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ABSTRACT

Koo, Goon Mo Ph.D., Purdue University, December 2020. On the Development
of Macroscale Modeling Strategies for AC/DC Transport-Deformation Coupling in
Self-Sensing Piezoresistive Materials. Major Professor: Dr. Tyler N. Tallman.

Sensing of mechanical state is critical in diverse fields including biomedical im-

plants, intelligent robotics, consumer technology interfaces, and integrated structural

health monitoring among many others. Recently, materials that are self-sensing via

the piezoresistive effect (i.e. having deformation-dependent electrical conductivity)

have received much attention due to their potential to enable intrinsic, material-

level strain sensing with lesser dependence on external/ad hoc sensor arrays. In

order to effectively use piezoresistive materials for strain-sensing, however, it is nec-

essary to understand the deformation-resistivity change relationship. To that end,

many studies have been conducted to model the piezoresistive effect, particularly

in nanocomposites which have been modified with high aspect-ratio carbonaceous

fillers such as carbon nanotubes or carbon nanofibers. However, prevailing piezore-

sistivity models have important limitations such as being limited to microscales and

therefore being computationally prohibitive for macroscale analyses, considering only

simple deformations, and having limited accuracy. These are important issues be-

cause small errors or delays due to these challenges can substantially mitigate the

effectiveness of strain-sensing via piezoresistivity. Therefore, the first objective of

this thesis is to develop a conceptual framework for a piezoresistive tensorial relation

that is amenable to arbitrary deformation, macroscale analyses, and a wide range of

piezoresistive material systems. This was achieved by postulating a general higher-

order resistivity-strain relation and fitting the general model to experimental data

for carbon nanofiber-modified epoxy (as a representative piezoresistive material with
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non-linear resistivity-strain relations) through the determination of piezoresistive con-

stants. Lastly, the proposed relation was validated experimentally against discrete

resistance changes collected over a complex shape and spatially distributed resistivity

changes imaged via electrical impedance tomography (EIT) with very good correspon-

dence. Because of the generality of the proposed higher-order tensorial relation, it

can be applied to a wide variety of material systems (e.g. piezoresistive polymers, ce-

mentitious, and ceramic composites) thereby lending significant potential for broader

impacts to this work.

Despite the expansive body of work on direct current (DC) transport, DC-based

methods have important limitations which can be overcome via alternating current

(AC)-based self-sensing. Unfortunately, comparatively little work has been done on

AC transport-deformation modeling in self-sensing materials. Therefore, the second

objective of this thesis is to establish a conceptual framework for the macroscale

modeling of AC conductivity-strain coupling in piezoresistive materials. For this, the

universal dielectric response (UDR) as described by Joncsher’s power law for AC con-

ductivity was fit to AC conductivity versus strain data for CNF/epoxy (again serving

as a representative self-sensing material). It was found that this power law does

indeed accurately describe deformation-dependent AC conductivity and power-law

fitting constants are non-linear in both normal and shear strain. Curiously, a piezore-

sistive switching behavior was also observed during this testing. That is, positive

piezoresistivity (i.e. decreasing AC conductivity with increasing tensile strain) was

observed at low frequencies and negative piezoresistivity (i.e. increasing AC conduc-

tivity with increasing tensile strain) was observed at high frequencies. Consequently,

there exists a point of zero piezoresistivity (i.e. frequency at which AC conductivity

does not change with deformation) between these behaviors. Via microscale com-

putational modeling, it was discovered that changing inter-filler tunneling resistance

acting in parallel with inter-filler capacitance is the physical mechanism of this switch-

ing behavior.
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1. LITERATURE REVIEW

1.1 Introduction

Strain-sensing is critical to a wide range of technological areas such as robotics,

civil and energy infrastructures, aerospace structures, and biomedical engineering in

order to keep these structures operating safely, reliably, and in their intended fash-

ion. As a representative example of the importance of strain sensing in a structural

application, an airport parking garage at Eindhoven catastrophically failed in 2017

as shown in Figure 1.1 [1]. Later analyses showed that the primary reason for this

collapse was that the interfacial shear strength between the precast concrete floor

slabs was insufficient. This led to eventual failure. It could be argued that contin-

uously monitoring the strain of this interface could have allowed for repairs to be

made before the failure event. As another example, energy infrastructures such as

wind turbines are routinely exposed to severe operational loads and therefore require

frequent maintenance and rigorous safety measurements [2]. However, due to their

height, these maintenance operations are expensive and potentially dangerous to hu-

man inspectors. In another example, robots must be able to ‘sense’ their environment

(e.g. grip strength, collisions, etc.) to operate safely (particularly with regard to hu-

man interactions). Therefore, intrinsic strain sensing capabilities (e.g. via artificial

or ‘e-skin’ which mimics human skin) can substantially improve the safe operation

of robotics. And as a final representative example to motivate the importance of

strain sensing, revision surgeries to total joint replacements represent a significant

financial burden to the US healthcare system (revision surgeries cost over $8 billion

annually in the US) [3]. Cemented implants in which the implant stem is bonded to

compact bone via a ‘bone cement’ – often poly(methyl methacrylate) or PMMA –

are commonly used in these procedures. However, the early precursors of failure such
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as aseptic loosening (i.e. loss of fixation between the implant and the PMMA) are

invisible on traditional imaging modalities such as radiographs until late-stage failure.

At this point, non-surgical options are very limited because the interface failure has

progressed too far. Monitoring strains via changes in load transfer across the PMMA

as a precursor of aseptic loosening could therefore provide important clinical infor-

mation on the onset of implant failure. In light of the preceding discussion, it can

be concluded that there exists a pervasive and high-impact need to know the strain

state of in-service structures and components.

Fig. 1.1. The Eindhoven parking garage collapse in 2017 [1].

There are various existing technologies to meet these needs. Strain-sensing ap-

proaches can be generally categorized into two ways – i) discrete sensing and ii)

full-field imaging. First, discrete sensing approaches disperse point-based strain sen-

sors over the surface of a component or embedded in the component (e.g. within

a fiber-reinforced composite [4]). Representative examples of embedded sensors are

linear variable differential transformers (LVDT) [5–8], fiber optics [9–12], and tradi-
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tional foil-based strain gages [13–16]. These modalities are very briefly summarized

below.

• LVDT is an electromechanical sensor that outputs electrical data corresponding

to the applied displacements. It is composed of a primary core, two secondary

cores, and a rod producing magnetic flux thereby manifesting as a change in

voltage output. It is typically utilized in rough environmental conditions such

as a bridge exposed to the environment.

• Fiber-optic sensors make use of light inside of optical fiber to find displacements.

A common type of fiber-optic sensor is fiber-bragg gratings (FBG). Changes in

grating length due to applied displacement affect the refractive index thereby

producing wavelength-specific micromirror in the fiber that acts as an indicator

of displacements. Fiber optic sensors guarantee high-resolution and accuracy

of strain measurements over incredibly long ranges, but they are expensive and

fragile.

• A traditional strain gage is a device that measures strain by changing electrical

resistance as a consequence of deformation changing the geometry of the sensor.

These are generally used as part of a Wheatstone bridge.

These discrete strain sensing elements have the benefit of generally being relatively

cost-effective (with the exception of fiber optics) and being easily installed. However,

these sensing elements cannot monitor the entire structure due to their discrete nature

unless an extensive network of sensors is used. Furthermore, the possibility of stress

concentrations exists when these sensors are embedded in a component or structure.

Some applications may even outright preclude these sensors being embedded. For

example, traditional strain gauges cannot be installed into biomedical implants such

as joint replacements because wires cannot be made to penetrate through the patient

in a manner that safe and sterile.

Considering the second common form of strain measurements, some full-field imag-

ing approaches have recently gained much interests due to their ease of application and
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potential for integration with the so-called fourth industrial revolution by making use

of machine learning and image processing. Full-field imaging approaches can be used

to localize damages [17–23] and identify surface deformation by analyzing images of

the surfaces of structures. Representative full-field strain-sensing approaches include

digital image correlation (DIC) [24–28], holographic interferometry (HI) [29–32], and

shearography [33–36]. These are briefly described below.

• DIC tracks the in-plane deformation by comparing images in deformed state to

reference image taken before deformation. DIC is able to accurately measure

two-dimensional displacements, but three-dimensional methods which utilize

multiple cameras (i.e. stereo DIC) have recently gained traction. Therefore,

utilizing DIC technique can have great benefits in visualizing full-field displace-

ments and strains compared to discrete sensors.

• HI is a interferometry method of using holographic photography. The interfer-

ometer using a common optical path creates beam separation by two different

exposures and measures the deformations through the difference between the

two beams – the reference beam and object beam. HI has considerable ad-

vantages over discrete sensors. For example, it is a real-time three-dimensional

imaging technology, no sensors need to be installed onto the structure, and it is

precise and sensitive to small deformations for complex structures. However, in

order to achieve beam separation, a complicated experimental setup is required

including multiple divergence lenses and mirrors.

• Shearography is a speckle pattern shearing interferometry similar to HI. It cap-

tures consecutive images to identify strains. In contrast to HI which measures

displacements and converts to strain, shearography directly measures deriva-

tives of displacement (i.e. strain). Shearography was developed in order to

overcome some limitations of HI. For example, it does not require complicated

setup because it does not need a reference beam. Additionally, it is less sensitive

to ambient vibrations and has a wider range of sensitivity compared to HI.
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Despite the great advantages of full-field strain imaging, these methods have a

few limitations. First, the hardware can be expensive (this is less applicable to DIC).

Second, they cannot visualize sub-surface or internal strains. Third, the hardware

for HI and shearography can be very sensitive to external effects and experimental

setup. And fourth, these methods are often not practical for in-the-field deployment

and are therefore limited to laboratory settings.

1.2 Self-Sensing Materials

As an alternative to the preceding strain-sensing modalities, self-sensing materials

have received much attention. The materials are attractive for strain-sensing because

they overcome many of the preceding limitations associated with traditional strain-

sensing modalities. In this approach, the material is the sensor thereby eliminating

the need to build-in sensors and naturally allowing for full-field sensing. A common

approach to self-sensing is via the piezoresistive effect. This refers to a material

having deformation-dependent electrical conductivity. Piezoresistivity is achieved by

modifying a non-conductive matrix with a conductive filler phase. Beyond a critical

concentration of conductive fillers, the material system becomes conductive. This is

referred to as the percolation threshold. Deformations that alter the connectedness of

this network manifest as conductivity changes. Generally, compressive deformations

will force more fillers to be in contact thereby increasing the conductivity whereas

tensile deformations will cause fillers to become further apart thereby decreasing the

number of fillers in contact and reducing the conductivity of the composite. This is

graphically illustrated in Figure 1.2.

The range of piezoresistive materials is vast – this has been studied in structural

polymers [37–39], soft polymers [40–43], cementitous materials [44–47], and ceramics

[48–50]. Further, for materials which cannot be directly modified by a conductive

filler (e.g. metals), ‘sensing skins’ (i.e. thin films modified by a conductive filler

phase) have been explored [51–53]. Electrical percolation is also closely tied to aspect
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Fig. 1.2. Depiction of nanofiller network in the piezoresistive
nanocomposites. Resistivity changes due to applied deformation.
Conductive path as shown in red is disconnected due to deforma-
tion. Left: undeformed state of nanofiller network. Right: deformed
state of nanofiller network which increase the resistivity due to dis-
connection in conductivity path.

ratio; fillers that are very long and thin percolate at much lower concentrations than

other filler shapes. Because of this, carbon nanotubes (CNTs) have received much

attention as a filler material [37, 38, 54, 55]. A representative MWCNT network is

shown in Figure 1.3. Other common fillers for piezoresistive materials include silver

particles [56–59], carbon black (CB) [60–63], graphene nanoplatelets (GNPs) [64–67],

and carbon nanofibers (CNFs) [68–71]. More economical (i.e. much lower cost than,

for example, CNTs) choices such as fly ash [72, 73] and metallic waste powder [74]

have also been studied.

As a few recent representative examples of the diverse applications in self-sensing

materials, Sun et al. [76] developed flexible tactile sensors to detect three-dimensional

force with double-sided rough porous structure of CNTs/polydimethylsiloxane (PDMS)
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Fig. 1.3. Representative example of nanocomposites (2.0 wt.%
MWCNT/epoxy) imaged via scanning electron microscope (SEM).
Left: Far-out view of MWCNT/epoxy nanocomposites. Right: En-
larged view. White stick-shaped lines indicate MWCNTs [75].

shown in Figure 1.4(a). They obtained high sensitivity with low cost manufacturing,

repeatability, stability, and uniformity. Furthermore, they were able to detect wrist

pulse (Figure 1.4(b)) and finger movements (Figure 1.4(c)), and eventually sensors

were integrated with robotic arms in such a way that it can grip items in real time.

Next, Loh et al. [77] manufactured sensing skins using a CNT-modified polymer.

Specifically, a layer-by-layer thin film fabrication process was used to build up the

sensing layer on a metallic substrate as shown in Figure 1.5. Also, they used elec-

trical impedance tomography (EIT) to spatially localize impact-induced conductivity

changes. Additionally, Gao et al. [78] built a fiber-reinforced ceramic matrix com-

posite plate. Here, carbon fibers make up a 2.5D woven structure using a stack of
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woven textiles. Then, via the piezoresistive effect, damage is detected and localized

via electrical resistance tomography (ERT) as shown in Figure 1.6. Furthermore,

Gupta et al. [79] produced a self-sensing cementitious material. A MWCNT thin film

was deposited onto fine aggregates of the cement. Holes in the composite materials

were again detected and localized via EIT as shown in Figure 1.7. And as a final

representative example, Ghaednia et al. [3] modified PMMA bone cement with short-

chopped carbon fiber. This was then used to cement a total joint replacement in a

surrogate geometry. Load transfer was able to be tracked across the cement interface

via EIT in a phantom tank as shown in Figure 1.8.

Fig. 1.4. (a) Schematic drawing of the tactile sensor array and one
single element. (b) Detection of wrist pulses. (c) Detection of finger
bending [76].
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Fig. 1.5. Left: CNT-modified polymer self-sensing skin. Middle: im-
pact damage in a metal plate coated with the sensing skin due to four
different energy levels. Right: impact damage detected and localized
via EIT [77].

Fig. 1.6. Hole detection via ERT in 2.5D C/SiC composite plate [78]

1.3 Modeling the Piezoresistive Effect

The preceding discussion outlines the motivation to study self-sensing materials.

However, to make meaningful predictions from these materials, methods of model-

ing the resistivity-strain relation are needed. That is, it is necessary to know what

resistance or resistivity changes are expected for a given state of strain. Unfortu-
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Fig. 1.7. Damage identification in MWCNT/cement composites. Left:
MWCNT-latex ink is sprayed over the sand to formulate thin film.
Middle: three holes were drilled at three corners. Right: the change
in resistivity distribution as imaged via EIT [79]

nately, prevailing piezoresistivity models are inadequate in this regard. Further, the

current state of the art focuses overwhelmingly on direct current (DC)-based self-

sensing. However, alternating current (AC) methods have important advantages over

DC-based methods. Below, these considerations are discussed.

1.3.1 DC-Based Piezoresistivity

In the current state of the art, piezoresistivity models can be generally classified

into three types: i) equivalent resistor network models, ii) computational micromech-

anics-based models, and iii) analytical piezoresistivity models. Equivalent resistor

network models [80–91] simulate individual conductive fillers and their electrical in-

teractions within a microscale domain. These efforts have focused overwhelmingly

on nanocomposites to-date. In these approaches, individual fillers and the junc-

tions between interacting fillers are discretized into resistor elements as illustrated

in Figure 1.9. Deformation is incorporated by calculating how the fillers rotate and

translate due to some applied deformation [88]. The post-deformed network is then

re-discretized and the net voltage-current relationship is again calculated. Due to
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Fig. 1.8. Overview of work to monitor total joint replacement fixa-
tion via self-sensing PMMA. Top: Schematic of geometry – the surro-
gate geometry was designed to replicate the bone-to-implant interface.
Bottom-left: Schematic of phantom tank. The surrogate is immersed
in water (representing the leg) and compressed from above at physi-
ological loading levels. Bottom-right: The change in conductivity of
1.5 vol.% specimen imaged by EIT. EIT clearly identifies increasing
levels of loading (all within physiologically realistic ranges) [3].

simulating individual fillers, this type of models has the benefit of great control over

details of the filler network such as extent of agglomeration and filler alignment.
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However, there are few limitations. First, these approaches are computationally very

expensive because an extreme number of fillers are needed to form a percolated net-

work. In addition, these approaches consider only simple deformations and do not

explicitly model the matrix material as shown in Figure 1.10. And lastly, equiv-

alent resistor network models have limited accuracy. For example, Hu et al. [92]

developed three-dimensional statistical models by incorporating the tunneling effect

between adjacent nanofillers and a fiber reorientation model. They compared exper-

imental results in resistance change ratio to numerical predictions derived from their

equivalent resistor network model. Significant discrepancies between experimental

and numerically simulated results existed for each weight fractions of CNT/polymer

nanocomposites as shown in Figure 1.11.

Next, consider computational micromechanics models. In contrast to equivalent

resistor network models, computational micromechanics-based models [94–99] con-

sider both the nanofillers and the enveloping matrix simultaneously within a finite

element framework. Consequently, micromechanics-based models are well-suited to

simulate mechanical effects such as debonding between fillers and matrix material as

shown in Figure 1.12. These approaches have revealed that the macroscale piezoresis-

tive response in nanocomposites is majorly dependent on the nanoscale phenomenon

of electron hopping, interface separation, and initiation/evolution of interface dam-

age. Chaurasia et al. [96] compared the strain-induced effective conductivity changes

of nanocomposites including interface separation/damage to that including perfectly

bonded interface between fillers and matrix. Figure 1.13 is provided to visualize the

effect of interface separation. They observed that the piezoresistive response from

interface separation is larger than that from perfectly bonded interface as shown in

Figure 1.14. However, because of the fact that they simulated individual nanofillers

and the enveloping matrix material in a microscale representative volume element

(RVE), they are not without limitations – these models are very computationally

expensive and therefore difficult to scale. Furthermore, this type of model is limited
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Fig. 1.9. Depiction of conductive paths. Top: randomly distributed
conductive nanofillers in a microscale representative volume element
(RVE) Bottom left: representative image of quantum tunneling as a
resistor element (shown in green) between fillers. Bottom right: illus-
tration of filler discretization into a resistor element. In this approach,
electrical transport through the network is tracked in terms of nodal
voltages and currents [93].

to nanofiller bundles (i.e. agglomerations) as shown in Figure 1.15 which indicates

that it does not account for well-dispersed nanofillers.

Finally, analytical piezoresistivity models [100–104] use closed-form expressions

to predict resistivity changes based on manufacturing parameters and strain. These

approaches are not nearly as computationally burdensome as equivalent resistor net-

work nor computational micromechanics-based models because individual nanofillers
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Fig. 1.10. The three-dimensional rigid short fiber reorientation model
due to applied strain in x-direction. (a) before deformation. (b) after
deformation [88].

are not simulated. Therefore, they are suitable to be implemented for structural-

scale analyses. However, there also exist limitations for analytical models. Analyt-

ical models must make assumptions regarding average inter-filler distances, orienta-

tions of fillers, and other filler properties such as aspect ratio. For this, they need

much information on microstructure of the system such as tunneling barrier height,

filler dimensions, critical volume fraction, and percolation probability. Tallman and

Wang [101] developed an analytical model for CNT composite piezoresistivity by

identifying strain-dependent parameters in a conductivity model originally developed

by Takeda el al. [105]. Conductivity changes were determined by predicting strain-

induced changes to filler volume fraction, filler separation, and filler orientation. From

this, their model predicted resistance changes that are reasonably well-matched with

experimental results as shown in Figure 1.16. However, this model failed to capture

the saturation effect in compression. Then, to demonstrate the potential of ana-

lytical models to make macroscale predictions, this approach was integrated with

finite element methods in order to predict the conductivity change distribution of

an I-beam subject to arbitrary deformation as shown in Figure 1.17. Other analyt-
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Fig. 1.11. Resistance change ratio with respect to different weight
fractions of CNT/polymer nanocomposites as a function of applied
strain. Comparison between numerical prediction and experimental
data is presented. Relatively large discrepancies are shown for each
weight fraction [92].

ical models generally require substantial training or calibration data. For example,

Matos et al. [103] developed models of multiaxial strain-sensing by utilizing finite ele-

ment methods in combination with machine learning. As shown in Figure 1.18, their

machine learning-predicted resistance change versus applied strain shows good corre-

spondence with other models. Further, they are able to predict stress concentration-
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Fig. 1.12. Depiction of interface debonding between a nanofiller and
a matrix in the nanoscale RVE [96].

induced conductivity changes in the vicinity of the hole in a plate specimen as shown

in Figure 1.19. However, they trained and validated their machine learning approach

to other model-generated data – experimental validation is needed for this approach.

To summarize the preceding discussion, prevailing piezoresistivity models have

important limitations with regard to making meaningful predictions. That is, they are

computationally prohibitive for structural-scale analyses, often of limited accuracy,

limited to simple deformations, and/or require extensive knowledge of the material’s

microstructure, calibration, or training data.

1.3.2 AC-Based Piezoresistivity

To date, work in self-sensing materials has focused overwhelmingly on DC prop-

erties. Comparatively little has been done on AC-based methods and on the effect
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Fig. 1.13. Current density distribution with perfectly bonded interface
and with interface separation. (a) Current density in the x1-direction
and (b) current density in the x2-direction [96].

Fig. 1.14. Effective conductivity comparison between perfectly
bonded interface and interface separation. (a) Effective conductivity
in the x1-direction and (b) effective conductivity in the x2-direction
[96].
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Fig. 1.15. Macroscale to atomistic scale depiction for computational
micromechanics-based models. Note that they considers nanofiller
bundles rather than well-dispersed nanofillers in multi-directions [96].

of deformation on AC transport. This is noteworthy because AC-based methods

have considerable advantages over DC-based methods. First, AC inherently carries

more information. That is, both impedance and phase angle data can be utilized to

identify and characterize deformations when using AC instead of only resistance for

DC-based methods. Second, AC methods have potential to increase sensitivity. For

example, it has been experimentally shown that sensitivity to damage can be im-

proved by inducing electrical resonance in a CNF/epoxy specimen by the inclusion of

an external inductor [106]. And third, AC conductivity exponentially increases with

interrogation frequency (e.g. Figure 1.20). Because piezoresistive materials generally

have relatively low conductivity, high-frequency self-sensing can substantially lower

power requirements for these materials [107,108].
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Fig. 1.16. Piezoresistive response predicted by the analytical model
are compared to the experimental piezoresistive response. Note that
the experimental data flattens or saturates in compression whereas
the model fails to predict this [101].

Several representative studies on AC piezoresistivity in the state of the art are

next summarized. Mohanraj et al. [109] investigated CB-modified styrene-butadiene

rubber and reported that AC conductivity increased with compressive pressure. How-

ever, their investigation frequency range was limited up to 1 kHz. Wang et al. [110]
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Fig. 1.17. Conductivity change ratio of 1 m length I-beam. Note that
I-beam is fixed at one end and 5 mm displacement in x-, y-, and z-
direction is applied at the other end [101].

showed that the sensitivity of AC conductivity in CB-modified silicone-rubber due to

compressive pressure increases with increasing frequency up to 1 MHz. Loh et al. [111]

manufactured single-walled (SW)CNT-modifed polyelectrolyte (PE) composite via a

layer-by-layer thin film fabrication process and utilized an equivalent circuit model

to fit experimental AC data up to 250 kHz as a function of strain. In order to

better understand the relations between complex impedance and deformations, they

conducted a parametric study for the relationship between each element of their pro-

posed equivalent circuit and deformations as shown in Figure 1.21. Helseth [112]

characterized electrical properties of MWCNT-modified polydimethylsiloxane with

electrical impedance spectroscopy (EIS) in order to describe electromechanical be-

havior under compression. Impedance measurements were taken up to 1 MHz as a

compressive force was applied from 0 to 50 N. It was observed that EIS curves indeed

vary due to compression which can be replicated via equivalent circuit analyses as

shown in Figure 1.22. Kang et al. [113] developed a CNT/PMMA composite sensor.



21

Fig. 1.18. Resistance change ratio as a function of applied strain.
Comparison between finite element-based and machine learning-based
prediction is presented [103].

Fig. 1.19. Simulated axial conductivity distribution in a plate with
a hole geometry subject to displacement of 0.006 of the total length
[103].

They utilized an equivalent circuit model to understand the behavior of resistance and

capacitance in equivalent circuit under static and dynamic loading. It was observed

that capacitance has a negligible effect in dynamic testing.
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Fig. 1.20. AC conductivity with respect to interrogation frequency.
l/D represents CNT aspect ratio. Note that conductivity exponen-
tially increases at high frequencies [107].

It is also noteworthy that virtually no work exists for material property modeling

with regard to AC piezoresistivity. That is, the three classes of models that exist for

DC piezoresistivity – equivalent resistor networks, computational micromechanics-

based models, and analytical models – are absent from AC studies. Rather, modeling

work that exists for AC piezoresistivity is in terms of equivalent circuit analyses.

This means that some circuit is proposed (generally constructed from linear elements

– resistors, capacitors, and inductors – and sometimes Warburg elements) which

is capable of replicating the net voltage-current response of the material. Circuit

parameters are then expressed as a function of strain. But this approach is limiting

because it is based on a discrete measurement rather than a material property. This
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Fig. 1.21. Top: equivalent circuit representing complex impedance in
a MWCNT sensing skin. Strain and time-dependent circuit param-
eters are included. Bottom: representation of how EIS curves vary
with respect to changes in the equivalent circuit [111].

is akin to describing mechanical properties in terms of force-displacement relations

rather than stress-strain relations. Therefore, in order to proliferate AC-based self-

sensing, it is important to describe AC material properties as a function of strain.
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Fig. 1.22. The effect of compressive loading on EIS curves for
MWCNT-modified PDMS (black: 2 N, blue: 5N, brown: 10 N, green:
15 N, pink: 20 N, and purple: 30 N) [112].
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2. PROBLEM STATEMENTS, RESEARCH GOALS,

THESIS CONTRIBUTIONS, AND THESIS

ORGANIZATION

Chapter 1 establishes that a pervasive need for strain sensing exists in diverse and

far-reaching applications. Materials which are intrinsically self-sensing via the piezore-

sistive effect have noteworthy advantages over traditional sensing modalities. Further,

piezoresistive-based self-sensing has been explored in a wide range of material sys-

tems including polymers (hard and soft), ceramics, and cements for use in aerospace

composites, civil infrastructure, orthopedic implants, robotics, and human interfac-

ing technology (e.g. touchscreens/track pads). Despite the enormous attention that

these fields have attracted, critical gaps remain. As a first example, the current state

of the art is currently unable to accurately predict macroscale conductivity changes

in a piezoresistive material due to an arbitrary or general deformation. This is a

consequence of the state of the art focusing much more on understanding the mi-

croscale mechanisms of piezoresistivity (particularly in nanocomposites). And as a

second example, AC-based piezoresistivity has received little-to-no attention despite

its advantages over DC-based self-sensing. In light of these considerations, the follow-

ing Problem Statement and Research Goal are formulated resulting in the following

Thesis Contributions.

Problem Statement: Piezoresistive self-sensing has much potential to positively

impact diverse and far-reaching applications which require knowledge on the strain

state of in-use structures and materials. Existent tools for modeling piezoresistivity,

however, are inadequate for making meaningful macroscale predictions due to arbi-

trary deformations. Further, AC piezoresistivity, despite its advantages over DC, is

deeply understudied from a modeling perspective.
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Research Goal: The goal of this thesis work is to develop conceptual frame-

works for modeling the AC/DC transport-deformation relationship in piezoresistive

materials at macroscales.

Thesis Contributions: This thesis work makes three important contributions

to the state of the art.

• A first-ever higher-order general tensorial resistivity-strain relation is developed

for isotropic piezoresistive materials subject to infinitesimal deformations. This

relation is formulated in such a way that the piezoresistive response of any

material can be quantified through the determination of few piezoresistive con-

stants measured via simple experiments (i.e. analogous to the determination of

elastic constants for stress-strain modeling). This modeling framework is then

experimentally validated with good accuracy.

• A conceptual framework for the macroscale modeling of AC piezoresistivity is

developed in the form of the universal dielectric response (UDR) with strain-

dependent fitting parameters.

• A novel piezoresistive switching behavior was observed in CNF/epoxy during

the course of the second contribution. Microscale modeling revealed the mecha-

nism of this switching behavior to be deformation-dependent electron tunneling

acting in parallel with inter-filler capacitive coupling. Thus, basic knowledge

on microscale AC transport in these materials is contributed.

The remainder of this document is organized as follows: First, the basic forms of

the macroscale DC/AC transport-deformation modeling frameworks are presented.

Then, experimental procedures including manufacturing, test specimen preparation,

measurement methods, and electrical/mechanical properties are presented. The pro-

posed DC tensorial relation is then fit to experimental data to determine the piezore-

sistive constants. Next, the predictions of the tensorial relation are experimentally

validated. Following this, in order to characterize AC electrical properties with re-

spect to mechanical effects, experimental AC conductivity measurements are fit to
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a Jonscher’s power law utilizing the UDR for each step of mechanical loading, and

fitting parameters are expressed as a function of strain. The novel observation of

switching behavior in piezoresistivity is explained and its underlying physical mech-

anism is described via EIS analyses and a micromodel. Finally, this thesis is closed

with a summary, conclusions, and recommendations for future work in this area.
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3. PRESENTATION OF GENERAL MACROSCALE

FRAMEWORKS FOR DC/AC-STRAIN COUPLING

3.1 Introduction

Considerable effort has been dedicated to modeling piezoresistivity due to the po-

tential for intrinsic self-sensing and in light of the motivation for having a quantitative

understanding of the resistivity-strain relationship. However, approaches in the state

of the art have noteworthy challenges. Among these challenges, the complexity of

predicting the resistivity-strain response of a particular material is especially note-

worthy. That is, prevailing approaches necessitate deep knowledge of the underlying

microstructure of the material. It is important to note that this work is not claiming

that such complexity is intrinsically a detriment. Rather, existing microstructural

approaches have resulted in great insights into the basic mechanisms of piezoresis-

tivity in many materials thereby unlocking very fundamental insight into self-sensing

materials. However, consider a practicing engineer who wants to utilize the piezore-

sistive effects to make meaningful predictions. For this, the engineer certainly could

use complex computational tools and/or micromechanics, but simple laboratory tests

are likely much preferred and indeed more pragmatic in such a case. This hypotheti-

cal situation can be likened to stress modeling. That is, consider again a practicing

engineer who needs to use a new unknown material in a load-bearing component. To

do this, the engineer could conduct microscale analyses to elucidate the macroscale

mechanical properties of the new material. More realistically, however, the engineer

would conduct simple laboratory tests to determine elastic constants such as Young’s

modulus and Poisson’s ratio. The motivation for this chapter is much the same. In

order to effectively use the piezoresistive effect, quantification of the resistivity-strain

relationship that is amenable to arbitrary strain states is required. For this, simple
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tensorial relations which can be fully characterized by a few piezoresistive constants

that are easily obtained via macroscale experiments is necessary. Therefore, this chap-

ter makes two important contributions. First the framework for a general tensorial

relation for resistivity-strain coupling is presented. Next, a framework for modeling

deformation-dependent AC conductivity at the macroscale is described. Later in this

thesis, these frameworks are applied to experimental data.

3.2 DC Piezoresistivity

Before presenting the DC piezoresistivity framework developed in this work, it is

important to first acknowledge related work. In 1951, Druyvesteyn [114] described

the variation of resistivity of some metals due to elastic deformation for the first time.

Smith [115] later reported on the piezoresistive response of germanium and silicon due

to shear stress. Together, they described tensor-based constitutive relations between

the resistivity change and an arbitrary strain states as shown in equation (3.1) where

ρij is resistivity tensor, κijkl is piezoresistive constitutive tensor, and εkl is the in-

finitesimal strain tensor. Repeated indices imply summation over the dimension of

the problem. Equation (3.1) can be explicitly expanded as equation (3.2) where in-

finitesimal strain is defined in equation (3.3). Drawing from this, Gruener et al. [116]

and Zhao et al. [117] recently investigated geometry change-induced anisotropic re-

sistivity changes for inkjet-printed carbon nanotube-polymer thin film. Using the

thin film, two dimensional anisotropic piezoresistivity was characterized. However,

they incompletely identified constitutive terms due to discrepancies between piezore-

sistive responses in compression and tension as shown in Figure 3.1. Further, they

assumed linear relations with strain although the piezoresistive response is non-linear.

Therefore, the goal of this section is to derive a higher-order deformation-resistivity

tensorial relation that is amenable to arbitrary strain states and simultaneously takes

into account non-linear piezoresistive effects.
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∆ρij = κijklεkl (3.1)



∆ρ11

∆ρ22

∆ρ33
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
=
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
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ε23

ε31
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(3.2)

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(3.3)

Fig. 3.1. Normalized resistivity change with respect to strain. Note
the difference between the slope in tension and compression [116].



31

3.2.1 General Form of Higher-Order Resistivity-Strain Relations

Herein, a general formulation for a higher-order tensor-based piezoresistive rela-

tion is proposed with three assumptions: i) all strains are infinitesimal, ii) resistivity

changes are isotropic for infinitesimal strains, and iii) resistivity changes are non-

linear for infinitesimal strains. The second assumption implies that some linear-elastic

material has been modified with some weight fraction of conductive fillers above the

percolation threshold thereby manifesting deformation-dependent electrical resistivity

without anisotropy (i.e. no directional preference of resistivity changes). This can be

justified in light of the fact that geometry changes are relatively small for small strains

such that changes in resistivity are dominated by altering the connectedness of the

filler network. While alignment of high aspect-ratio fillers can induce anisotropic con-

ductivity [93] and very large deformations can also induce high aspect-ratio fillers to

reorient thereby producing anisotropic changes in resistivity, such large deformations

are necessarily outside of the scope of a linear-elastic material subject to infinitesimal

strains. Particularly for the material system in this research, fracture would occur

before deformations become large enough to induce appreciable alignment. The third

assumption is in light of the well-documented fact that the piezoresistive effect in

tension is greater than that in compression and decidedly non-linear [118]. Based

on these assumptions, the following higher-order tensorial resistivity-strain relation

is proposed.

∆ρ = κijεij +Πijklεijεkl (3.4)

Above, ∆ρ is the resistivity change, εij is the infinitesimal strain tensor, and κij

and Πijkl are second and fourth-order tensors relating resistivity changes to strains.

Repeated indices imply summation over the dimension of the problem. Before further

exploring the tensors, several clarifications should be noted. First, this resistivity-

strain relation is not claimed to be an actual constitutive relation since it is not de-

rived from energy arguments and resistivity and strain are not energy complements.
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Instead, the goal for this approach is to develop a relation which can accurately predict

changes in resistivity due to an arbitrary strain state. Second, ∆ρ has been utilized

rather than absolute resistivity (i.e. ρ) in order to reduce specimen-to-specimen vari-

ability by making the left-hand side of equation (3.4) equal to zero for a state of zero

strain. And third, unlike the prior work summarized above, the resistivity change is

assumed to be a scalar quantity. This can be justified as follows. Although resistiv-

ity changes are possibly treated as having some directional dependence, Abascal et

al. [119] showed that directional dependence in change in resistivity is exceeding small

for infinitesimal strains. Therefore, resistivity changes can be well-approximated as a

scalar quantity. It is also acknowledged that this second assumption significantly sim-

plifies the model calibration process. This assumption is validated later in Chapter

5.

In light of these clarifications, the second-order tensor, κij, and the fourth-order

tensor, Πijkl, in equation (3.4) are next examined in greater detail. Considering the

assumption that resistivity changes due to deformation have no directional depen-

dence, the most general isotropic second and fourth-order tensors for κij and Πijkl

are selected as shown in equations (3.5) and (3.6), respectively.

κij = κδij (3.5)

Πijkl = αδijδkl + βδikδjl + γδilδjk (3.6)

Above, δij is the Kronecker-delta and κ, α, β, and γ are constants to be determined

by fitting equation (3.4) to experimental data. Equation (3.7) is the simplified version

of equation (3.4) obtained by plugging equations (3.5) and (3.6) into equation (3.4),

expanding, and making use of the replacement property of the Kronecker-delta.

∆ρ = κεii + αεiiεjj + (β + γ)εijεij (3.7)

For notational convenience in equation (3.7), α is replaced with Π1 and the par-

enthetical term, (β + γ), is replaced with Π2. These undetermined constants, κ, Π1,
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and Π2, are referred to as piezoresistive constants. This also helps delineate terms as

being related to the linear contribution, κ, and the non-linear contributions, Π1 and

Π2. After these replacements, the proposed higher-order tensorial piezoresistive rela-

tion can be rewritten as equation (3.8), and equation (3.8) can be explicitly expanded

as equation (3.9).

∆ρ = κεii +Π1εiiεjj +Π2εijεij (3.8)

∆ρ = κ(ε11 + ε22 + ε33) + (Π1 +Π2)(ε
2
11 + ε222 + ε233)

+ 2Π1(ε11ε22 + ε22ε33 + ε33ε11) + 2Π2(ε
2
12 + ε223 + ε231)

(3.9)

3.2.2 Isolation of Piezoresistive Constants

In order to utilize the piezoresistive relations shown in equations (3.8) and (3.9),

the piezoresistive constants need to be isolated. That is, by applying specific strain

states, the general equations can be reduced to simpler forms and can be fit to ex-

perimental data by treating κ, Π1, and Π2 as fitting parameters. First, consider

a case of uniaxial stress applied in the x1-direction. In such a case, ε11 ̸= 0 and

ε22 = ε33 = −νε11 where ν is Poisson’s ratio and all off-diagonal terms of εij = 0. For

this state of strain, equation (3.9) reduces to equation (3.10).

∆ρ = κ(1− 2ν)ε11 + (Π1 +Π2 − 4Π1ν + (3Π1 +Π2)ν
2)ε211 (3.10)

Next, consider a case of simple shear in which ε12 ̸= 0 and all other εij = 0. Under

these conditions, equation (3.9) reduces to equation (3.11).

∆ρ = 2Π2ε
2
12 (3.11)

Therefore, the piezoresistive constants can be determined by experimentally in-

ducing these strain states and fitting the reduced equations to experimental data.

This will be shown later in Chapter 5.
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3.3 AC Piezoresistivity

Next, we turn our attention to deformation-dependent AC conductivity. As dis-

cussed earlier in Chapter 1, AC-based self-sensing has important advantages over DC,

but much less work has been done in this area. Therefore, conceptual frameworks

such as herein proposed are important for proliferating AC-based self-sensing. Before

introducing this framework, however, a brief description of AC conductivity is first

provided. General AC electrical properties are described by the electrical admittivity

of a material as ξ = σDC + jωϵ where ξ is admittivity, σDC is the DC conductivity,

ω is the angular frequency, and ϵ is the permittivity. However, permittivity is also a

complex-valued property as ϵ = ϵ′ − jϵ′′. Therefore, admittivity can be rephrased as

ξ = (σDC + ωϵ′′) + jωϵ′ and the parenthetical term recognized as AC conductivity,

σAC . The product ωϵ′ is also referred to as the susceptivity.

With this primer out of the way, we return to establishing a general framework

for the effect of deformation on AC conductivity. For this, the UDR is identified as

a promising tool to model AC piezoresistivity. The UDR states that the frequency-

dependent properties of multi-phase materials exhibit a power law with respect to

frequency [120] such that AC conductivity can be described by the following equation.

σAC = σDC +Kωn (3.12)

Above, σDC is again the DC conductivity, ω is again the angular frequency of

the electrical excitation, and K and n are fitting constants. This is also known as

Jonscher’s power law [121]. This way of expressing AC conductivity is advantageous

for modeling AC piezoresistivity because it intrinsically expresses the AC conductivity

as a function of frequency. In other words, if the parameters σDC , K, and n can be

expressed as a function of strain, it will be possible to predict the macroscale change

in AC conductivity for any given frequency and any given strain. To date, however,

the effect of deformation on AC conductivity has been largely unexplored. Therefore,

an important contribution of this work will be exploring the basic responsiveness of
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these parameters of Jonscher’s power law to strain. This will be explored later in

Chapter 5.

3.4 Summary and Conclusion

In summary, this chapter has proposed two frameworks for modeling DC and AC

piezoresistivity at the macroscale – a general higher-order resistivity-strain tensor-

based relation and Jonscher’s power law with strain-dependent fitting parameters,

respectively. This was motivated by the potential of self-sensing materials for in-

trinsic self-sensing, the need for quantifying the deformation-resistivity relationship,

and limitations associated with prevailing piezoresistivity models. To develop the

DC-based piezoresistive relation, several assumptions were made: i) all strains are in-

finitesimal, ii) the material is isotropic with regard to resistivity changes (i.e. strains

produce the same resistivity change in all directions), and iii) resistivity changes

due to infinitesimal strain are non-linear. Mindful of these assumptions, a general

tensorial form with higher-order strain products has been postulated. After postu-

lating this general form, methods of inducing specific strain states in order to isolate

piezoresistive constants to be determined by curve-fitting were identified. Next, the

UDR (Jonscher’s power law, specifically) was proposed for modeling AC piezoresis-

tivity. This was selected because it intrinsically accounts for frequency dependency

in AC conductivity. That is, the frequency-strain-AC conductivity relation can be

characterized by expressing parameters, σDC , K, and n as a function of strain.

In light of the preceding, several conclusions can be made. First, compared to

prevailing DC piezoresistivity models, this model is much more accessible for engi-

neers without a deep understanding of computational micromechanics. Indeed, this

approach was inspired by the manner in which elastic constants are found (i.e. via

simple experiments rather than via computational micromechanics). Second, due to

the generality of the formulation, it can be applied to a wide range of piezoresistive

materials such as cementitious-based, ceramic-based, or polymeric-based nanocom-
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posites. Third, once piezoresistive constants are determined, this approach can readily

be integrated with finite element methods for analyzing complex structures.
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4. EXPERIMENTAL PROCEDURES

4.1 Introduction

Next, the experimental procedures used in this work are presented. Specifically,

this will include how a representative piezoresistive material was manufactured, how

test specimens were prepared, how test specimens were mechanically loaded, how

electrical measurements were collected, and how DC and AC properties and mechan-

ical properties of test specimens are described. These materials and methods are then

applied to the previously described macroscale modeling frameworks.

CNF-modified epoxy is herein used as a representative piezoresistive material.

This material was used because it is simple to produce (thereby allowing for greater

emphasis on the novel contributions of this work – the development of macroscale

modeling procedures), its manufacturing methods are well-documented, and it satis-

fies our assumptions of being linear-elastic and isotropic (isotropic resistivity changes

are verified later). Therefore, even though a specific material type was used in this

work, the general macroscale modeling frameworks proposed may be directly appli-

cable to similar classes of piezoresistive materials such as self-sensing cements and

ceramics.

4.2 CNF-Modified Epoxy Manufacturing

CNF/epoxy specimens were manufactured with 0.5, 1.0, and 1.5 wt.% Pyrograf

III PR 24-XT-HHT CNFs (purchased from Applied Sciences) dispersed in Fibre Glast

System 2000 epoxy resin, Fibre Glast 2060 epoxy curing agent, Triton X-100 surfac-

tant, and BYK-A 501 air release agent. These weight fractions of CNFs were selected

to be above the percolation threshold for this CNF/epoxy combination and man-
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ufacturing method, which is approximately 0.25 wt.%, based on previous work by

Tallman and Hassan [122]. According to the manufacturer’s description, these CNFs

are treated at 3000 ◦C to achieve high graphitization with very low iron content. The

CNFs have an average diameter of 0.1 µm, as-produced lengths ranging from 50 to

200 µm, and a surface area of 41 m2/g [123].

Dog-bone and v-notched specimens were produced by casting CNF/epoxy in two-

part silicone molds produced from Smooth-On Mold Star 20T. Six specimens for each

weight fraction were produced – three for uniaxial testing and three for shear testing.

Dog-bone specimens (left of Figure 4.1) were chosen for the uniaxial testing in order

to induce a state of uniaxial stress in the gauge section. V-notched specimens (right

of Figure 4.1) were selected for shear testing to induce uniform shear strain within the

test area. Dog-bone specimens were shaped according ASTM-D638 [124] but with

a reduced gauge length in order to protect against buckling. Buckling calculations

will be explained in section 4.3. Molds for v-notched specimens were produced with

dimensions according to ASTM-D7078 [125].

Once the molds were ready, appropriate weights of epoxy resin and CNFs were

weighed in a beaker. Then, surfactant and acetone were added. A surfactant-to-CNF

weight ratio of 0.76:1 and resin-to-acetone volume ratio of 2:1 were used. Acetone

decreases the viscosity of the mixture and surfactant helps to facilitate effective dis-

persion. The combination of resin, CNFs, surfactant, and acetone was mixed for 5

minutes in a Thinky AR-100 planetary centrifuge and sonicated for four hours in a

bath sonicator (Crest Powersonic CP200HT). According to the specification of the

manufacturer, the sonicator operates at an average power of 35 W and a frequency

of 45 kHz. After sonication, the mixture was stirred on a hot plate stirrer for 24

hours at 600 rpm and 60 ◦C in order to evaporate the acetone. Acetone weight was

tracked to ensure its complete evaporation. After evaporating the acetone, the mix-

ture was cooled down to room temperature to prevent premature curing. Then, an

air release agent and curing agent were added. An air release agent-to-epoxy weight

ratio of 0.003:1 and a manufacturer-specified hardener-to-resin weight ratio of 27:100



39

were used. The mixture was gently stirred by hand for five minutes and degassed

in a vacuum chamber for 30 minutes at room temperature. While the mixture was

degassed, the mold was coated with mold release agent (Fibre Glast 1153) for easy

removal of CNF/epoxy specimens. After degassing, the mixture was poured into the

mold, placed in an oven, and cured for five hours at 60 ◦C.

Left over material was imaged via scanning electron microscope (SEM) in order

to assess the distribution of CNFs in the polymer matrix. A fracture surface can be

seen in Figures 4.2 and 4.3 showing that, at least within the purview of the SEM

image, CNFs seem to be reasonably well-dispersed. SEM images were generated by

ThermoFisher Teneo System. Fracture surfaces were sputter-coated with a thin layer

of platinum prior to imaging.

4.3 Test Specimen Preparation

The shape of the dog-bone specimen is based on ASTM-D638 [124]. For uniaxial

testing, a range of axial strains from -6000 µε to 6000 µε is desired. The original

critical buckling load of a 165 mm-length of dog-bone specimens based on ASTM-

D638 [124] is 668.65 N. This load is close to the critical load for a fixed-fixed column

of this length according to Pcr = (π2EI)/(KL)2. Here, E, I, K, and L are elastic

modulus, moment of inertia, column effective factor, and unsupported length of the

column, respectively. Therefore, the length of the specimen was reduced to 125 mm

which increases the critical buckling load to 1804.7 N. This modification allows the

test to go from -6000 µε to 6000 µε without any threat of buckling.

With the dimensions set for uniaxial testing, two electrodes measuring 13 mm ×

13 mm were attached to measure resistance changes through the thickness of the dog-

bone specimen as shown in the left of Figure 4.4. Prior to attaching electrodes, the

test area was sanded and cleaned with acetone. Then, silver paste (purchased from

Ted Pella) was applied and copper tape was attached on top of the dried silver paste

to minimize the effect of contact impedance. Once the electrodes were attached,
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Fig. 4.1. Representative CNF/epoxy specimens. Left: shortened dog-
bone specimen for uniaxial testing. Right: v-notched specimen for
shear testing

uniaxial strain gages were also attached below the electrodes in the axial and the

transverse directions. In order to electrically isolate the test specimens from the load

frame, insulating tabs made of fiberglass were attached on the grip sections.

Per ASTM-D7078 [125], a 90◦ notch angle was chosen for v-notched specimens. To

measure electrical properties, electrodes measuring 10 mm × 10 mm were attached

near the center of the specimen where shear strains are uniform per the standard

referenced previously. After electrodes were attached, a rosette strain gage was also

installed on each specimen. Note that negative shear strain cannot be applied in

this experiment due to the geometry of the v-notched rail shear fixture. As can be
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Fig. 4.2. Representative SEM images of 1.5 wt.% CNF/epoxy speci-
mens generated during this work.

Fig. 4.3. Representative SEM images of 1.0 wt.% CNF/epoxy speci-
mens generated during this work.

seen in the right of Figure 4.4, the fixture would contact itself if displaced downward.

Therefore, shear strain was only applied in one direction.



42

4.4 CNF/Epoxy DC Electrical Properties

After manufacturing, resistance measurements were collected as the specimens

were strained. This was done using a current source (Keithley 6221) and a voltage

data acquisition (DAQ) card (National Instruments PXIe-6368) by the four-point

method. Current magnitudes were selected to keep voltages within the 10 V range

of the DAQ. From the voltage-current relationship, resistance was calculated. Tra-

ditionally, resistivity is calculated on prismatic specimens via equation (4.1), where

ρ is the resistivity, R is the resistance, A is the cross-sectional area perpendicular to

the measurement direction, and L is the length along the measurement direction.

ρ =
RA

L
(4.1)

However, the specimens herein considered are not prismatic in a way that is

amenable to equation (4.1) while also being able to be put in the load frame. This is

because electrodes cannot realistically be applied over the entire face of a specimen

during loading. Therefore, a method of determining resistivity from resistance mea-

surements is needed. In light of this difficulty, resistivity changes are calculated from

resistance changes by comparison to a model. To do this, finite element models of the

dog-bone and v-notched geometries were produced. In these models, a uniform resis-

tivity distribution was found to match model-predicted inter-electrode resistances to

experimentally measured inter-electrode resistances. Strains were applied to models

in the same way as the experiments. The uniform resistivity distribution of the model

is then updated at each strain state to again match model-predicted inter-electrode

resistances to experimentally measured inter-electrode resistances. It is important to

note that no piezoresistivity models were utilized in this process. This approach also

has the advantage of accounting for deformation-induced geometric effects. That is,

this approach considers electrode shapes changing and inter-electrode distance chang-

ing due to the Poisson effect (i.e. becoming closer together or further apart during

uniaxial testing).
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Fig. 4.4. A dog-bone and v-notched specimen loaded in the load frame
with electrodes and a strain gage attached. Inset figures describe
electrode placement for the dog-bone and the v-notched specimen.

Two sets of finite element simulations were used in this work – an elastic model

to simulate the applied deformation and a steady-state electrical diffusion model to

simulate the voltage-current relationship between the electrodes subject to the com-

plete electrode model (CEM) boundary conditions. All modeling was done using

code developed in-house by the author. Linear elastic finite element methods are

very well documented elsewhere so they will not be covered here in any depth. CEM,

however, is not nearly as well known. Therefore, a summary of the governing equa-

tions is provided below. Additional details on the discretization process are provided
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in Appendix A. Steady-state diffusion begins with Laplace’s equation as shown in

equation (4.2) in the absence of internal sources.

∇ · 1
ρ
∇ϕ = 0 (4.2)

Above, ρ is the resistivity of the material and ϕ is the domain potential. CEM

boundary conditions add an additional degree of freedom corresponding to each elec-

trode, assumes the electrodes are perfect conductors (and hence at a constant voltage),

and accounts for contact impedance between the domain and the electrodes. CEM

boundary conditions and conservation of charge are enforced on the diffusion equa-

tion via equations (4.3) and (4.4), respectively. Equation (4.3) takes into account

the contact impedance-induced voltage drop between the electrodes and the domain

whereas equation (4.4) stipulates that current-in equals current-out.

ϕ+ zl
1

ρ
∇ϕ · n = Vl (4.3)

L∑
l=1

∫
El

1

ρ
∇ϕ · n dSl = 0 (4.4)

Above, zl is the contact impedance between the lth electrode and the domain, n

is an outward pointing normal vector, Vl is the voltage on the lth electrode, El is the

area of the lth electrode, and L is the total number of electrodes. These governing

equations and boundary conditions can be easily solved by discretization via the finite

element method as shown in equation (4.5).

AM +AZ AW

AT
W AD

Φ
V

 =

0
I

 (4.5)

Ae
M ij =

∫
Ωe

∂wi

∂xk
ρ−1
kl

∂wj

∂xl
dΩe (4.6)

AZ ij =
L∑
l=1

∫
El

1

zl
wiwj dSl (4.7)
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AW li = −
∫
El

1

zl
wi dSl (4.8)

AD = diag

(
El

zl

)
(4.9)

Above, Φ is a vector of domain potentials, V is a vector of voltages on electrodes,

I is a vector of currents applied to the electrodes (the components of I must sum to

zero), and wi is the ith finite element weighting function. Linear tetrahedral elements

are used in this study. Equation (4.6) describes the local diffusion stiffness matrix of

the eth element. AZ , AW , and AD are defined in equations (4.7) - (4.9) to take into

account the additional degree of freedom due to the electrodes and also incorporate

the effect of contact impedance. Note also that ρ−1
kl is the (potentially) anisotropic

resistivity tensor such that ρ−1
kl = σkl where σkl is the conductivity tensor. For the case

of isotropic resistivity, this simplifies as ρ−1
kl = ρ−1δkl where δkl is the Kronecker-delta

and ρ is a scalar resistivity value.

In equation (4.5), it is assumed that voltage at the grounded electrode is zero.

This can be enforced via
∑L

l=1 Vl = 0. It is important to note that equation (4.5) is

only solvable up to an additive constant (i.e. ground point). However, this does not

affect our results because voltage differences are used in our calculations. That is,

for a given current injection, finite element simulation computes the inter-electrode

voltage change. From this voltage change and knowing the applied current, resistance

is calculated. A representative domain potential distribution on a dog-bone and v-

notched specimen geometry can be seen in Figure 4.5. Detailed descriptions of finite

element discretization of steady-state diffusion under CEM boundary conditions can

be found in Appendix A.

And lastly, strain-free resistivity was plotted as a function of CNF weight fraction

as shown in Figure 4.6. Nanocomposite resistivity is known to follow an exponential

trend with respect to filler content. This exponential trend is clearly seen in Figure 4.6.

The model prediction was calculated from the analytical model described in [101,126].
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Fig. 4.5. A representative CEM solution on a dog-bone (top) and v-
notched (bottom) geometry for 1.5 wt.% CNFs and a current injection
magnitude of 10 mA.

4.5 CNF/Epoxy AC Electrical Properties

After DC measurements, AC measurements were collected for the same cases of

axial and shear loading. Specifically, impedance magnitude, |Z|, and phase angle, θ,
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Fig. 4.6. Average experimentally determined resistivity at 0.5, 1.0,
and 1.5 wt.%. CNFs and exponential trend line

were measured using a Keysight E4990A impedance analyzer sweeping from 100 Hz

to 10 MHz. In order to obtain accurate in-situ electrical measurements, specimens

were once again electrically isolated from the load frame by insulating tabs, the load

frame was electrically grounded to the chassis ground of the impedance analyzer, and

the impedance analyzer was calibrated to open and short conditions while in the load

frame and test fixtures. The measured impedance and phase angle were converted to

real and imaginary impedances (Z = Z ′+ jZ ′′ where Z is the complex impedance, Z ′

is the real impedance, Z ′′ is the imaginary impedance, and j =
√
−1 is the imaginary

unit) via the equations shown below.
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Z ′ = |Z| cos(θ) (4.10)

Z ′′ = |Z| sin(θ) (4.11)

AC conductivity is typically calculated as σAC = L/AZ ′, where L is the length of a

prismatic specimen along the measurement direction, and A is the face-covering cross-

sectional electrode area. However, AC conductivity can be difficult to measure in this

way on shapes such as dog-bone or v-notched specimens when they are mounted on

a load frame since it is not practical to apply electrodes over the entire surface of a

specimen during loading. In light of this, the effective AC conductivity is defined as

shown below.

σ̃AC =
t

AeZ ′ (4.12)

Above, t is the specimen thickness (i.e. the distance between the electrodes), Z ′ is

again the real part of the measured complex impedance, and Ae is the area of the mea-

surement electrodes. The use of this definition can be justified because the effective

AC conductivity defined above exhibits the same trend for AC conductivity versus

frequency as measured on a prismatic specimen as shown in Figure 4.7. That is, both

AC conductivity of a prismatic specimen and the effective AC conductivity defined in

this chapter show two distinct regimes: one is a frequency-independent behavior (i.e.

the flat portion of σAC curve). This region is also called as the DC region. In this

regime, electrical transport through the conductive network is dominated by filler

and inter-filler resistance, thus resulting in a nearly constant impedance response.

Beyond this flat portion, the next regime exhibits frequency-dependent behavior (i.e.

the portion of σAC curve that shows an exponential increase). In this region, AC con-

ductivity increases dramatically with interrogation frequency. This is a consequence

of filler and inter-filler AC effects (e.g. inter-filler regions acting as micro-capacitors,

interfacial polarization between the conductive fillers and the non-conductive matrix,
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etc.) starting to dominate net transport properties. Importantly, the definition of

effective AC conductivity herein adopted allows for fitting to UDR relations.

Fig. 4.7. (a) AC conductivity of prismatic specimens for 1.0, 1.5, and
2.0 wt.% CNF/epoxy. Inset figure shows the actual specimen for this
measurement. Note that AC conductivity initially has flat portion and
then increases exponentially with frequency [127]. (b) The effective
AC conductivity measured for 1.5 wt.% CNF/epoxy. Note that the
trend of the effective AC conductivity agrees with AC conductivity
trend of prismatic specimens

4.6 CNF/Epoxy Mechanical Properties

While taking measurements of electrical properties of CNF/epoxy specimens, me-

chanical properties were recorded as well. Elastic modulus data is not necessarily

needed for the tensor-based relation, but the stress-strain data confirms that the

specimens are indeed in the linear-elastic region consistent with our assumptions for

the development of a general tensorial model. On the other hand, Poisson’s ratio is

needed to determine the piezoresistive constants as described in equation (3.10) in

Chapter 3 and can be determined by uniaxial testing with strain measurements in

the axial and transverse directions.
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Figure 4.8 shows the normal stress-normal strain plots for 0.5, 1.0, and 1.5 wt.%

CNF/epoxy specimens. Elastic modulus was determined by a linear curve-fit of the

data. It was found that elastic modulus increases with CNF weight fraction. Simulta-

neously, Poisson’s ratio was also measured as shown in Figure 4.9. The experimental

Poisson’s ratio was approximately 0.3511 for all CNF weight fractions. This indicates

that Poisson’s ratio is not affected much by the addition of nanofillers. The elastic

modulus and Poisson’s ratio of each weight fraction are tabulated in Table 4.1.

Fig. 4.8. Normal stress versus normal strain for all CNF/epoxy specimens.
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Fig. 4.9. Transverse strain versus axial strain for all CNF/epoxy specimens.

Table 4.1.
Mechanical properties of 0.5, 1.0, and 1.5% CNF/epoxy specimens

CNF wt.% E (GPa) ν (-)

0.5 2.571 0.3511

1.0 2.711 0.3511

1.5 2.938 0.3511

4.7 Summary and Conclusion

In order to test the previously described macroscale modeling methods, piezore-

sistive specimens were produced, instrumented, and DC and AC measurements were
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taken as a function of normal and shear strain. Mechanical properties, modulus of

elasticity and Poisson’s ratio, were also measured. CNF-modified epoxy was used as

a representative piezoresistive material in order to conform to previously described

model assumptions.

Specifically, CNF/epoxy specimens were first manufactured at 0.5, 1.0, and 1.5

wt.% CNFs. Second, uniaxial tests were done according to ASTM D638. However,

the gage lengths of specimens were shortened to decrease the likelihood of buckling

during compressive testing. Third, v-notched rail shear testing was conducted based

on ASTM D7078. This test was conducted to induce uniform shear strain in the

test region such that DC and AC measurements could be collected as a function of

shear. A four-point probe method was used to determine DC electrical resistance un-

der axial and shear loading. Unlike resistivity measurements which are traditionally

taken from a prismatic specimen, resistivity was not able to be directly measured

in the load frame. This means that the simple resistivity equation for prismatic

specimens cannot be used. For this, an in-house steady-state diffusion finite ele-

ment simulation subject to CEM boundary conditions was developed in order to

determine deformation-induced resistivity changes by equating model-predicted re-

sistance changes to experimentally measured resistance changes. Deformation was

also accounted for this model matching process. Fourth, AC electrical measurement

methods and general descriptions of AC electrical properties were provided. Along

with electrical measurements via DC and AC, mechanical properties of CNF/epoxy,

such as elastic modulus and Poisson’s ratio, were identified.

Several conclusions can be drawn from the work presented in this chapter. First,

an exponential trend between DC resistivity and CNF weight fraction was observed

as expected for materials that depend on percolation for electrical transport. Sec-

ond, due to fixture geometry of v-notched rail shear test, it is impossible to induce

negative shear strains. However, prior computational micromodeling has shown that

the piezoresistive effect is independent of the sign of shear strain [104]. Therefore,

the experimentally determined resistivity-change-versus-shear-strain data will be re-
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flected across the zero-strain axis for the purposes of fitting equation (3.11). This

will be detailed further later. Third, the effective AC conductivity measured in this

chapter shows the same trend as AC conductivity measurements for the prismatic

specimens. This suggests that the behavior of AC conductivity can be characterized

by the UDR framework proposed earlier. And fourth, it was observed that elastic

modulus increases slightly with increasing CNF weight fraction. Poisson’s ratio, on

the other hand, did not vary with CNF content. Elastic modulus was not neces-

sary for the proposed tensorial relation but it is a guideline that confirms the test

specimens are in the linear-elastic region. However, Poisson’s ratio is needed in the

proposed tensorial relation.



54

5. EXPERIMENTAL RESULTS AND ANALYSIS

5.1 Introduction

Having described the experimental methods, electrical properties, and mechanical

properties, the experimental results and their resulting analyses are next presented.

Specifically, this chapter will experimentally validate an important assumption of the

proposed resistivity-strain tensorial relation, discuss how the piezoresistive constants

were determined, experimentally validate the accuracy of the tensorial resistivity-

strain relation for two cases of complex deformations, and explore how UDR fitting

constants evolve with strain. Additionally, this chapter will describe the piezoresistive

switching behavior (i.e. switching from positive piezoresistivity at low frequencies to

negative piezoresistivity at high frequencies) that was observed during AC piezoresis-

tivity testing. This discussion is accompanied by a microscale modeling in order to

elucidate the physical mechanism of this switching behavior.

5.2 Experimental Validation of Assumptions for Tensorial Resistivity-

Strain Relation

While deriving the proposed tensorial piezoresistive relations, three assumptions

were made: i) Materials are limited to infinitesimal strain. ii) Materials exhibit

isotropic resistivity changes such that the differences between resistivity measure-

ments in all directions are negligible. And iii), resistivity changes are non-linear in

strain. The first and third assumptions are straight-forward; we control the level of

applied strain (and choose to keep it in the infinitesimal regime) and nanocomposites

are well-documented to exhibit non-linear resistivity-strain relations. The validity of

the second assumption, however, needs to be verified. To understand how the second
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assumption could be violated, recall that materials with aligned conductive fillers

are electrically anisotropic. Even though the manufacturing method herein employed

does not purposefully seek to align the CNFs, the act of pouring the CNF-modified

liquid epoxy into a mold will induce some in-plane alignment through flow mechanics.

Therefore, two simple laboratory tests were performed to validate the second assump-

tion. First, two 1.5 wt.% CNF/epoxy rectangular plates measuring 100 mm × 100

mm × 13 mm were manufactured with the same procedure described in Chapter 4

as shown in Figure 5.1(c). Next, these rectangular plates were cut into 36 pieces as

shown in Figure 5.1(d). The resistivity of each cuboid was then measured in each

direction. That is, resistivity was measured in the x1-, x2-, and x3-directions for each

cuboid (note that x3 is the out-of-plane direction in the figure). The resistivity for

each direction is shown in Figure 5.1(a) and (b). Resistivity measurements in all

three directions are reasonably consistent for all 36 pieces, but there exists some mild

electrical anisotropy. Resistivity measurements in the in-plane directions, x1- and x2-

directions, have slightly lesser resistivity than the out-of-plane or x3-direction. This

is consistent with the fillers being mildly aligned in-plane due to flow during casting.

Despite the mildly anisotropic resistivity, it is important to recall that the fo-

cus of this modeling effort is on the change in resistivity (i.e. ∆ρ) rather than the

absolute value of resistivity (i.e. ρ). Hence, a second test is conducted to explore

whether or not resistivity changes are isotropic. For this, two 1.5 wt.% CNF/epoxy

dog-bone specimens were manufactured as previously described with the exception of

being made thicker in the out-of-plane direction. To clarify, the dog-bone specimens

have a gage section width of 13 mm, and the dog bones made for this validation

were produced with an out-of-plane thickness of 13 mm. This was done so that

resistance measurements taken in the flow direction (i.e. the x1-direction) and the

pouring direction (i.e. the x3-direction) could be directly compared without account-

ing for different specimen dimensions. If the material exhibits isotropic resistivity

changes, measurements of resistance change per undeformed resistance in these two

directions should be the same as a function of strain. These results are shown in
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(a) (b)

(c) (d)

Fig. 5.1. (a) and (b) Resistivity distribution in three orthogonal di-
rection for two samples (1.5wt.% CNF/epoxy). (c) Representative
image of thick plate specimen. (d) Representative image of 36 cut
specimen for three orthogonal resistivity measurements. As shown
on the top right corner of (c), x1 and x2 are in-plane and x3 is the
through-thickness direction.

Figure 5.2(a). It can be observed that normalized resistance change is very consistent

over two samples and in all directions. This indicates that the resistivity changes of

CNF/epoxy nanocomposites are sufficiently similar to be considered as being isotropic
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and the second assumption is validated. Interestingly, this assumption is also vali-

dated by computational micromodeling work conducted by Garcia-Macias et al. [104].

In this work, they manufactured and computationally analyzed the microstructure of

MWCNT-reinforced cementious composites by investigating the directional depen-

dence of resistivity changes. They also found that the difference between resistivity

changes in longitudinal and transverse direction are negligible as shown in Figure 5.3.

5.3 Determination of DC Piezoresistive Constants

Next, the process by which piezoresistive constants of the higher-order tensorial

piezoresistive relation are determined for each CNF weight fraction is described. In

short, this is done by fitting equation (3.10) to resistivity change versus tensile strain

data and fitting equation (3.11) to resistivity change versus shear strain data. Proce-

durally, equation (3.11) was fit first because it contains only one unknown parameter,

Π2. After this, equation (3.10) was fit to experimental data by treating κ(1− 2ν) as

one variable (say, A) and (Π1 +Π2 − 4Π1ν + (3Π1 +Π2)ν
2) as another variable (say,

B). Equation (3.10) is then fit to experimental data to find A and B. From this, κ is

recovered from A by knowing the Poisson’s ratio of the material, and Π1 is recovered

from B by knowing the Poisson’s ratio and Π2. Fitting was done using the ‘cftool’

command in Matlab with the least absolute residuals (LAR) option. This option was

used to diminish the effect of outlier data. The results of this fitting process can be

seen in Figure 5.4, and the constants are tabulated in Table 5.1. Recall also that

negative shear strains cannot be induced because of the v-notched rail shear fixture

being unable to reverse direction. As shown in Figure 4.4, ‘pushing down’ on the

fixture would cause it to contact itself. However, as described previously, resistivity

changes due to shear strains are independent of shear sign. Therefore, shear data was

reflected across the zero-shear axis for fitting.

Several interesting observations can be made from the results presented in Fig-

ure 5.4. First, the proposed higher-order tensorial piezoresistive relation fits the



58

(a)

(b)

Fig. 5.2. (a) Normalized resistance change 1.5wt.% CNF/epoxy spec-
imens with respect to applied strain in two samples. It is shown that
the change in resistance are independent of measurement directions.
(b) Representative measurements in in-plane direction.
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Fig. 5.3. Normalized resistivity change of MWCNT-reinforced ce-
ment with respect to different filler concentrations under laterally
constrained uni-axial dilation [104]. Note that solid and dashed lines
denote longitudinal (∆ρ1/ρ0) and transverse (∆ρ2/ρ0 = ∆ρ3/ρ0) rel-
ative changes in resistivity, respectively.

experimental data well. Second, the fitting parameters, or piezoresistive constants,

shown in Table 5.1 decrease in magnitude with the increase in CNF weight fraction.

This is perhaps to be expected because it is well-known that lower weight fraction

nanocomposites have higher sensitivity. Third, it is important to note that Π1 values

are all negative. Because this may seem like a counter-intuitive result, it needs to

be reiterated that the general form of the proposed higher-order was selected simply

based on the expectation that the piezoresistive response is non-linear and therefore

requires higher-order strain products. In other words, there is no physical expectation

that the fitting parameters are positive. And fourth, it may be expected that resis-
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tance decreases between the measurement electrodes during tension because applied

tension causes the electrodes to move closer due to the Poisson effect. However, this

is an incomplete rationale. That is, if the material-level resistivity is independent of

strain, the reduced inter-electrode distance would indeed cause the inter-electrode re-

sistance to decrease. However, the applied tension also changes the connectedness of

the underlying nanofiller network. This latter effect dominates the overall resistance

change. This behavior also can be observed in Figure 5.2 where resistance increases

in x3 direction with increasing tension although the distance between the electrodes

decreases due to Poisson’s effect. Therefore, an increase in resistance with increas-

ing tension (or, conversely, a decrease in resistance with increasing compression) is

experimentally observed. Furthermore, it is important to note that the finite ele-

ment simulations used for converting resistance measurements to resistivity changes

(as described in Chapter 4) do also intrinsically account for geometric effects due to

deformation.

Table 5.1.
Piezoresistive constants of CNF/epoxy as determined by fitting pro-
cess. Note that all constants have units of resistivity, Ω-m.

CNF wt.% κ Π1 Π2

0.5 8.08 × 109 -7.15 × 1011 2.25 × 1010

1.0 4.10 × 106 -1.5 × 108 5.15 × 106

1.5 6.22 × 105 -7.13 × 107 4.33 × 105

5.4 Experimental Validation of DC Piezoresistivity Model

Next, the predictive power of the proposed higher-order tensor-based piezoresistiv-

ity relation is validated for complex states of strain. This is done in two ways. First,

discrete resistance measurements are taken from a complex shape as it is deformed.
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Fig. 5.4. Fitting of reduced piezoresistive relations to experimental
data. Left column: fitting to tensile data. Right column: fitting to
shear data.

And second, experimental EIT is used to image the spatially varying deformation-

induced resistivity change of a plate with a hole.



62

5.4.1 Comparison of Model Prediction to Discrete Resistance Measure-

ments on a Complex Shape

Three S-shaped specimens were manufactured as described in Chapter 4 with three

different weight fractions of CNFs – 0.5, 1.0, and 1.5 wt.%. S-shaped silicone molds

were produced as described in Chapter 4 and CNF-modified epoxy was cast into the

molds. A representative S-shaped specimen with electrodes and insulating grips at-

tached is shown in the top left corner of Figure 5.5. The gage section of the S-shaped

specimens measured 13 cm in length from top-to-bottom, the width of the S-shaped

portion was 10 mm, and as-molded thickness was 4.5 mm. These specimens were sub-

ject to applied displacements ranging from -1.5 mm to 1.5 mm in an Instron 8801 load

frame while inter-electrode voltages were measured such that resistance changes could

be calculated for a prescribed current injection. The experimentally measured resis-

tance changes with respect to applied displacements are shown in Figure 5.5. This

test was also replicated computationally using the finite element method. Specifi-

cally, an elasticity simulation (making use of the previously determined modulus of

elasticity and Poisson’s ratio for each CNF weight fraction) was used to replicate the

deformation of the S-shaped specimens. Resistivity changes were then ascribed to the

model element-wise based on the proposed higher-order resistivity-strain relation and

utilizing the piezoresistive constants in Table 5.1. To compute resistance changes,

steady-state diffusion finite element simulations with CEM boundary conditions were

again used to predict the voltage-current relationship for each state of deformation.

The simulated resistance changes are shown in Figure 5.5. Model predictions match

experimental observations well.

The resistivity changes computed by the tensorial relation are shown in Figure 5.6

for displacements of ±0.5 mm and ±1.5 mm. Note that resistivity is treated as

element-wise constant in these simulations. Therefore, triangulation effects in Fig-

ure 5.6 are expected. Several interesting observations can be made from Figure 5.6.

First, the highest magnitude changes in resistivity appear at either the inner or outer
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Fig. 5.5. Experimental validation by discrete resistance measurements
on a complex shape. The S-shaped specimens were deformed up-
ward and downward in a load frame as resistance measurements were
taken between electrodes. Good model-to-experiment agreement is
observed.

edges of the curved areas of the S-shaped specimens. This is expected results because

applied upward or downward displacements will cause the highest strain at these

edges. Second, the sign of the predicted resistivity changes correspond to the sign of

the strain. That is, for example, the image in the top-right corner of Figure 5.6 (i.e.

1.5 mm displacements at 0.5 wt.%) shows a resistivity decrease at the outer edge of

the curve corresponding to a state of compression and an increase in resistivity at
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the inner edge which corresponds to a state of tension. And third, the magnitude in

the resistivity change for a given displacement is highest for 0.5 wt.% CNF/epoxy.

This again agrees with the expectation that lower weight fractions exhibit higher

sensitivity.

Fig. 5.6. Model-predicted resistivity changes for S-shaped specimens
as a function of displacement. These resistivity changes were used
to predict the voltage-current relationship between electrodes as a
function of displacement.
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5.4.2 Comparison of Model Predictions to Experimental EIT-Imaged Re-

sistivity Changes

Next, the model’s predictive power for distributed resistivity changes is exper-

imentally validated against EIT-imaged resistivity changes. For this, a 1.0 wt.%.

CNF/epoxy thin plate measuring 82 mm × 46.5 mm with a hole of diameter 12.7

mm in its center was put in tension as shown in the left of Figure 5.7. The bottom of

the specimen was completely fixed in all directions and a laterally-constrained upward

displacement of 0.25 mm was applied on the top edge of the specimen. Treating this as

a plane-stress problem with mechanical properties of 1.0 wt.% CNF/epoxy specimen

in Table 4.1, an in-house finite element simulation with linear tetrahedral elements was

used to calculate the displacement field and strains. Then, with the experimentally

determined piezoresistive constants shown in Table 5.1 and the higher-order tensorial

relation, the element-wise resistivity change distribution was calculated. The model-

predicted resistivity changes are shown in the left of Figure 5.8. Note that resistivity

is again treated as being element-wise constant and triangulation effects in Figure 5.8

are expected.

These model-predicted results are then compared to experimental EIT-imaged

resistivity changes for the same strain state. The right of Figure 5.7 shows the spec-

imen used for this test. This specimen measured 196 mm × 46.5 mm with a 4 mm

thickness. The gage section measured 82 mm × 46.5 mm, the same as the simu-

lated domain. This test specimen was manufactured with 1.0 wt.% CNFs using the

procedure described previously. The specimen was loaded to 0.25 mm in positive

tension by displacement-controlled settings in an Instron 8801 load frame. The grips

on the top and bottom of the load frame and the applied tensile displacement repli-

cate the model boundary conditions and loading conditions. Additional details of the

experimental setup are described in [128].

The resistivity change due to this state of deformation was then imaged via EIT.

Although an exhaustive description of EIT exceeds the scope of this thesis, a brief
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Fig. 5.7. Left: geometry of finite element model with boundary con-
ditions. Right: 1.0 wt.% CNF/epoxy specimen used for experimental
validation. Note that the gauge section dimensions match the model
dimensions. Strips of copper tape are EIT electrodes.

summary is provided. In short, EIT images the internal resistivity distribution of a

domain based on voltage-current relations observed at the domain’s boundary. This

takes the form of a model-update problem wherein the resistivity distribution of a
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model (typically a finite element model with CEM boundary conditions) is updated

until the model-predicted voltage-current relationship at the boundary matches the

experimentally observed voltage-current relationship at the boundary. This is math-

ematically formulated as a minimization problem as shown below with an explicit

solution for the resistivity change shown next.

ρ∗ = argmin
ρ

||F(ρ)−V||22 + α||R(ρ)||22 (5.1)

∆ρ =
(
JTJ+ α2RTR

)−1
JT (F(ρ0)−V) (5.2)

In the preceding equations, F(ρ) is a vector of model-predicted boundary voltages

for a prescribed current injection, V is a vector of experimental measurements, ρ∗

is a resistivity distribution that satisfies the minimization, ρ0 is an estimate of the

resistivity distribution, and J = ∂F(ρ)/∂ρ is known as the sensitivity matrix. Note

also that a regularization term, R(ρ), has been added to the minimization. This is

needed because EIT is a fundamentally ill-posed inverse problem which requires some

a priori knowledge to achieve a physically meaningful solution. Herein, the discrete

Laplace operator (formed by the finite difference method) is used for regularization.

This particular regularization is used because it is known to promote spatially smooth

solutions. Because resistivity changes are strain-driven and the strain field for this

problem is smoothly varying, it is likewise expected that the resistivity distribution

will be smoothly varying. α is a scalar hyper-parameter which controls the extent

of regularization. For a more fundamental discussion of EIT including minimization

techniques, least-squares formulations, and the effect of minimization and regulariza-

tion norms, interested readers are directed to [129–132]. The EIT-imaged resistivity

change distribution in the gauge section is shown in the middle of Figure 5.8.

Several noteworthy observations can be made regarding Figure 5.8. First, a no-

ticeable resistivity increase at the left and right edge of the hole and a pronounced

decrease at the top and bottom edge of the hole can be observed. These are due to the

well-known strain concentrations for a plate with a hole subject to tension – a tensile
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Fig. 5.8. Left: model-predicted resistivity changes for a plate in
tension with a hole. Note the large resistivity changes which col-
locate with strain concentrations. Right: EIT-predicted resistivity
change distribution. Despite the EIT-predicted resistivity changes
being ‘smeared’ over larger areas than the model-predicted changes
and the presence of noise artifacts in the EIT image, good model-to-
experiment agreement is observed.

strain concentration exists at the left and right edge of the hole and a compressive

concentration is present at the top and bottom edge of the hole. As shown in Fig-

ure 5.4, tensile strain increases resistivity and compression decreases resistivity. The

resistivity distribution obtained from this work validates that tensile strain is present

at the left and right edge of the hole and compressive strain is present at the top

and bottom edge of the hole. Second, the model-predicted resistivity changes agree

with the EIT-imaged resistivity changes well in terms of magnitude. Third, the EIT-

imaged resistivity changes near the hole are seemingly ‘smeared‘ over a larger area (i.e.

are blurry) compared to the tensor-based piezoresistive relation-predicted resistivity

changes. This is a consequence of a well-known limitation of EIT. EIT is a diffusive
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imaging modality in which electrical current follows a path of least resistance through

the material as opposed to straight lines as in radiography. As a result, EIT images

tend to be blurry. And fourth, the model-predicted resistivity changes away from the

hole are slightly greater than those of the EIT image. This may be a consequence of

three factors. i) Experimental EIT necessarily includes noise which causes the back-

ground resistivity to vary. Indeed, there are non-negligible fluctuations away from the

hole. ii) EIT tends to be less adept at imaging domain-spanning resistivity changes

(i.e. global resistivity changes away from the hole) and better at imaging localized

artifacts (i.e. concentrations near the hole). And iii), it is well known that con-

siderable specimen-to-specimen variability exists for piezoresistive nanocomposites.

Such variability is even evident in our tensile and shear testing shown in Figure 5.4.

Therefore, the modest deviations observed between the tensorial relation-predicted

and EIT-imaged resistivity change distributions in Figure 5.8 seem reasonable.

5.5 Model Limitations

Like all models, the one herein proposed has limitations (beyond conditions that

violate the previously described assumptions). It is therefore important to be cog-

nizant these limitations. A limitation of particular importance is concerned with the

fitting process used to determine piezoresistive constants. That is, the determination

of piezoresistive constants is essentially a polynomial fit in strain. Polynomial fits can

provide good predictions in the range over which they are fit, but there is no guar-

antee of accuracy if this range is exceeded. This limitation is graphically illustrated

in Figure 5.9. That is, the model is reliable within the strain range where the data

was fit. However, outside of that range, accuracy is not assured. The model may

still be accurate just outside of the fitting region because it predicts a ‘hardening’

effect in tension and a ‘softening’ effect in compression (which is generally observed

in piezoresistive materials loaded in tension [92]). However, in the far-left region,
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the model predicts increasing resistivity with increasing compression which is not

physically expected.

Fig. 5.9. Illustration of model accuracy in terms of strain range. As
shown in general polynomial fits, the model is trustworthy within the
fitted strain range but gives poor predictions far outside of this range.
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5.6 Effective AC conductivity

5.6.1 Raw Impedance and Phase Data

Recall from Chapter 4 that impedance magnitude, |Z|, and phase angle, θ, were

measured in terms of frequency as dog-bone and v-notched specimens were deformed

under normal and shear loading, respectively. Before discussing the effect of defor-

mation on AC conductivity, the raw measured impedance magnitude and phase angle

data as directly reported by the impedance analyzer are presented. Although three

specimens per each weight fraction have been tested, only one representative result is

shown in the main body of this thesis per each weight fraction and test (i.e. uniaxial

and shear test) in Figures 5.10 and 5.11. This is because all specimens for each weight

fraction and test showed the same response and trend. The rest of the plots of the

raw impedance magnitude and phase angle data are included in Appendix B. A few

important observations can be made regarding the data in Figures 5.10 and 5.11.

First, much noise exists in the impedance magnitude and phase angle data at low fre-

quencies for 0.5 wt.% CNF/epoxy. This has also been observed elsewhere in the state

of the art and is attributed to poor AC percolation at low weight fractions [122] [127].

On the other hand, impedance magnitude and phase angle data of 1.0 wt.% and 1.5

wt.% CNF/epoxy showed much less noise and clear trends. And second, as shown in

Figures 5.10 and 5.11, 1.0 wt.% and 1.5 wt.% CNF/epoxy show consistent changes in

impedance magnitude and phase angle due to applied normal and shear strain. This

is noteworthy because it indicates that both impedance magnitude and phase angle

can be utilized for strain sensing purposes.

5.6.2 Variation of Effective AC Conductivity with Applied Strain

Effective AC conductivity as a function of normal and shear strain is next pre-

sented in Figures 5.12 and 5.13, respectively. As with the raw impedance magnitude

and phase angle data, only one representative result is shown per weight fraction and
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Fig. 5.10. Raw impedance magnitude and phase angle data for spec-
imens under applied normal loading.

Fig. 5.11. Raw impedance magnitude and phase angle data for spec-
imens under applied shear loading.

test. Again, all specimens showed the same trend. The rest of the experimentally

measured effective AC conductivity is provided in Appendix C. Several observations

can be made regarding Figures 5.12 and 5.13. First, as expected from the results

of impedance magnitude and phase angle data, there exists much noise for 0.5 wt.%

CNF/epoxy specimens at low frequencies. Second, the general shape of the effective
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AC conductivity-versus-frequency curves are the same as AC conductivity measured

from prismatic specimens. That is, the effective AC conductivity is initially constant

and then exponentially increases with interrogation frequency. Third, the effective

AC conductivity varies systematically with applied normal and shear strains.

An interesting piezoresistive switching behavior can also be observed and deserves

special consideration. To clarify, in the low frequency range, a positive piezoresis-

tive response can be seen. That is, the magnitude of the effective AC conductivity

decreases with increasing tensile and shear strain. This is evident by the red curves

(indicating high tensile and shear strain) being shifted downward and blue curves

(indicating high compressive strain and low shear strain) being shifted upward. How-

ever, a negative piezoresistive response can be observed in the high frequency range.

That is, the effective AC conductivity behaves opposite compared to the behavior

at low frequencies – in the high frequency range, red curves are shifted upward and

blue curves are shifted downward. In other words, the magnitude of the effective AC

conductivity decreases with increasing compressive strain. Because of the switch from

positive to negative piezoresistivity, there must also be a point of zero piezoresistivity

(i.e. a frequency at which the deformed AC conductivity is equal to undeformed AC

conductivity). To the best of the author’s knowledge, this switching behavior has not

been explored elsewhere. The current state of the art overwhelmingly reports posi-

tive DC piezoresistivity (although a few instances of negative DC piezoresistivity have

been reported [133–135]). This is a novel observation because it implies that the sens-

ing characteristics of the material can be modulated via frequency. The underlying

physical mechanisms of this switching behavior are discussed later in section 5.6.4.

5.6.3 Evolution of Power-Law Fitting Parameters with Applied Strain

In light of the fact that the effective AC conductivity changes in response to

strain, it is next desired to cast this relationship in terms of the previously discussed

macroscale modeling framework. For this, the experimentally measured effective AC
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Fig. 5.12. Effective AC conductivity for specimens under applied nor-
mal loading. The inset figures show the effective AC conductivity in
the range of 1 to 1.25 MHz. Note how the red curve is at the bottom
at low frequencies but switches to being on top at high frequencies

Fig. 5.13. Effective AC conductivity for specimens under applied shear
loading. The inset figures show the effective AC conductivity in the
range of 1 to 1.25 MHz. Again, switching behavior is seen between
low and high frequencies.

conductivity is fit to a power law for the UDR as described by Jonscher [121]. The

relationship between fitting constants and applied strain is found by fitting equa-
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tion (3.12) to the experimentally measured effective AC conductivity data for each

applied strain state. Curve fitting was again done using ‘cftool’ in MATLAB. The

LAR option was also again used to minimize the effect of outlier data. In order

to confirm whether the proposed power law equation fit the experimental data well,

representative curve fitting results for dog-bone and v-notched specimens are shown

in Figure 5.14. It can be seen that equation (3.12) fits the experimental data quite

well. In fact, the coefficient of determination, R2, exceeded 0.98 for all cases thereby

suggesting good fits.

Fig. 5.14. Representative examples of fitting the UDR power law to
experimental data in tension and shear. Very good correspondence
between curve-fit and experimental results is achieved.
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The undeformed effective DC conductivity, σ̃0
DC , and undeformed fitting constants,

K0 and n0 for dog-bone and v-notched specimens are presented in Table 5.2. Changes

in the fitting parameters are shown in Figures 5.15 and 5.16 for normal and shear

deformation, respectively. Note that σ̃0
DC data for 0.5 wt.% CNF/epoxy specimens is

not presented in Table 5.2 nor Figures 5.15 and 5.16 because noise in the low frequency

range severely degrades the quality of fitting procedure. Hence, for the fitting process

of 0.5 wt.% CNF/epoxy, σ̃DC was dropped from both sides of equation (3.12) and

fitting parameters K and n are found by σAC = Kωn for frequencies greater than 1

kHz. That is, fitting is done only in the frequency-dependent part of the plot and

flat-portion is dropped.

Several interesting observations can be made regarding Figures 5.15 and 5.16.

First, changes in the fitting parameters are relatively consistent between specimens.

To clarify, it is not claimed that the changes in fitting parameters are identical for

each specimen. However, it is well-known that considerable specimen-to-specimen

variability exists for piezoresistive nanocomposites even for a single manufacturing

method. Instead, it is claimed that the changes in fitting parameters for each speci-

men show similar trends and are all in the same magnitude range. This is noteworthy

because it indicates that changes in fitting parameters can be leveraged for character-

izing AC piezoresistivity. Second, it appears that changes in fitting parameters due

to strain are generally non-linear. Furthermore, there exist an appreciable difference

between the effective DC conductivity in tension and compression. This non-linearity

is also well-known due to the DC piezoresistive response in tension being greater than

in compression. And third, the trends of ∆σ̃DC and ∆K behave in the opposite fash-

ion. That is, ∆σ̃DC decreases with the increasing normal and shear strain but ∆K

increases with the increasing normal and shear strain. This is noteworthy because

these trends can help describe the switching behavior. σ̃DC in equation (3.12) controls

the vertical location of the effective AC conductivity at low frequencies in Figures 5.15

and 5.16. On the other hand, K controls the vertical location of the effective AC con-

ductivity at high frequencies. That is, if the specimens are under higher tensile and



77

Table 5.2.
Fitting constants for unstrained conductivity measurements. Note
that the unstrained effective DC conductivity for 0.5 wt.% CNFs is
omitted because low-frequency noise prevented a meaningful fit.

σ̃0
DC (S/m) K0 n0

specimen 1 - 3.01× 10−9 1.07

0.5 wt.% specimen 2 - 2.69× 10−9 1.08

specimen 3 - 2.78× 10−9 1.08

specimen 1 1.15× 10−5 8.81× 10−10 1.12

tensile testing 1.0 wt.% specimen 2 1.09× 10−5 8.89× 10−10 1.12

specimen 3 2.39× 10−5 2.23× 10−10 1.17

specimen 1 1.09× 10−4 7.76× 10−10 1.12

1.5 wt.% specimen 2 9.38× 10−5 1.01× 10−9 1.11

specimen 3 9.38× 10−5 9.04× 10−10 1.12

specimen 1 - 2.84× 10−9 1.06

0.5 wt.% specimen 2 - 1.26× 10−9 1.07

specimen 3 - 1.57× 10−9 1.09

specimen 1 1.66× 10−5 6.58× 10−10 1.09

shear testing 1.0 wt.% specimen 2 2.03× 10−5 6.10× 10−10 1.12

specimen 3 1.6× 10−5 6.15× 10−10 1.11

specimen 1 1.55× 10−4 1.41× 10−10 1.19

1.5 wt.% specimen 2 2.30× 10−4 2.27× 10−10 1.16

specimen 3 4.40× 10−4 6.92× 10−10 1.23

shear strain, the effective AC conductivity decreases at low frequencies due to lower

∆σ̃DC , but the effective AC conductivity increases at high frequencies due to higher

K (and vice-versa for compression and low shear).
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Fig. 5.15. Evolution of changes in UDR fitting parameters with tensile
and compressive strain.

5.6.4 Physical Mechanisms of Piezoresistive Switching Behavior

While the preceding paragraph provides some rationale for the observed piezore-

sistive switching behavior, it is not particularly satisfying from a basic material per-

spective. Therefore, the underlying mechanism of piezoresistive switching behavior

is considered next in greater detail. In order to facilitate this, EIS plots are pre-

sented. These plots utilize the experimentally measured impedance magnitude and

phase angle data by converting it to real and imaginary portions via equations (4.10)

and (4.11), respectively. Again, one representative plot per each weight fraction
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Fig. 5.16. Evolution of changes in UDR fitting parameters with shear strain.

and test is presented because they all showed similar trends and the same range of

impedances across specimens. The rest of the experimentally measured EIS plots are

shown in Appendix D. These EIS plots are shown in Figures 5.17 and 5.18 for normal

and shear deformation, respectively. Recall that the impedance data for 0.5 wt.% at

low frequencies is too noisy to draw definitive conclusions. Here, tracking the real

part of the complex impedance at each step of strain state is important to under-

stand the relationship between the effective AC conductivity and deformation. For

example, consider the 1.0 wt.% EIS plot under normal strain which is shown in the

middle of Figure 5.17. As the frequency increases from 100 Hz to 10 MHz, the lines

extend in the counter-clockwise direction (i.e. it begins at the bottom-right and ends



80

at the bottom-left corners as indicated by the arrow in the middle of Figure 5.17).

At low frequencies, the red curves (representing impedance in tension) is located to

the right of the blue curve (representing impedance data in compression). However,

as the frequency increases (i.e. extends in the counter-clockwise direction), a fre-

quency is eventually encountered at which the red curves are to the left of the blue

curves. That is, at low frequencies, the real portion of complex impedance in tension

is greater than the real portion of the complex impedance in compression. Beyond

a certain frequency, however, the real portion of the complex impedance in tension

becomes lower than that in compression. Because AC conductivity is inversely de-

pendent on Z ′ as shown in equation (4.12), this causes the piezoresistive response to

switch from positive to negative. In light of this observation, there must also exist a

frequency corresponding to zero piezoresistivity – a frequency at which the real part

of the impedance in tension, compression, and without deformation all have the same

value along the horizontal axis.

Fig. 5.17. EIS curves as a function of tensile and compressive strain.
Note that for the 1.0 and 1.5 wt.% specimens, the curves expand
outward with increasing tension and contract inward with increasing
compression
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Fig. 5.18. EIS curves as a function of shear strain. Again, the 1.0
and 1.5 wt.% curves show a clear trend of expanding outward with
increasing shear strain.

Along with the macroscale mechanism interpretation of piezoresistive switching

behavior described in the preceding, the EIS plots also suggest insight into a more fun-

damental microstructural interpretation of piezoresistive switching. As shown in the

EIS plots, the EIS curves have a semi-circular arc shape. Such semi-circular shapes

are generally indicative of parallel resistor-capacitor-like behavior. In fact, AC trans-

port in carbon nanofiller modified composites is often modeled via equivalent circuit

models such as shown in the left of Figure 5.19 [111,113,136–138]. Furthermore, the

EIS plots obtained from this work show that the arcs move outward with increasing

normal and shear strains and inward with decreasing normal and shear strains. This

is a noteworthy observation because elementary circuit analysis reveals that varying

the parallel resistance of the circuit shown in the left of Figure 5.19 has the same

effect on EIS plots – shifting the EIS curves inward and outward for decreasing and

increasing parallel resistance, respectively.

Armed with this insight, it is important to note that prior work has shown that

inter-filler junctions behave as a resistor in parallel with a capacitor for AC transport

[136]. The resistance arises as a result of inter-filler tunneling while the capacitance
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is due to a dielectric (i.e. the non-conductive matrix material) being sandwiched

between two conductors (i.e. the carbon nanofillers). In light of this, it is hypothesized

that the observed changes in EIS plots due to applied strains are caused by changes

in tunneling resistance in the parallel resistor-capacitor junctions.

Fig. 5.19. Left: Macroscale equivalent circuit commonly used to de-
scribe bulk AC properties of carbon nanocomposites. The series re-
sistor accounts for the DC resistance whereas the parallel resistor-
capacitor component accounts for the arc-like behavior seen in EIS
plots. Middle: Representation of the micromodel used to explore the
mechanisms of piezoresistive switching in this work. Right: Schematic
representation of how individual CNFs and inter-CNF junctions are
discretized in the micromodel.

In order to test this hypothesis, an AC transport micromodel originally developed

by Tallman and Hassan [122,127] was adpoted and modified for this work. The model-

ing process is briefly recapped here, but interested readers are directed to the original

works for more detailed treatment. In this model, individual CNFs are simulated

within a microscale domain. The fillers are treated as one-dimensional sticks and are

randomly dispersed in the microdomain (i.e. the sticks are not pre-disposed to align

in any direction). A representative image of the microdomain is shown in the middle

of Figure 5.19. Once the fillers are generated, they are discretized into AC circuit el-

ements. Junctions between fillers are also discretized into AC circuit elements. CNFs
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are discretized into a capacitor in parallel with a series resistor-inductor arrangement

as shown to the right in Figure 5.19. The resistor is due to the intrinsic conductiv-

ity of the CNF, the capacitor is due to interfacial capacitance between the highly

conductive CNF and the insulating polymer matrix, and the inductor is due to the

kinetic inductance of the filler. Further discussion on these mechanisms can be found

in [139]. For inter-filler electrical connectivity, two cases are considered: i) nanofillers

that are within the electron tunneling range and ii) nanofillers that are outside of the

tunneling range but within a capacitive coupling range. During the original work by

Tallman and Hassan [122], it was found that the model could only be fit to exper-

imental data by the inclusion of this single inter-CNF capacitor thereby suggesting

that inter-filler capacitance may act over a larger distance than electron tunneling.

Electron tunneling resistance was calculated via Simmon’s equation as shown below

in equation (5.3) [140]. Inter-CNF capacitance was calculated by treating capacitive

junctions as parallel-plate capacitors as shown in equation (5.4) below.

Rt =
h2t

Ae2
√
2mλ

exp

(
4πt

h

√
2mλ

)
(5.3)

C = (α or γ)
ϵ0ϵrA

t
(5.4)

In the preceding equations, h is Planck’s constant, λ is the tunneling barrier height

(2.07 eV here), m is the mass of an electron, e is the charge of an electron, A is the

area overlap between interacting fillers (assumed to be equal to the cross-sectional

area of the CNFs), t is the distance between a particular CNF pair, α and γ are

fitting parameters, ϵ0 is the vacuum permittivity, and ϵr is the relative permittivity

of the matrix. In these micromodels, fitting parameters α and γ are included due to

an absence of experimental data on inter-filler capacitance magnitude. These were

found by using a Monte Carlo procedure to fit model predictions of normalized EIS

data to experimentally measured EIS data for 1.0, 1.5, and 2.0 wt.% CNFs in epoxy

produced as previously described. The predictive power of this microscale simulation

is shown in Figure 5.20.
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Fig. 5.20. Validation of micromodel on CNF/epoxy at several weight
fractions. Dots represent experimental data whereas are lines are
model predictions [122].

After discretizing the CNFs and their inter-filler junctions, the complex impedance

of each circuit element is expressed via standard series or parallel combination meth-

ods of the following basic elements shown below where R is some resistance, L is some

inductance, and C is some capacitance.

ZR = R (5.5)

ZL = jωL (5.6)

ZC =
1

jωC
(5.7)

For a prescribed boundary voltage, the current through the microdomain can be

determined by solving a system of equations as KV = I where K is a complex-

valued impedance system matrix, V is an applied boundary voltage vector, and I is

a current vector. K is formed by assembling elemental-level impedance matrices (i.e.

the impedance of each particular CNF or junction) shown in equation (5.8) where

Ze is the impedance of the eth circuit element by enforcing Kirchhoff’s current law

and Kirchhoff’s voltage law. With the current-voltage relation, the bulk complex

impedance of the network for a particular interrogation frequency can be solved by
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Zbulk = VBC/Itotal where VBC is the applied boundary voltage and Itotal is the total

current flow over the microscale domain.

Ke =
1

Ze

 1 −1

−1 1

 (5.8)

To explore the hypothesis on the mechanism of piezoresistive switching with the

micromodel, the parallel inter-filler resistance needs to be further investigated. To this

end, the inter-filler parallel resistance is varied by multiples of the baseline tunneling

resistance as Rp = κRt where Rp is the parallel resistance used in this simulation

between a particular CNF pair, κ is a multiplicative factor, and Rt is the baseline

tunneling resistance as determined by equation (5.3). The EIS plots with respect to

varying inter-filler parallel resistance multiplicative factors are shown in Figure 5.21.

Note that these EIS curves are normalized by strain-free DC resistance of the network,

R0, for ease of visualization.

An important observation can be made regarding Figure 5.21 – the micromodel-

predicted results show the same trend as the experimental results seen in Figures 5.17

and 5.18. That is, EIS curves shift outward and inward with respect to increasing and

decreasing the multiplicative factors, respectively. This shifting behavior is important

because it provides a basic mechanism for explaining the piezoresistive switching. In

other words, the nanofillers move closer together when subject to compressive strain

thereby resulting in a tunneling resistance decrease. This is akin to the micromodel

simulation with κ < 1. On the other hand, when subject to tensile strain, the

tunneling resistance increases due to increased distance between nanofillers. This

is akin to the micromodel simulation with κ > 1. Therefore, in combination with

the preceding discussion on piezoresistive switching manifesting due to strained real

impedance being less than or greater than unstrained real impedance as a function

of frequency, it is reasonable to conclude that variations in the inter-filler tunneling

resistance acting in parallel inter-filler capacitance are likely the underlying physical

mechanism of the observed piezoresistive switching behavior.
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Fig. 5.21. Effect of modulating the inter-CNF parallel resistance on
EIS curves. Increasing κ shifts the curves outward whereas decreas-
ing κ shifts the curves inward. This is consistent with experimental
observations for tension and compression, respectively.

5.7 Summary and Conclusion

In summary, this chapter has presented three important results: i) the population

and validation of a tensor-based resistivity-strain relation, ii) the suitability of the

UDR to model AC piezoresistivity and the evolution of fitting parameters as a function
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of normal and shear strain, and iii) the underlying mechanism of the frequency-

dependent piezoresistive switching which was experimentally observed in CNF/epoxy.

The DC general higher-order resistivity-strain relation was predicated on three as-

sumptions – materials are limited to infinitesimal strains, materials exhibit isotropic

piezoresistivity (i.e. no directional dependence in resistivity changes), and resistivity

changes are non-linear. The first assumption was satisfied by the strain limits se-

lected for testing, and, regarding the third assumption, a non-linear resistivity-strain

relation was observed in the experimental data. The second assumption, however,

had to be validated. For this, three-dimensional resistivity measurements were col-

lected from CNF/epoxy plates and resistance changes of thick dog-bone specimens

were measured in the pour and flow directions. It was observed that the material

exhibited slight electrical anisotropy (being more conductive in the in-plane or flow

direction and less conductive in the out-of-plane or pour direction). However, both

directions exhibited the same normalized resistance change thereby confirming the

second assumption. CNF-modified epoxy specimens manufactured at 0.5, 1.0, and

1.5 wt.% CNFs were then tested for the proposed tensorial relation. Three dog-bone

and v-notched specimens per each weight fraction were loaded in normal and shear

direction as the DC resistance was measured. A model-matching approach was used

to determine the resistivity change of the specimens as a function of strain. The pro-

posed tensor model was fit to this data in order to find the piezoresistive constants.

After determining the piezoresistive constants, two types of experimental validation

test were conducted — discrete resistance measurements as a function of displacement

for S-shaped specimens and spatially varying resistivity changes in the vicinity of a

stress concentration via EIT. In both validation cases, the proposed tensorial relation

was able to accurately match the experimental observations.

Next, deformation-dependent AC conductivity was studied in CNF-modified epoxy.

These materials were again loaded in normal and shear as impedance magnitude and

phase angle were measured from 100 Hz up to 10 MHz. Raw impedance magnitude

and phase angle showed clear deformation dependency. Next, these raw electrical
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measurements were converted to a herein-defined effective AC conductivity which

was then fit to the UDR power law. It was observed that the fitting parameters

are also showed clear trends with respect to deformation. Further, changes in these

fitting parameters as a function of strain were fairly consistent. This suggests that

these deformation-dependent fitting parameters can be utilized in order to predict AC

piezoresistive response thereby providing a new framework by which macroscale AC

piezoresistivity can be quantified. It was also observed that the relationship between

the fitting parameters and strain is generally non-linear.

While studying the AC piezoresistivity of CNF/epoxy, a novel piezoresistive switch-

ing behavior was also observed. At low frequencies, the material showed positive

piezoresistivity. However, material exhibited negative piezoresistivity at high fre-

quencies. Consequently, there exists a frequency of zero piezoresistivity between the

positive and negative responses. EIS plots were utilized in order to understand the

underlying physical mechanism of this switching behavior. It was observed that, for

a given tensile strain, the real part of the impedance, which is used in calculating AC

conductivity, can transition from being greater than the unstrained real impedance to

being less than the unstrained real impedance beyond a certain frequency (and vice-

versa for compressive deformations). From a macroscopic perspective, this explains

the piezoresistive switching behavior. Furthermore, a micromodel was utilized to more

fundamentally explore the switching behavior. From this micromodel, it is likely that

the shift in EIS curves is due to applied strain affecting the inter-filler tunneling re-

sistance which acts in the parallel with inter-filler capacitance. By modulating this

resistance, the micromodel is able to replicate the experimental observations of EIS

curves under deformation. Therefore, it is speculated that the underlying physical

mechanism of the piezoresistive switching behavior is due to deformations varying the

inter-filler resistance.
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6. SUMMARY OF SCHOLARLY CONTRIBUTIONS AND

BROADER IMPACTS

In this chapter, a summary of the scholarly contributions is provided. Addition-

ally, the context in which these contributions may have positive broader impacts is

summarized.

6.1 DC Piezoresistivity

A primary goal of this work was to develop a resistivity-strain relation that is

amenable to general states of deformation, accurately captures the non-linear re-

sponse of piezoresistive materials, and can be fully characterized without extensive

knowledge of the material’s microstructure. This goal was motivated by the poten-

tial of piezoresistive-based self-sensing in broad and far-reaching applications, a lack

of work to-date in the area of quantifying resistivity-strain relationship for general

macroscale deformations, and limitations of existent work such as microstructural

complexity, computational cost, and limited accuracy. To this end, a general higher-

order resistivity-strain relation was proposed, calibrated to a representative piezore-

sistive material, and validated on CNF-modified epoxy with good accuracy. Thus,

the scholarly contribution of this aspect of this thesis work is the development and

validation of a new modeling framework for piezoresistive materials.

This contribution has numerous broader impacts. First, because of the pervasive

potential applications of piezoresistive-based self-sensing (e.g. biomedical implants,

civil infrastructure, robotic sensing, composite structures, etc.), this contribution has

potential to affect diverse, far-reaching branches of engineering which positively im-

pact human health and safety. Second, it is important to note that although the

herein proposed resistivity-strain relation considered a simple class of materials (i.e.
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mechanically isotropic, infinitesimal strains, and isotropic resistivity changes), it is

nonetheless still directly applicable to a wide class of materials such as piezoresistive

cements, ceramics, and hard polymers without reinforcing fiber. Further, because

the formulation is microstructure agnostic, it can even be applied to other classes of

piezoresistive material systems which do not depend on percolation-based transport.

Such materials include, for example, (semi-)saturated cementitous materials (the con-

ductivity of which depends on the level of saturation and the tortuosity of the pore

space [141]) and silicon semiconductors (due to strain affecting bandgap properties of

the material [142]).

6.2 AC Piezoresistivity

The second part of this thesis concerned AC-based self-sensing in piezoresistive

materials. The goal of this part of the thesis was to establish a framework by which

macroscale AC piezoresistivity can be modeled. This goal was motivated by the rel-

ative advantages of AC-based self-sensing compared to DC methods and the dearth

of work to-date in this area. For this, Jonscher’s power law was postulated as a

framework by which AC piezoresistivity can be characterized by expressing the fit-

ting parameters of this relation as a function of strain. This was demonstrated on

CNF/epoxy. It was observed that changes in fitting parameters expressed as a func-

tion of strain show relatively good specimen-to-specimen consistency. This suggests

that the UDR may be a viable method of modeling macroscale AC piezoresistivity.

During AC piezoresistivity testing, a frequency-dependent piezoresistive switching be-

havior was also observed. That is, the material exhibited positive piezoresistivity at

low frequencies and negative piezoresistivity at high frequencies. Through a combi-

nation of macroscale EIS testing and microscale modeling, it was found that parallel

resistor-capacitor connections at CNF-to-CNF junctions with strain-dependent resis-

tance are the underlying physical mechanism for this switching behavior. Thus, this

part of the thesis work resulted in two scholarly contributions: i) the UDR was exper-
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imentally shown to be a viable approach to modeling macroscale AC piezoresistivity

and ii) frequency-controllable piezoresistive behavior was discovered and its physical

origins were elucidated.

This work on AC piezoresistivity likewise has potential to result in important

broader impacts. First, the preceding discussion on the benefits of self-sensing ma-

terials in biomedical, structural, and robotic applications still applies to AC-based

self-sensing. Recalling that AC methods have important advantages of DC methods,

developing new basic knowledge on AC piezoresistivity and tools by which this effect

can be modeled is an important for proliferating this approach. Second, frequency-

dependent switching behavior provides new means by which the properties of these

materials can be actively controlled. This can potentially be of immense consequence

by allowing piezoresistivity to be reversed or even turned off (i.e. by interrogat-

ing at a frequency of zero piezoresistivity) depending on the application. Beyond

self-sensing, this may even have important broader impacts in fields such as flexible

nanocomposite-based electronics [143] by allowing conductivity changes to be turned

off as the flexible electronic component deforms.
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7. RECOMMENDATIONS FOR FUTURE WORK

Despite the contributions of this work, it is important to acknowledge aspects that

would benefit from further study. Therefore, recommendations for future work are

provided below.

7.1 General Higher-Order Piezoresistive Tensorial Relations

The work presented in this thesis considered the simplest class of piezoresistive

materials. Namely, those which are limited to infinitesimal strains, exhibit isotropic

resistivity changes, and which are mechanically isotropic. Despite these simplifying

restrictions, it is important to note that this modeling approach is still directly appli-

cable to a wide range of piezoresistive or self-sensing cementitious materials, ceramics,

and hard polymers. Nonetheless, the results of this thesis work set the stage for future

work in the following areas:

• Validation on other material systems: A key feature of the modeling frame-

work presented in this work is its applicability to any piezoresistive material

system. Herein, it was validated on a CNF-modified epoxy. Future work, how-

ever, should validate this approach on other piezoresistive material systems that

satisfy the model assumptions such as conductive filler-modified cement.

• Electro-mechanically anisotropic materials: An important next step for this line

of research will be extending the proposed higher-order formulation to materials

that are both electrically and mechanically anisotropic. Prototypical materials

fitting this description are fiber reinforced composites (e.g. nanofiller-modified

glass fiber-reinforced composites and continuous carbon fiber-reinforced com-

posites which also exhibit intrinsic piezoresistive properties even without filler
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modification [144, 145]). In such a formulation, the resistivity change will have

to be amended as a symmetric, second-order tensor, ∆ρij.

• Large deformation/mechanically non-linear materials: Soft polymeric compos-

ites (e.g. modified silicone) comprise a large portion of the interest in self-sensing

materials, particularly for use in human-interfacing technology and robotic ar-

tificial skin [146]. In these materials, infinitesimal strains are obviously a poor

assumption. Further, deformation-induced anisotropy is likely to occur. To

clarify, non-spherical fillers tend to rotate and align with the direction of the

algebraically largest principal strain during deformation. For very small strains,

this effect is inconsequential. For large deformations such as those that can be

sustained by soft elastomers, on the other hand, fillers rotating to such an ex-

tent that anisotropic conductivity is induced is possible. In such a case, the

assumption that resistivity changes are isotropic would be violated, and the

tensor relation would have to be reformulated as ∆ρij = ∆ρij(Eij) where the

resistivity change is again expressed as a symmetric, second-order tensor in or-

der to account for the possibility of deformation-induced ansiotropy and Eij is

the Green-Lagrangian strain tensor as a representative large-strain metric.

7.2 Exploration of AC-Based Piezoresistivity

The second part of this thesis work concerned developing a framework for model-

ing the AC piezoresistive effect in self-sensing materials. Due to practical constraints

associated with collecting AC measurements in-situ during deformation, results were

presented in terms of the effective AC conductivity. Nonetheless, the use of the ef-

fective AC conductivity is justified because it shows the same frequency-dependent

trends as true AC conductivity thereby allowing for the UDR and Jonscher’s power-

law to be fit to the data as a function strain. It was noted that changes in power-law

fitting parameters may be a suitable macroscale metric for quantifying AC piezore-

sistivity. A frequency-dependent switching behavior from positive piezoresistivity to
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negative piezoresistivity was also observed. In light of these results, directions for

future work are recommend as below.

• Recovery of true AC conductivity for the development of general tensor-based

relations of AC piezoresistivity: Although the work presented in this thesis

demonstrated the potential of the UDR for modeling AC piezoresistivity, this

work fell short of developing a general tensor-based AC conductivity-strain re-

lation (like what was done for DC resistivity). This is a consequence of not

being able to measure the real part of the permittivity, ϵ′ of the material as a

function of strain (recall that net AC transport is governed by the admittivity

of the material, ξ = (σDC + ωϵ′′) + jωϵ′). Therefore, future work should seek

to develop experimental methods that can measure the effect of deformation

on the real part of permittivity of these materials. With this information, a

model-fitting approach (like what was done for recovering DC resistivity from

resistance changes) could be employed to recover the true AC conductivity of

the material as a function of strain. Then, the UDR fitting parameters could

be expressed as functions of a the infinitesimal strain tensor as σDC = σDC(εij),

K = K(εij), and n = n(εij).

• Extension to electro-mechanically anisotropic materials and large deformations:

Much like the direction for future work outlined above regarding DC piezore-

sistivity modeling, AC piezoresistivity modeling should also be extended to

materials that are electro-mechanically anisotropic and to materials sustaining

large deformations.



REFERENCES



95

REFERENCES

[1] S. Guthrie, “Bam car park collapse agreement,” Construction europe, 2019.

[2] T. J. Arsenault, A. Achuthan, P. Marzocca, C. Grappasonni, and G. Coppotelli,
“Development of a fbg based distributed strain sensor system for wind turbine
structural health monitoring,” Smart Mater. Struct., vol. 22, p. 075027, 2013.

[3] H. Ghednia, C. E. Owens, R. Ricard, T. N. Tallman, A. J. Hart, and K. M.
Varadarajan, “Interfacial load monitoring and failure detection in total joint
replacements via piezoresistive bone cement and electrical impedance tomogra-
phy,” Smart Materials and Structures, vol. 29, p. 085039, 2020.

[4] M. Kanerva, P. Antunes, E. Sarlin, O. Orell, J. Jokinen, M. Wallin, T. Brander,
and J. Vuorinen, “Direct measurement of residual strains in cfrp-tungsten hy-
brids using embedded strain gauges,” Materials & Design, vol. 127, pp. 352–363,
2017.

[5] D. Crescini, A. Flammini, D. Marioli, and A. Taroni, “Application of an fft-
based algorithm to signal processing of lvdt position sensors,” IEEE Transac-
tions on Instrumentation and Measurement, vol. 47, p. 5, 1998.

[6] E. Ibraim and H. D. Benedetto, “New local system of measurement of axial
strains for triaxial apparatus using lvdt,” Geotechnical Testing Journal, vol. 28,
pp. 436–444, 2005.

[7] E. Tutumluer, N. Garg, and M. R. Thompson, “Granular material radial de-
formation measurements with a circumferential extensometer in repeated load
triaxial testing,” Transport. Res. Rec, vol. 1614, pp. 61–69, 1998.

[8] S. Yimsiri, K. Soga, and S. Chandler, “Cantilever-type local deformation trans-
ducer for local axial strain measurement in triaxial test,” Geotechnical Testing
Journal, vol. 28, p. 11432, 2005.

[9] R. A. Sliva-Munoz and R. A. Lopez-Anido, “Structural health monitoring of
marine composite structural jointsusing embedded fiber bragg grating strain
sensors,” Composite Structures, vol. 89, pp. 224–234, 2009.

[10] S. Uchida, E. Levenberg, and A. Klar, “On-specimen strain measurement with
fiber optic distributed sensing,” Measurement, vol. 60, pp. 104–113, 2015.

[11] S. M. Melle, K. Liu, and R. M. Meaures, “Practical fiber-optic bragg grating
strain gauge system,” Applied Optics, vol. 32, pp. 3601–3609, 1993.

[12] M. Tabib-Azar, B. Sutapun, R. Petrick, and A. Kazemi, “Highly sensitive hy-
drogen sensors using palladium coated fiber optics with exposed cores and
evanescent field interaction,” Sensors and Actuators B, vol. 56, pp. 158–163,
1999.



96

[13] H. Choi, S. Choi, and H. Cha, “Structural health monitoring system based on
strain gauge enabled wireless sensor nodes,” IEEE, 2008.

[14] I. Bayane and E. Bruhwiler, “Structural condition assessment of
reinforced-concrete bridges based on acoustic emission and strain mea-
surements,” Journal of Civil Structural Health Monitoring, vol. 78, 2020.

[15] J. P. Liu, M. A. Vaz, R. Q. Chen, M. L. Duan, and I. Hernandez, “Axial
mechanical experiments of unbonded fexible pipes,” Petroleum Science, vol. 44,
2020.

[16] J. A. Hernandez, N. Kedir, B. H. Lim, W. Chen, and T. N. Tallman, “An
experimental study on the piezoresistive and mechanical behavior of carbon
nanocomposites subject to high-rate elastic loading,” Composites Science and
Technology, vol. 198, p. 108285, 2020.

[17] J. Choi and S. J. Dyke, “Crowdlim: Crowdsourcing to enable lifecycle infras-
tructuremanagement,” Computers in Industry, vol. 115, pp. 103–185, 2020.

[18] J. Choi, C. M. Yeum, S. J. Dyke, and M. R. Jahanshahi, “Computer-aided
approach for rapid post-event visual evaluation of a building façade,” Sensors,
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A. DETAILED FORMULATION OF THE COMPLETE

ELECTRODE MODEL BOUNDARY CONDITIONS

A.1 Introduction

In this appendix, the background of the finite element method (FEM) code for

steady-state diffusion and the formulation of complete electrode model (CEM) bound-

ary conditions in three dimensions are described. For the development of FEM code,

conductivity is assumed to be a symmetric second-order tensor. Linear tetrahedral

elements were used. Repeated indices in the subscripts indicate summation over the

dimension of the problem unless accompanied by an explicit summation operator.

And, superscripts are generally reserved for nodal or element numbers. As stated in

Chapter 4, CEM boundary conditions add an additional degree of freedom for the

voltage of each electrode, treat electrodes as being perfectly conducting (and hence at

a constant voltage), and take into account domain-to-electrode contact impedance.

A.2 Formulation of Steady-State Diffusion Finite Element Simulation

Steady-state diffusion is governed by Laplace’s equation as shown below.

− ∂ji
∂xi

=
∂

∂xi
σij

∂ϕ

∂xj
= f (A.1)

Above, ji is the current density distribution, σij is the conductivity tensor (related

to resistivity as σij = ρ−1
ij ), ϕ is the domain potential, and f is an internal current

source. Current is also only allowed to flow through the electrodes (i.e. no current

flows through the boundaries) as described in the following equations.
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∫
El

σij
∂ϕ

∂xi
nj dSl = Il (A.2)

σij
∂ϕ

∂xi
nj = 0 off ∪L

l=1 El (A.3)

Above, El is the area of the lth electrode, nj is an outward pointing normal

vector, I is the current through the electrode, and L is the total number of electrodes.

Conservation of charge requires that the following condition holds.

L∑
l=1

Il = 0 (A.4)

Next, the weak form shown of equation (A.1) is formed by multiplying with a

weighting function, ψ that satisfies the Dirichlet boundary conditions on both side of

the equation and integrating over the domain, Ω, as shown in equation (A.5).

∫
Ω

ψ
∂

∂xi
σij

∂ϕ

∂xj
dΩ =

∫
Ω

ψf dΩ (A.5)

Assuming that the internal source is zero (f = 0), equation (A.5) can be rear-

ranged as equation (A.6) with vector identity ∇(hg) = (∇h)g + h(∇g).

∫
Ω

∂

∂xi
ψσij

∂ϕ

∂xj
dΩ−

∫
Ω

∂ψ

∂xi
σij

∂ϕ

∂xj
dΩ = 0 (A.6)

And equation (A.6) becomes equation (A.7) with the divergence theorem.

∫
Ω

∂ψ

∂xi
σij

∂ϕ

∂xj
dΩ =

∫
∂Ω

ψσij
∂ϕ

∂xi
nj dS =

∫
Γ

σij
∂ϕ

∂xi
njψ dS (A.7)

Above, Γ is the union of the electrode areas. Next, substitute the CEM boundary

conditions shown in equation (4.3) into equation (A.7). After doing this, the following

equation can be obtained.

∫
Ω

∂ψ

∂xi
σij

∂ϕ

∂xj
dΩ =

L∑
l=1

∫
El

1

zl
(Vl − ϕ)ψ dSl (A.8)
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After discretizing the entire domain with elements, equation (A.8) can be rewrit-

ten as equation (A.9), where e is the element number, and ϕe and ψe are defined

element-wised as shown in equation (A.10) and (A.11). Here, A is the nodal number,

dAe is the potential solution on the Ath node of the eth element and cAe is the variation

of the Ath node of the eth element.
∑

e implies assembly over all of the elements in

the discretization. wA is the Ath of total N interpolation functions.

∑
e

∫
Ωe

∂ψe

∂xi
σij
∂ϕe

∂xj
dΩe =

∑
e

L∑
l=1

∫
∂Ωe

1

zl
(Vl − ϕe)ψe dSe (A.9)

ϕe =
N∑

A=1

wAdAe (A.10)

ψe =
N∑

A=1

wAcAe (A.11)

A.3 Formulation of Complete Electrode Model Boundary Conditions

Regarding the left hand side of equation (A.9) for the eth element, equation (A.12)

can be obtained by applying equation (A.10) and (A.11) to equation (A.9).∫
Ωe

∂ψe

∂xi
σij
∂ϕe

∂xj
dΩe =

N∑
A=1

N∑
B=1

cAe

∫
Ωe

∂wA

∂xi
σij
∂wB

∂xj
dΩe d

B
e (A.12)

Here, dAe and cAe are taken out of the integral since they are constant with respect

to Ωe. In order to effectively solve equation (A.12), interpolation functions can be

defined on an isoparametric domain where xAi is the ith coordinate for the Ath node

and ζ is defined on the range of 0 to 1.

xi =
N∑

A=1

wA(ζ)xAi (A.13)

Next, using the chain rule, ∂wA

∂xi
= ∂wA

∂ζj

∂ζj
∂xi

, equation (A.12) can be rewritten as

the following equation.
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∫
Ωe

∂ψe

∂xi
σij
∂ϕe

∂xj
dΩe =

N∑
A=1

N∑
B=1

cAe

∫
Ωeζ

∂wA

∂ζk

∂ζk
∂xi

σij
∂wB

∂ζl

∂ζl
∂xj

dΩe d
B
e (A.14)

Note that numerical quadrature can be used with Lagrange polynomials to eval-

uate this integral because an isoparametric domain is selected for this simulation.

Herein, four-node linear tetrahedral elements were used with w1 = ζ1, w
2 = ζ2,

w3 = ζ3, and w
4 = 1− ζ1 − ζ2 − ζ3. det

∣∣∣∂xi

∂ζj

∣∣∣ is also included in the integrand in the

isoparametric mapping as shown in equation (A.14) as the following equation.

∫
Ωe

∂ψe

∂xi
σij
∂ϕe

∂xj
dΩe =

N∑
A=1

N∑
B=1

cAe

∫
Ωeζ

∂wA

∂ζk

∂ζk
∂xi

σij
∂wB

∂ζl

∂ζl
∂xj

det

∣∣∣∣∂xm∂ζn

∣∣∣∣ dΩeζ d
B
e

(A.15)

Above, Ωeζ is the isoparametric domain of the eth element. The integration shown

above can be evaluated by summing weighted polynomials obtained by quadrature

points as
∫
Ωeζ

f(ζi) dΩeζ =
∑I

i pif(ζi), where I is the total number of quadrature

points (i.e. integrand evaluations), pi is the corresponding quadrature weight, and ζi

is again the location of the ith quadrature point in the domain. Since interpolation

functions are already given above, equation (A.15) can be rewritten as the following

equation.

∫
Ωe

∂ψe

∂xi
σij
∂ϕe

∂xj
dΩe =

N∑
A=1

N∑
B=1

cAe k
AB
e dBe =

[
c1e c2e · · · cNe

]
ke


d1e

d2e
...

dNe

 (A.16)

Above, kAB
e is called as the local steady-state diffusion stiffness matrix of the eth

element. This can be used to form AM shown in equation (4.5) by assembling all

of the local stiffness matrices which comprise the domain. Explicitly, evaluating the

preceding integral equations yields the following local diffusion stiffness matrix for

the eth element.
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ke =
1

6


1 0 0

0 1 0

0 0 1

−1 −1 −1



xe1 − xe4 xe2 − xe4 xe3 − xe4

ye1 − ye4 ye2 − ye4 ye3 − ye4

ze1 − ze4 ze2 − ze4 ze3 − ze4


−1

...

...


σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33



xe1 − xe4 xe2 − xe4 xe3 − xe4

ye1 − ye4 ye2 − ye4 ye3 − ye4

ze1 − ze4 ze2 − ze4 ze3 − ze4


−T

...

...


1 0 0

0 1 0

0 0 1

−1 −1 −1



T

det

∣∣∣∣∣∣∣∣∣


xe1 − xe4 xe2 − xe4 xe3 − xe4

ye1 − ye4 ye2 − ye4 ye3 − ye4

ze1 − ze4 ze2 − ze4 ze3 − ze4


∣∣∣∣∣∣∣∣∣

(A.17)

Here, xei , y
e
i , and zei are the x-, y-, and z-direction nodal coordinates of the ith

node of the eth element. Next, AZ and AW in equation (4.5) can also be determined

by separating the rest of the integrals in equation (A.9) as the follows.

∑
e

∫
∂Ωe

1

zl
(Vl − ϕe)ψe dSe =

∑
e

(
−
∫
∂Ωe

1

zl
ϕeψe dSe +

∫
∂Ωe

1

zl
Vlψe dSe

)
(A.18)

The first term of the right hand side of equation (A.18) is again expressed by

summing weighted polynomials as shown in equation (A.19). As previously done

for the steady-state diffusion stiffness matrix, the variation and potential solution

are taken out from the integrals, and equation (A.10) and (A.11) are plugged back

into ϕe and ψe of the first term of the right hand side of equation (A.18). However,

it is important to note that the dimension of the interpolation functions for CEM

matrices of AZ are one degree lower than the degree of interpolation function of

AM because they are related to the electrodes. That is, AM uses three-dimensional

interpolation because the domain is three-dimensional, but the other CEM matrices

use two-dimensional functions because the electrodes are two-dimensional. Hence,
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the CEM interpolation functions are w1 = ζ1, w2 = ζ2, and w3 = 1 − ζ1 − ζ2. In

order to generate AZ , matrix multiplication is again used for the easiness as shown

equation (A.20). Here, Ae l
Z represents AZ matrix of the eth element in the lth

electrode, and Ae is the the triangular area of eth element in the electrodes. This can

be solved as shown in equation (A.21). Like AM , Ael
Z is also assembled to global AZ

later in section ??.

∫
Ωe

1

zl
ϕeψe dSe =

N∑
A=1

N∑
B=1

cAe

∫
Ωe

1

zl
wAwB dSe d

B
e

=
[
c1e c2e · · · cNe

]
Ae l

Z


d1e

d2e
...

dNe


(A.19)

Ae l
Z =

∫ 1

0

∫ 1−ζ1

0

2Ae

zl


ζ21 ζ1ζ2 ζ1(1− ζ1 − ζ2)

ζ1ζ2 ζ22 ζ2(1− ζ1 − ζ2)

ζ1(1− ζ1 − ζ2) ζ2(1− ζ1 − ζ2) (1− ζ1 − ζ2)
2

 dζ2 dζ1

=
Ae

12zl


2 1 1

1 2 1

1 1 2


(A.20)

Ae =
1

2
det

∣∣∣∣∣∣
xe1 − xe3 xe2 − xe3

ye1 − ye3 ye2 − ye3

∣∣∣∣∣∣ (A.21)

Next, to determine Ae l
W , the second term of the right hand side of equation (A.18)

is calculated as previously done for Ae l
Z . The steps are the same as the procedure of

determining Ae l
Z as shown in equations (A.22) and (A.23). As done for AM and AZ ,

the local Ae l
W is assembled to the global AW later in section ??. Again, note that Ae

is the area of the eth element in the electrode as shown in equation (A.21).
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−
∫
Ωe

1

zl
ψeVl dSe =

N∑
A=1

cAe

∫
Ωe

1

zl
wA dSe Vld

B
e

=
[
c1e c2e · · · cNe

]
Ae l

WVl

(A.22)

Ae l
W = −

∫ 1

0

∫ 1−ζ1

0

2Ae

zl


ζ1

ζ2

1− ζ1 − ζ2

 dζ2 dζ1

= −Ae

3zl


1

1

1


(A.23)

Lastly, AD can be simply determined by placing El/zl in the diagonal components

of AD and zeros in the off-diagonal components in AD matrix, where the size of AD

is the number of elements in electrodes × the number of elements in electrodes as

shown in equation (4.9). However, for the derivation of AD, the total current should

be considered and conservation of charges shown in equation (A.4) needs to be applied.

The current through the lth electrode is shown below.

Il =

∫
El

1

zl
(Vl − ϕ) dS =

1

zl
ElVl −

∫
El

1

zl
ϕ dS (A.24)

Above, it is assumed that contact impedance between the domain and the elec-

trode and voltage on the electrode are constant. It can be recognized that the first

term of the right hand side of equation (A.24) relates the electrode current and the

electrode voltage by El/zl as shown in the diagonal components of AD. The second

term of the right hand side of equation (A.24) seems to be similar to the equa-

tion (A.22). Unlike equation (A.22), this part makes use of the potential solution, ϕ.

This is because AD accounts for the relation between the domain and the electrode

voltage via AW
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A.4 Matrix Assembly

The global AM , AZ , and AW matrices can be obtained by assembling the local

ke, A
e l
Z , and Ae l

W matrices. The following steps only show the matrix assembly for

AM because the assembly procedure is much the same for the others. For this, the

local variation and potential solution are first described as the global variation and

potential solution such as c = [c1 c2 c3 · · · ci · · · cI ] and d = [d1 d2 d3 · · · di · · · dI ],

where ci and di represent the variation and potential solution of the ith node among

total I nodes, respectively. Then, assembly of the local stiffness matrix over the entire

elements can be calculated as the following.

∑
e

∫
Ωe

∂ψe

∂xi
σij
∂ϕe

∂xj
dΩe = cTAMd (A.25)

In order to appropriately assemble the local stiffness matrix, the entries of the

local stiffness matrix must be located in the right place according the location of the

global variation and potential solution. However, some components may be located

in the same entry since some elements share edges. In such cases, the entries from

different elements are summed up. In order to conveniently visualize the assembly

procedure, the following example is provided. Consider the local stiffness matrix

of an arbitrary element such as the eth element as shown in equation (A.26). Next,

consider the local stiffness matrix of the (e+1)th element as shown in equation (A.27).

Assume that these elements share the nodal points. Specifically, the eth element and

the (e + 1)th element share one edge such as the side between the second and the

third nodal points of the eth and the side between the first and the second nodal

points of the (e+ 1)th element.

cTe A
e
Mde =

[
c1e c2e c3e

]
k11e k12e k13e

k21e k22e k23e

k31e k32e k33e



d1e

d2e

d3e

 (A.26)
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cTe+1A
e+1
M de =

[
c1e+1 c2e+1 c3e+1

]
k11e+1 k12e+1 k13e+1

k21e+1 k22e+1 k23e+1

k31e+1 k32e+1 k33e+1



d1e+1

d2e+1

d3e+1

 (A.27)

Next, assume that the local variation and potential solution of the eth element

corresponds to the global system as follows.[
c1e c2e c3e

]
7→

[
ci−1 ci ci+1

]
[
d1e d2e d3e

]
7→

[
di−1 di di+1

]
And, assume that the local variation and potential solution of the (e+1)th element

corresponds to the global system as the following.[
c1e+1 c2e+1 c3e+1

]
7→

[
ci ci+1 ci+2

]
[
d1e+1 d2e+1 d3e+1

]
7→

[
di di+1 di+2

]
In such cases, the components of the local stiffness matrix will be combined as

equation (A.28). That is, the components sharing the ith and the (i+ 1)th nodes in

the global stiffness matrix will be summed up as shown in the (i, i), (i, i+1), (i+1, i),

and (i + 1, i + 1) entries in the global stiffness matrix in equation (A.28). As shown

here, once the connectivity of the element is known, the global stiffness matrix can

be simply assembled from the local stiffness matrix according to the algorithm herein

provided. The fundamental algorithm for assembling AZ and AW is much the same.

However, as described previously, the degree of freedom for AZ and AW is one degree

lower than that for AM . Furthermore, the total number of assembly for AZ and

AW is corresponding to the number of elements in the electrodes unlike that for AM

corresponding to the number of elements in the domain.
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cTAMd =



...

ci−1

ci

ci+1

ci+2

...



T 

. . .

k11e k12e k13e

k21e k22e + k11e+1 k23e + k22e+1 k13e+1

k31e k32e + k21e+1 k33e + k22e+1 k23e+1

k31e+1 k32e+1 k33e+1

. . .





...

di−1
e

die

di+1
e

di+2
e

...


(A.28)
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B. RAW IMPEDANCE DATA

This appendix provides the raw impedance data which are not included in Chapter 5

due to the redundancy of the plots. Again, the raw impedance magnitude and phase

angle are plotted in terms of normal and shear strains. As the color goes from blue

to red, both normal and shear strain increase. For each test and weight fraction,

the raw impedance data plots exhibit similar trends and magnitudes. This appendix

is provided in order to show the consistency of the experimental results. Note that

significant noise is present in 0.5 wt.% CNF/epoxy specimens at low frequencies. On

the contrary, clear trends can be seen in 1.0 and 1.5 wt.% CNF/epoxy specimens.
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Fig. B.1. Raw impedance magnitude data for 0.5 wt.% CNF/epoxy
dog-bone specimens (Top: Sample 1, Left: Sample 2, and Right:
Sample 3.)
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Fig. B.2. Raw impedance magnitude data for 0.5 wt.% CNF/epoxy
v-notched specimens (Top: Sample 1, Left: Sample 2, and Right:
Sample 3.)
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Fig. B.3. Raw impedance magnitude data for 1.0 wt.% CNF/epoxy
dog-bone specimens (Top: Sample 1, Left: Sample 2, and Right:
Sample 3.)
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Fig. B.4. Raw impedance magnitude data for 1.0 wt.% CNF/epoxy
v-notched specimens (Top: Sample 1, Left: Sample 2, and Right:
Sample 3.)
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Fig. B.5. Raw impedance magnitude data for 1.5 wt.% CNF/epoxy
dog-bone specimens (Top: Sample 1, Left: Sample 2, and Right:
Sample 3.)
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Fig. B.6. Raw impedance magnitude data for 1.5 wt.% CNF/epoxy
v-notched specimens (Top: Sample 1, Left: Sample 2, and Right:
Sample 3.)
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Fig. B.7. Raw phase angle data for 0.5 wt.% CNF/epoxy dog-bone
specimens (Top: Sample 1, Left: Sample 2, and Right: Sample 3.)
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Fig. B.8. Raw phase angle data for 0.5 wt.% CNF/epoxy v-notched
specimens (Top: Sample 1, Left: Sample 2, and Right: Sample 3.)
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Fig. B.9. Raw phase angle data for 1.0 wt.% CNF/epoxy dog-bone
specimens (Top: Sample 1, Left: Sample 2, and Right: Sample 3.)



127

Fig. B.10. Raw phase angle data for 1.0 wt.% CNF/epoxy v-notched
specimens (Top: Sample 1, Left: Sample 2, and Right: Sample 3.)
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Fig. B.11. Raw phase angle data for 1.5 wt.% CNF/epoxy dog-bone
specimens (Top: Sample 1, Left: Sample 2, and Right: Sample 3.)
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Fig. B.12. Raw phase angle data for 1.5 wt.% CNF/epoxy v-notched
specimens (Top: Sample 1, Left: Sample 2, and Right: Sample 3.)
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C. EFFECTIVE AC CONDUCTIVITY

This appendix provides all plots of the effective AC conductivity which are not in-

serted in Chapter 5. Again, the effective AC conductivity with respect to normal and

shear strain are plotted. As the color moves from blue to red, the normal and shear

strains increase. For the same amount of CNFs in the epoxy matrix, the effective

AC conductivity have same trend and range of magnitude per test (i.e. uniaxial and

v-notched rail shear test).
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Fig. C.1. The effective AC conductivity with respect to applied axial
strain for 0.5 wt.% CNF/epoxy dog-bone specimens (Top: Sample 1,
Left: Sample 2, and Right: Sample 3.)
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Fig. C.2. The effective AC conductivity with respect to applied shear
strain for 0.5 wt.% CNF/epoxy dog-bone specimens (Top: Sample 1,
Left: Sample 2, and Right: Sample 3.)
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Fig. C.3. The effective AC conductivity with respect to applied axial
strain for 1.0 wt.% CNF/epoxy dog-bone specimens (Top: Sample 1,
Left: Sample 2, and Right: Sample 3.))
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Fig. C.4. The effective AC conductivity with respect to applied shear
strain for 1.0 wt.% CNF/epoxy dog-bone specimens (Top: Sample 1,
Left: Sample 2, and Right: Sample 3.)
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Fig. C.5. The effective AC conductivity with respect to applied axial
strain for 1.5 wt.% CNF/epoxy dog-bone specimens (Top: Sample 1,
Left: Sample 2, and Right: Sample 3.)
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Fig. C.6. The effective AC conductivity with respect to applied shear
strain for 1.5 wt.% CNF/epoxy dog-bone specimens (Top: Sample 1,
Left: Sample 2, and Right: Sample 3.)
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D. EIS PLOTS

This appendix provides all EIS plots which were not included in Chapter 5 due to

repetition of similar plots. Again, EIS plots are presented as a function of applied

normal and shear deformation. As the color goes from blue to red, the normal and

shear strains again increase. Here, EIS plots per each weight fraction and test type

show same trend and same magnitude range. Lastly, note that considerable noise

exists for 0.5 wt.% CNF/epoxy specimens.



138

Fig. D.1. EIS data for 0.5 wt.% CNF/epoxy dog-bone specimens
(Top: Sample 1, Left: Sample 2, and Right: Sample 3.)
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Fig. D.2. EIS data for 0.5 wt.% CNF/epoxy v-notched specimens
(Top: Sample 1, Left: Sample 2, and Right: Sample 3.)
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Fig. D.3. EIS data for 1.0 wt.% CNF/epoxy dog-bone specimens
(Top: Sample 1, Left: Sample 2, and Right: Sample 3.)
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Fig. D.4. EIS data for 1.0 wt.% CNF/epoxy v-notched specimens
(Top: Sample 1, Left: Sample 2, and Right: Sample 3.)
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Fig. D.5. EIS data for 1.5 wt.% CNF/epoxy dog-bone specimens
(Top: Sample 1, Left: Sample 2, and Right: Sample 3.)
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Fig. D.6. EIS data for 1.5 wt.% CNF/epoxy v-notched specimens
(Top: Sample 1, Left: Sample 2, and Right: Sample 3.)
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