

and the specimens were impacted using a steel hemispherical striking head with a diameter

of 15.8 mm. Voltages were collected from each specimen after impacting.

In order to determine the delamination shape and size, each specimen was destructively

evaluated as follows. A water-cooled tile saw was used to completely cut through the speci-

men to expose the cross-section. The delamination length along the cross-section was then

recorded using an optical microscope (Zeiss Axioscope 2 MAT) and evenly spaced micro-

graphs of the cross-section were taken. Another cut was then made to expose a new cross-

section, the delamination length was recorded again, and micrographs of the cross-section

were taken again. This process was repeated until a cross-section with no delamination was

observed.

5.3 Summary

This chapter described the manufacturing and testing methods employed in this the-

sis. Two types of self-sensing composites were manufactured and characterized. First,

CNF-modified polymer nanocomposites were manufactured to validate the metaheuristic

algorithm-enabled piezoresistive inversion methodology. The electrical and mechanical prop-

erties of the nanocomposite were measured and the analytical piezoresistivity model (equa-

tion (4.2 )) was fit to the experimental data. A nanocomposite plate with a central hole
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was then manufactured and loaded in tension while EIT and DIC data were collected. Sec-

ond, CNF-modified GFRP nanocomposite laminates were manufactured to experimentally

validate the metaheuristic algorithm-enabled precise damage shaping methodology. The

electrical properties of the laminates were measured and plate-like specimens cut from the

laminates were damaged by drilling through-holes and impacting (to induce delaminations).

EIT data was collected before and after damage was inflicted. Optical microscopy was also

performed on the impacted specimens to measure the delamination size. The next chapter

presents the experimental EIT results for each type of self-sensing composite as well as the

results obtained by solving the associated conductivity-to-mechanics inverse problem.
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6. EXPERIMENTAL RESULTS AND ANALYSES

This chapter presents the experimental results and their analyses. First, for the CNF-

modified polymer nanocomposite experiment, the EIT results are presented and discussed.

The GA is then used to solve the piezoresistive inversion problem for the nanocomposite

and the resulting strain solutions are presented. The stresses are then calculated using the

inversely computed strains and used to predict failure. DIC results are also presented to

validate the inversely computed strains and stresses. Second, the piezoresistive inversion

problem is solved using SA and PSO and a comparison is drawn between the performances

of the GA, SA, and PSO in terms of solution quality, variability, accuracy, and efficiency.

Third, the results for the CNF-modified GFRP laminate experiments are presented and

discussed. The EIT and GA-enabled damage shaping results for through-hole testing are

presented first, followed by the EIT and GA-enabled damage shaping results for delamination

(impact) testing. Optical micrographs from destructive evaluation of the impact testing

specimens are also presented to validate the delamination shaping results.

6.1 Piezoresistive Inversion on CNF-Modified Polymer Nanocomposite

This section presents and analyzes the EIT and metaheuristic algorithm-enabled piezore-

sistive inversion results from the elastically deformed CNF-modified polymer nanocomposite

specimen.

6.1.1 EIT Results

In order to determine a suitable baseline conductivity, the EIT forward problem was

solved for several values of σ0 in the range 1 × 10−7 S/m ≤ σ0 ≤ 1 × 10−2 S/m. The value

of σ0 that minimized the l2-norm of the difference between the voltages collected from the

undeformed nanocomposite and the voltages predicted by solving the forward problem was

chosen as the optimum baseline conductivity. This value was found to be σ0 = 4.857 × 10−4

S/m. Note that this is a uniform baseline conductivity and not a true EIT solution. The

baseline conductivity is indicated as a red circle in Figure 5.1 . The corresponding CNF
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weight fraction is 1.26%. The conductivity change for each applied displacement (31%, 62%,

and 93% of uF ) was calculated by solving the constrained EIT inverse problem, shown again

in the following equation for convenience.

δσ∗ = min
−0.7σ0≤δσ≤0.7σ0

1
2


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 J

αL

 δσ −

δV
0


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

2

 (6.1)

In equation (6.1 ), the limits on δσ are based on the observation that the nanocomposite

did not experience failure during EIT testing. Since a 100% conductivity loss only occurs due

to material rupture, the maximum conductivity change increase and decrease were estimated

to be 70% of the baseline conductivity. This estimation was based on previous work where

piezoresistive nanocomposites were elastically deformed [116 ], [132 ], [133 ].

The conductivity changes obtained by solving equation (6.1 ) are shown in Figure 6.1 . It

can be immediately observed from Figure 6.1 that the magnitude of the conductivity change

increases as the applied displacement increases. That is, positive conductivity changes be-

come more positive and negative conductivity changes become more negative with increasing

tensile displacement. It can also be seen that as the applied displacement increases, the con-

ductivity decreases on the left and right edges of the hole while the conductivity increases

above and below the hole. A magnified view of the conductivity change in the gauge sec-

tion for each applied displacement is shown in Figure 6.2 . The phenomenon observed in

Figure 6.2 can be understood by considering the mechanical state of the nanocomposite in

the gauge section. From elementary mechanics, it is known that a state of tension exists on

the left and right edges of the hole while a state of compression exists above and below the

hole. Therefore, the large tensile strains on the left and right edges of the hole increase the

distance between neighboring nanofillers and cause a decrease in conductivity. Conversely,

the compressive strains above and below the hole decrease the distance between neighboring

nanofillers and cause an increase in conductivity. Another important observation from Figure

6.2 is that conductivity changes are localized within the gauge section of the nanocomposite.

This is because the top and bottom (tabbed) portions of the specimen are entirely gripped
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Figure 6.1. EIT conductivity change for each applied displacement in CNF-
modified polymer nanocomposite. Note that the magnitude of the conductivity
change increases as the applied displacement increases.

and displacement by the load frame. As such, the gauge section can be isolated to formulate

the BVP for piezoresistive inversion.

6.1.2 Conductivity-to-Strain and Stress Results

Next, the metaheuristic algorithm-enabled piezoresistive inversion problem was solved for

the nanocomposite using a GA. As described earlier, a BVP must be set up and the optimum

boundary conditions obtained using the metaheuristic algorithm. In order to formulate the

BVP, consider the experimental loading setup. The bottom gripped portion of the specimen

is fixed during the experiment so the displacement on the bottom edge of the gauge section is
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Figure 6.2. EIT conductivity change for each applied displacement in the
gauge section of CNF-modified polymer nanocomposite. Note the large mag-
nitude of the conductivity change in the vicinity of the hole due to the strain
concentration. The conductivity increases above and below the hole due to
compression and the conductivity decreases on the left and right of the hole
due to tension.
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Figure 6.3. BVP for gauge section of nanocomposite specimen. The known
boundary condition (blue) is zero displacement on the bottom edge and the
unknown boundary condition (red) is a displacement dm on the top edge. The
GA searches for the optimum components of dm in the 1- and 2-directions.

zero. This is the known boundary condition. The top gripped portion has an experimentally

applied displacement that is to be determined. This is the unknown displacement boundary

condition, dm, that the GA seeks. The BVP showing the known and unknown boundary

conditions is illustrated in Figure 6.3 . It should be noted that although a fixed boundary

condition on the bottom edge is considered here, an uncertain boundary condition on the

bottom edge can also be considered. In such a case, the GA would seek the displacements

on both the top and bottom edges.

Recall again that the nanocomposite did not experience failure during EIT testing. There-

fore, it is acceptable to assume that the unknown displacement, dm, must be less than the

displacement at failure, uF = 0.80 mm. The upper bound for the initial search space for

dm was specified as uF and the lower bound for the initial search space was defined as

−uF , while being cognizant of the fact that the specimen does not have the same failure

displacement in compression as it does in tension. The parameters specified for the GA were
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five bits for each component of dm, a population size of 200, a 2% mutation probability, a

BSA stopping criterion of 90%, and a maximum of 300 generations. Using these parameters,

successive searches for dm were performed using the GA until the convergence criterion in

equation (4.8 ) was satisfied. The resulting displacement fields were used to compute the first

principal strains. These are shown in the top row in Figure 6.4 . The first principal strain

is important because conductivity changes predicted via equation (4.2 ) are primarily driven

by the first principal strain. In order to validate the inversely computed strains, a series

of standard FE simulations were performed where the experimentally applied displacements

were applied to FE models of the gauge section of the nanocomposite. These were meant to

represent the ‘exact’ solutions. The resulting first principal strains are shown in the middle

row in Figure 6.4 . Additionally, the DIC measurements recorded during the experiment were

used to calculate the first principal strains. These are shown in the bottom row in Figure

6.4 . The DIC post-processing was performed using VIC-3D (Correlated Solutions) with a

subset size of 31. Note that the DIC images use a different color scale.

From Figure 6.4 , it can be immediately seen that the inversely computed strains agree

very well with the standard FEM strains and the DIC strains. Some artifacts are present

in the GA-predicted strains but there is overall good agreement. The convergence behavior

for the GA is shown in Figure 6.5 . For the first search of each displacement case, the BSA

stopping criterion is achieved after 100 generations, on average, and the minimum fitness

function at the end of each search decreases with successive searches. The global convergence

criterion in equation (4.8 ) is satisfied after the fourth search.

Next, the inversely computed strains were used to calculate stresses using the constitu-

tive relations for linear elastic materials, shown in equation (6.2 ). Here, E and ν are the

experimentally measured elastic modulus and Poisson’s ratio, respectively, and Sij are the

components of the Cauchy stress tensor. The symbol S is used deliberately for stress to

avoid confusion with the symbol for conductivity, σ.

Sij = E

1 + 2ν

[
εij +

(
ν

1 − 2ν

)
εkkδij

]
(6.2)
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The inversely computed first principal stresses for each displacement case are shown in

Figure 6.6 along with the standard FEM-predicted and DIC-measured first principal stresses.

It can be clearly seen from Figure 6.6 that the GA is able to accurately reconstruct the stress

state of the nanocomposite. Similar to the strains, minor artifacts are present in the stresses.

This is due to the variability in the individual components of the GA-predicted displacement

boundary condition. That is, some components of dm vary considerably from others. This

variability is amplified in the strains and stresses because these quantities are computed

using the gradient of the displacement field.
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6.1.3 Failure Prediction Results

Next, having solved the piezoresistive inversion problem to obtain the strains and stresses,

it is demonstrated that the inversely computed mechanical state of a self-sensing composite

can be used to accurately predict material failure. For this, a simple stress-based failure

criterion for brittle materials is used which predicts failure when the first principal stress

exceeds the failure stress of the material. This is shown in equation (6.3 ), where S1 is the

first principal stress and SF is the experimentally determined failure stress.

S1

SF
≥ 1 (6.3)

The above failure metric was calculated for each applied displacement case and the results

are shown in Figure 6.7 . It can be seen from Figure 6.7 that as the applied displacement

increases, equation (6.3 ) predicts that failure is most likely to occur at the left and right

edges of the hole. The inversely computed solutions are able to accurately capture this

phenomenon and show good agreement with standard FEM and DIC solutions.

6.2 Comparison of GA, SA, and PSO for Piezoresistive Inversion

In the previous section, piezoresistive inversion for the CNF-modified polymer nanocom-

posite experiment was solved using the GA. Although the inversely computed solutions

showed good accuracy overall, some minor artifacts were observed in the strains and stresses

in Figures 6.4 and 6.6 , respectively. This was attributed to small variations in the GA-

generated displacement boundary condition vector, dm, that are amplified when gradients

are calculated. As such, it is important to explore other metaheuristic algorithms to see if

the solution variability can be reduced and the quality of the inversely computed strains and

stresses can be improved. To that end, the piezoresistive inversion problem for the CNF-

modified polymer nanocomposite was solved using two additional algorithms —SA and PSO

—and their performances were compared to the performance of the GA. Note that the same

EIT solutions (shown in Figure 6.2 ) and BVP (shown in Figure 6.3 ) were used for all three

algorithms. For SA, an initial guess of zero displacement, an initial temperature of 0.01, and
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a reannealing interval of 20 were specified. For PSO, an initial swarm span of 500, and an

initial swarm size of 100. The convergence criterion for both algorithms was specified as a

function tolerance of 1 × 10−6. That is, convergence is achieved when the relative change in

fitness function is less than 1 × 10−6. These initialization parameters were selected to opti-

mize the performances of the SA and PSO algorithms by giving the lowest fitness function

value in the shortest run-time.

6.2.1 Displacements and Strains

The displacements obtained using the three algorithms are shown in Figure 6.8 . It

can be seen that SA and PSO are able to reconstruct the overall shape and magnitude

of the displacement with good accuracy. However, there is considerable variability in the

displacement magnitude along the top edge generated using the SA. This is particularly

pronounced for the case of u = 0.50 mm. The PSO solutions show comparatively less

variability in the displacement magnitude along the top edge.

The fitness function convergence for multiple searches of the three algorithms is shown

in Figure 6.9 . The GA shows the most marked change in the minimum fitness function

value after the first search. For the cases when u = 0.50 mm and u = 0.75 mm, both SA

and PSO show very little change in the minimum fitness function. However, the change is

considerable for the case when u = 0.25 mm. The global convergence criterion in equation

(4.8 ) is satisfied for all three algorithms after the fourth search.

The first principal strains computed using the three algorithm, standard FEM, and DIC

are shown in Figure 6.10 . The strains have been scaled according to the maximum and

minimum strains obtained via standard FEM. As a result, the strains for SA and PSO

have dark red regions close to the top edge of the domain. This is because the strains in

these regions are much larger than 1.5%. This was done to illustrate that variations in

the displacement boundary condition for the top edge for SA and PSO can lead to large,

unrealistic strains. Therefore, re-scaling the strains according to standard FEM solutions

allows for much clearer visualizing of the strain state in the vicinity of the hole. From Figure
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Figure 6.8. Displacement magnitude computed using the GA, SA, PSO,
standard FEM, and DIC. ©2020 IEEE.
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6.10 , it can be seen that the strains in the vicinity of the hole predicted using SA and PSO

agree well with the standard FEM solutions and DIC measurements.

The variability in the SA and PSO strain solutions can be more closely studied in Figure

6.11 . This figure shows the first principal strains in a small rectangular region close to

the top edge of the domain. The strains have been scaled according to the first principal

strains from SA (since these are the largest). For SA, the strain artifacts become larger in

magnitude as the applied displacement increases and the largest strains occur at the top

left and top right corners for the case when u = 0.75 mm. The strain artifacts for PSO are

comparatively smaller in magnitude than SA. The largest artifacts occur at the top left and

top right corners for the case when u = 0.25 mm.

6.2.2 Variability and Accuracy

Metaheuristic algorithms perform a non-smooth search, meaning no gradients of the

fitness function are calculated to compute step size or search direction. Instead, solutions

are generated and selected based on a combination of probabilistic and heuristic techniques.

Therefore, if a metaheuristic algorithm is used to search for a solution to a problem multiple

times, some variability in the solution may be observed for multiple searches. Given that

small variations in displacement can cause large variations in strains, it is worthwhile to

examine the degree of variability in the GA-, SA-, and PSO-generated displacement boundary

condition, dm. For this, each algorithm was run ten times for the case when u = 0.75 mm.

The mean and standard deviation of the nodal displacement magnitude along the top edge

for each algorithm is shown on the top in Figure 6.12 . It can be observed that SA has the

largest variability between different searches and it also has the largest inter-node variation

in displacement magnitude. This observation lends credence to the explanation that the

strains for SA are larger than those for the GA and PSO because there are much more

pronounced ‘jumps’ in the displacement between adjacent nodes for SA. The inter-node

displacement variation is similar for the GA and PSO. Furthermore, both the GA and PSO

show a similar trend in the displacement along the top edge. That is, the displacement

decreases sharply close to the left edge and then steadily increases towards the mid-point

96



Figure 6.10. First principal strain computed using the GA, SA, PSO, stan-
dard FEM, and DIC. ©2020 IEEE.
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Figure 6.11. First principal strains computed using SA and PSO in a region
of interest near the top edge of the domain, indicated by the red rectangle.
©2020 IEEE.
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of the edge. The displacement then decreases sharply close to the right edge. These sharp

changes in displacement are the cause of the strain artifacts observed in Figure 6.10 . One

possible cause of this variability is noise in the experimental data.

In order to quantify the accuracy of the inversely computed solutions, the percent error

between the GA-, SA-, and PSO-generated displacement of the top edge and the FEM

solution was calculated for the case when u = 0.75 mm. Note that the FEM solution is

meant to represent the ‘exact’ solution in this case. The percent error is shown on the

bottom in Figure 6.12 . Two key observations can be made. First, the error for SA is highest

close to the corners of the top edge. Second, the error trends for the GA and PSO are similar

across the plate. However, the PSO displacement has a larger error variability in the center

of the plate. This explains why larger strains are observed for PSO than the GA. Based

on these results, it can be stated that, of the three algorithms, the GA has the overall best

accuracy and smallest variability.

6.2.3 Efficiency

Lastly, in order to determine which algorithm is the most efficient at solving the piezore-

sistive inversion problem, a new ‘efficiency’ metric was defined as shown in equation (6.4 ).

In this equation, ψn is the efficiency for the nth search, f ∗
n is the minimum fitness function

value obtained after the nth search, and tn is the run-time (in minutes) for the nth search

of the algorithm. Therefore, a lower fitness function value or a shorter run-time result in a

higher efficiency.

ψn = 1
f ∗
ntn

(6.4)

The efficiencies computed for all searches of all three algorithms are plotted in Figure

6.13 . It can be immediately seen that for a given displacement case, the GA has the highest

efficiency. This indicates that the GA generates the best quality solution in the shortest

run-time. It can also be seen that the efficiency of each algorithm increases as the applied

displacement increases. For the cases when u = 0.25 mm and u = 0.50 mm, the efficiency of

the GA increases considerably with successive searches. This is because, as the search space

99



0 2 4 6 8 10 12 14 16 18 20

Node number along top edge

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.80

0.82

D
is

p
la

c
e
m

e
n
t 

m
a
g
n
it
u
d
e
 [

m
m

]

GA

SA

PSO

Exact solution

0 2 4 6 8 10 12 14 16 18 20

Node number along top edge

-2

0

2

4

6

8

10

12

14

E
rr

o
r 

[%
]

GA

SA

PSO

Figure 6.12. Variation in the nodal displacement magnitude of the top edge
for ten searches of each algorithm for the case when u = 0.75 mm. The node
numbers run from left to right along the top edge. That is, node 1 is located
at the top left corner and node 19 is located at the top right corner. Top:
Nodal displacement magnitude for the GA, SA, and PSO compared with the
FEM (exact) solution. Bottom: Percent error between the GA-, SA-, and
PSO-generated solutions and the FEM solution. ©2020 IEEE.

100



1 2 3 4

Search number

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6 GA u = 0.25 mm

GA u = 0.50 mm

GA u = 0.75 mm

SA u = 0.25 mm

SA u = 0.50 mm

SA u = 0.75 mm

PSO u = 0.25 mm

PSO u = 0.50 mm

PSO u = 0.75 mm

E
ff
ic

ie
n
c
y

Figure 6.13. Efficiency computed for all searches using all three algorithms.
©2020 IEEE.

is reduced, the GA requires fewer generations and shorter run-times to find an optimum

solution. It can also be seen that SA has a lowest efficiency followed by PSO. Furthermore,

the efficiencies of SA and PSO show very little change with increasing number of searches.

Therefore, it can be definitively stated that the GA is the most efficient algorithm for solving

this problem.

6.3 Precise Damage Shaping on CNF-Modified GFRP Nanocomposite Lami-
nates

This section presents and analyzes the EIT and metaheuristic algorithm-enabled precise

damage shaping results from the through-hole and impact testing experiments performed on

CNF-modified GFRP nanocomposite laminates.
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6.3.1 Through-Hole Shaping Results

In order to determine a suitable EIT baseline for the CNF-modified GFRP laminates, the

mean conductivities listed in Table 5.1 were used an initial estimate. Linear least squares

minimization was then used to iteratively update the initial estimate to find a uniform

optimum baseline conductivity that minimized the difference between the experimental pre-

damage voltages and the numerically computed voltages. Again, this is a uniform conductiv-

ity and not true EIT. For the through-hole testing specimens, the optimum in-plane baseline

conductivities were found to be σx0 = σy0 = 0.025 S/m. The constrained EIT inverse prob-

lem shown in equation (6.5 ) was then solved to obtain the conductivity change. Note that

the constraints on δσ in equation (6.5 ) are based on realistic assumptions about the expected

conductivity change. That is, it is well understood that damage such as through-holes and

delaminations causes a decrease in conductivity. The maximum decrease that is physically

possible has a magnitude equal to the baseline conductivity and the maximum increase is

relatively small. Therefore, an upper bound of 1% and a lower bound of -100% of the baseline

conductivity is used in equation (6.5 ).

δσ∗ = min
−σ0≤δσ≤0.01σ0

1
2


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 J

αL

 δσ −

δV
0


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

2

 (6.5)

The EIT results obtained using the above equation are shown in the left column in

Figure 6.14 . It can be observed from Figure 6.14 that EIT is able to detect the presence

of the holes. Another interesting observation is that larger magnitude conductivity changes

generally indicate more severe damage. For example, for the case of three holes, the EIT

image shows a larger conductivity change in vicinity of the largest hole than the conductivity

change in the vicinity of the two smaller holes. Therefore, some limited information about

the size of the holes can be obtained from the EIT image.

In order to precisely recover the shapes and sizes of the holes from the EIT-imaged

conductivity changes, the precise damage shaping problem was solved using the GA. Recall

that a geometric model for through-holes was developed earlier. In order to solve equation

(4.10 ), the GA was integrated with this geometric model using an adaptive meshing algorithm
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[147 ], [148 ] that generated circular cavities inside a FE mesh described by sm = [xc, yc, r].

The bounds on the initial search space for the GA, smin
m and smax

m , were specified based on

the sizes, locations, and conductivity change magnitudes observed in the EIT images. For

example, for the case of one hole, the lower bound was smin
m = [55, 55, 0.5] mm and the upper

bound was smax
m = [62, 62, 5] mm. The parameters used for the GA were a population size

of 50, a BSA stopping criterion of 99%, and a maximum of 30 generations.

The results from the GA-enabled through-hole shaping problem are shown in the right

column in Figure 6.14 . For the case of one hole, the algorithm is able to reconstruct a hole

with a radius of 1.33 m. For two holes, the algorithm reconstructs one hole with a radius of

1.34 mm and a second hole with a radius of 2.79 mm. Lastly, for the case of three holes, the

GA reconstructs one hole with a radius of 1.34 mm, a second hole with a radius of 2.79 mm,

and a third hole with a radius of 3.43 mm. It is clear that these results are considerably

more accurate and provide much more information about damage shape than standard EIT.

The average percent errors in the through-hole sizes and locations predicted using the GA

are listed in Table 6.1 .

Table 6.1. Average percent error in GA-generated hole sizes and locations
relative to actual hole sizes and locations. In this table, exc and eyc are the
average percent errors in the x- and y-coordinates of the center of the hole and
er is the average percent error in the hole radius.

Hole number exc [%] eyc [%] er [%]

1 1.67 3.33 11.76
2 3.33 5.77 17.22
3 9.52 3.70 7.86

The BSA convergence for the first search of each case and the fitness function convergence

for all searches are shown in Figure 6.15 . For the first search for the case of one hole, BSA

convergence is achieved after 16 generations and further searches do not improve the solution

quality. For the cases of two holes, 20 generations are required to achieve BSA convergence

and the solution improves slightly after repeated searches. For the first search of the case

of three holes, the maximum number of generations is reached before BSA convergence is

achieved. Furthermore, this case shows the most pronounced improvement in solution quality
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for consecutive searches. This is because as the number of holes increases, the number of

parameters in the geometric model also increases and the algorithm requires a larger number

of generations to converge.

6.3.2 Delamination Shaping Results

The optimum baseline conductivities of the impact testing specimens were obtained using

an iterative update method, similar to the through-hole testing specimens. For the 23 J and

28 J impact specimens, the optimum baseline conductivities were found to be σx0 = σy0 =

0.055 S/m and σz0 = 5 × 10−4 S/m. For the 25 J impact specimen, the optimum baseline

conductivities were found to be σx0 = σy0 = 0.02 S/m and σz0 = 3 × 10−4 S/m.

The EIT conductivity change obtained by solving equation (6.5 ) for each impact case is

shown in the first (top) row in Figure 6.19 . It can be seen that EIT is able to detect the

damage due to each impact. Furthermore, as the impact energy increases, the magnitude of

the conductivity change in the impacted region also increases. This indicates that damage

in the material is increasing as the impact energy increases. However, the precise size of the

impact-induced delamination cannot be immediately determined from the EIT conductivity

change.

In order to precisely compute delamination size from the EIT conductivity changes, the

metaheuristic algorithm-enabled damage shaping problem was solved using the GA. For this,

recall that a geometric model for delaminations was developed earlier. In order to integrate

this model with the GA and to make it applicable to a FE analysis, 3-D FE models of each

laminate were set up. Each model was assigned the optimum baseline conductivities (σx0,

σy0, and σz0) determined earlier. Note that instead of modeling an individual laminate as

composed of multiple layers with anisotropic conductivity, each laminate has been modeled

as an effective or homogenized material with the same bulk conductive properties as the

actual laminate. Each FE model used a layer of quadrilateral elements sandwiched between

two layers of hexahedral elements. The quadrilateral element layer is the FE equivalent

of the ‘interface’ layer shown in Figure 4.7 . The GA was then used to generate elliptical

conductivity artifacts described by sm = [xc, yc, rx, ry] inside the interface layer. The artifact
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Figure 6.16. Schematic of delamination modeling process for GA-enabled
precise damage shaping. The experimentally measured baseline conductivities
are used to construct 3-D FE models of each laminate using linear hexahedral
elements. The middle layer of the mesh is then collapsed to infinitesimal
thickness, to represent an interface at the mid-plane of the laminate. The GA
then generates elliptical conductivity artifacts inside this interface layer.

was assigned a uniform a conductivity of σx = σy = σz = σd = 1 × 10−6 S/m. A schematic

of the delamination modeling process is shown in Figure 6.16 . For the GA, a population

size of 20, a BSA stopping criterion of 65%, and a maximum of 20 generations were used.

A lower BSA stopping criterion than the through-hole shaping problem was used because it

was observed that the fitness function attains its minimum value at a relatively low BSA.

Therefore, trying to achieve a higher BSA only adds computational cost. The delamination

shapes in the interface layer reconstructed using the GA are shown in the second row in

Figure 6.19 .
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Figure 6.17. Optical micrograph of cross-section of 23 J impact specimen. A
delamination is clearly visible between the third (0◦) and fourth (90◦) layers.
The fibers in the 90◦ layers are pointing out of the page.

Optical microscopy was performed to measure the delamination size in each laminate.

Figure 6.17 shows a representative optical micrograph of the cross-section of the 23 J impact

laminate. A delamination can clearly be seen between the third (0◦) and fourth (90◦) layers.

In fact, for all impact cases it was observed that the delamination occurred between the third

and fourth layers. The complete delamination shape was reconstructed by making several

cuts through each laminate using a water-cooled tile saw and measuring the delamination

length at each exposed cross-section using the microscope. The measured delamination

lengths and cut thicknesses were then used to reconstruct the in-plane shape of the delam-

ination. This process is illustrated for a single cut in Figure 6.18 and the reconstructed

delamination shapes are shown in the third row in Figure 6.19 .

It can be immediately observed from Figure 6.19 that the delamination shapes and sizes

reconstructed using the GA agree very well with the delaminations measured using optical
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Figure 6.19. EIT, GA-enabled damage shaping, and optical microscopy re-
sults. First (top) row: EIT conductivity change. Second row: GA-generated
delamination shapes in the interface layer. Third row: Actual delamination
shapes reconstructed using optical microscopy. Bottom row: Post-impact pho-
tos of specimens. The impact locations are indicated by the silver circles.
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microscopy. As the impact energy increases, the size of the delamination also increases and

the GA is able to capture the growth of the delamination very well. There are minor differ-

ences between the GA-generated shapes and the actual delamination shapes. This difference

occurs because an impact does not cause a pure delamination. Instead, a combination of

failure modes exist in the material such as matrix cracking and fiber breakage. However, the

metaheuristic algorithm-enabled inversion does not capture all of these modes and, therefore,

compensates for the additional damage by artificially increasing the size of the delamination.

Despite this, the GA-generated delaminations provide much more insight into the underlying

mechanics of the material than standard EIT.

Lastly, the convergence of the GA-enabled delamination shaping problem can be studied

in Figures 6.20 and 6.21 . The fitness function for the first search of each impact case, shown in

Figure 6.20 , attains an optimal value at a small number of generations. Furthermore, from

Figure 6.21 , the change in the minimum fitness function value is very small for repeated

searches, indicating that there is no significant improvement in the solution and successive

searches are not necessary to produce a good quality solution.

6.4 Summary

This chapter presented the results from three main analyses performed in this thesis: i)

metaheuristic algorithm-enabled piezoresistive inversion, ii) a comparison of metaheuristic

algorithms for solving the piezoresistive inversion problem, and iii) metaheuristic algorithm-

enabled precise damage shaping.

The metaheuristic algorithm-enabled piezoresistive inversion problem was solved for an

elastically deformed CNF-modified polymer nanocomposite. EIT was used to image the con-

ductivity change in the nanocomposite and it was shown that strain concentrations manifest

as marked changes in the local conductivity of the material. The precise underlying displace-

ments, strains, and stresses were then recovered from the EIT-imaged conductivity changes

using a GA integrated with an analytical piezoresistivity model. The inversely computed

mechanical state of the material was validated by comparison with standard FE simulations
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and DIC measurements, and it was shown that this technique can be used to accurately

predict structural failure.

Next, a comparison was drawn between three algorithms for solving the piezoresistive

inversion problem – GA, SA, and PSO. The solution quality, variability for multiple searches,

accuracy relative to standard FEM, and the efficiency of each algorithm were evaluated. It

was determined that the GA had the best solution quality, the smallest variation for multiple

searches, the lowest percent error, and the highest efficiency, and was therefore the best

algorithm for solving the piezoresistive inversion problem.

Finally, the metaheuristic algorithm-enabled precise damage shaping problem was solved

on CNF-modified GFRP nanocomposite laminates. Two specific damage cases were con-

sidered – through-holes and impact-induced delaminations. For the through-hole testing

specimens, EIT was able to detect the presence of the holes. A GA was then integrated

with the previously developed geometric model for through-holes via an adaptive meshing

algorithm and used to reconstruct the precise shape and size of the through-holes. The

results showed good agreement with the actual hole sizes and locations. For the impact

testing specimens, EIT was able to detect the impact damage but did not provide precise

information about the delamination shape or size. For this, the GA was integrated with the

geometric model for delaminations developed previously. 3-D FE models of each laminate

were constructed and the middle layer of elements was collapsed to infinitesimal thickness

to represent an interface. The GA was then used to find the optimum shape of an elliptical

conductivity artifact inside this interface layer for each impact case. The delamination shap-

ing results showed excellent agreement with the actual delamination shapes obtained using

optical microscopy.
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7. SUMMARY OF SCHOLARLY CONTRIBUTIONS

This chapter provides a summary of the major scholarly contributions of this thesis and

discusses their impact in the broader context of self-sensing SHM. The overarching goal of this

work was to develop and validate methodologies for solving conductivity-to-mechanics inverse

problems using metaheuristic algorithms. This research was motivated by the fact that

current state-of-the-art self-sensing SHM is limited in that it provides little-to-no information

about the precise mechanical state of a structure. This information must be ascertained

by solving conductivity-to-mechanics inverse problems. These problems are challenging but

extremely important because conductivity is generally not a SHM-relevant property. Instead,

it would be much more beneficial to know, for example, the pressure distribution in a tactile

sensor, the displacement of a prosthetic implant, or the deflection of a bridge or an aircraft

wing. In light of this limitation, this thesis makes three important contributions toward

solving conductivity-to-mechanics inverse problems, as summarized in the following sections.

7.1 Metaheuristic Algorithm-Enabled Piezoresistive Inversion

The first major goal of this thesis was to develop a methodology for determining the

displacements, strains, and stresses in self-sensing composites using observed conductivity

changes. This is an under-determined inverse problem because conductivity is generally

described as a single-valued scalar while strain has six independent components. Further-

more, because piezoresistivity is driven primarily by the first principal strains, the relation

between conductivity and strain is not one-to-one. That is, multiple strain states can give

rise to the same observed conductivity change. As such, in order to solve the piezoresis-

tive inversion problem, a metaheuristic global search algorithm is required. Furthermore,

to ensure mechanically feasible solutions, the metaheuristic algorithm must be integrated

with a physics-based piezoresistivity model. This thesis mathematically formulates this

methodology and experimentally solves the piezoresistive inversion problem using a GA on

a self-sensing polymer nanocomposite.

This is an important contribution to the state of the art because, previously, gradient-

based optimization techniques have been used to solve the piezoresistive inversion problem
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[132 ], [133 ]. The applicability of these techniques, while efficient and elegant, is limited to

loading scenarios where the actual solution is relatively ‘close’ to the initial estimate. The

methodology proposed here addresses this limitation because it incorporates a global search

algorithm. As such, this technique can accurately determine the underlying displacements,

strains, and stresses for general loading scenarios and can even be used to predict failure. The

impact of this is far reaching and diverse. For example, knowing the conductivity distribution

in a wearable electronic sensor, the exact pressure distribution in the sensor can be inversely

determined. Similarly, the conductivity change in a aircraft wing deflected in-flight can

be used to precisely determine the stresses and predict when and where failure is likely to

occur. Furthermore, while this technique has been explored for self-sensing composites in

this thesis, its applicability can be easily extended to other engineering venues and to a wide

array of self-sensing material systems such as cements [51 ], concrete [49 ], ceramics [149 ], and

polymer-based sensing skins [150 ] and paints [151 ].

7.2 A Comparison of Metaheuristic Algorithms for Piezoresistive Inversion

Having solved the piezoresistive inversion problem using a GA, the second major goal of

this thesis was to explore other metaheuristic algorithms and compare their performances

to that of the GA. This was motivated by the fact that integrating a GA with a linear elas-

ticity BVP via the FE method and an analytical piezoresistivity model is computationally

expensive. Additionally, the inversely recovered strains and stresses showed minor artifacts

due to the variability in the GA-generated displacement boundary conditions. It was postu-

lated that other metaheuristic algorithms may provide better quality solutions with higher

efficiency. To that end, two algorithms were used to solve the previous piezoresistive inver-

sion problem —SA and PSO —and a comparison was drawn in terms of solution quality,

variability, accuracy, and efficiency. Both SA and PSO were able to produce good quality

displacement solutions but still exhibited strain artifacts due to large inter-node displace-

ment variability. It was observed that the GA had the fewest strain artifacts, the smallest

variability in nodal displacements, the highest accuracy, and was also the most efficient al-

gorithm in terms of producing the lowest fitness function value in the shortest run-time.
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Despite the impressive performance of the GA, this work demonstrates that good quality

solutions for piezoresistive inversion problems can be obtained using other widely available

and well-known metaheuristic algorithms.

7.3 Metaheuristic Algorithm-Enabled Precise Damage Shaping

The third major goal of this thesis was to develop a methodology for precisely determin-

ing the shape and size of specific damage modes in self-sensing composites using observed

conductivity changes. This is important because knowing the damage state, especially for

sub-surface or outwardly invisible damages, is often more critical to the safety of compos-

ite structures than just the strain field. This is a challenging inverse problem because no

well-defined mathematical relationship exists between damage geometry (shape and size)

and material conductivity. Therefore, gradient-based optimization schemes are not appli-

cable and metaheuristic algorithms are needed. Furthermore, geometric models that real-

istically describe how specific damage modes affect material conductivity are also required

to ensure physically meaningful solutions. This thesis first develops mechanics-inspired geo-

metric models for two specific damage modes: through-holes and delaminations. Next, the

metaheuristic-algorithm enabled precise damage shaping problem is mathematically formu-

lated and integrated with the damage models. A GA is then used to solve the precise damage

shaping problem on self-sensing composite laminates to recover the precise shape and size

of through-holes and delaminations.

This is an important advancement to the state of the art because prevailing conductivity-

based health monitoring provides no information about the underlying damage mechanisms

and shapes. From a NDE perspective, knowing the exact mechanism and size of damage

within a structure is crucial. For example, if the exact size and location of a delamination

within a composite airframe can be determined, the structure can either be repaired im-

mediately or taken out of service to avert catastrophic failure. Similarly, the health of a

bridge or a wind turbine blade can be accurately prognosticated by knowing the condition

of damage within the structure. This methodology contributes significantly toward the goal
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of improving the safety of high-risk engineering structures by enabling spatially continuous,

precise damage characterization.
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8. RECOMMENDATIONS FOR FUTURE WORK

The methodologies developed in this thesis are the first ever comprehensive effort to solve

conductivity-to-mechanics inverse problems in self-sensing materials. Although these tech-

niques are effective and powerful, they do have certain limitations and there is room for

improvement. Furthermore, this new and incredibly challenging subject has immense poten-

tial for advancing SHM and there are numerous areas for future research endeavors. This

chapter identifies some of the limitations of this thesis and also identifies areas where fu-

ture research can make significant contributions. Possible pathways for addressing these

limitations and for solving future problems are also delineated.

1. Solve inverse mechanics problems in other material systems: The metaheuris-

tic algorithm-enabled piezoresistive inversion and precise damage shaping methodolo-

gies developed herein are robust because they can easily be extended to different

material systems and loading scenarios. Therefore, future research should aim to solve

these problems on large, civil-inspired structures incorporating cementitious piezore-

sistive materials [50 ], [98 ], biomedical materials such as those used in self-sensing

prosthetic implants [152 ], flexible tactile sensors such as wearable electronics [153 ],

and even micro-scale systems such as biological tissue [154 ]. Furthermore, for these

problems it would be more efficient to integrate resistivity-strain relations [44 ], [139 ]

rather than analytical piezoresistivity models with suitable inversion techniques.

2. Develop mechanics-based metaheuristic algorithms to improve efficiency:

The GA, SA, and PSO used in this thesis were by no means optimized for solving

inverse mechanics problems. The parameters used for each algorithm were carefully

selected to give the best performance but the computational burden of using global

search algorithms was still significant. As such, one possible avenue of future research

is to develop metaheuristic algorithms with inherent features/programming that make

them more amenable to mechanics problems. This may also circumvent the need

to use high-performance computing architecture to solve complex problems with a

large number of unknowns. Furthermore, hybrid optimization techniques that aug-
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ment metaheuristic algorithms with gradient-based methods should also be explored

to improve efficiency.

3. Develop geometric models for other damage modes: This thesis considered two

specific damage models for solving the precise damage shaping problem: through-holes

and delaminations. Future research should work toward developing and experimentally

validating geometric models for other damage modes. This is because composites do

not generally experience one specific damage mode. Instead, it is well understood

that a complex combination of delamination, matrix cracking, and fiber breakage can

occur in realistic structural scenarios. Therefore, it is necessary to integrate realistic

physics for all these damage modes with suitable inversion algorithms. As such, one

possible avenue of future research is to develop universal damage models that can

capture realistic physics of multiple damage mechanisms and integrate these models

with suitable inversion algorithms for complete damage characterization in self-sensing

materials.

4. Extend damage shaping methodology to complex shapes: The precise dam-

age shaping methodology developed herein used parametric representations of dam-

age geometry. Specifically, through-holes were parameterized as circles and delamina-

tions were parameterized as ellipses. Although these parameterizations were physics-

informed and similar descriptions exist in prevailing literature [142 ]–[145 ], shapes for

failure modes in realistic loading scenarios are generally more complex than circles and

ellipses. Therefore, future work should develop geometric damage models that incor-

porate complex shapes. For general polygons, this might involve applying concepts

from topology optimization.

5. Develop machine learning-based methods for solving conductivity-to-mech-

anics inverse problems: Machine learning-based methods such as artificial neural

networks (ANNs) have recently been explored for precise damage characterization

using EIT-imaged conductivity changes in self-sensing materials [155 ], [156 ]. These

methods have incredible potential for solving conductivity-to-mechanics inverse prob-

120



lems but they require copious training data in to achieve good accuracy. Therefore, a

promising avenue of future work is to develop and experimentally validate ANNs for

solving piezoresistive inversion and precise damage shaping in self-sensing materials.

121



REFERENCES

[1] C. R. Farrar and K. Worden, “An Introduction to Structural Health Monitoring,” New
Trends in Vibration Based Structural Health Monitoring, pp. 1–17, 2010.

[2] F.-K. Chang, J. F. Markmiller, J. Yang, and Y. Kim, “Structural Health Monitoring,”
System Health Management: with Aerospace Applications, pp. 419–428, 2011.

[3] H. Sohn, C. R. Farrar, F. M. Hemez, D. D. Shunk, D. W. Stinemates, B. R. Nadler, and
J. J. Czarnecki, “A Review of Structural Health Monitoring Literature: 1996–2001,” Los
Alamos National Laboratory, USA, vol. 1, 2003.

[4] D. Balageas, C.-P. Fritzen, and A. Güemes, Structural Health Monitoring. John Wiley
& Sons, 2010, vol. 90.

[5] E. Guillen, “Investigation launched into ‘serious’ Airbus A380 engine failure,” NBC
News, Oct. 1, 2017. [Online]. Available: https://www.nbcnews.com/storyline/airplane-
mode/investigation-launched-serious-airbus-a380-engine-failure-n806301  .

[6] Reuters, “Death toll rises in Taiwan bridge collapse,” Deutsche Welle, Feb. 2, 2019.
[Online]. Available: https : / / www . dw . com / en / death - toll - rises - in - taiwan - bridge -
collapse/a-50652949 .

[7] D. Montalvao, N. M. M. Maia, and A. M. R. Ribeiro, “A Review of Vibration-Based
Structural Health Monitoring with Special Emphasis on Composite Materials,” Shock
and Vibration Digest, vol. 38, no. 4, pp. 295–324, 2006.

[8] A. Deraemaeker and K. Worden, New Trends in Vibration Based Structural Health
Monitoring. Springer Science & Business Media, 2012, vol. 520.

[9] C. P. Fritzen, “Vibration-based Structural Health Monitoring – Concepts and Applica-
tions,” in Key Engineering Materials, Trans Tech Publ, vol. 293, 2005, pp. 3–20.

[10] C. R. Farrar, S. W. Doebling, and D. A. Nix, “Vibration–Based Structural Damage
Identification,” Philosophical Transactions of the Royal Society of London. Series A:
Mathematical, Physical and Engineering Sciences, vol. 359, no. 1778, pp. 131–149, 2001.

[11] Z. Zhang, K. Shankar, E. V. Morozov, and M. Tahtali, “Vibration-Based Delamination
Detection in Composite Beams Through Frequency Changes,” Journal of Vibration and
Control, vol. 22, no. 2, pp. 496–512, 2016.

[12] R. Janeliukstis, S. Rucevskis, M. Wesolowski, and A. Chate, “Experimental Structural
Damage Localization in Beam Structure Using Spatial Continuous Wavelet Transform
and Mode Shape Curvature Methods,” Measurement, vol. 102, pp. 253–270, 2017.

122

https://www.nbcnews.com/storyline/airplane-mode/investigation-launched-serious-airbus-a380-engine-failure-n806301
https://www.nbcnews.com/storyline/airplane-mode/investigation-launched-serious-airbus-a380-engine-failure-n806301
https://www.dw.com/en/death-toll-rises-in-taiwan-bridge-collapse/a-50652949
https://www.dw.com/en/death-toll-rises-in-taiwan-bridge-collapse/a-50652949


[13] S. Khatir, A. Behtani, S. Tiachacht, A. Bouazouni, M. A. Wahab, and Y. Zhou, “De-
lamination Detection in Laminated Composite Using Virtual Crack Closure Technique
(VCCT) and Modal Flexibility Based on Dynamic Analysis,” in Journal of Physics:
Conference Series, IOP Publishing, vol. 842, 2017, p. 012 084.

[14] M. Mitra and S. Gopalakrishnan, “Guided Wave Based Structural Health Monitoring:
A Review,” Smart Materials and Structures, vol. 25, no. 5, p. 053 001, 2016.

[15] A. Raghavan, “Guided-Wave Structural Health Monitoring,” PhD thesis, 2007.

[16] A. J. Croxford, P. D. Wilcox, B. W. Drinkwater, and G. Konstantinidis, “Strategies
for Guided-Wave Structural Health Monitoring,” Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Sciences, vol. 463, no. 2087, pp. 2961–2981,
2007.

[17] V. Memmolo, E. Monaco, N. Boffa, L. Maio, and F. Ricci, “Guided Wave Propagation
and Scattering for Structural Health Monitoring of Stiffened Composites,” Composite
Structures, vol. 184, pp. 568–580, 2018.

[18] M. H. Sherafat, R. Guitel, N. Quaegebeur, P. Hubert, L. Lessard, and P. Masson, “Struc-
tural Health Monitoring of a Composite Skin-Stringer Assembly Using Within-the-Bond
Strategy of Guided Wave Propagation,” Materials & Design, vol. 90, pp. 787–794, 2016.

[19] S. K. Chakrapani and V. Dayal, “The Interaction of Rayleigh Waves with Delaminations
in Composite Laminates,” The Journal of the Acoustical Society of America, vol. 135,
no. 5, pp. 2646–2653, 2014. doi: 10.1121/1.4869684 .

[20] J. dos Reis, C. Oliveira Costa, and J. Sá da Costa, “Strain Gauges Debonding Fault
Detection for Structural Health Monitoring,” Structural Control and Health Monitoring,
vol. 25, no. 12, e2264, 2018.

[21] S. Takeda, Y. Aoki, T. Ishikawa, N. Takeda, and H. Kikukawa, “Structural Health Mon-
itoring of Composite Wing Structure During Durability Test,” Composite Structures,
vol. 79, no. 1, pp. 133–139, 2007.

[22] H. Choi, S. Choi, and H. Cha, “Structural Health Monitoring System Based on Strain
Gauge Enabled Wireless Sensor Nodes,” in 2008 5th International Conference on Net-
worked Sensing Systems, IEEE, 2008, pp. 211–214.

[23] G. Park, H. Sohn, C. R. Farrar, D. J. Inman, et al., “Overview of Piezoelectric Impedance-
Based Health Monitoring and Path Forward,” Shock and Vibration Digest, vol. 35, no. 6,
pp. 451–464, 2003.

123

https://doi.org/10.1121/1.4869684


[24] V. Giurgiutiu, Structural Health Monitoring: with Piezoelectric Wafer Active Sensors.
Elsevier, 2007.

[25] V. Giurgiutiu, A. Zagrai, and J. Jing Bao, “Piezoelectric Wafer Embedded Active Sen-
sors for Aging Aircraft Structural Health Monitoring,” Structural Health Monitoring,
vol. 1, no. 1, pp. 41–61, 2002.

[26] G. Park and D. J. Inman, “Structural Health Monitoring using Piezoelectric Impedance
Measurements,” Philosophical Transactions of the Royal Society A: Mathematical, Phys-
ical and Engineering Sciences, vol. 365, no. 1851, pp. 373–392, 2007.

[27] H.-N. Li, D.-S. Li, and G.-B. Song, “Recent Applications of Fiber Optic Sensors to
Health Monitoring in Civil Engineering,” Engineering Structures, vol. 26, no. 11, pp. 1647–
1657, 2004.

[28] J. M. López-Higuera, L. R. Cobo, A. Q. Incera, and A. Cobo, “Fiber Optic Sensors in
Structural Health Monitoring,” Journal of Lightwave Technology, vol. 29, no. 4, pp. 587–
608, 2011.

[29] A. Güemes, A. Fernández-López, P. F. Dı́az-Maroto, A. Lozano, and J. Sierra-Perez,
“Structural Health Monitoring in Composite Structures by Fiber-Optic Sensors,” Sen-
sors, vol. 18, no. 4, p. 1094, 2018.

[30] H. Guo, G. Xiao, N. Mrad, and J. Yao, “Fiber Optic Sensors for Structural Health
Monitoring of Air Platforms,” Sensors, vol. 11, no. 4, pp. 3687–3705, 2011.

[31] M. Ramakrishnan, G. Rajan, Y. Semenova, and G. Farrell, “Overview of Fiber Optic
Sensor Technologies for Strain/Temperature Sensing Applications in Composite Mate-
rials,” Sensors, vol. 16, no. 1, p. 99, 2016.

[32] G. Zhou and L. Sim, “Damage Detection and Assessment in Fibre-Reinforced Com-
posite Structures with Embedded Fibre Optic Sensors-Review,” Smart Materials and
Structures, vol. 11, no. 6, p. 925, 2002.

[33] S. Zike and L. P. Mikkelsen, “Correction of Gauge Factor for Strain Gauges used in
Polymer Composite Testing,” Experimental Mechanics, vol. 54, no. 3, pp. 393–403, 2014.

[34] J. Vitola, F. Pozo, D. A. Tibaduiza, and M. Anaya, “Distributed Piezoelectric Sensor
System for Damage Identification in Structures Subjected to Temperature Changes,”
Sensors, vol. 17, no. 6, p. 1252, 2017.

124



[35] M. Wevers, L. Rippert, J.-M. Papy, and S. Van Huffel, “Processing of Transient Sig-
nals from Damage in CFRP Composite Materials Monitored with Embedded Intensity-
Modulated Fiber Optic Sensors,” Ndt & E International, vol. 39, no. 3, pp. 229–235,
2006.

[36] M. E. Efimov, M. Y. Plotnikov, A. V. Kulikov, M. V. Mekhrengin, and A. Y. Kireenkov,
“Fiber-Optic Interferometric Sensor Based on the Self-Interference Pulse Interrogation
Approach for Acoustic Emission Sensing in the Graphite/Epoxy Composite,” IEEE
Sensors Journal, vol. 19, no. 18, pp. 7861–7867, 2019.

[37] S. Jothibasu, Y. Du, S. Anandan, G. S. Dhaliwal, A. Kaur, S. E. Watkins, K. Chan-
drashekhara, and J. Huang, “Strain Monitoring Using Distributed Fiber Optic Sensors
Embedded in Carbon Fiber Composites,” in Sensors and Smart Structures Technologies
for Civil, Mechanical, and Aerospace Systems 2018, International Society for Optics and
Photonics, vol. 10598, 2018, p. 105980I.

[38] H. Wang and J.-G. Dai, “Strain Transfer Analysis of Fiber Bragg Grating Sensor As-
sembled Composite Structures Subjected to Thermal Loading,” Composites Part B:
Engineering, vol. 162, pp. 303–313, 2019.

[39] K. Shivakumar and L. Emmanwori, “Mechanics of Failure of Composite Laminates
with an Embedded Fiber Optic Sensor,” Journal of Composite Materials, vol. 38, no. 8,
pp. 669–680, 2004.

[40] A. Fedorov, N. Kosheleva, V. Matveenko, and G. Serovaev, “Strain Measurement and
Stress Analysis in the Vicinity of a Fiber Bragg Grating Sensor Embedded in a Com-
posite Material,” Composite Structures, vol. 239, p. 111 844, 2020.

[41] D. D. L. Chung, “Carbon Materials for Structural Self-sensing, Electromagnetic Shield-
ing and Thermal Interfacing,” Carbon, vol. 50, no. 9, pp. 3342–3353, 2012.

[42] T. N. Tallman, S. Gungor, K. W. Wang, and C. E. Bakis, “Tactile Imaging and Dis-
tributed Strain Sensing in Highly Flexible Carbon Nanofiber/Polyurethane Nanocom-
posites,” Carbon, vol. 95, pp. 485–493, 2015.

[43] S. Rana, P. Subramani, R. Fangueiro, and A. G. Correia, “A Review on Smart Self-
Sensing Composite Materials for Civil Engineering Applications,” AIMS Materials Sci-
ence, vol. 3, no. 2, pp. 357–379, 2016.

[44] G. M. Koo and T. N. Tallman, “Higher-Order Resistivity-Strain Relations for Self-
Sensing Nanocomposites Subject to General Deformations,” Composites Part B: Engi-
neering, vol. 190, p. 107 907, 2020.

125



[45] G. M. Koo and T. N. Tallman, “Frequency-Dependent Alternating Current Piezoresis-
tive Switching Behavior in Self-Sensing Carbon Nanofiber Composites,” Carbon, vol. 173,
pp. 384–394, 2021.

[46] E. T. Thostenson and T.-W. Chou, “Carbon Nanotube Networks: Sensing of Distributed
Strain and Damage for Life Prediction and Self Healing,” Advanced Materials, vol. 18,
no. 21, pp. 2837–2841, 2006.

[47] E. T. Thostenson and T.-W. Chou, “Real-Time In Situ Sensing of Damage Evolution
in Advanced Fiber Composites Using Carbon Nanotube Networks,” Nanotechnology,
vol. 19, no. 21, p. 215 713, 2008.

[48] B. Han, X. Yu, and J. Ou, Self-Sensing Concrete in Smart Structures. Butterworth-
Heinemann, 2014.

[49] Z. Tian, Y. Li, J. Zheng, and S. Wang, “A State-of-the-Art on Self-Sensing Con-
crete: Materials, Fabrication and Properties,” Composites Part B: Engineering, vol. 177,
p. 107 437, 2019.

[50] S. Gupta, J. G. Gonzalez, and K. J. Loh, “Self-Sensing Concrete Enabled by Nano-
Engineered Cement-Aggregate Interfaces,” Structural Health Monitoring, vol. 16, no. 3,
pp. 309–323, 2017.

[51] A. O. Monteiro, P. B. Cachim, and P. M. Costa, “Self-Sensing Piezoresistive Cement
Composite Loaded with Carbon Black Particles,” Cement and Concrete Composites,
vol. 81, pp. 59–65, 2017.

[52] R. Riedel, L. Toma, E. Janssen, J. Nuffer, T. Melz, and H. Hanselka, “Piezoresistive
Effect in siOC Ceramics for Integrated Pressure Sensors,” Journal of the American
Ceramic Society, vol. 93, no. 4, pp. 920–924, 2010.

[53] M. Zarnik, D. Belavic, K. P. Friedel, and A. Wymyslowski, “A Procedure for Validating
the Finite Element Model of a Piezoresistive Ceramic Pressure Sensor,” IEEE Transac-
tions on Components and Packaging Technologies, vol. 27, no. 4, pp. 668–675, 2004.

[54] L. Du, Z. Zhao, L. Xiao, Z. Fang, Q. Tian, X. Sun, and X. Wang, “Nickel–Chromium
Alloy Piezoresistive Pressure Sensor Using Eutectic Bonding,” Micro & Nano Letters,
vol. 7, no. 12, pp. 1184–1188, 2012.

[55] X. Shi, C.-H. Cheng, C. Chao, L. Wang, and Y. Zheng, “A Piezoresistive Normal and
Shear Force Sensor Using Liquid Metal Alloy as Gauge Material,” in 2012 7th IEEE
International Conference on Nano/Micro Engineered and Molecular Systems (NEMS),
IEEE, 2012, pp. 483–486.

126



[56] H. Chiriac, M. Urse, F. Rusu, C. Hison, and M. Neagu, “Ni–Ag Thin Films as Strain-
Sensitive Materials for Piezoresistive Sensors,” Sensors and Actuators A: Physical,
vol. 76, no. 1-3, pp. 376–380, 1999.

[57] C. M. Murray, S. M. Doshi, D. H. Sung, and E. T. Thostenson, “Hierarchical Com-
posites with Electrophoretically Deposited Carbon Nanotubes for In Situ Sensing of
Deformation and Damage,” Nanomaterials, vol. 10, no. 7, p. 1262, 2020.

[58] F. Panozzo, M. Zappalorto, L. Maragoni, S. K. Nothdurfter, A. Rullo, and M. Quares-
imin, “Modelling the Electrical Resistance Change in a Multidirectional Laminate with
a Delamination,” Composites Science and Technology, vol. 162, pp. 225–234, 2018.

[59] C. Li and T.-W. Chou, “Modeling of Damage Sensing in Fiber Composites Using Carbon
Nanotube Networks,” Composites Science and Technology, vol. 68, no. 15-16, pp. 3373–
3379, 2008.

[60] Y. Wang, Y. Wang, B. Wan, B. Han, G. Cai, and Z. Li, “Properties and Mechanisms of
Self-Sensing Carbon Nanofibers/Epoxy Composites for Structural Health Monitoring,”
Composite Structures, vol. 200, pp. 669–678, 2018.

[61] R. B. Ladani, S. Wu, A. J. Kinloch, K. Ghorbani, A. P. Mouritz, and C. H. Wang,
“Enhancing Fatigue Resistance and Damage Characterisation in Adhesively-Bonded
Composite Joints by Carbon Nanofibres,” Composites Science and Technology, vol. 149,
pp. 116–126, 2017.

[62] L. Vertuccio, L. Guadagno, G. Spinelli, P. Lamberti, V. Tucci, and S. Russo, “Piezore-
sistive Properties of Resin Reinforced with Carbon Nanotubes for Health-Monitoring of
Aircraft Primary Structures,” Composites Part B: Engineering, vol. 107, pp. 192–202,
2016.

[63] S. Nag-Chowdhury, H. Bellegou, I. Pillin, M. Castro, P. Longrais, and J. Feller, “Non-
Intrusive Health Monitoring of Infused Composites with Embedded Carbon Quantum
Piezo-Resistive Sensors,” Composites Science and Technology, vol. 123, pp. 286–294,
2016.

[64] X. Du, H. Zhou, W. Sun, H.-Y. Liu, G. Zhou, H. Zhou, and Y.-W. Mai, “Graphene/Epoxy
Interleaves for Delamination Toughening and Monitoring of Crack Damage in Car-
bon Fibre/Epoxy Composite Laminates,” Composites Science and Technology, vol. 140,
pp. 123–133, 2017.

[65] S.-J. Joo, M.-H. Yu, W. S. Kim, and H.-S. Kim, “Damage Detection and Self-Healing
of Carbon Fiber Polypropylene (CFPP)/Carbon Nanotube (CNT) Nano-Composite
via Addressable Conducting Network,” Composites Science and Technology, vol. 167,
pp. 62–70, 2018.

127



[66] H. Dai, E. T. Thostenson, and T. Schumacher, “Processing and Characterization of a
Novel Distributed Strain Sensor Using Carbon Nanotube-Based Nonwoven Composites,”
Sensors, vol. 15, no. 7, pp. 17 728–17 747, 2015.

[67] G. Georgousis, C. Pandis, A. Kalamiotis, P. Georgiopoulos, A. Kyritsis, E. Kontou, P.
Pissis, M. Micusik, K. Czanikova, J. Kulicek, et al., “Strain Sensing in Polymer/Car-
bon Nanotube Composites by Electrical Resistance Measurement,” Composites Part B:
Engineering, vol. 68, pp. 162–169, 2015.

[68] J. Sebastian, N. Schehl, M. Bouchard, M. Boehle, L. Li, A. Lagounov, and K. Lafdi,
“Health Monitoring of Structural Composites with Embedded Carbon Nanotube Coated
Glass Fiber Sensors,” Carbon, vol. 66, pp. 191–200, 2014.

[69] A. Naghashpour and S. Van Hoa, “A Technique for Real-Time Detecting, Locating, and
Quantifying Damage in Large Polymer Composite Structures made of Carbon Fibers
and Carbon Nanotube Networks,” Structural Health Monitoring, vol. 14, no. 1, pp. 35–
45, 2015.

[70] A. Naghashpour and S. Van Hoa, “A Technique for Real-Time Detection, Location
and Quantification of Damage in Large Polymer Composite Structures made of Electri-
cally Non-Conductive Fibers and Carbon Nanotube Networks,” Nanotechnology, vol. 24,
no. 45, p. 455 502, 2013.

[71] C. Viets, S. Kaysser, and K. Schulte, “Damage Mapping of GFEP via Electrical Resis-
tance Measurements Using Nanocomposite Epoxy Matrix Systems,” Composites Part
B: Engineering, vol. 65, pp. 80–88, 2014.

[72] D. Zhang, L. Ye, D. Wang, Y. Tang, S. Mustapha, and Y. Chen, “Assessment of Trans-
verse Impact Damage in GF/EP Laminates of Conductive Nanoparticles Using Electri-
cal Resistivity Tomography,” Composites Part A: Applied Science and Manufacturing,
vol. 43, no. 9, pp. 1587–1598, 2012.

[73] A. Kovalovs, S. Rucevskis, V. Kulakov, and M. Wesołowski, “Damage Detection in
Carbon Fibre Reinforced Composites Using Electric Resistance Change Method,” in
IOP Conference Series: Materials Science and Engineering, IOP Publishing, vol. 471,
2019, p. 102 014.

[74] A. Kovalovs, “Numerical Analysis of Electrodes Position for Delamination Detection
by Using Electric Resistance Change Method,” in IOP Conference Series: Materials
Science and Engineering, IOP Publishing, vol. 603, 2019, p. 032 090.

[75] A. Todoroki, Y. Tanaka, and Y. Shimamura, “Delamination Monitoring of Graphite/Epoxy
Laminated Composite Plate of Electric Resistance Change Method,” Composites Sci-
ence and Technology, vol. 62, no. 9, pp. 1151–1160, 2002.

128



[76] A. Todoroki and Y. Tanaka, “Delamination Identification of Cross-Ply Graphite/Epoxy
Composite Beams Using Electric Resistance Change Method,” Composites Science and
Technology, vol. 62, no. 5, pp. 629–639, 2002.

[77] A. Todoroki, M. Tanaka, and Y. Shimamura, “Measurement of Orthotropic Electric
Conductance of CFRP Laminates and Analysis of the Effect on Delamination Monitor-
ing with an Electric Resistance Change Method,” Composites Science and Technology,
vol. 62, no. 5, pp. 619–628, 2002.

[78] S. Gungor and C. E. Bakis, “Indentation Damage Detection in Glass/Epoxy Compos-
ite Laminates with Electrically Tailored Conductive Nanofiller,” Journal of Intelligent
Material Systems and Structures, vol. 27, no. 5, pp. 679–688, 2016.

[79] A. P. Calderón, “On an Inverse Boundary Value Problem,” Computational & Applied
Mathematics, pp. 2–3, 2006.

[80] T. de Castro Martins, A. K. Sato, F. S. de Moura, E. D. L. B. de Camargo, O. L. Silva,
T. B. R. Santos, Z. Zhao, K. Möeller, M. B. P. Amato, J. L. Mueller, et al., “A Review
of Electrical Impedance Tomography in Lung Applications: Theory and Algorithms for
Absolute Images,” Annual Reviews in Control, vol. 48, pp. 442–471, 2019.

[81] V. Tomicic and R. Cornejo, “Lung Monitoring with Electrical Impedance Tomogra-
phy: Technical Considerations and Clinical Applications,” Journal of Thoracic Disease,
vol. 11, no. 7, p. 3122, 2019.

[82] G. Hansen, T. Holt, and J. Dmytrowich, “Thoracic Electrical Impedance Tomography to
Minimize Right Heart Strain Following Cardiac Arrest,” Annals of Pediatric Cardiology,
vol. 12, no. 3, p. 315, 2019.

[83] T. Tidswell, A. Gibson, R. H. Bayford, and D. S. Holder, “Three-Dimensional Electrical
Impedance Tomography of Human Brain Activity,” NeuroImage, vol. 13, no. 2, pp. 283–
294, 2001.

[84] T. N. Tallman and D. J. Smyl, “Structural Health and Condition Monitoring via Elec-
trical Impedance Tomography in Self-Sensing Materials: A Review,” Smart Materials
and Structures, vol. 29, no. 12, p. 123 001, Oct. 2020. doi: 10.1088/1361-665x/abb352 .

[85] H. Dai, G. J. Gallo, T. Schumacher, and E. T. Thostenson, “A Novel Methodology
for Spatial Damage Detection and Imaging Using a Distributed Carbon Nanotube-
Based Composite Sensor Combined with Electrical Impedance Tomography,” Journal
of Nondestructive Evaluation, vol. 35, no. 2, pp. 1–15, 2016.

129

https://doi.org/10.1088/1361-665x/abb352


[86] T. N. Tallman, S. Gungor, K. Wang, and C. E. Bakis, “Damage Detection via Electrical
Impedance Tomography in Glass Fiber/Epoxy Laminates with Carbon Black Filler,”
Structural Health Monitoring, vol. 14, no. 1, pp. 100–109, 2015.

[87] T. N. Tallman, S. Gungor, K. W. Wang, and C. Bakis, “Damage Detection and Con-
ductivity Evolution in Carbon Nanofiber Epoxy via Electrical Impedance Tomography,”
Smart Materials and Structures, vol. 23, no. 4, p. 045 034, 2014.

[88] A. Baltopoulos, N. Polydorides, L. Pambaguian, A. Vavouliotis, and V. Kostopoulos,
“Damage Identification in Carbon Fiber Reinforced Polymer Plates Using Electrical
Resistance Tomography Mapping,” Journal of Composite Materials, vol. 47, no. 26,
pp. 3285–3301, 2013.

[89] S. Nonn, M. Schagerl, Y. Zhao, S. Gschossmann, and C. Kralovec, “Application of
Electrical Impedance Tomography to an Anisotropic Carbon Fiber-Reinforced Polymer
Composite Laminate for Damage Localization,” Composites Science and Technology,
vol. 160, pp. 231–236, 2018.

[90] A. J. Thomas, J. J. Kim, T. N. Tallman, and C. E. Bakis, “Damage Detection in Self-
Sensing Composite Tubes via Electrical Impedance Tomography,” Composites Part B:
Engineering, vol. 177, p. 107 276, 2019.

[91] T.-C. Hou, K. J. Loh, and J. P. Lynch, “Spatial Conductivity Mapping of Carbon
Nanotube Composite Thin Films by Electrical Impedance Tomography for Sensing Ap-
plications,” Nanotechnology, vol. 18, no. 31, p. 315 501, 2007.

[92] T.-C. Hou, K. J. Loh, and J. P. Lynch, “Electrical Impedance Tomography of Car-
bon Nanotube Composite Materials,” in Sensors and Smart Structures Technologies for
Civil, Mechanical, and Aerospace Systems 2007, International Society for Optics and
Photonics, vol. 6529, 2007, p. 652 926.

[93] K. Loh, T.-C. Hou, J. Lynch, and N. Kotov, “Nanotube-Based Sensing Skins for Crack
Detection and Impact Monitoring of Structures,” in Proceedings of the 6th International
Workshop on Structural Health Monitoring, Stanford, CA, USA, 2007, p. 16 851 692.

[94] K. J. Loh, T.-C. Hou, J. P. Lynch, and N. A. Kotov, “Spatial Structural Sensing by
Carbon Nanotube-Based Skins,” in Sensors and Smart Structures Technologies for Civil,
Mechanical, and Aerospace Systems 2008, International Society for Optics and Photon-
ics, vol. 6932, 2008, p. 693 207.

[95] K. J. Loh, T.-C. Hou, J. P. Lynch, and N. A. Kotov, “Carbon Nanotube Sensing Skins
for Spatial Strain and Impact Damage Identification,” Journal of Nondestructive Eval-
uation, vol. 28, no. 1, pp. 9–25, 2009.

130



[96] W. Lestari, B. Pinto, V. La Saponara, J. Yasui, and K. J. Loh, “Sensing Uniaxial
Tensile Damage in Fiber-Reinforced Polymer Composites Using Electrical Resistance
Tomography,” Smart Materials and Structures, vol. 25, no. 8, p. 085 016, 2016.

[97] B. R. Loyola, V. La Saponara, K. J. Loh, T. M. Briggs, G. O’Bryan, and J. L. Skin-
ner, “Spatial Sensing Using Electrical Impedance Tomography,” IEEE Sensors Journal,
vol. 13, no. 6, pp. 2357–2367, 2013.

[98] M. Hallaji, A. Seppänen, and M. Pour-Ghaz, “Electrical Impedance Tomography-Based
Sensing Skin for Quantitative Imaging of Damage in Concrete,” Smart Materials and
Structures, vol. 23, no. 8, p. 085 001, 2014.

[99] M. Hallaji and M. Pour-Ghaz, “A New Sensing Skin for Qualitative Samage Detection in
Concrete Elements: Rapid Difference Imaging with Electrical Resistance Tomography,”
NDT & E International, vol. 68, pp. 13–21, 2014.

[100] A. Seppänen, M. Hallaji, and M. Pour-Ghaz, “A Functionally Layered Sensing Skin
for the Detection of Corrosive Elements and Cracking,” Structural Health Monitoring,
vol. 16, no. 2, pp. 215–224, 2017.

[101] D. Smyl, M. Pour-Ghaz, and A. Seppänen, “Detection and Reconstruction of Complex
Structural Cracking Patterns with Electrical Imaging,” NDT & E International, vol. 99,
pp. 123–133, 2018.

[102] R. Harikumar, R. Prabu, and S. Raghavan, “Electrical Impedance Tomography (EIT)
and its Medical Applications: A Review,” Int. J. Soft Comput. Eng, vol. 3, no. 4, pp. 193–
198, 2013.

[103] D. Nguyen, C. Jin, A. Thiagalingam, and A. McEwan, “A Review on Electrical Impedance
Tomography for Pulmonary Perfusion Imaging,” Physiological measurement, vol. 33,
no. 5, p. 695, 2012.

[104] D. Silvera-Tawil, D. Rye, M. Soleimani, and M. Velonaki, “Electrical Impedance Tomog-
raphy for Artificial Sensitive Robotic Skin: A Review,” IEEE Sensors Journal, vol. 15,
no. 4, pp. 2001–2016, 2014.

[105] T. Rymarczyk, P. Tchórzewski, K. Niderla, P. Adamkiewicz, and J. Sikora, “Electri-
cal Tomography System for Acquisition and Monitoring of Geospatial Areas,” in 2019
Applications of Electromagnetics in Modern Engineering and Medicine (PTZE), IEEE,
2019, pp. 188–192.

131



[106] O. L. Silva, R. G. Lima, T. C. Martins, F. S. de Moura, R. S. Tavares, and M. S. G.
Tsuzuki, “Influence of Current Injection Pattern and Electric Potential Measurement
Strategies in Electrical Impedance Tomography,” Control Engineering Practice, vol. 58,
pp. 276–286, 2017.

[107] T. K. Bera and J. Nagaraju, “Studying the Resistivity Imaging of Chicken Tissue Phan-
toms with Different Current Patterns in Electrical Impedance Tomography (EIT),”
Measurement, vol. 45, no. 4, pp. 663–682, 2012.

[108] S. Russo, S. Nefti-Meziani, N. Carbonaro, and A. Tognetti, “A Quantitative Evaluation
of Drive Pattern Selection for Optimizing EIT-Based Stretchable Sensors,” Sensors,
vol. 17, no. 9, p. 1999, 2017.

[109] M. R. Islam and M. A. Kiber, “Electrical Impedance Tomography Imaging Using Gauss-
Newton Algorithm,” in 2014 International Conference on Informatics, Electronics &
Vision (ICOEV), IEEE, 2014, pp. 1–4.

[110] Y. Zhao, L. Wang, S. Gupta, K. J. Loh, and M. Schagerl, “Comparison of Electrical
Impedance Tomography Inverse Solver Approaches for Damage Sensing,” in Nonde-
structive Characterization and Monitoring of Advanced Materials, Aerospace, and Civil
Infrastructure 2017, International Society for Optics and Photonics, vol. 10169, 2017,
p. 1 016 915.

[111] W. Shang, W. Xue, Y. Li, and Y. Xu, “Improved Primal–Dual Interior-Point Method
Using the Lawson-Norm for Inverse Problems,” IEEE Access, vol. 8, pp. 41 053–41 061,
2020.

[112] D. Smyl, S. Bossuyt, W. Ahmad, A. Vavilov, and D. Liu, “An Overview of 38 Least
Squares–Based Frameworks for Structural Damage Tomography,” Structural Health
Monitoring, vol. 19, no. 1, pp. 215–239, 2020.

[113] T. N. Tallman and J. A. Hernandez, “The Effect of Error and Regularization Norms on
Strain and Damage Identification via Electrical Impedance Tomography in Piezoresistive
Nanocomposites,” NDT & E International, vol. 91, pp. 156–163, 2017.

[114] D. S. Holder, Electrical Impedance Tomography: Methods, History and Applications.
CRC Press, 2004.

[115] T. N. Tallman, “Conductivity-Based Nanocomposite Structural Health Monitoring via
Electrical Impedance Tomography.,” PhD thesis, 2015.

132



[116] H. Hassan, F. Semperlotti, K.-W. Wang, and T. N. Tallman, “Enhanced Imaging of
Piezoresistive Nanocomposites Through the Incorporation of Nonlocal Conductivity
Changes in Electrical Impedance Tomography,” Journal of Intelligent Material Systems
and Structures, vol. 29, no. 9, pp. 1850–1861, 2018.

[117] D. Liu, D. Smyl, D. Gu, and J. Du, “Shape-Driven Difference Electrical Impedance
Tomography,” IEEE Transactions on Medical Imaging, vol. 39, no. 12, pp. 3801–3812,
2020.

[118] D. Liu, D. Gu, D. Smyl, J. Deng, and J. Du, “B-Spline-Based Sharp Feature Preserving
Shape Reconstruction Approach for Electrical Impedance Tomography,” IEEE Trans-
actions on Medical Imaging, vol. 38, no. 11, pp. 2533–2544, 2019.

[119] D. Liu and J. Du, “A Moving Morphable Components Based Shape Reconstruction
Framework for Electrical Impedance Tomography,” IEEE Transactions on Medical Imag-
ing, vol. 38, no. 12, pp. 2937–2948, 2019.

[120] N. V. Ranade and D. C. Gharpure, “Enhancing Sharp Features by Locally Relaxing
Regularization for Reconstructed Images in Electrical Impedance Tomography,” Journal
of Electrical Bioimpedance, vol. 10, no. 1, pp. 2–13, 2019.

[121] D. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, 1st.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1989, isbn: 0201157675.

[122] M. Mitchell, An Introduction to Genetic Algorithms. Cambridge, MA, USA: MIT Press,
1998, isbn: 0262631857.

[123] S. Raghavan, P. Imbrie, and W. A. Crossley, “Spectral Analysis of R-Lines and Vibronic
Sidebands in the Emission Spectrum of Ruby Using Genetic Algorithms,” Applied Spec-
troscopy, vol. 62, no. 7, pp. 759–765, 2008.

[124] S. N. Sivanandam and S. N. Deepa, “Genetic algorithms,” in Introduction to Genetic
Algorithms, Springer, 2008, pp. 15–37.

[125] P. J. Van Laarhoven and E. H. Aarts, “Simulated Annealing,” in Simulated Annealing:
Theory and Applications, Springer, 1987, pp. 7–15.

[126] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, “Equa-
tion of State Calculations by Fast Computing Machines,” The Journal of Chemical
Physics, vol. 21, no. 6, pp. 1087–1092, 1953.

[127] L. Ingber, “Adaptive Simulated Annealing (ASA): Lessons Learned,” arXiv preprint
cs/0001018, 2000.

133



[128] J. Yao, Z. Wan, and Y. Fu, “Acceleration Harmonic Estimation for Hydraulic Servo
Shaking Table by Using Simulated Annealing Algorithm,” Applied Sciences, vol. 8, no. 4,
p. 524, 2018.

[129] J. Kennedy and R. Eberhart, “Particle Swarm Optimization,” in Proceedings of ICNN’95
- International Conference on Neural Networks, IEEE, vol. 4, 1995, pp. 1942–1948.

[130] E. Mezura-Montes and C. A. C. Coello, “Constraint-Handling in Nature-Inspired Nu-
merical Optimization: Past, Present and Future,” Swarm and Evolutionary Computa-
tion, vol. 1, no. 4, pp. 173–194, 2011.

[131] M. E. H. Pedersen, “Good Parameters for Particle Swarm Optimization,” Hvass Lab.,
Copenhagen, Denmark, Tech. Rep. HL1001, pp. 1551–3203, 2010.

[132] T. N. Tallman and K. W. Wang, “An Inverse Methodology for Calculating Strains
from Conductivity Changes in Piezoresistive Nanocomposites,” Smart Materials and
Structures, vol. 25, no. 11, p. 115 046, 2016.

[133] T. N. Tallman, S. Gungor, G. M. Koo, and C. E. Bakis, “On the Inverse Determination of
Displacements, Strains, and Stresses in a Carbon Nanofiber/Polyurethane Nanocompos-
ite from Conductivity Data Obtained via Electrical Impedance Tomography,” Journal
of Intelligent Material Systems and Structures, vol. 28, no. 18, pp. 2617–2629, 2017.

[134] D. D. L. Chung, “A Critical Review of Piezoresistivity and its Application in Electrical-
Resistance-Based Strain Sensing,” Journal of Materials Science, pp. 1–30, 2020.

[135] N. Hu, Z. Masuda, G. Yamamoto, H. Fukunaga, T. Hashida, and J. Qiu, “Effect of
Fabrication Process on Electrical Properties of Polymer/Multi-Wall Carbon Nanotube
Nanocomposites,” Composites Part A: Applied Science and Manufacturing, vol. 39,
no. 5, pp. 893–903, 2008.

[136] R. Rahman and P. Servati, “Effects of Inter-Tube Distance and Alignment on Tunnelling
Resistance and Strain Sensitivity of Nanotube/Polymer Composite Films,” Nanotech-
nology, vol. 23, no. 5, p. 055 703, 2012.

[137] X. Ren, A. K. Chaurasia, and G. D. Seidel, “Concurrent Multiscale Modeling of Coupling
Between Continuum Damage and Piezoresistivity in CNT-Polymer Nanocomposites,”
International Journal of Solids and Structures, vol. 96, pp. 340–354, 2016.

[138] A. K. Chaurasia and G. D. Seidel, “Computational Micromechanics Analysis of Electron
Hopping and Interfacial Damage Induced Piezoresistive Response in Carbon Nanotube-
Polymer Nanocomposites Subjected to Cyclic Loading Conditions,” European Journal
of Mechanics-A/Solids, vol. 64, pp. 112–130, 2017.

134



[139] G. M. Koo and T. N. Tallman, “On the Development of Tensorial Deformation-Resistivity
Constitutive Relations in Conductive Nanofiller-Modified Composites,” in Smart Ma-
terials, Adaptive Structures and Intelligent Systems, American Society of Mechanical
Engineers, vol. 51951, 2018, V002T05A004.

[140] T. N. Tallman and K. W. Wang, “An Arbitrary Strains Carbon Nanotube Composite
Piezoresistivity Model for Finite Element Integration,” Applied Physics Letters, vol. 102,
no. 1, p. 011 909, 2013.

[141] T. Takeda, Y. Shindo, Y. Kuronuma, and F. Narita, “Modeling and Characterization of
the Electrical Conductivity of Carbon Nanotube-Based Polymer Composites,” Polymer,
vol. 52, no. 17, pp. 3852–3856, 2011.

[142] K. Wang, L. Zhao, H. Hong, J. Zhang, and N. Hu, “An Extended Analytical Model for
Predicting the Compressive Failure Behaviors of Composite Laminate With an Arbi-
trary Elliptical Delamination,” International Journal of Solids and Structures, vol. 185,
pp. 439–447, 2020.

[143] Z. Jia, C. Chen, F. Wang, and C. Zhang, “Analytical Study of Delamination Damage
and Delamination-Free Drilling Method of CFRP Composite,” Journal of Materials
Processing Technology, vol. 282, p. 116 665, 2020.

[144] S. Maleki, R. Rafiee, A. Hasannia, and M. R. Habibagahi, “Investigating the Influence
of Delamination on the Stiffness of Composite Pipes Under Compressive Transverse
Loading Using Cohesive Zone Method,” Frontiers of Structural and Civil Engineering,
vol. 13, no. 6, pp. 1316–1323, 2019.

[145] A. Köllner and C. Völlmecke, “Post-Buckling Behaviour and Delamination Growth
Characteristics of Delaminated Composite Plates,” Composite Structures, vol. 203, pp. 777–
788, 2018.

[146] “D638-14 Standard Test Method for Tensile Properties of Plastics,” ASTM Interna-
tional, West Conshohocken, PA, Standard, 2014.

[147] D. Engwirda, “Unstructured Mesh Methods for the Navier-Stokes Equations,” Under-
graduate Thesis, School of Engineering, University of Sidney, 2005.

[148] D. Engwirda, “Locally Optimal Delaunay-Refinement and Optimisation-Based Mesh
Generation,” 2014.

[149] C. E. Smith, G. N. Morscher, and Z. H. Xia, “Monitoring Damage Accumulation in
Ceramic Matrix Composites Using Electrical Resistivity,” Scripta Materialia, vol. 59,
no. 4, pp. 463–466, 2008.

135



[150] H. Chen, L. Miao, Z. Su, Y. Song, M. Han, X. Chen, X. Cheng, D. Chen, and H. Zhang,
“Fingertip-Inspired Electronic Skin Based on Triboelectric Sliding Sensing and Porous
Piezoresistive Pressure Detection,” Nano Energy, vol. 40, pp. 65–72, 2017.

[151] S. Makireddi, S. Shivaprasad, G. Kosuri, F. V. Varghese, and K. Balasubramaniam,
“Electro-Elastic and Piezoresistive Behavior of Flexible MWCNT/PMMA Nanocom-
posite Films Prepared by Solvent Casting Method for Structural Health Monitoring
Applications,” Composites Science and Technology, vol. 118, pp. 101–107, 2015.

[152] P. Alpuim, S. A. Filonovich, C. M. Costa, P. F. Rocha, M. I. Vasilevskiy, S. Lanceros-
Mendez, C. Frias, A. T. Marques, R. Soares, and C. Costa, “Fabrication of a Strain
Sensor for Bone Implant Failure Detection Based on Piezoresistive Doped Nanocrys-
talline Silicon,” Journal of non-crystalline solids, vol. 354, no. 19-25, pp. 2585–2589,
2008.

[153] Q. Zheng, J.-h. Lee, X. Shen, X. Chen, and J.-K. Kim, “Graphene-Based Wearable
Piezoresistive Physical Sensors,” Materials Today, 2020.

[154] E. J. Lee, H. Wi, A. L. McEwan, A. Farooq, H. Sohal, E. J. Woo, J. K. Seo, and T. I. Oh,
“Design of a Microscopic Electrical Impedance Tomography System for 3D Continuous
Non-Destructive Monitoring of Tissue Culture,” Biomedical engineering online, vol. 13,
no. 1, pp. 1–15, 2014.

[155] L. Zhao, T. Tallman, and G. Lin, “Spatial Damage Characterization in Self-Sensing Ma-
terials via Neural Network-Aided Electrical Impedance Tomography: A Computational
Study,” arXiv preprint arXiv:2010.01674, 2020.

[156] H. Ghaednia, C. E. Owens, L. E. Keiderling, K. M. Varadarajan, A. J. Hart, J. H.
Schwab, and T. N. Tallman, “Is Machine Learning Able to Detect and Classify Failure in
Piezoresistive Bone Cement Based on Electrical Signals?” arXiv preprint arXiv:2010.12147,
2020.

136



A. DETAILED FORWARD PROBLEM FORMULATION

A.1 Introduction

This appendix has been adapted from reference [115 ] and gives a detailed FE formulation

of the EIT forward problem with explicit solutions for the complete electrode model (CEM)

matrices. Indicial notation is used unless otherwise stated. Repeated indices in the sub-

scripts indicate summation over the dimension of the problem unless a summation operator

is explicitly included. Superscripts are reserved for element or node quantities and conduc-

tivity is assumed to be a general second-order tensor. Linear triangular elements in two

dimensions and linear hexahedral elements in three dimensions were used in this research.

However, this appendix only presents the FE formulation of the CEM matrices for linear

triangular elements. This formulation can be easily extended to 3-D and to elements with

higher-order interpolation functions.

A.2 Formulation and Discretization of the Weak Form for Steady-State Diffu-
sion

The governing equation for steady-state diffusion is Laplace’s equation, shown below.

− ∂ji
∂xi

= ∂

∂xi
σij

∂φ

∂xj
= f (A.1)

In the above, ji is the current density vector, σij is the conductivity tensor, φ is the

domain potential, and f is an internal current source. It is then assumed that current only

flows through the active electrodes and no current flows through the boundary, as described

by the following equations.

∫
El

σij
∂φ

∂xi
nj dSl = Il (A.2)

σij
∂φ

∂xi
nj = 0 off

L⋃
l=1

El (A.3)
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In the above equations, El is the length of the lth electrode, nj is an outward pointing

normal vector, Il is the current through the lth electrode, and L is the total number of

electrodes. Conservation of charge is then enforced as shown in the following equation.

L∑
l=1

Il = 0 (A.4)

The weak form of equation (A.1 ) is formed by multiplying both sides by an arbitrary

weighting function, ψ, that satisfies the Dirichlet boundary conditions and integrating over

the domain, Ω, as shown in the following equation.

∫
Ω
ψ
∂

∂xj
σij

∂φ

∂xj
dΩ =

∫
Ω
ψfdΩ (A.5)

In the absence of internal current sources, f = 0 and equation (A.5 ) can be rewritten as

equation (A.6 ) using the vector identity ∂
∂xj
ψσij

∂φ
∂xi

= ∂ψ
∂xi
σij

∂φ
∂xj

+ ψ ∂
∂xj
σij

∂φ
∂xj

.

∫
Ω

∂

∂xj
ψσij

∂φ

∂xi
dΩ −

∫
Ω

∂ψ

∂xi
σij

∂φ

∂xj
dΩ (A.6)

Using the divergence theorem, equation (A.6 ) can be rewritten as equation (A.7 ), where

Γ is the union of the electrode areas.

∫
Ω

∂

∂xj
σij

∂φ

∂xi
dΩ =

∫
∂Ω
ψσij

∂φ

∂xi
nj dS =

∫
Γ
σij

∂φ

∂xj
njψ dS (A.7)

Next, substituting the domain-electrode CEM boundary condition in equation (3.2 ) into

equation (A.7 ) gives the following equation.

∫
Ω

∂φ

∂xi
σij

∂φ

∂xj
dΩ =

L∑
l=1

∫
El

1
zl

(Vl − φ)ψ dSl (A.8)

Discretizing equation (A.8 ) using finite element results in equation (A.9 ), where e is the

element number and φe and ψe are element-wise quantities defined as shown in equations

(A.10 ) and (A.11 ), respectively.

∑
e

∫
Ωe

∂ψe
∂xi

σij
∂φe
∂xj

dΩe =
∑
e

L∑
l=1

∫
∂Ωe

1
zl

(Vl − φe)ψe dSe (A.9)
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φe =
N∑
A=1

wAdAe (A.10)

ψe =
N∑
A=1

wAcAe (A.11)

In the preceding equations, A is the node number, wA is the Ath interpolation function,

dAe is the potential solution at the Ath node of the eth element, and cAe is the variation of

the Ath node of the eth element. The operator ∑e implies assembly over all elements in the

discretized domain.

A.3 Formulation of CEM Matrices

Substituting the expressions for φe and ψe into the right hand side of equation (A.9 ) gives

equation (A.12 ).

∫
Ωe

∂ψe
∂xi

σij
∂φe
∂xj

dΩe =
N∑
A=1

N∑
B=1

cAe

∫
Ωe

∂wA

∂xi
σij
∂wB

∂xj
dΩe d

A
e (A.12)

In the above equation, dAe and cAe have been moved outside the integral since they are

constant with respect to Ωe. In order to efficiently solve equation (A.12 ), interpolation

functions are defined on an isoparametric domain, as shown in equation (A.13 ), where xAi is

the i-coordinate of the Ath node and ζ is defined in the range of 0 to 1.

xi =
N∑
A=1

wA(ζ)xAi (A.13)

Next, using the chain rule of differentiation, ∂wA

∂xi
= ∂wA

∂ζj

∂ζj

∂xi
, equation (A.12 ) can be

rewritten as equation (A.14 ).

∫
Ωe

∂ψe
∂xi

σij
∂φe
∂xj

dΩe =
N∑
A=1

N∑
B=1

cAe

∫
Ωeζ

∂wA

∂ζk

∂ζk
∂xi

σij
∂wB

∂ζl

∂ζl
∂xj

dΩe d
B
e (A.14)

Because of isoparametric mapping, the above integral can be evaluated exactly using

numerical quadrature with appropriate Lagrange polynomials. For triangular elements in

two dimensions, the interpolation functions are w1 = ζ1, w2 = ζ2, and w3 = 1 − ζ1 − ζ2. For
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line elements in one dimension, w1 = 1
2(1− ζ) and w2 = 1

2(1+ ζ). To compute the integral in

equation (A.14 ) in the isoparametric domain, Ωeζ
, the integrand must be multiplied with the

determinant of the Jacobian of the coordinate transformation,
∣∣∣∂xi

∂ζj

∣∣∣. The resulting integral

is shown in equation (A.15 ).

∫
Ωe

∂ψe
∂xi

σij
∂φe
∂xj

dΩe =
N∑
A=1

N∑
B=1

cAe

∫
Ωeζ

∂wA

∂ζk

∂ζk
∂xi

σij
∂wB

∂ζl

∂ζl
∂xj

∣∣∣∣∣∂xi∂ζj

∣∣∣∣∣ dΩeζ
dBe (A.15)

The integral in equation (A.15 ) can be computed as a sum of weighted polynomials

evaluated at quadrature points, as shown in equation (A.16 ).

∫
Ωeζ

p(ζi) dΩeζ
=

M∑
m

amp(ζm) (A.16)

In the above equation, the summation runs over the number of quadrature points, am
is the weight associated with the mth quadrature point, and ζm is the location of the mth

quadrature point in the isoparametric domain. Returning to equation (A.15 ), since the

interpolation functions are know, the local diffusion matrix for the eth element can be formed

and equation (A.15 ) can be rewritten as equation (A.17 ).

∫
Ωe

∂ψe
∂xi

σij
∂φe
∂xj

dΩe =
N∑
A=1

N∑
B=1

cAe k
AB
e dBe =

[
c1
e c2

e · · · cNe

]
ke



d1
e

d2
e

...

dNe


(A.17)

In the above equation, ke is the diffusion stiffness matrix for the eth element. The element

diffusion stiffness matrices can be assembled into the global diffusion stiffness matrix, AM .

For linear triangular elements in two dimensions, ke can be computed as shown in equation

(A.18 ).
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ke = 1
2


1 0

0 1

−1 −1


xe1 − x3e xe2 − xe3

ye1 − ye3 ye2 − ye3


−1 σ11 σ12

σ21 σ22


xe1 − x3e xe2 − xe3

ye1 − ye3 ye2 − ye3


−T

· · ·

· · ·


1 0

0 1

−1 −1


T ∣∣∣∣∣∣∣
xe1 − x3e xe2 − xe3

ye1 − ye3 ye2 − ye3


∣∣∣∣∣∣∣ (A.18)

In the above equation, xei and yei are the x- and y-coordinates, respectively, of the ith

node of the eth element. Next, the matrices AZ , AW , and AD can be formed by considering

the remaining integrals in equation (A.9 ), as follows.

∑
e

∫
Ωe

1
zl

(Vl − φe)ψe dSe =
∑
e

(
−
∫
∂Ωe

1
zl
φeψe dSe +

∫
∂Ωe

1
zl
Vlψe dSe

)
(A.19)

The matrices AZ and AW can be formed by moving the right hand side of equation

(A.19 ) to the left hand side of equation (A.9 ) and substituting the expressions for φe and ψe
from equations (A.10 ) and (A.11 ). Matrix AZ is then formed using the first integral on the

right hand side of equation (A.19 ) and considering the eth element of the lth electrode, as

shown in the following equation.

∫
Ωe

1
zl
φeψe dSe =

N∑
A=1

N∑
B=1

cAe

∫
Ωe

1
zl
wAwB dSe dBe

=
[
c1
e c2

e · · · cNe

]
Ae l
Z



d1
e

d2
e

...

dNe


(A.20)
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In two dimensional analysis, the integral in equation (A.20 ) is evaluated over the length

of an electrode. As such, the interpolation functions are w1 = 1
2(1+ζ) and 1

2(1−ζ). The AZ

matrix of the eth element of the lth electrode can then be formed as shown in the following

equation.

Ae l
Z =

∫ 1

−1

he

8zl

1 − 2ζ + ζ2 1 − ζ2

1 − ζ2 1 + 2ζ − ζ2



= he

6zl

2 1

1 2


(A.21)

In the above equation, he is the length of the eth line element. Ae l
Z is formed for every

line element that is part of an electrode. The individual Ae l
Z matrices are then assembled

into the global AZ matrix. Next, AW is formed using the second integral on the right hand

side of equation (A.19 ) and considering the eth element of the lth electrode as follows.

−
∫

Ωe

1
zl
ψeVl dSe = −

N∑
A=1

cAe

∫
Ωe

1
zl
wA dSe Vl

=
[
c1
e c2

e · · · cNe

]
Ae l
WVl

(A.22)

In equation (A.22 ), Vl has been pulled out from the integral because the voltage is

assumed to be constant at each electrode. In two dimensional analysis (using interpolation

functions for linear line elements), the AW column vector of the eth element of the lth

electrode is then formed as shown in equation (A.23 ).

Ae l
W = −

∫ 1

−1

he

2zl

1
2(1 − ζ)
1
2(1 + ζ)



= − he

2zl

1

1


(A.23)
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Lastly, the AD matrix is computed by considering the total current in the system and

enforcing conservation of charge (equation (A.4 )). The current through the lth electrode is

then given by the following equation.

Il =
∫
El

1
zl

(Vl − φ) dS = 1
zl
ElVl −

∫
El

1
zl
φ dS (A.24)

In the above equation, a constant contact impedance is assumed between the domain

and electrodes. The first term on the right hand side of equation (A.24 ) relates the electrode

current to the electrode voltage by El/zl and the second term on the right hand side of

equation (A.24 ) is similar to equation (A.22 ) but with the nodal solution, φe, instead of

the nodal variation, ψe. This term accounts for coupling between the domain voltage and

the electrode voltage via AW . Therefore, AD is a square matrix with a dimension equal to

the number of elements in the electrodes. The diagonal entries of AD are El/zl while the

off-diagonal entries are zero.

A.4 Matrix Assembly

The global AM , AZ , and AW matrices are formed by assembling the local ke, Ae l
Z , and

Ae l
W matrices. In the following steps, only the assembly of AM is described. The same steps

can be readily applied to assemble AZ and AD. The assembly process can be easily visualized

by considering the global variation and global potential solutions. The global variation vector

is c =
[
c1 c2 · · · cn · · · cN

]
where cn is the variation at the nth node and N is the total

number of nodes. Similarly, the global potential solution is d =
[
d1 d2 · · · dn · · · dN

]
where dn is the nodal potential solution at the nth node and N is the total number of nodes.

The assembly process performed over all elements in the domain can then be expressed as

shown in equation (A.25 ).

∑
e

∫
Ωe

∂ψe
∂xi

σij
∂φe
∂xj

dΩe = cTAMd (A.25)

The entries of the local stiffness matrices must be placed in the correct locations in the

global stiffness matrix so that they multiply out with the correct nodal variations and nodal
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potential solutions. When a node is shared between two elements, the entries corresponding

to that node in the local stiffness matrices are summed in the global stiffness matrix. For

example, consider the local diffusion stiffness matrices for the eth and (e + 1)th elements,

shown in equations (A.26 ) and (A.27 ), respectively.

cTe Ae
Mde =

[
c1
e c2

e c3
e

]

k11
e k12

e k13
e

k21
e k22

e k23
e

k31
e k32

e k33
e




d1
e

d2
e

d3
e

 (A.26)

cTe+1A
e+1
M de+1 =

[
c1
e+1 c2

e+1 c3
e+1

]

k11
e+1 k12

e+1 k13
e+1

k21
e+1 k22

e+1 k23
e+1

k31
e+1 k32

e+1 k33
e+1




d1
e+1

d2
e+1

d3
e+1

 (A.27)

Next, assume that the local variation and potential solution of the eth element map to

the following global variation and potential solution.

[
c1
e c2

e c3
e

]
7→

[
cn−1 cn cn+1

]
(A.28)

[
d1
e d2

e d3
e

]
7→

[
dn−1 dn dn+1

]
(A.29)

And, assume that the local variation and potential solution of the (e+ 1)th element map

to the following global variation and potential solution.

[
c1
e+1 c2

e+1 c3
e+1

]
7→

[
cn cn+1 cn+2

]
(A.30)

[
d1
e+1 d2

e+1 d3
e+1

]
7→

[
dn dn+1 dn+2

]
(A.31)
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cTAMd =



...

cn−1

cn

cn+1

cn+2

...



T 

. . .

k11
e k12

e k13
e

k21
e k22

e + k11
e+1 k23

e + k22
e+1 k13

e+1

k31
e k32

e + k21
e+1 k33

e + k22
e+1 k23

e+1

k31
e+1 k32

e+1 k33
e+1

. . .





...

dn−1

dn

dn+1

dn+2

...


(A.32)

The global diffusion stiffness matrix can then be assembled as shown in equation (A.32 ).

Note that since the eth and (e+1)th elements share global nodes n and n+1, the contributions

of these nodes are summed in the global diffusion stiffness matrix. This simple example is

meant only to illustrate the assembly process. In a FE mesh consisting of several thousand

elements, several nodes will be shared between elements and their contributions will be

summed in AM . In such cases, the process of assembling AM can be efficiently performed

using the nodal connectivity matrix. The fundamental assembly process illustrated here can

also be applied to AZ and AW . The only difference is that the degree of freedom for AZ

and AW is one degree lower than that for AM .
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B. DETAILED SENSITIVITY MATRIX CALCULATIONS

This appendix has been adapted from reference [115 ] and gives a detailed formulation of the

sensitivity matrix, J , and the exact form for linear triangular elements in two dimensions.

This formulation can be readily extended to higher-order interpolation functions and three

dimensions. The general form of the sensitivity matrix for anisotropic conductivity is as

follows.

JQRe = −
∫

Ωe

∂φQ

∂xi
σij
∂φ

R

∂xi
dΩe (B.1)

Indicial notation is used in the above equation and repeated indices indicate summation

over the dimension of the problem. Note that QR represents a single index of the sensitivity

matrix instead of the previously used MN . This is because MN will be used later for a

summation over the nodes of each element. Next, substituting equation (A.10 ) and (A.11 )

into equation (B.1 ) gives the following equation.

JQRe = −
N∑
A=1

N∑
B=1

dAQe

∫
Ωe

∂wA

∂xi
σij
∂wB

∂xj
dΩe d

BR

e (B.2)

In equation (B.2 ), dAQe is the potential solution at the Ath node of the eth element due

to the Qth current injection, and d
BR

e is the potential solution at the Bth node of the eth

element due to a unit current injection at the Rth electrode pair. Next, similar to equation

(A.14 ), the gradients of the interpolation functions are evaluated using the chain rule of

differentiation and substituted into equation (B.2 ). This gives the following equation.

−
∫

Ωe

∂φQ

∂xi
σij
∂φ

R

∂xi
dΩe = −

N∑
A=1

N∑
B=1

dAQe

∫
Ωe

∂wA

∂ζk

∂ζk
∂xi

σij
∂wB

∂ζl

∂ζl
∂xj

dΩe d
BR

e (B.3)
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The integral in equation (B.3 ) is computed in the isoparametric domain by multiplying

with the determinant of the Jacobian,
∣∣∣∂xi

∂ζj

∣∣∣, as shown in equation (B.4 ).

−
∫

Ωe

∂φQ

∂xi
σij
∂φ

R

∂xi
dΩe = −

N∑
A=1

N∑
B=1

dAQe

∫
Ωeζ

∂wA

∂ζk

∂ζk
∂xi

σij
∂wB

∂ζl

∂ζl
∂xj

∣∣∣∣∣∂xm∂ζn

∣∣∣∣∣ dΩeζ
d
BR

e (B.4)

The summation in the above equation can be expressed using matrix-vector notation, as

follows.

−
∫

Ωe

∂φQ

∂xi
σij
∂φ

R

∂xi
dΩe =

N∑
A=1

N∑
B=1

dAQe jABe d
BR

e

=
[
d1Q
e d2Q

e · · · dNQ
e

]
je



d
1R
e

d
2R
e

...

d
NR

e


(B.5)

For linear triangular elements, the matrix je can be evaluated as shown in the following

equation.

je = −1
2


1 0

0 1

−1 −1


xe1 − x3e xe2 − xe3

ye1 − ye3 ye2 − ye3


−1 σ11 σ12

σ21 σ22


xe1 − x3e xe2 − xe3

ye1 − ye3 ye2 − ye3


−T

· · ·

· · ·


1 0

0 1

−1 −1


T ∣∣∣∣∣∣∣
xe1 − x3e xe2 − xe3

ye1 − ye3 ye2 − ye3


∣∣∣∣∣∣∣ (B.6)

It is worth noting that the computation of each entry of the sensitivity matrix results

in a scalar and not a matrix. This is because the nodal solutions dAQe and d
BR

e are known
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quantities that, when multiplied with je, result in a scalar according to equation (B.5 ). This

is different from the local diffusion stiffness matrix, where each entry is a matrix.
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