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ABSTRACT

Many equipment operators and inspectors today make use of time-based maintenance

strategies to ensure proper working order of engineering systems and structures. This ap-

proach can be costly and inefficient because inspections and maintenance are not targeted,

and equipment downtime can be lengthy during this process. Condition-based maintenance,

on the other hand, involves monitoring the condition of critical components or structures so

that targeted maintenance is performed only when the parts being monitored exhibit signs

indicating the end of its operational life. Shifting toward more efficient condition-based main-

tenance strategies for mechanical systems requires material state awareness (MSA) of the

critical components and structures the system is comprised of. MSA of a structure involves

attaining a thorough understanding of the structure’s material properties, current mechan-

ical state, and damage modes in order to estimate its remaining lifetime. Currently, many

non-destructive evaluation (NDE) sensors and techniques are currently being developed and

fielded for embedded sensing and condition monitoring applications, including in civil and

aerospace structures. Among them, the self-sensing inverse problem (SSIP) is an emerging

method that possesses great potential for providing MSA for piezoresistive materials.

Piezoresistive materials exhibit a change in electrical conductivity when subject to strain,

making them a prime candidate for manufacturing structures that have the innate ability

to transduce its mechanical state. The SSIP is a mathematical method that recovers the

continuous displacement and strain field of the deformed piezoresistive material from mea-

sured resistivity (or conductivity) changes. Being able to obtain the full-field displacements

and strains of a component or structure is a key insight into its mechanical state, enabling

accurate stress and failure analyses that can prove invaluable for condition-based mainte-

nance. Computational and experimental demonstrations of the SSIP to date have yielded

good results on simple shapes and experimental test specimen. However, the accuracy of

the SSIP recovered displacement field is not guaranteed because the SSIP is an ill-posed

and undetermined inverse problem. Furthermore, present work on the SSIP has focused on

simple shapes and loads, and the applicability of the SSIP on more complex geometries has

not yet been explored.
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In this work, sensor data fusion (SDF) of the electrical data the SSIP utilizes for dis-

placement field recovery with discrete displacement and strain data is explored as a way to

increase the accuracy of the reconstructed displacement field and to improve the reliability

of the SSIP when the resistivity data contains noise and outliers. Through a series of com-

putational experiments, it was found that by supplementing resistivity data with sensors

providing displacement data, the SSIP was able to recover the displacement field of a com-

plex shape resembling real world structural components with good accuracy. Recovery of the

displacement field was not possible without the use of additional sensor data. Furthermore,

the displacement sensors made the SSIP more robust to increases in resistivity data noise.

When resistivity data were supplemented with sensors providing strain data, while not as

accurate as reconstructions enhanced with displacement data, there was still a significant

improvement in the displacement reconstruction accuracy, even with a moderate increase in

resistivity data noise.
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1. INTRODUCTION

All mechanical components, mechanisms, and structures possess a finite service life, and it

is the duty of engineers to design and maintain those mechanical systems to ensure their

safety and functionality throughout operation. To this end, engineers work to identify key

failure modes and estimate operational lifetime during a system’s design and analysis phase.

However, once the system is deployed, the multitude of stresses induced by human and

environmental factors, some of which unforeseen, makes it challenging to precisely predict

the remaining useful life of its components. Therefore, routine inspections are necessary to

certify the system for continued use or to perform maintenance. This time-based mainte-

nance strategy can be costly and inefficient, often requiring a system’s removal from service,

meticulous comprehensive inspection, and even total disassembly. With the rise of advanced

composite materials, especially in the aerospace and automotive industries, the inspection

process becomes even more complex as composite materials exhibit material anisotropy and

damage mechanisms distinct from traditional metallic structures, including matrix cracking,

fiber breakage, and delamination. As a result, a number of equipment operators are shifting

towards condition-based maintenance strategies, where information gathered from monitor-

ing a system provides accurate failure prognosis so that targeted, proactive maintenance can

be performed, reducing maintenance costs and downtime [  1 – 3 ].

Effective employment of condition-based maintenance strategies hinges on real-time ma-

terial state awareness (MSA). MSA of a system, structure, or component involves under-

standing its material properties, damage processes, and operational environment while con-

tinuously monitoring its current state to predict its future state and remaining lifetime [  4 ].

Continuous monitoring can be achieved through the use of embedded nondestructive evalu-

ation (NDE) sensors relaying relevant information including, but not limited to, strain and

vibrational response [  5 – 9 ]. However, some of the challenges of implementing NDE sensor

networks include the complexity of incorporating sensors into the component or structure,

the number of sensors required to achieve desired fidelity, and sensor reliability. One solution

to overcome these challenges is to use self-sensing materials to manufacture parts in need of

monitoring [  10 ]. Broadly speaking, self-sensing materials are able to transduce a quantity
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of interest through a measurable signal such that the component or structure itself becomes

the sensor enabling MSA.

1.1 Self-Sensing Applications of Piezoresistive Materials

A piezoresistive material is a type of self-sensing material that exhibits a change in its

electrical conductivity when subject to mechanical strain. Piezoresistive materials are of-

ten manufactured by dispersing a small amount of conductive nanofillers into an insulating

material. When the volume fraction of nanofillers exceeds the percolation threshold, the

nanofillers form a conductive network, imparting the originally insulating material with de-

formation dependent electrical conductivity. The conductivity is deformation dependent

because it relies on the proximity of the nanofillers and well-connectedness of the nanofiller

network. Strain on the material impacting the connectivity of the network manifests as a

conductivity change. For instance, tensile strains increasing the distance among nanofillers

generally decreases the material conductivity, whereas compressive strains decrease the dis-

tance between nanofillers, increasing conductivity. More extreme mechanical perturbations

can sever the connection between nanofillers, which can be indicative of a certain level of

damage to the material. Thus, piezoresistive materials have garnered interest for a variety

of applications [  11 – 15 ].

To summarize a few representative examples of these applications, with the eventual

goal of creating self-sensing pediatric scoliosis braces, Verma et al. [  12 ] manufactured a

piezoresistive thermoplastic consisting of polypropylene random copolymer (PPR) modified

with multi-walled carbon nanotubes (MWCNT) which was used as 3D-printing stock. The

PPR/MWCNT was printed into dog-bone specimens via fused filament fabrication (FFF)

with filaments oriented along and perpendicular to the length of the dog-bone, and quasi-

static tension and cyclic loading tests were performed to characterize its piezoresistive prop-

erties. From the tensile test, Verma et al. identified the material’s gauge factor for different

nanofiller concentrations and print orientations, and, from the cyclic loading tests, demon-

strated the stability of its piezoresistive response, all shown in Figure  1.1 . The adequate
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sensitivity to strain and consistent piezoresistive response after repeated loading proved

PPR/MWCNT as a viable material for self-sensing applications.

As another example, Hohimer et al. [  13 ] fabricated pneumatic actuators using thermo-

plastic polyurethane modified with multi-walled carbon nanotubes (TPU/MWCNT). Four

actuators were manufactured via FFF containing either 1, 2, 3, or 4 wt.% MWCNT, and

each was inflated to three different pressure levels. Measuring the resistance change through

cycles of pressurization and depressurization, the actuators with 1 and 2 wt.% MWCNT

demonstrated an increasing piezoresistive response with increasing actuation pressure, shown

in Figure  1.2 . The actuators with higher nanofiller weight fractions were piezoresistive but

showed a saturated response because the denser nanofiller network made the conductivity less

sensitive to deformation. Hohimer and al. state that the ability to correlate specific pressure

values to resistance change is an important development for self-sensing soft robotics.

As a final example, Costa et al. [  15 ] manufactured and characterized the piezoresistive

properties of MWCNT modified polycarbonate (PC) to demonstrate the material’s ability to

sense deformations in aerospace structures. This was demonstrated in two ways: by coating

the upper surface a 3D-printed wing section made out of commercial acrylonitrile butadiene

styrene plastic with a thin layer PC/MWCNT, and 3D-printing the entire wing of the similar

geometry using PC/MWCNT. The wings were then subject to cyclic displacement controlled

compressive loading on the wing’s top surface, with three electrodes placed at the location

with the highest expected deformation. Resistance measurements taken at the electrodes

during deformation demonstrated a consistent, repeatable piezoresistive response over many

cycles, with similar results for both uses of PC/MWCNT as an embedded sensor and a

self-sensing structural material. Figure  1.3 shows the wings and the piezoresistive response

measured at one of the electrodes.

1.2 Leveraging Piezoresistive Materials for MSA

Because of their innate ability to provide insight into their mechanical state, piezore-

sistive materials can be leveraged as a tool for MSA. In fact, piezoresistive materials have

been widely explored for embedded sensing and condition monitoring. Much research has
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been focused on strain sensing and damage detection in polymeric [  16 ,  17 ], fiber-reinforced

composite [  18 – 20 ], and cementitious materials [  21 ,  22 ] because of the relative ease to modify

them with conductive nanofillers.

By measuring the changes in electrical resistance before and after a damage event, it has

been demonstrated that damage in a piezoresistive material can be detected. For instance,

Viets et al. [ 19 ] were able to detect and localize barely visible impact damage (BVID) in a

glass fiber reinforced polymer laminate modified with MWCNT by measuring the resistance

change between silver-ink electrodes in the thickness and in-plane directions. The results

are shown in Figure  1.4 .

However, while resistance change methods are proven to be able to detect damage, the

spatial localization and resolution of the damage are limited. A popularly used technique

to overcome this limitation is electrical impedance tomography (EIT) [  23 ]. EIT images a

spatially continuous, internal conductivity distribution of a domain from a set of voltage

measurements taken at electrodes placed on the domain’s boundary. Originally developed

for medical imaging applications [  24 ], EIT has been used to successfully detect and localize

several different damage types in composite components [  25 – 34 ], damage in thin films [  16 ,

 35 ], and crack propagation and moisture flow in cement [  36 – 41 ]. Other advantages of EIT

are that it is non-invasive and can produce images in nearly real-time.

For instance, Thomas et al. [  32 ] extended the application of EIT to detect damage on

non-planar composite structures, as work done in the field of EIT-based damage detection

on composite materials had been dominated by studies on flat plates. In part of their work,

Thomas et. al successfully detected conductivity changes attributed to sub-surface delami-

nation resulting from two, low-velocity impacts on a carbon black-modified glass fiber/epoxy

tube. The two impacts delivered different 10 J and 14 J of energy, which manifested as dif-

ferent levels of conductivity change detectable by EIT. This indicated EIT has the potential

to distinguish between impact severity.

As another example, Sannamani et al. [ 33 ], in part of their work, used EIT to detect two

BVID on an airfoil shaped carbon fiber reinforced polymer (CFRP) component while also

accounting for the anisotropic conductivity of CFRP and utilizing non-standard electrode

placement. Typically, electrodes are placed on the edges of a specimen to be imaged by
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EIT. However, this approach is generally impractical for real composite structures, so in this

work the electrodes were placed on the surface of the airfoil shape. The airfoil was impacted

at two locations with 12 J and 15 J of energy, and the in-plane and through-thickness

conductivity changes were imaged before and between each impact. While the high energy

impact was easily detected by in-plane conductivity changes, it was more difficult to discern

the lower energy impact since it caused less damage. It was also observed that the through-

thickness conductivity change due to the impacts were undetectable since impact damage

mostly affects in-plane conductivity through fiber breakage. These results were compared to

another common EIT method where a scalar multiple of the conductivity tensor is sought

instead of components of the conductivity tensor.

While the conductivity data afforded by EIT serve well as a damage detection technique,

conductivity data are not directly useful to structural engineers seeking insight into the me-

chanical state of the material. Moreover, the goal of MSA is to understand the material state

and damage modes in order to accurately perform damage and failure prognosis, whereas the

spatial conductivity imaging in the aforementioned examples is aimed at identifying existing

damage. Therefore instead, engineers seek real-time knowledge of the stresses, strains, and

displacements, which is more informative for MSA and condition-based maintenance than

conductivity data. In light of this shortcoming, the self-sensing inverse problem (SSIP) is

a method which bridges the gap by combining the conductivity imaging capabilities of EIT

with mathematical models linking strain to conductivity changes [  42 ]. In essence, the SSIP

recovers the strain state that gives rise to an observed conductivity change. This is achieved

by finding the strain state that minimizes the difference between the observed conductivity

distribution and a model predicted conductivity distribution. Recovery of the stress, strain,

and displacement field using the SSIP has been numerically and experimentally demonstrated

[ 43 – 46 ].

Tallman and Wang [ 42 ] first formulated the SSIP and numerically demonstrated its ability

to recover the displacement field, and hence the strains, that gave rise to an observed conduc-

tivity change distribution. Conductivity change data were simulated for a piezoresistive unit

cube with one end fixed and the opposite face subject to three different load cases: uniform

compression, combined uniform tension and shear, and uniform shear. Gaussian white noise
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was added to the simulated conductivity change data to simulate real EIT data. The results

in Figure  1.7 show accurate recovery of the displacements for the compression case at 50 dB

signal-to-noise ratio (SNR). At 25 dB SNR, the recovered displacements matched less closely

to the exact solution but were still largely captured. For the other two cases, at 50 dB SNR

the displacements were recovered well albeit not as closely as the compression case, with

notable under-prediction of the displacement magnitude. At 25 dB SNR, the reconstruction

quality degraded significantly. It was also found that the SSIP struggled more to accurately

capture smaller displacements when the magnitude of the load was decreased because noise

artifacts begin to dominate.

Hassan and Tallman [  44 ] modified the SSIP formulation by incorporating a genetic algo-

rithm and experimentally validated this methodology. A through-hole specimen was manu-

factured with 1 wt.% carbon nanofiber (CNF)-modified epoxy and loaded in tension under

displacement control to 31%, 62%, and 93% of the failure displacement. At each level of

displacement, the conductivity change distribution was imaged via EIT. Next, the displace-

ment field giving rise to the conductivity change distribution was predicted via the SSIP.

Using the recovered displacement field, the first principal strains and stresses were computed

and compared to values obtained using digital image correlation (DIC) and standard finite

element simulation. Comparison of the genetic algorithm enabled SSIP reconstructions to

DIC and simulation results demonstrated good agreement in the shape and magnitude of

the stress and strain fields. The results related to the first principal strains are shown in

Figure  1.8 .

Although the numerical and experimental demonstrations of the SSIP displacement field

recovery above show promising results, there is undeniably ample opportunity for improve-

ment when one compares the SSIP results to finite element simulation and other experimental

methods like DIC. The most immediately apparent shortcoming is that the recovered dis-

placement field is very sensitive to noise in the conductivity data. This is seen in Figure

 1.7 when decreasing the conductivity data SNR resulted in the degradation in quality of

the displacement field reconstruction and increased prevalence of noise artifacts. Noise ar-

tifacts are again seen in Figure  1.8 most notably as aberrations along the top edge of the

test specimen. This is an intrinsic issue for inverse problems—the class of mathematical
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problems the SSIP falls under. This weakness is compounded by the fact that EIT is also

prone to measurement noise. The SSIP is also an underdetermined problem, meaning that

the displacement field solutions the SSIP reconstructs are not unique. As a consequence, the

SSIP can converge to a solution that satisfies the SSIP mathematically, but does not match

the true displacement field or have any physical meaning. For instance, one common failure

mode of the SSIP is under-predicting the magnitude of the displacement field. This is seen

in the middle column of figure  1.7 , where the shape of the displacement field is reasonably

captured, but the displacement magnitude falls short of the exact solution. Furthermore,

computational and experimental research employing the SSIP has to date been limited to

simple geometries and test specimens, such as the ones presented in the examples above.

Research demonstrating the use of the SSIP on more complex, realistic shapes is necessary

to advance its readiness for practical applications.

Nevertheless, the spatially continuous strain and displacement fields recovered by the

SSIP empowers engineers to make more meaningful prognostic structural analysis, for in-

stance, by incorporating constitutive relations and failure criterion to the recovered strains.

The SSIP also generally elevates the functionality of piezoresistive materials beyond just

a damage detection medium. Coupled with the experimentally proven imaging capabili-

ties of EIT, the SSIP can potentially enable near real-time monitoring of the strains and

displacements throughout an entire structural component.

1.3 Sensor Data Fusion in NDE

To fully characterize a component or structure for MSA requires the measurement and

evaluation of multiple physical properties, a task no single NDE sensor type or technique can

achieve. Therefore, depending on the application, engineers must employ a variety of sensor

types in a NDE sensor network, necessitating a method for integrating the heterogeneous

datasets. The concept of synergistically integrating data from multiple sensors with the

purpose enhancing data reliability and reaching a more accurate understanding of a system

is known as sensor data fusion (SDF). SDF is a broad research field historically developed for

military applications [  47 ,  48 ]. Military applications usually involve integrating sensor data in
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order to make more informed inferences regarding situation and threat assessment [  49 – 51 ].

For instance, surface-to-air defense systems fuse information from radar, infrared, passive

electronic support measures, identification-friend-foe sensors, electro-optic image sensors,

and visual sightings to accurately detect, track, and identify aircraft for threat assessment,

whereas use of only one of these inputs may prove unreliable.

Beyond military applications, SDF has expanded into diverse array of research fields,

including NDE [ 52 – 54 ]. In recent decades, SDF has gained momentum in NDE as new

sensor technologies and data acquisition platforms continue to emerge and advance. While

the concept of SDF is relatively simple, its execution is challenging. SDF practitioners

must develop fusion techniques that can manage data of different physical quantities, handle

potentially incomplete or noisy data, identify a common reference frame among datasets,

and be properly suited for the specific task at hand. Application of SDF for NDE typically

involves the use of image and signal processing, heuristic, or probabilistic methods to fuse

NDE data to improve the fidelity of defect detection from large scale civil and aerospace

structures to small scale industrial machine parts and electronic components [  55 – 64 ].

For instance, Heideklang and Shokouhi [  65 ] fused eddy current, magnetic flux leakage,

and thermography data to increase the reliability of detecting near-surface cracks in steel.

These NDE techniques were selected because while all react similarly to a material defect,

they are based on unrelated physical properties, meaning each is susceptible to a different

source of structural noise. Thus, the NDE techniques produce complementary data and

their fusion could help negate noise artifacts while enhancing defect detection. Ten grooves

of increasing width and depth were machined into a steel block to simulate near-surface

cracks, and the surface of the block was imaged using each NDE method. Since each dataset

was a different physical quantity, the shape and magnitude of the data were normalized to

allow for direct comparison. Next, signal-level fusion was performed– the three datasets

were combined to create a new dataset that was then analyzed for defect detection. Several

combinations of data normalization and fusion methods were evaluated, the best of which

is shown in Figure  1.9 , depicting the detection results for the shallowest groves. Compared

to thermography, which was determined to be the best individual sensor method, the best
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SDF method reduced the incidence of damage detection false positives by a factor of nearly

six.

As a final example featuring a real-world NDE application of SDF, Pashoutani et al. [  66 ]

fused vertical electrical impedance (VEI) testing and ground-penetrating radar (GPR) data

to enhance defect detection in a reinforced concrete bridge deck. These NDE techniques

were chosen because they can be efficiently performed over large areas, and the data they

generate were expected to be complementary as both measure the electrical properties of

concrete while utilizing different frequencies and having different spatial resolutions. To

fuse the data, a neural-network analysis determined the relationship between the VEI and

GPR data. Using this relationship, the GPR data were converted into VEI format, and the

data were combined. The resulting electrical impedance magnitude map (low impedance

indicates high probability of damage) demonstrates an improvement in spatial resolution

and also reveals defect features not visible in the individual GPR and VEI maps. A high-

definition imaging (HDI) scan identifying surface cracks was also performed, and the results

were superimposed over the fused data map. The HDI identified cracks correlate well with

the low impedance regions on the fusion map, validating the effectiveness of the SDF method.

All the aforementioned results are presented in Figure  1.10 .
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Figure 1.1. Manufacturing and characterization of piezoresistive properties
of PPR/MWCNT in [  12 ]: (a) manufacturing process, (b) tensile test results
for PPR with 0, 4, 6, and 8 wt.% MWCNT, and (c) cyclic load test results for
PPR with 4 wt.% MWCNT.
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Figure 1.2. The piezoresistive response of pressurized self-sensing actuators
from [ 13 ]: 1 wt.% TPU/MWCNT actuator at (a) 206.8 kPa, (b) 310.2 kPa,
and (c) 413.6 kPa, (d) resistance change profiles of actuator made with (d) 1
wt.% TPU/MWCNT and (e) 2 wt.% TPU/MWCNT.

Figure 1.3. The (a) PC/MWCNT coated ABS wing section and wing section
printed entirely out of PC/MWCNT instrumented with electrodes under com-
pressive loading, and (b) the material’s piezoresistive response during loading
from [  15 ].
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Figure 1.4. Damage map of MWCNT modified glass fiber reinforced polymer
laminate obtained through electrical resistance measurements from [  19 ]. The
delamination contour obtained from an ultrasonic C-scan is superimposed onto
the map. The black dots indicate electrode locations.
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Figure 1.5. BVID damage detection on a glass fiber/epoxy tube using EIT
in [ 32 ]: (a) 14 J impact damage, (b) 10 J impact damage, (c) EIT imaged
conductivity change after 14 J impact, (d) EIT imaged conductivity change
distribution after both impacts.
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Figure 1.6. EIT BVID damage detection on a CFRP airfoil with surface
mounted electrodes in [ 33 ]: (a) impact damages on surface of airfoil, and scalar
multiple, in-plane conductivity, and through-thickness conductivity change im-
aged by EIT after (b) the 15 J impact and (c) both 12 J and 15 J impacts.
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Figure 1.7. Numerical demonstration of SSIP on a unit cube from [  42 ]. Row
(a), from left to right, shows an illustration of load cases: uniform compression,
uniform tension and shear, and uniform shear. The remaining rows show, from
left to right, the exact displacement solution, and the SSIP displacement field
reconstruction for conductivity data with 50 dB and 25 dB SNR for the (b)
uniform compression case, (c) combined uniform tension and shear case, and
(d) uniform shear case.
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Figure 1.8. Experimental application of genetic algorithm enabled SSIP from
[ 44 ] on a tension loaded open-hole test specimen. For each level of tension, (a)
an illustration of loading and EIT imaged internal conductivity change distri-
bution under increasing tension, and the first principal strains (b) recovered
via genetic algorithm enabled SSIP (c) simulated using finite element analysis,
and (d) derived from DIC measurements are shown.
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Figure 1.9. From [  65 ], the detection of shallow grooves in steel simulating
near surface cracks using (a) thermography data, (b) best performing SDF
method of ECT, MFL, and thermography, (c) worst performing SDF method.
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Figure 1.10. An example of SDF being applied to a bridge from [  66 ] featuring
(a) satellite image of bridge, (b) VEI map, (c) GPR map, (d) fused VEI and
GPR map, and (e) the fused VEI and GPR map overlaid with cracks detected
with HDI.
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2. PROBLEM STATEMENT AND RESEARCH GOAL

From the discussion in the previous chapter, it is evident that piezoresistive materials are a

promising tool to aid in the pursuit of MSA. Out of the many approaches being actively ex-

plored to leverage piezoresistive materials for condition monitoring of structural components

and systems, the SSIP is of special interest. Recovery of the spatially continuous strains and

displacements via the SSIP empowers engineers to perform more accurate failure prognosis

and remaining lifetime estimation, which are the preeminent goals of MSA. However, it is

clear from current work on the SSIP that there is a need for further research investigating

methods to improve the accuracy and reliability of the recovered strain and displacement

fields, especially when the electrical data the SSIP solely relies on for its predictions contains

high levels of noise. Additionally, current applications of the SSIP are limited to simple

geometries or small scale experimental specimens. Based on these opportunities to advance

the state-of-the-art, the following Problem Statement and Research Goal are presented.

2.1 Problem Statement

The SSIP is a challenging mathematical problem to solve, and the accuracy of the dis-

placement and strain field recovered from the conductivity changes in not guaranteed. As

described in the previous chapter, the SSIP recovered displacement field is sensitive to noise

and outliers in the conductivity data and prone to under-prediction of the displacement

magnitude. In the field of NDE, it is well known that no single NDE sensor or technique

possesses the ability to fully characterize the state of a material. Researchers studying NDE

defect detection have demonstrated that SDF of datasets from NDE sensors measuring dif-

ferent physical quantities can improve the accuracy and reliability of defect detection. This

line of thought can be extended to the SSIP: the fusion of conductivity data with some other

complementary data can potentially improve the accuracy and reliability of the strain and

displacement fields recovered via the SSIP. Furthermore, application of the SSIP to date has

been limited to relatively simple geometries and load cases. Overall, enhancing the accuracy

and reliability of the SSIP and demonstrating its efficacy on more realistic load cases are
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necessary prior to more advanced experimental implementation and eventual deployment as

a widely used tool for MSA.

2.2 Research Goals

The goal of this research is to develop the mathematical methods that allow the fusion

of conductivity data with complementary sensor data within the SSIP framework and to

computationally demonstrate the capacity of SDF to enhance the accuracy and reliability

of the SSIP recovered strain and displacement fields. Specifically, the fusion of conductivity

data with displacement and strain data, made available through displacement and strain

gauges, respectively, is investigated. To clarify, SDF of displacement and strain data with

conductivity data is explored separately. Additionally, this work expands the computational

application of the SSIP to more practical geometries representing real structural components

and their operational loads cases. The goals are summarized in the list below.

• Develop a method to fuse resistivity data with displacement data.

• Develop a method to fuse resistivity data with strain data.

• Demonstrate the efficacy of SDF in improving the accuracy and reliability of the SSIP

displacement field recovery.

• Demonstrate the SSIP displacement field recovery on complex geometries and loads.

2.3 Thesis Organization

Having presented the problem statement and research goal, the remainder of the thesis

is structured as follows. First, the mathematical formulation of the SSIP is explained in

detail, which includes a discussion of the piezoresistivity model used in this work. Second,

the method in which displacement and strain data are fused with conductivity data are

presented. Third, the computational experimental procedure is presented. This is followed

by a discussion of the computational experimental results. Lastly, this thesis closes with a

summary, conclusions, and outlook for future work.
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3. THE SELF-SENSING INVERSE PROBLEM

3.1 Introduction

The SSIP, as its name suggests, is an inverse problem. At a high level, an inverse problem

concerns determining, from a set of measurements, the factors that caused them—seeking

the cause from the measured effect. EIT is one example, where the internal conductivity

distribution that caused the measured boundary voltages is being sought. In the context

of structural engineering, this entails finding the unknown characteristics of a structural

system from the outputs, or measurements, of that system [  67 ]. Similarly, the goal of the

SSIP is to reconstruct the deformation induced strain state that gave rise to an observed

conductivity change in a piezoresistive material. Here, the conductivity changes are the

measured outputs, and the strain state is the unknown characteristic being determined.

Mathematically, the SSIP is a minimization problem. Reconstructing the underlying strain

state involves minimizing the difference between the observed conductivity distribution and

the conductivity distribution predicted by a model. The observed conductivity is available

through the methods such as EIT. To obtain the model predicted conductivity, one must

quantify the relationship between strains and conductivity for the specific piezoresistive

material being used. The mathematical relationship linking conductivity to strains is called

a piezoresistivity model.

3.2 Piezoresistivity Model

Much research has been conducted to model the piezoresistive effect, largely for conductive-

nanofiller modified composite materials. The models that have been developed can be clas-

sified into three general categories: equivalent network based [  68 – 71 ], computational mi-

cromechanics based [ 72 – 75 ], or analytical [  76 – 79 ]. Equivalent resistor network based models

simulate individual conductive nanofillers in the microscale domain. Computational mi-

cromechanics based models simulate both the nanofillers and the enveloping matrix mate-

rial. Analytical models depart from simulating individual nanofillers and instead express
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conductivity (or resistivity) as a function of parameters taken from manufacturing data,

experimental characterization, and the material strain state.

Herein, the analytical piezoresistivity model developed by Koo and Tallman [  80 ] is used,

given in equation (  3.1 ) below. This piezoresistivity model was selected for a few rea-

sons. First, it is because analytical piezoresistivity models have much lower computational

cost than equivalent network and computational micromechanics models since individual

nanofillers are not being modeled. Second, this model predicts resistivity changes from gen-

eral deformations. This means that it is applicable to complex load cases and strain states

at macroscales, unlike the majority of piezoresistivity models which are limited to the mi-

croscale. Third, this model is compatible with EIT because the model assumes resistivity

change is a scalar quantity. The conductivity (or resistivity) distributions imaged by EIT

are traditionally reported as scalars. Lastly, this model has been experimentally validated

in [  80 ] for selected weight fractions of CNF-modified epoxy. It was demonstrated that the

model predicted a resistivity change distribution for an open-hole tension test specimen that

was comparable to the resistivity change distribution imaged by EIT.

∆ρ = κ(ε11 + ε22 + ε33) + (Π1 + Π2)(ε2
11 + ε2

22 + ε2
33)

+ 2Π1(ε11ε22 + ε33ε11 + ε22ε33) + 2Π2(ε2
12 + ε2

31 + ε2
23) (3.1)

In the equation above, ∆ρ is the resistivity change in ohm-meters (Ω · m), the terms

denoted with ε are components of the infinitesimal strain tensor, and κ, Π1, and Π2 are

piezoresistive constants determined from curve-fitting experimental resistivity change-strain

data.

To elaborate on the determination of the piezoresistive constants, the following is brief

summary of the work done in [  80 ]. Equation (  3.1 ) is a general mathematical model with

undetermined coefficients. To find the coefficients, a process analogous to finding a line of

best fit for scatter plot data is performed. Dog-bone and v-notched specimens were manufac-

tured from a piezoresistive material. The dog-bone specimen was then loaded uniaxially, and

the v-notched specimen was loaded in a state of pure shear. Uniaxial and pure shear were
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chosen because the strain state induced by these loadings isolated different piezoresistivity

constants. The resistivity of the specimens were determined at several levels of uniaxial and

shear strain, from which axial and shear resistivity-strain plots were generated. Finally, the

piezoresistive constants were selected using the MATLAB ‘cftool’ command such that the

model best fit the data in the plots.

Before proceeding with the mathematical formulation of the SSIP, important assump-

tions and caveats associated with the model are acknowledged. This model was developed

assuming linear elastic material behavior and infinitesimal strains. Additionally, because the

model is a curve fit of experimental data, it is only expected to be accurate within the range

of strains the for which the model was defined.

3.3 Mathematical Formulation of the SSIP

Prior discussion about the SSIP had been in terms of electrical conductivity. However,

since the piezoresistivity model chosen for this work is in terms of resistivity, the following

mathematical formulation (and work in later sections) will proceed in terms of resistivity.

Additionally, it is assumed in this work that the experimentally observed resistivity distri-

bution is available through the use of EIT. However, EIT is not the focus of this research

and, therefore, will not be treated in detail. Interested readers are directed to the relevant

literature presented here and in section  1.2 [ 23 ,  81 ].

The SSIP is mathematically formulated as a minimization problem as shown in equation

( 3.2 ), where ρ is the experimentally observed resistivity distribution (as obtained via, for

example, EIT), f(εij) is the model predicted resistivity distribution, and ε∗
ij is the strain

state that satisfies the minimization. In other words, ε∗
ij is the strain state that, when

provided to the piezoresistivity model, gives rise to the observed resistivity distribution.

ε∗
ij = arg min

εij
(‖ρ− f(εij)‖2) (3.2)

Note that the ρ in equation ( 3.2 ) is an absolute resistivity, but the piezoresistivity model

predicts a resistivity change for a given strain tensor. To convert the model predicted

resistivity change into an absolute resistivity, a baseline resistivity, ρ0 must be added to
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the resistivity change, explicitly expressed in equation (  3.3 ). This baseline resistivity would

be obtained from the material in the undeformed state.

f(εij) = ∆ρ+ ρ0 (3.3)

Proceeding with the minimization, f(εij) is linearized via a Taylor series expansion about

an initial estimate of the strain state, ε0
ij, as shown in equation ( 3.4 ). Substituting equa-

tion (  3.4 ) back into equation (  3.2 ) produces equation ( 3.5 ). Consider the derivative term,

∂f(ε0
ij)/∂εij. Because the piezoresistivity model used in this work is a continuous and differen-

tiable function of the infinitesimal strain tensor, the derivative term is computed analytically,

given explicitly in equation ( 3.6 ). The derivatives with respect to the shear strains are equiv-

alent due to the symmetry of the infinitesimal strain tensor. In cases where a non-analytical

or non-differentiable model is used, the derivative can be computed using any appropriate

numerical method.

f(εij) ∼= f(ε0
ij) +

∂f(ε0
ij)

∂εij
(εij − ε0

ij) (3.4)

ε∗
ij = arg min

εij

∥∥∥∥∥ρ− f(ε0
ij) −

∂f(ε0
ij)

∂εij
(εij − ε0

ij)
∥∥∥∥∥

2 (3.5)

∂f(εij)
∂ε11

= κ+ 2(Π1 + Π2)ε11 + 2Π1(ε22 + ε33)

∂f(εij)
∂ε22

= κ+ 2(Π1 + Π2)ε22 + 2Π1(ε11 + ε33)

∂f(εij)
∂ε33

= κ+ 2(Π1 + Π2)ε33 + 2Π1(ε11 + ε22)

∂f(εij)
∂ε12

= ∂f(εij)
∂ε21

= 4Π2ε12

∂f(εij)
∂ε13

= ∂f(εij)
∂ε31

= 4Π2ε13

∂f(εij)
∂ε23

= ∂f(εij)
∂ε32

= 4Π2ε23

(3.6)
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By defining the difference between the observed and model determined resistivity as

δρ = ρ−f(εij) and the difference between the true strain and estimated strain as δεij = εij−ε0
ij,

equation (  3.7 ) is obtained.

ε∗
ij = arg min

εij

∥∥∥∥∥δρ−
∂f(ε0

ij)
∂εij

δεij

∥∥∥∥∥
2 (3.7)

At this point, equation (  3.7 ) now states that if we can find the strain increment δεij

that causes the difference between the observed and model determined resistivity, δρ, we

satisfy the minimization and can move toward determining the underlying strain state of the

material.

3.4 Finite Element Discretization

Next, the minimization is adapted to be applicable to a finite element mesh. This is done

because EIT customarily recovers the resistivity distribution of a domain discretized by a

finite element mesh, so it is logical to perform the SSIP on the same mesh. Further, solving

the SSIP on non-trivial shapes requires some discretization of the solution space, and the

finite element method is easily integrated into this process. To clarify, the finite element

method is not being used to solve differential equations. The minimization is simply written

in terms of a discretized displacement field. Stated directly, we seek the strain state that

minimizes the difference between the observed and predicted resistivity for each element in

a finite element mesh.

Continuing with the finite element adaptation, in this work, trilinear hexahedral elements

are used because they are commonly used in structural analysis simulations and generally

produce more accurate results than linear tetrahedral elements. Next, recall the definition

of the infinitesimal strain tensor in equation (  3.8 ). Also recall the finite element forms of

displacement, ui, and the displacement gradient, ∂ui/∂xj, given as equations (  3.9 ) and (  3.10 ),

respectively.

εij = 1
2

(
∂ui

∂xj
+ ∂uj

∂xi

)
(3.8)
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uei =
∑
A

NAdA
ei (3.9)

∂uei

∂xj
=
∑
A

∂NA

∂ξk

∂ξk

∂xj
dA

ei (3.10)

In the above equations, uei is the displacement in the i-direction of the eth element,

NA is the trilinear finite element interpolation function for the Ath node of a hexahedral

element, and dA
ei is the displacement in the i-direction of the Ath node of the eth element. The

summation ∑A(·) runs from one to eight for hexahedral elements. The trilinear interpolation

functions are given in equation (  3.11 ).

N1 = 1
8(1 − ξ1)(1 − ξ2)(1 − ξ3)

N2 = 1
8(1 + ξ1)(1 − ξ2)(1 − ξ3)

N3 = 1
8(1 + ξ1)(1 + ξ2)(1 − ξ3)

N4 = 1
8(1 − ξ1)(1 + ξ2)(1 − ξ3)

N5 = 1
8(1 − ξ1)(1 − ξ2)(1 + ξ3)

N6 = 1
8(1 + ξ1)(1 − ξ2)(1 + ξ3)

N7 = 1
8(1 + ξ1)(1 + ξ2)(1 + ξ3)

N8 = 1
8(1 − ξ1)(1 + ξ2)(1 + ξ3)

(3.11)

However, the use of trilinear hexahedral elements and their interpolation functions con-

flicts with the treatment of resistivity as a constant value for each element. Since each

element of the finite element mesh will possess a single constant resistivity value, we expect

the strains of the element to defined by a single infinitesimal strain tensor such that the

contraction in the right term of the difference results in a constant value. Yet, ∂uei/∂xj

is not constant, resulting in non-constant components of εij. To overcome this problem, a
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strain tensor with constant components is obtained by computing the volumetric average of

∂uei/∂xj, as shown in equation (  3.12 ).

∂ūei

∂xj
=
∫

ve

∑
A

∂NA

∂ξk

∂ξk

∂xj
dA

ei dve

ve
=
∑
A

∫
ve

∂NA

∂ξk

∂ξk

∂xj
dve

ve
dA

ei =
∑
A

∂N̄A

∂xj
dA

ei (3.12)

In the above, the bar accent signifies a volumetric average and ve is the volume of the

eth element. The third term of the equality exploits the fact that the integral of the sum

of functions is equal to the sum of the integrals of the same function. The dA
ei term is also

moved outside of the integral because the nodal displacements are constant.

The final result of equation (  3.12 ) is substituted into equation ( 3.8 ), arriving at equation

( 3.13 ), where the volume averaged infinitesimal strain tensor is now expressed in terms of

interpolation functions and nodal displacements.

εij = 1
2

(∑
A

∂N̄A

∂xj
dA

ei +
∑
A

∂N̄A

∂xi
dA

ej

)
(3.13)

Inserting equation (  3.13 ) into equation ( 3.7 ) yields equation (  3.14 ). Note that the sub-

script e is now included in ε∗
e,ij and ρe to indicate that the minimization is defined for the

eth element of the finite element mesh.

ε∗
e,ij = arg min

εij

∥∥∥∥∥δρe −
∂f(ε0

ij)
∂εij

1
2

(∑
A

∂N̄A

∂xj
δdA

ei +
∑
A

∂N̄A

∂xi
δdA

ej

)∥∥∥∥∥
2 (3.14)

Next, recognize that ∂f(ε0
ij)/∂εij is the partial derivative of a scalar with respect to a

symmetric tensor. This results in another symmetric tensor. Also, note that the two terms

being summed are the displacement gradient and its transpose. Since the contraction of

symmetric tensor with a second tensor is equal to the contraction of the same symmetric

tensor with the transpose if the same second tensor, equation (  3.14 ) can be condensed into

equation (  3.15 ).

ε∗
e,ij = arg min

εij

∥∥∥∥∥δρe −
∂f(ε0

ij)
∂εij

∑
A

∂N̄A

∂xj
δdA

ei

∥∥∥∥∥
2 (3.15)
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Equation (  3.15 ) will now be re-expressed so that the minimization encompasses the entire

finite element mesh. First, ∂f(ε0
ij)/∂εij is moved inside the summation. Next, the explicit

summation is replaced with linear algebra as the multiplication of a row and column vector

for the eth element. The contraction of ∂f(ε0
ij)/∂εij with ∂N̄A/∂xj is represented as a row

vector, ge, and the nodal displacement is represented as a column vector, δde. The conversion

from explicit summation to linear algebra is shown in equation (  3.16 ).

∂f(ε0
ij)

∂εij

∑
A

∂N̄A

∂xj
δdA

ei =
∑
A

∂f(ε0
ij)

∂εij

∂N̄A

∂xj
δdA

ei =
[
g1

e1 g1
e2 . . . g8

e3

]


δd1
e1

δd1
e2
...

δd8
e3


(3.16)

The elemental ge and δde vectors are reassembled into a global matrix, G, and global

nodal displacement increment vector, δd, such that the element level contractions are pre-

served. The minimization is restated for the entire finite element mesh in equation (  3.17 ).

Now, instead of seeking a the strains, we seek the global displacement vector, d∗, that sat-

isfies the minimization. The transition from ε∗
ij to d∗ is a consequence of the infinitesimal

strain tensor being expressed in terms of nodal displacements as part of the finite element

formulation. Note that the boldface δρ is now a global vector of element resistivities.

d∗ = arg min
d

(‖δρ − Gδd‖2) (3.17)

Solving for d∗ is an iterative process. The process begins by setting an initial estimate

of the global displacement vector. Since we assume no prior knowledge of the state of the

material, the initial nodal displacement estimate is set as the zero vector, d = 0. The nodal

displacement estimate is used to calculate the initial estimate of the strain tensor, ε0
ij, model

predicted resistivity, f(ε0
ij), and the piezoresistivity model derivative, ∂f(ε0

ij)/∂εij, for each

element. The global G matrix and δρ vector are then assembled.

To proceed, we must solve for δd. To do so, we must recognize that recovering the three

independent components of displacement from a scalar resistivity is an underdetermined
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problem. With this in mind, the method of least squares with regularization is employed, as

shown in equation (  3.18 ), where R is the regularization term, and α is the scalar regulariza-

tion parameter that controls the degree of regularization.

δd = (GT G + α2RT R)−1GT δρ (3.18)

Here, the application of displacement boundary conditions is addressed. The columns of

G corresponding to nodal degrees of freedom subject to a displacement boundary condition

are removed prior to the solving for δd. Thus, the number of columns of G and rows of δd

are reduced. Likewise, the rows and columns of R must be removed to retain dimensional

compatibility. The reduced dimension G, R, and δd are denoted as Ĝ, R̂, δd̂, and equation

( 3.18 ) is rewritten as equation (  3.19 ). After equation (  3.19 ) is solved, the known displacement

values for these degrees of freedom are manually reassembled back into δd̂, restoring the

vector to δd. This routine is similar to standard finite element simulation.

δd̂ = (ĜT
Ĝ + α2R̂

T
R̂)−1Ĝ

T
δρ (3.19)

After δd is calculated, d is updated as dn+1 = dn +δd. The updated displacement vector

is then used to calculate the next estimates of εn
ij, f(εn

ij), and ∂f(εn
ij)/∂εij so that the next

iteration can proceed. With each iteration, the residual converges to zero, and iterations

proceed until the relative residual term, given in equation (  3.20 ), is deemed sufficiently

minimized. In the equation below, r̄ is the relative residual, r is the residual, and ε is the

convergence criteria.

r̄n =
∣∣∣∣∣rn − rn−1

rn−1

∣∣∣∣∣ ≤ ε

rn = ‖δρn − Gδdn‖2
(3.20)
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3.5 Mathematical Limitations of the SSIP

By nature of being an inverse problem, the SSIP is inherently ill-posed. A well-posed

problem fulfills the following three criteria: the problem has a solution, the solution is unique,

and the solution’s behavior changes continuously with the initial conditions. The SSIP

violates the latter two criteria. The second criterion is violated because while a solution exists

for the SSIP, it is not unique because the SSIP is also underdetermined. An underdetermined

system has more degrees of freedom than equations to constrain them. In the case of the SSIP,

there are more nodal displacement degrees of freedom than there are elemental resistivity

data. The third criterion is violated because the SSIP is highly sensitive to noise and outliers

in the resistivity data. In other words, small perturbations in the resistivity data will likely

cause large differences in the recovered displacement field.

An essential method to combat the ill-posed and underdetermined nature of the SSIP is

to employ regularization, as mentioned at the end of the previous section. Regularization

aims to stabilize the inverse problem by imposing an assumed condition or prior knowledge

of the solution space. In this work, the discrete Laplacian, denoted as L and defined in

equation (  3.21 ), is used for regularization; therefore, R in equation (  3.18 ) is now equal to L.

Note that in equation ( 3.21 ) and for following mentions of Lij, index notation is not being

used.

L = Lij =



degree(Ωn) if i = j.

−1 if i = j and Ωi is adjacent to Ωj.

0 otherwise

(3.21)

Since the SSIP seeks the global displacement field vector, L is a square matrix with the

number of rows and columns equal to the total number of displacement degrees of freedom.

The total number of displacement degrees of freedom is equal to the product of the total

number of finite element mesh nodes and the number of spatial dimensions of the geometry.

Each diagonal entry counts the number of nodes adjacent to node Ωn. For the off-diagonal

terms, Lij = Lji = −1 whenever the ith and jth nodes are adjacent. Otherwise, Lij = Lji = 0.
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L is chosen because it promotes a smoothly varying solution space, which is a reasonable

assumption for a displacement field.

Despite regularization allowing for a solution to the SSIP to be found, the displacement

field obtained is still not unique. In other words, it is still possible for the SSIP to produce a

displacement field solution that mathematically satisfies the minimization in equation (  3.17 ),

but does not match the true displacement field. This fact motivates the research goal: we

seek additional means to guide the SSIP toward the correct displacement field solution,

and SDF is a promising avenue to achieve this goal given its efficacy in the aforementioned

literature.
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4. SENSOR DATA FUSION

4.1 Problem Identification

Since the SSIP aims to recover the displacement field and strain state from resistivity

data, it is natural to consider fusing resistivity data with displacement or strain data provided

by other sensors. Thus, the incorporation of SDF in effort to improve the SSIP displacement

field recovery will hereon be called the SSIP SDF problem. In theory, additional strain or

displacement data could help guide the SSIP toward the physically correct displacement

field, and hence the correct strain state, that gives rise to an observed resistivity change

distribution. This thesis explores the effect of fusing resistivity data with displacement data,

as well as fusing resistivity data with strain data, on the SSIP displacement field recovery.

Simultaneous fusion of all three data types is not investigated. Prior to describing the

mathematical methods in which the data are fused, we first connect the SSIP SDF problem

to the wider body of SDF research and discuss the fundamental considerations prior to

employing SDF.

SDF is the process of combining data to refine state estimates and predictions [  82 ]. This

overarching objective remains constant across all applications SDF has been adopted for.

However, depending on the particular application, the data fusion terminology, architecture,

and common algorithms can vary. For instance, the original SDF framework and lexicon

established in the context of military application are not aptly suited for all potential uses

of SDF. Nevertheless, the design of any SDF system should attempt to address the following

fundamental questions [  4 ,  47 ]:

• What are the number and type of information sources?

• What architecture should be used?

• How should the individual sensor data be processed to extract the maximum amount

of information?

• What algorithms or techniques are appropriate and optimal for a particular applica-

tion?
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• What accuracy can realistically be achieved by a data fusion process?

• How can the fusion process be optimized in a dynamic sense?

• How does the data collection environment affect the processing?

• Under what conditions does SDF improve system operation?

Since the work in this thesis is exploratory and purely computational, not all of these

questions are necessarily relevant or require definitive answers at this stage. Namely, the final

four questions pertain to the design and deployment of a SDF system, whereas the scope of

the research presented in this thesis is limited to the development of SDF techniques specific

to the SSIP. These questions may eventually become relevant points of discussion once the

SSIP SDF problem progresses beyond computational studies.

We first identify the data and sensor types encountered in this work. Again, while all

data were simulated, it is important to discuss how the data would be acquired experimen-

tally to establish a realistic basis for future experimental work. The three types of data

involved in the SSIP SDF problem are electrical resistivity, displacement, and strain. The

resistivity data is spatially continuous and can be obtained through the use of EIT. Displace-

ment data can be obtained using techniques such as DIC or hardware such as displacement

gauges. DIC can capture a spatially displacement field of a surface. However, DIC, and other

vision-based methods, is generally unsuited for long term, real-time condition monitoring of

structures, so spatial displacement data is not considered in this work. Displacement gauges

can provide accurate displacement data at discrete points. Types of displacement gauges

include optical, eddy current, ultrasonic, or contact-based sensors. Although displacement

gauges are more commonly used in industrial settings, they are also actively being used and

researched for structural condition monitoring [  83 ]. Therefore, in this work we make use of

discrete displacement data. Strain data can be obtained using strain gauges. Strain gauges

are extremely common and are used extensively as an NDE sensor. Certain configurations

of strain gauges (i.e. strain rosette) can relay the local in-plane strains at the point on the

surface which it is adhered to. Thus, in this work we make use of discrete strain data.
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Next, we discuss the SDF architecture selection and the processing of sensor data. To

reiterate, the goal of this research is to improve the accuracy and reliability of the SSIP strain

and displacement field recovery by fusing resistivity data with some other complementary

data in order to enhance MSA. This scenario resembles examples of SDF from NDE literature

[ 52 ,  54 ,  55 ]. Furthermore, since the goals of MSA and NDE are closely related, it is reasonable

to adopt the SDF architecture most commonly used for NDE to frame the SSIP SDF problem.

In NDE, a three level hierarchy is traditionally used to classify SDF: data-level, feature-

level, and decision-level. Data-level fusion (also called signal/pixel level fusion) involves

directly combining raw data before performing further analysis. To be combined, the data

must have the same or similar physical meaning or be converted into a common reference

value. For instance, signal data cannot be directly combined with visual image data. In

feature-level fusion, statistical features are extracted from each data set and combined for

further analysis. At the feature-level, data can measure different physical parameters. Fi-

nally, decision-level fusion involves combining the independent decision made by each sensor

to inform a final assessment.

Fusion of resistivity data with displacement or strain category best fits under data-level

fusion. Although resistivity, displacements, and strains are not measured using the same

physical units, they are all still physical quantities that can be correlated to the nodes and

elements of the same finite element mesh. Additionally, as displacements and strains are

explicitly calculated during the SSIP iterative process, this provides opportunities for known

displacements and strains to be fused with the resistivity data within the SSIP framework.

With the level of data fusion identified, data registration must be addressed. Data reg-

istration is the task of associating data to the correct physical points on specimen being

examined. When working with multiple sensors, various types of data are available at differ-

ent locations on the specimen. Additionally, for sensing techniques providing spatial data,

the data resolution are likely to differ because of the different equipment being used. There-

fore, all sensor data must be expressed in a common reference frame so that the physical

location of data from each sensor is accurate relative to each other, and data of different

resolutions must be transformed in order to be compatible for fusion.
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For the computational work in this thesis, data registration is relatively straightforward.

Computational experiments were performed on a three-dimensional finite element mesh. On

this mesh, the SSIP reconstructs the nodal displacements and elemental strains using ele-

mental resistivity data on the same mesh. Given that the same mesh is used throughout

the SSIP reconstruction process, the simplest way to ensure proper data registration among

sensors is to use the mesh itself as the common reference frame. Therefore, locations of sen-

sors relaying displacement data are selected to coincide with existing mesh nodes. Likewise,

locations of sensors relaying strain data are selected to coincide with mesh elements. In other

words, specific nodes of the mesh are selected to be displacement sensors (DS), and specific

elements of the mesh are selected to be strain sensors (SS).

In the following sections, the techniques behind the fusion of resistivity with displacement

and strain data are detailed.

4.2 Fusion of Resistivity and Displacement Data

Fusing discrete displacement data from DS with resistivity data follows a similar approach

to enforcing displacement boundary conditions as described in section  3.3 . First, all the

columns of G associated with DS nodes are replaced with zero column vectors. This is

done for two reasons. The first reason is because a column of zeros in a matrix representing

a system of linear equations indicates a free variable. In the context of the SSIP, degrees

of freedom associated with DS nodes are made free variables. This means that the DS

nodes no longer constrain the least squares solution and can be assigned any value. The

second reason is to preserve the dimensions of L. Recall that L is used for regularization

because it enforces that the solution space is smoothly varying. When a column of G

is removed, the corresponding rows and columns of L must also be removed to preserve

dimensional compatibility. However, the removal of the rows and columns of L disconnects

the corresponding nodes from the smooth solution space promoted by L. This causes major

aberrations in the displacement field reconstruction at and near the DS node.

Second, after δd is calculated and dn is updated, the DS data are inserted into dn, replac-

ing the unconstrained displacement values calculated for the free variables which correspond
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to DS nodes. Additional consideration is needed regarding how displacement data are in-

serted into dn. If the displacement data values being inserted are much larger than majority

of values in dn, the SSIP may diverge or arrive at a nonsensical displacement field solution.

This is prone to happen since dn is initialized as the zero vector, and the first few iterations

of dn tend to be small.

The divergence occurs because, for an element containing a DS node, a sharp disparity

between the inserted displacement data of DS nodes and SSIP predicted displacements of

non-DS nodes results in the calculation of a large elemental strain and, consequently, an

outlier model predicted resistivity. This outlier resistivity will cause the SSIP to predict

erroneous displacements in the following iteration, an error which compounds and propagates

with each iteration. To surmount this problem, displacement data are incorporated using

the function defined by equation (  4.1 ).

dn
DS = Φ(n)dknown (4.1)

In the above, dn
DS is the subset of dn belonging to DS nodes at the nth iteration, dknown

is the known displacement data, and Φ(n) is a ramping function that is a function of n. Φ(n)

is selected such that it is a positive, decimal value that approaches one. The idea is that if

the DS data being inserted is incorporated gradually, the discrepancy in displacement values

among DS and non-DS nodes can be mitigated enough to prevent the calculation of outlier

model predicted resistivity values, thus maintaining the stability of the SSIP. In this work,

a piecewise linear ramping function shown in equation (  4.2 ) was selected for simplicity. In

words, 10% of the DS data is added with each iteration such that by the tenth iteration, the

full displacement data has been incorporated. Here, the slope of the linear ramping function

is not necessarily optimal, but it was found that in general, a gentler slope reduced the risk

of SSIP divergence. However, this becomes a tradeoff between stability of the SSIP and the

total number of iterations required to converge to a solution.

Φ(n) =


n
10 , n < 10

1, n ≥ 10
(4.2)
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One can recognize that this SDF method does not resemble the more prevalent data-level

SDF methods in NDE such as those involving signal normalization and probabilistic tech-

niques. This is because the goal of the SSIP SDF problem is inherently different from many

NDE SDF applications. NDE SDF applications often involve directly combining different

sets of raw data to produce a new data set. This new data set is analyzed to achieve more

information about a specimen or better discriminate features of interest. In contrast, the

SSIP SDF problem does not directly combine resistivity and displacement data to produce

a third data set. Rather, the data are fused within the SSIP framework through modifica-

tions of the original SSIP formulation to enable a more accurate prediction of the state of a

material. While the SSIP SDF problem and the proposed fusion method does not perfectly

fit into the definitions established by the NDE SDF architecture, the core principle of SDF

is still being exercised.

4.3 Fusion of Resistivity and Strain Data

Fusion of resistivity and strain data is a more challenging problem than fusion of displace-

ment data because this formulation of the SSIP does not directly solve for the strains. The

strains are computed from the global displacement vector predicted by the SSIP; therefore,

a method similar to the displacement fusion technique presented in the previous section is

not possible.

The general approach used for strain data fusion in this thesis is to enforce additional

constraints on the displacements. These constraints came in the form of strain-displacement

relations. Strain-displacement relations map the displacements of a deformed body to its

strain state. For the general, three-dimensional case, assuming small deformations, the

strain-displacement relations can be defined by the infinitesimal strain tensor, given earlier in

equation (  3.8 ). Here, the six independent strain components derived by expanding equation

( 3.8 ) are given below as equation (  4.3 ). To clarify, the incorporation of the infinitesimal strain

tensor in the SSIP finite element discretization did not apply strain-displacement relations

as a constraint in the way that will be discussed in this section. It did, however, ensure that

every displacement field solution found by the SSIP satisfied strain compatibility.
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ε11 = ∂u1

∂x1

ε22 = ∂u2

∂x2

ε33 = ∂u3

∂x3

ε12 = 1
2

(
∂u1

∂x2
+ ∂u2

∂x1

)

ε13 = 1
2

(
∂u1

∂x3
+ ∂u3

∂x1

)

ε23 = 1
2

(
∂u2

∂x3
+ ∂u3

∂x2

)

(4.3)

Several methods of incorporating strain-displacement relations were explored resulting

in various degrees of success. The first method involved augmenting the SSIP G matrix by

concatenating additional rows that represent strain-displacement relations. To accomplish

this, first, a global strain-displacement matrix, B, was calculated. Since strain gauges pro-

vide strain data at a point, B was formulated to map the global nodal displacements to the

global nodal strains. While a detailed mathematical formulation of this method is omitted

from this section because this strain SDF method was ultimately not selected for use in this

thesis, the following is a brief, high-level summary of the formulation and results.

Typically, in finite element discretization, B maps the global nodal displacements to

global elemental strains because strains are defined for each mesh element. Therefore, it

was necessary for B to be modified so that it instead related nodal displacements to nodal

strains. To do so, the L2 projection was incorporated into B. The L2 projection is a method

that can project any arbitrary function defined at the Gauss integration points of the mesh

to the mesh nodes [ 84 ]. Modification of B with the L2 projection required the creation of

six unique B matrices, denoted as Bεij , with each mapping the global nodal displacement

vector to an independent strain component.

With the six Bεij matrices calculated, the rows of Bεij corresponding to nodes designated

as SS are taken from the appropriate Bεij matrix and concatenated to G. For instance, if

‘Node 1’ of the finite element mesh is a SS at which ε11 is known, the first row of the Bε11
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matrix (the matrix which maps the global nodal displacements to the global nodal ε11) is

concatenated to G. The known nodal strain data at the SS node is then concatenated to

the δρ vector. The SSIP minimization is now defined as equation (  4.4 ), where δβ is the

difference between the known nodal strains and the SSIP predicted nodal strains, and B′

are the rows concatenated onto G. The prime symbol in B′ indicates that B′ can be a

composite of rows from different Bεij matrices if multiple strain components are known for

at each SS. The number of rows B′ has is equal to the number of strain components known

at each SS node. For instance, if there are two SS at which three strain components are

known, B′ would have six rows.

d∗ = arg min
d

∥∥∥∥∥
[
δρ

δβ

]
−
[

G

B′

]
δd

∥∥∥∥∥
2

(4.4)

While this method was successful in enforcing that the strains at SS nodes equal the

known strain data, the reconstructed displacement field tended to greatly under-predict the

true displacement field.

The second method involved explicitly treating the SSIP as a constrained least-squares

problem. In this method, the original SSIP minimization remains unchanged, but the strain-

displacement relations are now treated as linear equality constraints. The rows that were

concatenated to G in the previous method are now defined as linear equality constraints.

The constrained least squares solution was calculated using the MATLAB function ‘lsqlin’.

This method also successfully enforced strains at SS nodes to be equal to the known strain

data; however, the displacement magnitude tended to be over-predicted. For a more detailed

treatment of the mathematical formulation and results of these two methods, the reader is

referred to the appendix.

The third and most successful method used to fuse strain and resistivity data involved

adapting and incorporating a technique known as the inverse finite element method (iFEM)

into the SSIP. Developed by Tessler et al. [ 85 – 87 ], iFEM is a computational method which

aims to reconstruct the displacement field of a finite element discretized structure from a set

of discrete strain measurements on the structure. iFEM is an inverse problem and is solved

by minimizing a least squares functional. Since iFEM was originally developed for plate and
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shell elements based on Mindlin plate theory, the least squares functional takes the form

given in equation (  4.5 ).

Φ(u) = W e‖e(u) − eε‖2 + W k‖k(u) − kε‖2 + W g‖g(u) − gε‖2 (4.5)

In the equation above, e, k, and g represent the in-plane membrane strains, bending

curvatures, and transverse shear strains, respectively. Note that in iFEM, the strains are

treated as elemental properties, meaning a strain state was defined for each element in

the finite element mesh. Furthermore, u are the nodal degrees of freedom, W are scalar

weight coefficients, and terms with superscript ε indicate the set of experimentally measured

strains. Each squared norm term contains the difference between the strains calculated via

Mindlin plate theory strain-displacement relations as a function of u and the experimentally

measured strains. Minimization of this functional with respect to u theoretically recovers

the displacement field that produced the measured strains. In other words, if the difference

between the model predicted strains and the experimentally measured strains is minimized,

the displacement field can be reconstructed. This functional is then defined for each element

in a finite element mesh and subsequently assembled into a global functional in typical finite

element method fashion.

One key limitation of this method is the availability of measured strain data. Obviously,

strain data will not be available at every point within a structure, and, at points with sensors,

not all strain components can be measured. For instance, strain sensor networks are often

sparse, and transverse shears cannot be measured using an in-plane strain gauge. Therefore,

in the original formulation, mesh elements that did not possess experimental strain data had

their experimentally measured strain vectors, eε, kε, or gε, set equal to zero. This hindered

the overall accuracy of the recovered displacement field because this effectively enforced that

certain strains equal zero when in actuality they were non-zero. To minimize this effect,

weight coefficients, W , were introduced such that mesh elements with measured strain data

were given a significantly larger weight, usually by a factor between 1 × 103 to 1 × 106, than

elements without experimental data. This amplifies the contribution of elements with strain

data to the solution relative to elements without strain data.
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Later refinement of iFEM introduced methods to pre-extrapolate the strains for mesh

elements without strain data. In other words, the strains for elements without strain data

can be estimated using statistical [  88 ] or physics-based [  89 ] methods, which can provide

improved accuracy of the recovered displacement field.

From the brief explanation of iFEM above, it can be recognized that the objective and

mathematical formulation of iFEM and the SSIP are similar, thus motivating their synergistic

combination. The SSIP SDF problem seeks a method to fuse strain data with resistivity data

in order to more accurately recover the displacement field. iFEM is a method which recovers

a displacement field directly from discrete strain data, but ideally requires a method to pre-

extrapolate strains for elements without strain data. Since SSIP predicts a strain tensor for

each mesh element during its iterative process, the SSIP can be used pre-extrapolate strains.

Moreover, the iFEM mathematical formulation can be readily incorporated into the SSIP

to allow for SDF of strain data. The following details the adaptation and incorporation of

iFEM into the SSIP for the SDF of resistivity and strain data.

In this thesis, the finite element meshes used consist of hexahedral elements that are

subject to general deformations. Thus, the least squares functional in equation (  4.5 ) is re-

expressed as equation (  4.6 ) for the eth hexahedral element. For general deformations, the

bending curvature and transverse shear terms from equation (  4.5 ) are dropped, and u, which

included nodal displacements and rotations, is changed to d to express nodal displacements

only. In the equation below, dA
e,i are the nodal displacements, εe(dA

e,i) are the strains calculated

from strain-displacement relations, ε̄e are the known strain data, and We is a diagonal matrix

containing the weight coefficients of each strain component for the eth element. Equation

( 4.7 ) is the vector of strains ε represents.

Φe(dA
e,i) = We‖εe(dA

e,i) − ε̄e‖2 = We

∫
V

[εe(dA
e,i) − ε̄e]2dV (4.6)

ε =
[
ε11 ε22 ε33 ε12 ε13 ε23

]T

(4.7)

Next, we express εe(dA
e,i) in terms of linear algebra as the product of the element nodal

displacements and the elemental Be matrix as shown in equation (  4.8 ). The elemental Be
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matrix, which maps the element nodal displacements to the six independent element strain

components as defined in equation (  4.7 ), is shown in equation (  4.9 ). To clarify, the Be strain-

displacement matrix in this context mapped nodal displacements to elemental strains, unlike

the strain-displacement matrix discussed earlier in the prior strain SDF methods explored.

εe(dA
e,i) = Bed

A
e,i (4.8)

Be =
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
(4.9)

Plugging equation (  4.8 ) into equation (  4.6 ), we arrive at the first term of equation (  4.10 ).

Here, the superscript A and subscript i are omitted for notational clarity. By expanding the

integrand and consolidating terms, we obtain the final term of equation (  4.10 ). Below, Ke

is the elemental iFEM stiffness matrix, and fe is the elemental iFEM forcing vector.

Φe(dA
e,i) = We

∫
V

[Bede − ε̄e]2dV

=
∫

V
(dT

e B
T
e WeBede − 2dT

e B
T
e Weε̄e + ε̄T

e Weε̄e)dV

= dT
e

[∫
V
BT

e WeBedV
]
de − 2dT

e

[∫
V
BT

e Weε̄edV
]

+
∫

V
ε̄T

e Weε̄edV

= dT
e Kede − 2dT

e fe + c

(4.10)

To minimize equation ( 4.10 ), the variation of Φe is taken with respect to dA
e,i and set

equal to zero, as shown in equation (  4.11 ).

δΦe = Ked
A
e,i − fe = 0 (4.11)
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The Ke matrix and fe vectors of each element are then assembled into a global K matrix

and F vector encompassing the entire finite element mesh, resulting in equation (  4.12 ). K is

a square, symmetric matrix with the number of rows and columns equal to the total number

of displacement degrees of freedom, and F is a vector of matching length.

Kd − F = 0 (4.12)

At this point, iFEM proceeds by applying displacement boundary conditions just as in a

normal finite element routine, and then the displacement field is reconstructed by computing

d = K−1F . However, the goal is to incorporate equation (  4.12 ) into the SSIP. We therefore

proceed by replacing d in equation (  4.12 ) with δd, where δd is the difference between the

true displacement field and the model predicted displacement field, to match the δd being

solved for by the SSIP in equation (  3.18 ). Additionally, ε̄e in fe is converted to δε̄e, defined

as the difference between the measured strain data at SS and the model predicted strains.

This conversion yields equation (  4.13 ), which is then concatenated directly to the SSIP

minimization in equation (  3.17 ), resulting in equation (  4.14 ).

It is important to note that regularization is no longer required to solve for δd in equation

( 4.14 ), so equation  3.18 is not used here. Instead, the MATLAB function lsqlin is used to

solve equation ( 4.14 ) for δd in the least squares sense. Otherwise, the modified SSIP proceeds

normally—δd is calculated, dn is updated via dn+1 = dn + δd, and the new dn is used to

calculate the next estimates of εn
ij, ∂f(εn

ij), and ∂f(εn
ij)/∂εn

ij so that the next iteration can

proceed.

Kδd − δF = 0 (4.13)

d∗ = arg min
d

∥∥∥∥∥
[
δρ

δF

]
−
[

G

K

]
δd

∥∥∥∥∥
2

(4.14)

Now, strain pre-extrapolation is addressed. Prior to each iteration of the modified SSIP,

a δd is calculated using the unmodified SSIP, hereon denoted as δdX . δdX then is used

to calculate a global strain increment δεX
ij , which is a move direction in terms of elemental
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strain tensors that satisfies the SSIP minimization. For mesh elements without strain data,

δε̄e = δεX
e,ij. For mesh elements with strain data, δε̄e = ε̄e − εn

e,ij. Note that δε̄e is a [6 × 1]

vector while δεX
e,ij and δεn

e,ij are second order tensors. By equating the vector to the tensor, the

intent is to convey that the strain components of the vector are set equal to the corresponding

strain components in the tensor.

This strain SDF method has a few advantages over the prior two methods discussed.

The first is that the strain-displacement relations for the entire finite element mesh are

incorporated instead of just a few rows associated with SS. Including the global strain-

displacement relations enforces a mesh-wide nodal connectivity based on mechanics, which

may help guide the SSIP displacement field recovery closer to the true displacement field.

Second, this method is less computationally expensive because there is no need to project

element strains to the nodes or formulate the modified B.

59



5. COMPUTATIONAL EXPERIMENTS

This chapter details the objectives, design, and procedures of the computational experiments

performed to achieve the research goals.

5.1 Computational Study Objectives

As discussed in previous chapters, the displacement field solution predicted by the SSIP

is highly sensitive to noise and outliers in the resistivity data, which limits the accuracy and

reliability of the recovered displacement field. By incorporating additional data via SDF, we

endeavor to improve upon these shortcomings. To this end, the computational experiments

performed should address the following three objectives:

1. Determine the number of sensors required to improve the accuracy of the SSIP recov-

ered displacement field to a sufficient degree.

2. Demonstrate how SDF affects the reliability of the SSIP when resistivity data noise is

increased.

3. Demonstrate how SDF affects the reliability of the SSIP when there are outlier resis-

tivity data.

A separate computational experiment was performed for each objective. Furthermore,

each experiment was performed twice, once for the fusion of displacement and resistivity

data, and second for the fusion of strain and resistivity data. The details regarding the

experiments are explained in section  5.3 .

5.2 Geometries and Load Cases

Since computational and experimental work employing the SSIP has thus far been lim-

ited to simple shapes, the geometries selected for this work represent practical structural

components. It is important to preface the following discussion by emphasizing that the

geometries and load cases presented are representations and are not intended to be rigorous

models of real components or their operational load cases. For instance, any dimensions
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or load magnitudes are not based on or derived from actual part drawings or engineering

analysis. The sole intent is to demonstrate that the SSIP can be applied to more complex

shapes and loads.

Three geometries were selected for this work and are depicted in figure  5.1 . The shapes are

simplified representations of a T-shaped mounting bracket, a section of an aircraft wing spar,

and the skin of an aircraft wing. For clarity, they will be hereon referred to as the mounting

bracket, wing spar, and airfoil. The dimensions displayed are only relevant in establishing

the proportions of each component. These shapes were selected because they are all parts

of an aircraft that carry critical loads and would be of key interest for condition-monitoring

and MSA.

Figure 5.1. Isometric views of the geometries modeled for the computational
experiments: (a) mounting bracket, (b) wing spar, (c) airfoil.

The load case and resulting deformation for each geometry are illustrated in figure  5.2 .

The load cases roughly simulate an operational load each component could experience. The

magnitude of the loads were selected such that no axial strains exceeded ±6.0×10−3 and no

shear strains exceeded ±1.5×10−2. These bounds were established because the piezoresistiv-

ity model used is only guaranteed to be accurate within those ranges of strains [  80 ]. What

follows is a detailed description of each load case and the real world operational load each

represents.

The mounting bracket is essentially a fixed-free cantilever, with the rear face of the flange

clamped and the web free. In practical application, the rear face would be bolted to a rigid
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surface, and the web serves as a mounting plate for a load bearing member to attach to.

Force along this member would be transferred from the member to the rigid surface through

the mounting bracket via shear. Now, consider a member attached to the mounting bracket

web at an angle and subject to tension. To simulate this load on the mounting bracket, a 155

kPa uniform shear stress is applied to both sides of the web directed at 45◦ counter-clockwise

from the +y-axis.

The wing spar is also virtually a fixed-free cantilever. The fixed end would be the root

of the wing spar connected to the aircraft fuselage, and the free end would be the wing tip.

During maneuvering flight, the aerodynamic loads on an aircraft wing can induce twist—

a rotation of the wing about its longitudinal axis. To simulate this for the wing spar, the

surfaces of the spar caps are subject to a 10 kPa uniform shear stress in opposite directions

along the z-axis.

The airfoil represents the skin of a straight wing with an SD7062 airfoil. The shape was

modeled to be open and hollow with a finite shell thickness of 0.1 in. The trailing edge of

the shape was truncated at the 80% chord position. Both of these geometric parameters

were chosen to avoid the potential meshing complications an extremely thin shell and sharp

trailing edge would pose for hexahedral elements. The load on the airfoil roughly simulates

the net pressure distribution a wing would experience at 5◦ angle of attack and 45 m/s

airspeed at sea-level. The airfoil was given fixed-fixed end boundary conditions. To arrive

at the pressure distribution used in this work, the software XFOIL [ 90 ] was first used to

calculate the pressure coefficient plot for the SD7062 airfoil at 5◦ angle of attack, assuming

viscous flow. The pressure coefficients were then converted into a static pressure value using

equation (  5.1 ), where p is the static pressure at a point on the wing surface, Cp is the

pressure coefficient at the same point, ρ is the density of air (in this context only), V∞ is

the freestream velocity, and p∞ is the freestream pressure. Next, it was assumed that the

pressure inside the airfoil shape is equal to p∞; therefore, p∞ is subtracted from p to arrive

at the net pressure distribution. Finally, this two-dimensional net pressure distribution was

extended along the entire span of the airfoil shape. It is acknowledged that the final, three-

dimensional net pressure distribution is a simplification and neglects the effects of a finite

wing.
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p = 1
2ρV

2
∞Cp + p∞ (5.1)

Figure 5.2. Top row: illustration of the load case for the (a) mounting
bracket, (b) wing spar, and (c) airfoil. Bottom row: scaled deformation result-
ing from the load calculated from finite element analysis.

To prepare the geometries for the computational experiments, each was discretized into

two finite element meshes, one coarse mesh and one fine mesh, using the meshing software

Trelis. The fine mesh was derived from the coarse mesh via a simple refinement process

where each hex element of the coarse mesh was split into eight smaller hex elements. The

meshes are displayed in figure  5.3 , and the mesh parameters are given in table  5.1 .

Next, nodes and elements on the surface of each coarse mesh were selected to be DS

and SS, respectively. The DS and SS were selected to be at the same locations to allow

for comparison between DS and SS results. Furthermore, the sensor locations were selected

to be as uniformly spaced as possible. While sensor location is an extremely important

consideration in NDE when instrumenting a component in order to maximize efficiency

63



and usefulness of the data obtained, optimizing sensor location is outside the scope of this

research. Additionally, since we are attempting to recover the global displacement field, it is

logical to place sensors uniformly throughout the shape.

Figure 5.3. Coarse meshes (a)-(c) and fine meshes (d)-(f) generated for the
mounting bracket, wing spar, and airfoil.

A total of 50, 78, and 85 potential sensor locations were selected for the mounting bracket,

wing spar, and airfoil, respectively, shown in figure  5.4 . For the mounting bracket and wing

spar, the sensor locations were selected in pairs with half of the sensors seen in figure  5.4 ,

and the others mirrored about the shapes’ planes of symmetry. For the airfoil, sensors were

placed on the top and bottom of the shape at each 10% chord station at the root, 25%, 50%,

75%, and 100% span position. To clarify, not all the sensor locations shown in figure  5.4 were

necessarily used in the computational experiments. Instead, they represent the maximum

number of sensors to be considered for each shape. The justification for an upper limit on

the number of sensors is that while it is simple in a computational experiment to include

as many sensors as necessary to ensure the SSIP recovers the correct displacement field, it

becomes impractical to use an excessive number of sensors in experimental application due

to cost and complexity constraints.
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Table 5.1. Total number of nodes and elements for each mesh.
Coarse Mesh Fine Mesh

Geometry Nodes Elements Nodes Elements
Mounting Bracket 15,960 11,562 109,809 92,496

Wing Spar 18,680 12,662 124,942 101,296
Airfoil 40,698 26,650 268,862 213,200

Figure 5.4. All potential sensor locations, indicated by red circles, for the
(a) mounting bracket, (b) wing spar, and (c) airfoil.

5.3 Computational Experiment Procedure

The computational experiment procedure is succinctly illustrated by figure  5.5 . First, the

exact displacement field solution was calculated using standard finite element analysis on the

fine mesh and was used to calculate a strain tensor for each element. The exact displacement

field solution for each shape is shown in figure  5.6 . Second, simulated resistivity data were

generated for the fine mesh by plugging each elemental strain tensor into equation (  3.1 ).

Next, the fine mesh simulated resistivity data were averaged onto the coarse mesh. Next,

to better represent experimental data, Gaussian white noise was added to the coarse mesh

data. Figure  5.7 shows the averaged resistivity data at 75 dB SNR. Finally, the SSIP was

performed using the coarse mesh resistivity data to attempt to recover the displacement field

on the coarse mesh. A reconstruction is considered successful if the recovered displacement

field on the coarse mesh closely matches the exact displacement field on the fine mesh.

The reason two different meshes were used was to prevent ‘inverse crime’ [  81 ]. To explain

in the context of the SSIP, if the SSIP reconstructs the displacement field using the same
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mesh that the resistivity distribution is simulated on, it is possible (even if unlikely) that the

recovered displacement field perfectly or very closely matches the exact displacement field.

While one might be tempted to accept this result as a success, this however constitutes inverse

crime. Some ways to avoid inverse crime as identified in [  81 ] are to perform a reconstruction

on a different mesh than the one used to simulate data and to add noise to the simulated

data.

Figure 5.5. Flow chart illustrating the computational experiment workflow.

To simulate the mechanical deformation and resistivity data, all of the shapes were as-

sumed to possess the mechanical and piezoresistive properties of 1 wt.% CNF/epoxy. While

CNF/epoxy is obviously not the ideal material to manufacture any of the components, it was

selected because an experimentally validated piezoresistivity model for the material already

exists [ 80 ]. For simplicity, it was also assumed that the undeformed material would have a

uniform resistivity distribution of 75,000 Ω · m, a value derived from experimental character-
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ization of the material [  91 ]. The elastic properties and piezoresistivity model constants used

are summarized in table  5.2 .

Table 5.2. Elastic properties and piezoresistivity model constants used to
define 1 wt.% CNF/epoxy.

Mechanical Properties
E 2.711 GPa
ν 0.351

Piezoresistivity Constants
κ 4.10 ×106

Π1 -1.50 ×108

Π2 5.15 ×105

ρ0 75,000 Ω · m

In addition to the relative residual in equation (  3.20 ), two metrics were plotted for each

iteration of the SSIP to evaluate the SSIP convergence behavior: the resistivity error and

the normalized displacement error, defined by equations (  5.2 ) and ( 5.3 ), respectively. In

the equations below, εn
ρ is the resistivity error, [f(εij)]n is the model predicted resistivity

distribution, εn
d is the resistivity error, dexact is the exact displacement field solution, and

superscript n is the iteration number. The resistivity error measures how closely the model

predicted resistivity distribution matches the simulated resistivity data, and the displacement

error measures how closely the displacement field estimate matches the exact displacement

solution. Both error metrics are expected to converge to zero if the minimization in equa-

tion (  3.17 ) is being satisfied and the SSIP predicted displacement field approaches the true

displacement field.

It is important to note that in experimental application, the displacement error is a metric

that cannot be tracked because the true displacement field is unknown. The only information

a user would have available is the experimentally observed resistivity distribution and thus

the resistivity error. Nevertheless, the displacement error is presented here as a useful tool

to show if SDF improves convergence to the correct displacement field.

εn
ρ = ‖ρ − [f(εij)]n‖2 (5.2)
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εn
d =

∥∥∥∥∥ dexact

‖dexact‖2 − dn

‖dexact‖2

∥∥∥∥∥
2

(5.3)

Three computational experiments, hereon called Experiment 1, Experiment 2, and Ex-

periment 3, were performed to individually address each of the three objectives identified in

section  5.1 . Again, each experiment was performed separately for the fusion of displacement

data from DS and the fusion of strain data from SS.

Experiment 1 explored the first objective. Using 75 dB SNR resistivity data, two sen-

sors on exact opposite sides of each shape were activated at a time until the reconstructed

displacement field was deemed accurate to the exact solution. The sensors were added in

a pattern that maintained uniform sensor spacing as closely as possible. Generally, it is

difficult to objectively evaluate the accuracy of a recovered displacement field without prior

knowledge of the exact solution. However, although in this case the exact solution was

available and εd quantified the accuracy of the recovered displacement field compared to the

exact solution, assigning a specific value for εd that deems the recovered displacement field

as ‘sufficiently accurate’ is markedly arbitrary. Therefore, the number of sensors required to

sufficiently improve the SSIP was determined qualitatively using a plot of εd against number

of sensors and visual inspection of the recovered displacement fields.

Experiment 2 addressed the second objective. The SSIP was performed on resistivity

data with 75, 50, 40, and 30 dB SNR while being supplemented with additional sensor data.

The sensor configuration determined in Experiment 1 that brought the the SSIP recovered

displacement field sufficiently close to the exact solution was used.

Experiment 3 investigated the third objective. For each shape, eight clusters of elements

were randomly selected from the coarse mesh to contain outlier resistivity data. A cluster of

elements consists of a selected element and all elements adjacent to it. Half of the clusters

were assigned a resistivity value of 105,000 Ω · m, and the remaining outlier elements were

assigned 45,000 Ω · m. Figure  5.8 shows the resistivity data with the outlier clusters. These

outlier values were selected to be ±30,000 Ω · m of ρ0, which is outside the range where the

piezoresistivity model is accurate. These outlier data were applied to the resistivity data

with 75 dB SNR. The displacement field was recovered using two sensor configurations, the
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first being the same sensor configuration used in Experiment 2, and the second being a

configuration with an increased number of sensors over the previous.

Both the displacement and strain sensor data came from the elasticity solution on the

fine mesh. Because the DS was not based on a real NDE sensor, it was decided that, in this

work, all three displacement components were to be known at each DS simply as a proof of

concept demonstrating how SDF could enhance the SSIP. However, since strain gauges are

a commonly used NDE sensor, a more realistic approach was taken for SS. Each SS relayed

the in-plane principal and shear strains relative to the surface which the SS was placed.

The choice of the scalar regularization parameter, α, was driven by multiple factors. The

primary purpose of α is to balance the tradeoff between fitting the data and the strength of

regularization. However, to avoid having to tune α for every sensor configuration for each

shape, a single α was selected for each shape. This also allows for better comparison of

results among different sensor configurations—any difference in reconstruction quality can

be entirely attributed to SDF and not a change in α. The selection process entailed sweeping

through a range of potential α values between 1 and 1×1010 and performing a reconstruction

at each power of ten. During this process, it was found that the displacement reconstruction

itself was relatively insensitive to α for a band of values generally between 1×103 and 1×108,

the range varying depending on the geometry and the magnitude of the load. Within this

range, the smallest α which stabilized any oscillatory behavior in the residual and relative

residual convergence was selected. Thus, α was selected to be 1 × 106 for the mounting

bracket and airfoil and 1 × 108 for the wing spar.

Finally, in this work, the convergence criteria was ε = 10−6 and the maximum iteration

limit was set to 20.
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Figure 5.6. Exact displacement field solution for (a) mounting bracket, (b)
wing spar, and (c) airfoil simulated using finite element analysis.
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Figure 5.7. Resistivity data averaged on coarse mesh with 75 dB SNR for
the (a) mounting bracket, (b) wing spar, and (c) airfoil.

Figure 5.8. Resistivity data at 75 dB SNR with outliers for the (a) mounting
bracket, (b) wing spar, and (c) airfoil.
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6. COMPUTATIONAL EXPERIMENT RESULTS

6.1 Results of Displacement Data Fusion

6.1.1 Experiment 1

Figure  6.1 shows the sensor configurations used for this experiment. Recall that sensors

are added two at a time on opposite sides of the shape—the numbers next to the sensor

locations in figure  6.1 indicate the order in which a pair of DS were added.

Figure 6.1. DS configurations used for Experiment 1 for the (a) mounting
bracket, (b) wing spar, and (c) airfoil. The numbers indicate the order in
which the sensors are added.

It is immediately apparent from figures  6.2 ,  6.3 , and  6.4 that without DS, the SSIP

reconstructions severely under-predicted the displacement magnitude and failed to capture

the overall shape of the displacement field for every geometry. This is reflected in the

displacement error plots, which show a minimal decrease in εd for cases without DS. Adding

DS dramatically improved the accuracy of the recovered displacement fields. Up to 10 DS

were activated for the mounting bracket and wing spar, and 18 DS for the airfoil. With

this many DS, the displacement reconstructions are visually close to the exact solution. The

displacement error plots reinforce this quantitatively, with the final εd of the maximum DS

cases converging nearer to zero than all other cases.

Yet, the resistivity error plots in figure  6.6 show that ερ for every single case, with and

without DS, ερ converged to near zero. A final ερ value near zero indicates that the SSIP

predicted resistivity distribution closely matches the simulated experimental resistivity dis-
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tribution, which is a desired result. However, ερ converged for all cases despite some predicted

displacement fields being drastically different from each other and the exact solution. This

result clearly demonstrates the underdetermined nature of the SSIP—the solution to the

SSIP minimization is not unique. In other words, many displacement fields can map to the

same resistivity distribution. Consequently, this makes it difficult to determine whether a

displacement reconstruction is accurate from observing ερ convergence alone. While this

poses a challenge for the real world application of the SSIP where εd is not known, it is

the goal of these computational experiments to demonstrate that SDF can provide more

credence to the SSIP reconstructed displacement field such that future practitioners of SDF

enhanced SSIP can be more confident with their results.

Figure 6.2. Displacement field reconstruction for the mounting bracket sup-
plemented with displacement data from (a) 0, (b) 2, (c) 4, (d) 6, (e) 8, and (f)
10 DS.
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One important behavior that can be observed visually is that increasing the number of DS

improves the accuracy of the recovered displacement field, but the improvements diminish in

magnitude as the recovered displacement field approaches the true displacement field. For

instance, for the mounting bracket, only 2 DS were required to attain a displacement field

close to the true displacement field magnitude, but it becomes difficult to visually discern

improvements in accuracy beyond 6 DS. Plots of εd against the number of DS in figure  6.5 

depict the diminishing improvements more clearly. For the mounting bracket and wing spar,

after an early precipitous drop in εd, improvements stagnate quickly. For the airfoil, there

were two distinct drops at 2 DS and 10 DS. This likely occurred because DS tend to improve

the accuracy of the recovered displacement field locally. The fifth sensor pair was the first

pair in the aft section of the airfoil, thus extending the region of accuracy toward that

section of the geometry. While optimizing sensor location is not the focus of this research,

this highlights that sensor location can have a significant impact on the quality the SSIP

displacement field recovery.

Figure 6.3. Displacement field reconstruction for the wing spar supplemented
with displacement data from (a) 0, (b) 2, (c) 4, (d) 6, (e) 8, and (f) 10 DS.
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Figure 6.4. Displacement field reconstruction for the airfoil supplemented
with displacement data from (a) 0, (b) 2, (c) 6, (d) 10, (e) 14, and (f) 18 DS.

Another important behavior to note is that the resistivity error for cases with DS behaves

more unstably compared cases without DS. For the mounting bracket, ερ plateaued before

converging toward zero after the tenth iteration, and, for the wing spar and airfoil, ερ actually

increased during the first ten iterations. This is attributed to the displacement data ramping

method described in section  4.2 . Since the DS nodes do not constrain the minimization, the

SSIP finds a displacement field that satisfies the minimization without contribution from

DS nodes. When the displacement data are manually inserted into dn, the new dn is no

longer the vector predicted by the SSIP that satisfied the minimization. Therefore, ερ for

reconstructions with SDF tends to be larger and less stable than the ερ in cases without

SDF during the data ramping phase. Despite this, in all cases, resistivity error converges to

nearly zero after the data ramping was complete.

To determine the number of DS required to reconstruct a sufficiently accurate displace-

ment field, the εd versus the number of sensors plots were used. These plots displayed a clear

point where adding additional DS did not appreciably improve the accuracy of the displace-

ment reconstruction. The number of DS at this inflection point was selected. The rationale
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behind this decision metric is similar to one of the considerations engineers must make when

instrumenting structures for NDE: to determine the most efficient sensor configuration in

order to minimize cost and complexity.

Thus, it was concluded that a minimum of 4 DS for the mounting bracket and wing spar,

and 10 DS for the airfoil were required in order to obtain a reasonably accurate displacement

field reconstruction. And in general, SDF of displacement and resistivity data significantly

improves the SSIP displacement field recovery. Additionally, these sensor configurations were

then used in Experiments 2 and 3.

Figure 6.5. Displacement data fusion Experiment 1 εd versus number of
sensors plot for the (a) mounting bracket, (b) wing spar, and (c) airfoil.
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Figure 6.6. Displacement data fusion Experiment 1 displacement error plots
(left) and resistivity error plots (right) for the (a) mounting bracket, (b) wing
spar, and (c) airfoil.
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6.1.2 Experiment 2

Figure  6.7 displays the sensor configuration used for each geometry. The displacement

fields recovered from the 75 dB SNR resistivity data were shown in the previous subsection,

so they are not presented again here. Figures  6.8 through  6.10 show the displacement field

recovered from 50 dB, 40 dB, and 30 dB SNR resistivity data. For the airfoil, the results

for the 30 dB SNR resistivity data are omitted because the noise was too high for meaning-

ful results to be obtained. The noise profiles were generated with respect to the absolute

resistivity, and the resistivity changes for the airfoil load case were much smaller compared

to the mounting bracket and wing spar load cases. Figure  6.14 gives the displacement error

and resistivity error plots for each geometry.

Figure 6.7. DS configuration used for Experiment 2 for the (a) mounting
bracket, (b) wing spar, and (c) airfoil.

Figures  6.8 ,  6.9 , and  6.10 show that the general shape and magnitude of the displacement

reconstructions were largely captured even at low SNR for every shape. However, upon close

inspection, aberrations can be observed. These noise aberrations are most distinct on the

flange of the mounting bracket. On the mounting bracket flange, minimal displacement

was expected because of the nearby fixed boundary condition, but the resistivity data noise

caused the SSIP to predict small displacements throughout this region.

For the wing spar and airfoil, the effects of noise were not immediately apparent. The

aberrations caused by noise are more clearly seen when each displacement component is

displayed separately. Figures  6.11 ,  6.12 , and  6.13 compare the exact x, y, and z displacements
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to the displacement reconstructions obtained from the lowest SNR resistivity data attempted

and the reconstructions from Experiment 1 using the same sensor configuration. From these

figures, it can be seen that the quality of the displacement reconstructions from lower SNR

resistivity data are noticeably degraded from the Experiment 1 results. One notable trend is

that for all geometries, the smaller magnitude displacement components were more affected

by the noise than the comparatively larger displacement component. For instance, for the

airfoil, the maximum displacement in the y direction was two orders of magnitude larger than

the maximum displacement in the x and z directions. As noise increased, the y displacement

reconstructions remained relatively intact while the other components deviated further from

exact solution. Similar observations can be made for the wing spar, where the z displacement

dominated, and for the mounting bracket, where y and z displacements were much larger

than the x displacements.

The plots in figure  6.14 show that ερ tended to be larger with increasing noise while εd

was fairly robust to change. The initial ερ was larger at higher levels of noise because the

SSIP initially predicts a uniform resistivity distribution where the resistivity of every element

in the mesh is equal to ρ0 = 75,000 Ω · m. A noisier resistivity distribution will on average

be further from the initial SSIP prediction. However, the final ερ was different at each noise

despite the final εd remaining consistent. This happened because the correct displacement

field possesses a different resistivity distribution than the noisy resistivity data; therefore,

the final ερ tends to be larger at lower SNR.

In conclusion, the results of this experiment demonstrated that SDF of resistivity and

displacement data improves the reliability of the SSIP displacement field recovery when

resistivity data noise is increased.
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Figure 6.8. From left to right, each column shows the resistivity data (top)
and displacement reconstruction (bottom) for (a) 50 dB, (b) 40 dB, and (c)
30 dB SNR for the mounting bracket using 4 DS.

6.1.3 Experiment 3

Figures  6.15 through  6.17 show the sensor configurations used and the corresponding

displacement reconstruction for each geometry. The sensor configuration from Experiment

1 and a second configuration using more numerous sensors were used. At a glance, the

resistivity data with outliers seem to have posed a steeper challenge for the displacement

field recovery than data at the noise levels in Experiment 2. The mounting bracket and wing

spar displacement fields were reconstructed using 4 and 8 DS, and the airfoil displacement

field was reconstructed using 10 and 18 DS.
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Figure 6.9. From left to right, each column shows the resistivity data (top)
and displacement reconstruction (bottom) for (a) 50 dB, (b) 40 dB, and (c)
30 dB SNR for the wing spar using 4 DS.
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Figure 6.10. From left to right, each column shows the resistivity data (top)
and displacement reconstruction (bottom) for (a) 50 dB and (b) 40 dB SNR
for the airfoil using 10 DS.
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Figure 6.11. From left to right, a comparison of the (a) exact displacement
field solution to the displacement reconstruction using (b) 4 DS at 75 dB
SNR and (c) 4 DS at 30 dB SNR for the mounting bracket, broken down by
displacement component.
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Figure 6.12. From left to right, a comparison of the (a) exact displacement
field solution to the displacement reconstruction using (b) 4 DS at 75 dB SNR
and (c) 4 DS at 30 dB SNR for the wing spar, broken down by displacement
component
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Figure 6.13. From left to right, a comparison of the (a) exact displacement
field solution to the displacement reconstruction using (b) 10 DS at 75 dB
SNR and (c) 10 DS at 40 dB SNR for the airfoil, broken down by displacement
component
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Figure 6.14. Displacement data fusion Experiment 2 displacement error plots
(left) and resistivity error plots (right) for the (a) mounting bracket, (b) wing
spar, and (c) airfoil.
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As seen in figure  6.15 , with 4 DS the shape of the displacement field shape was roughly

captured, albeit with significant aberrations caused by the outlier data and an over-prediction

of the displacement magnitude. Increasing to 8 DS, the displacement magnitude was better

captured overall, but the aberrations persisted. The displacement error plot in figure  6.18 for

the mounting bracket demonstrates how negatively the outliers affected the reconstruction,

with the final εd increasing substantially when outlier data were introduced. The final

εd for the outlier data reconstruction with 4 DS was about eight times larger than the

reconstruction without outliers using the same sensor configuration. Increasing the number

of sensors to eight improved the convergence toward the correct displacement field, but it

ultimately was not as accurate as the resistivity data without outliers.

The outlier effects were less dramatic for the wing spar. Overall, the displacement mag-

nitude was well captured, but the shape of the displacement field was skewed by the outlier

data. Like the mounting bracket, increasing the number of DS improved the accuracy of the

reconstructed displacement field, but aberrations caused by the outliers were not fully erased.

The displacement error plot shows that εd diverges after the displacement data ramping was

complete using 4 DS. At 8 DS, εd tracks closely with the εd curve for the reconstruction

without outlier data. Although εd was diverging for the 4 DS case, ερ was clearly converging

toward zero, indicating that εd would eventually stabilize at some point if the iterations were

allowed to continue.

The airfoil fared the best out of the three geometries in the face of outlier data. Using

10 DS, faint aberrations at outlier data locations are visible, most noticeable at the left side

near the leading edge, but the displacement field shape and magnitude are otherwise largely

well captured. Additionally, εd tracked close to the no outlier case except for mild oscillatory

behavior after the end of data ramping. Thus, increasing to 18 DS resulted in no perceivable

improvement.

The conclusion drawn from this experiment is that while SDF of displacement and resis-

tivity data can generally improve the SSIP displacement field recovery, a good reconstruction

is not always guaranteed. This is because the efficacy of DS in ameliorating the negative

effects of outliers was not consistent across all cases shown. In the case of airfoil, the displace-

ment reconstructions were of reasonable quality, but for the mounting bracket and wing spar,
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outlier caused aberrations remained prominent, even when the number of DS were increased.

This inconsistency can be attributed to the fact that the degree to which outlier data desta-

bilize the SSIP depends on the outlier data frequency, magnitude, and location as well as

the geometry and load case. Therefore, it may be more beneficial to apply minimization

schemes more aptly designed to address outlier data in addition to SDF.

Figure 6.15. Sensor configuration (left) and outlier resistivity data displace-
ment reconstruction (right) for the mounting bracket using (a) 4 DS and (b)
8 DS.
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Figure 6.16. Sensor configuration (left) and outlier resistivity data displace-
ment reconstruction (right) for the wing spar using (a) 4 DS and (b) 8 DS

Figure 6.17. Sensor configuration (left) and outlier resistivity data displace-
ment reconstruction (right) for the airfoil using (a) 10 DS and (b) 18 DS
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Figure 6.18. Displacement data fusion Experiment 3 displacement error plots
(left) and resistivity error plots (right) for the (a) mounting bracket, (b) wing
spar, and (c) airfoil.
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6.2 Results of Strain Data Fusion

As mentioned in section  4.3 , according to iFEM literature, large weights are assigned to

elements with strain data, and smaller weights are assigned to elements without strain data,

generally smaller by a factor of 1×10−3 to 1×10−6 relative to the large weights. Aside from

this general guidance, there does not exist a strict mathematical methodology for selecting

values for the weight coefficients. In this research, the weight for SS elements was selected

such that the corresponding entries of K became, on average, the same order of magnitude

as the entries of the G matrix. Thus, the weight for the SS elements were selected to be

1 × 102 for the mounting bracket and wing spar, and 1 × 108 for the airfoil. The weights for

non-SS elements were selected to be 1 × 10−2 for the mounting bracket and wing spar, and

1 × 104 for the airfoil.

Additionally, unlike the DS experiments where all displacement components were known,

only the in-plane strains were known at each SS to simulate the data from a strain gauge

rosette. The strains used for strain data were calculated from the exact displacement solution

and were in the global reference frame. For the mounting bracket, all SS were placed on the

web which was aligned with the global y and z axes; therefore, ε22, ε33, and ε23 were known

at each SS. For the wing spar, SS were placed on both the spar caps and the web. The SS

on the spar caps provided ε11, ε33, and ε13, and SS on the web provided ε11, ε22, and ε12. For

the airfoil, the SS provided ε11, ε33, and ε13. Although the curved surface made it so that

the SS were not aligned to the global x axis, it is assumed that the strains measured in the

element reference frame can be rotated to the global ε11 in experimental application.

6.2.1 Experiment 1

Figure  6.19 displays the sensor configurations used for this experiment. The red circles

designate the maximum sensor configuration used in the DS experiments. Up to this sensor

configuration, the sensors were added in the same order as in figure  6.1 . It was found in some

cases that the addition of SS had a very small impact on the displacement reconstruction;

therefore, after the reaching the maximum number of sensors used in the DS experiments,

eight additional sensors are added at a time (instead of two) up to a total of 50 SS. The order

91



in which each additional set of eight SS were added are signified by different color circles in

figure  6.19 .

Figure 6.19. SS configurations for Experiment 1 for the (a) mounting bracket,
(b) wing spar, and (c) airfoil. Colors indicate the order in which each additional
set of sensors is added.

Figures  6.20 ,  6.21 , and  6.22 show the displacement reconstructions using 2, 10, 18, 34, and

50 SS for the mounting bracket, wing spar, and airfoil, respectively. In all cases, increasing

the number of SS increases the accuracy of the reconstructed displacement field. For all

shapes, at 50 SS, the shape of the displacement field was well captured, but the magnitude

of the displacement was underpredicted. The SDF enhanced reconstructions are nonetheless

a significant improvement over the reconstructions without any additional sensor data.

However, it can be seen visually, and quantitatively in the plots in figures  6.23 and

 6.24 , that the mounting bracket displacement reconstruction is much closer to the exact

solution than the wing spar and airfoil are at 50 SS. This is likely because of the orientation
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and location of the SS. For the mounting bracket, the SS were aligned with the largest

magnitude strain components the shape experienced. As a result of the tension loading, ε22,

ε33, and ε23 dominated other strain components and were large throughout the web, and

the SS were uniformly distributed throughout this area, collecting ε22, ε33, and ε23 data.

In contrast, the twist loading in the wing spar produced large ε11 strains at its root near

the fixed displacement boundary condition and relatively minute strains everywhere else.

However, the majority of the SS were placed far from these large strains. Similarly, for the

airfoil, while there was no dominant strain component, the largest magnitude strains were

concentrated at the root and tip of the shape near the boundary conditions, whereas the

majority of the SS were at the middle section. Concentrating more SS in areas with large

expected strains may improve the overall displacement field construction, but optimizing

sensor location is outside the scope of this research.

The resistivity error plots in figure  6.23 demonstrate stable convergence of ερ toward zero

for all cases. The εd versus number of sensors plots were again used to identify the point

of diminishing improvement in the recovered displacement field. For the mounting bracket,

this point occurred at 18 SS. However, for the wing spar and airfoil, after a steep initial drop

in εd that occurred with the first two SS added, εd decreased roughly linearly by a very small

amount up to the 50 SS configuration. While the 2 SS configuration could be selected as

the point of diminishing improvement, the 18 SS configuration was selected instead. This

was because, given the reconstructions for the wing spar and airfoil were not as accurate as

the mounting bracket, 2 SS was deemed too few. Instead, by removing the data point at

0 SS, εd at 18 SS was approximately halfway between the maximum and minimum εd for

the remaining data points. Therefore, 18 SS was chosen as the minimum number of SS that

satisfied the tradeoff between number of sensors and relative reconstruction accuracy for all

geometries.

From the results of this experiment, it was shown that SDF of strain and resistivity data

mildly improves the SSIP displacement field recovery, being able to capture the shape of the

true displacement field but under-predicting its magnitude.
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Figure 6.20. Displacement field reconstruction for the mounting bracket
supplemented with displacement data from (a) 0, (b) 2, (c) 10, (d) 18, (e) 34,
and (f) 50 SS.
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Figure 6.21. Displacement field reconstruction for the wing spar supple-
mented with displacement data from (a) 0, (b) 2, (c) 10, (d) 18, (e) 34, and
(f) 50 SS.

Figure 6.22. Displacement field reconstruction for the airfoil supplemented
with displacement data from (a) 0, (b) 2, (c) 10, (d) 18, (e) 34, and (f) 50 SS.
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Figure 6.23. Strain data fusion Experiment 1 displacement error (left) and
resistivity error (right) plots for the (a) mounting bracket, (b) wing spar, and
(c) airfoil.
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Figure 6.24. Strain data fusion Experiment 1 εd versus number of sensors
plot for the (a) mounting bracket, (b) wing spar, and (c) airfoil.
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6.2.2 Experiment 2

Figure  6.25 displays the SS configurations used in this experiment.

Figure 6.25. SS configurations for Experiment 2 for the (a) mounting bracket,
(b) wing spar, and (c) airfoil.

Figures  6.26 ,  6.27 , and  6.28 show the displacement reconstructions for the mounting

bracket, wing spar, and airfoil, respectively using resistivity data at 50 dB, 40 dB, and

30 dB SNR. Again, the results for the airfoil at 30 dB SNR are omitted. Visually, the

mounting bracket displacement reconstruction further under-predicts the magnitude of the

displacement field at 50 dB SNR compared to the 75 dB SNR reconstruction in the previous

experiment using the same sensor configuration. For the wing spar and airfoil, the recon-

struction is relatively unchanged going from 75 dB to 50 dB SNR. The displacement error

and resistivity error plots in figure  6.29 reflect this, with the 50 dB SNR εd and ερ remaining

relatively stable and tracking close to the 75 dB SNR case.

The reconstructions for all shapes become very poor at a SNR of 40 dB and below. For

the mounting bracket and wing spar, very large displacements were predicted, far beyond the

range of the exact solution. For the airfoil, there no displacement magnitude over-prediction,

but the shape of the displacement field becomes skewed. For the mounting bracket and wing

spar, the displacement error plots show that εd diverges a small amount at 40 dB SNR and

egregiously at 30 dB SNR. In all cases, except for the 30 dB SNR mounting bracket, ερ does

seem to settle and converge toward zero by the last few iterations, suggesting that the SSIP

will eventually find a solution and is not entirely unstable.
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Overall, the inclusion of SS does help extract a displacement field reconstruction out of

noisy resistivity data. The results showed the reconstructions, while not extremely close

to the exact solution, remain around the same quality for resistivity data SNR above 50

dB. However, if the resistivity data SNR falls below 50 dB, reconstructions become largely

unreliable.

Figure 6.26. From left to right, each column shows the resistivity data (top)
and displacement reconstruction (bottom) for (a) 50 dB, (b) 40 dB, and (c)
30 dB SNR for the mounting bracket using 18 SS.
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Figure 6.27. From left to right, each column shows the resistivity data (top)
and displacement reconstruction (bottom) for (a) 50 dB, (b) 40 dB, and (c)
30 dB SNR for the wing spar using 18 SS.
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Figure 6.28. From left to right, each column shows the resistivity data (top)
and displacement reconstruction (bottom) for (a) 50 dB and (b) 40 dB SNR
for the airfoil using 18 SS.
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Figure 6.29. Strain data fusion Experiment 2 displacement error (left) and
resistivity error (right) plots for the (a) mounting bracket, (b) wing spar, and
(c) airfoil.
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6.2.3 Experiment 3

The same outlier data used in the DS experiment were used here. Figures  6.30 ,  6.31 ,

and  6.32 show the sensor configurations used and their corresponding displacement recon-

structions for each geometry. All reconstructions were of poor quality, with the displacement

magnitude significantly over-predicted and the displacement field fraught with aberrations.

Increasing the number of SS decreased the final εd for all geometries, as seen in the dis-

placement error plots in figure  6.33 , but the effect is inconsequential when the final εd is

still several times larger than 1. The resistivity error plots exhibit mildly unstable behavior,

but generally converges toward zero in the final few iterations. This again indicates that

the SSIP will eventually attain a displacement field solution that satisfies the minimization,

even if it is wildly inaccurate.

From the results of this experiment, outlier data renders the SSIP displacement recon-

struction inaccurate and unreliable even when enhanced with additional strain data. While

adding SS technically improves the quality of the displacement field in such that εd decreases,

the inaccuracies are still far too great. To reiterate, it may be advantageous to explore more

outlier robust minimization schemes to counteract the effects of outlier data in conjunction

with SDF.

6.2.4 Comparison of Strain Data Fusion to iFEM

Since iFEM is an established methodology that has been proven in literature to be able

to accurately recover the displacement field of a deformed shape from discrete strain data,

its inclusion in the SSIP raises a keen question. Are the displacement field reconstructions

in the strain data fusion results truly the product of the synergistic combination of the SSIP

and iFEM, or are the results attainable using iFEM alone?

To answer this question, a displacement field recovery was attempted on each of the

three geometries with the 18 SS configuration using iFEM independently. As explained in

section  4.3 , the formulation of K and F remain unchanged, except the displacement field

reconstruction is obtained by solving d = K−1F . The iFEM reconstructions are shown in

figure  6.34 , compared to exact solution and the SSIP strain data fusion Experiment 1 results.
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Figure 6.30. Sensor configuration (left) and outlier resistivity data displace-
ment reconstruction (right) for the mounting bracket using (a) 18 SS and (b)
34 SS.
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Figure 6.31. Sensor configuration (left) and outlier resistivity data displace-
ment reconstruction (right) for the wing spar using (a) 18 SS and (b) 34 SS.

Figure 6.32. Sensor configuration (left) and outlier resistivity data displace-
ment reconstruction (right) for the airfoil using (a) 18 SS and (b) 34 SS.
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Figure 6.33. Displacement data fusion Experiment 3 displacement error plots
(left) and resistivity error plots (right) for the (a) mounting bracket, (b) wing
spar, and (c) airfoil.
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Figure 6.34. Top row: exact displacement field solution, middle row: Ex-
periment 1 SSIP strain SDF displacement field reconstruction using 18 SS,
bottom row: iFEM displacement field reconstruction using 18 SS.
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Note that a different scale with a much smaller displacement magnitude was used for the

iFEM results. Although the iFEM reconstruction roughly captures the shape of the true dis-

placement field, the displacement magnitude is extremely underpredicted, and reconstruction

artifacts are plainly visible at SS locations. Recalling the poor quality of the SSIP displace-

ment field reconstruction without any SS, the SSIP strain data fusion reconstructions are an

indisputable improvement over the individual use of either method.

6.3 Comparison of Displacement and Strain Data Fusion Results

From the results of Experiment 1, it is clear that the displacement reconstructions en-

hanced with displacement data outperformed the displacement reconstructions enhanced

with strain data. Overall, relatively few DS were required to reconstruct a displacement

field close to the exact solution, whereas up to 50 SS were still not able to reconstruct a

displacement field as near to the true displacement field. Figure  6.35 plots εd against the

number of sensors for both DS and SS for each shape.

Figure 6.35. Plot of εd versus number of sensors for each shape using DS and SS.

Displacement data fusion also outperformed strain data fusion in Experiment 2. Using

DS, a reasonably accurate displacement field reconstruction was obtained using resistivity

108



data down to 30 dB SNR for some cases. On the other hand, the quality of reconstructions

enhanced with SS was already degraded at 50 dB SNR and became inaccurate below 50 dB

SNR. The main reason displacement data fusion possesses an advantage over strain data

fusion is because the SSIP directly solves for the displacements. Inserting displacement

data directly into d in a sense enforces a displacement boundary condition on the SSIP

solution. In contrast, while the strain data fusion method applies additional constraints

on the nodal displacements belonging to an SS element, the nodal displacements are not

explicitly restricted to a single value as in the displacement data fusion method.

For Experiment 3, reconstructions enhanced with DS also outperformed reconstructions

enhanced with SS. However, although the aberrations and reconstruction artifacts were much

worse in the resistivity-strain reconstructions, the existence of any outlier induced aberra-

tions, major or minor, already makes the reconstruction equally unreliable. For instance,

both the DS and SS reconstructions for the mounting bracket with outlier resistivity data

contained significant aberrations. The only reason that the DS reconstruction was consid-

ered to be better is because the exact displacement solution was known. Without prior

knowledge of the exact solution, there would be no sure way to ascertain that a displace-

ment reconstruction is accurate since ερ has been proven to converge toward zero, even in

cases with outlier data, given enough iterations. Therefore, to reiterate, if it is known that

resistivity data contains outliers, the best approach may be to consider more outlier robust

minimization schemes.
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7. SUMMARY AND CONCLUSIONS

7.1 Summary

This research endeavored to advance the capabilities of the SSIP by implementing SDF to

surmount the mathematical limitations that hinder the accuracy of the SSIP displacement

field recovery. This research also expanded the application of the SSIP to more realistic

geometries resembling engineering structures and loads, where previous work had focused

on relatively simple geometries. By improving the accuracy and reliability of the SSIP

displacement field recovery, the long term goal is to one day establish piezoresistive materials

as a practical structural material capable of innately providing real-time MSA via the SSIP.

To this end, two SDF methods were formulated to supplement the resistivity data the

SSIP utilizes to reconstruct the displacement field of a deformed shape. The first method

fused resistivity and discrete displacement data, and the second method fused resistivity and

discrete strain data. The efficacy of each method was then demonstrated through a series of

computational experiments. The computational experiments aimed to determine the number

of sensors providing displacement or strain data required to obtain an accurate displacement

field reconstruction, and whether the additional sensor data improved the reliability of the

displacement field recovery when the resistivity data contained noise or outlier data.

The results of resistivity-displacement data fusion demonstrated that relatively few sen-

sors were required to tremendously improve the accuracy of the SSIP displacement field

reconstruction compared to reconstruction without SDF. The SDF enhanced displacement

reconstruction came close to the exact solution simulated by finite element analysis. The

inclusion of sensors providing displacement data also made the SSIP more robust to noisy

resistivity data, with a reasonably accurate displacement field being reconstructed from re-

sistivity data with 30 dB SNR, in some cases. With regard to outlier data, while a reasonably

accurate displacement field was reconstructed for one case, the aberrations and artifacts in

the other reconstructed displacement fields caused by outlier data rendered them inaccurate.

The results of resistivity-strain data fusion, while not as auspicious as the resistivity-

displacement results, demonstrated similar trends. The inclusion of sensors providing strain

data undeniably improved the accuracy of the SSIP recovered displacement field over the
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reconstruction without additional sensors, but the degree of improvement was not as pro-

nounced as resistivity-displacement data fusion. In general, increasing the number of strain

sensors improved the displacement field recovery accuracy, but while the shape of the dis-

placement field was well captured, the magnitude of the displacements were under-predicted.

When the level of resistivity data noise was increased, the strain data enhanced SSIP was

able maintain about the same quality displacement reconstruction above 50 dB SNR. Be-

low 50 dB SNR, the displacement field reconstruction quality degraded significantly. When

outlier resistivity data were introduced, all reconstructions were entirely unreliable.

7.2 Conclusion

In conclusion, this research shows that SDF is a viable method to improve the accuracy

and reliability of the displacement field reconstructed by the SSIP. The bulleted list below

highlights the key takeaways from this work. Overall, this study advances the state of the

art in extracting useful information about the mechanical state of a piezoresistive material

from changes in its electrical properties. This brings piezoresistive materials one step closer

toward practical implementation in engineering structures for real-time MSA and condition

monitoring.

• In general, SDF of resistivity data with discrete displacement or strain data improves

the accuracy of the displacement field reconstructed by the SSIP.

• Employing SDF enables the SSIP to reconstruct the displacement field of complex,

realistic geometries, which was not possible without the additional sensor data.

• Fusing resistivity and displacement data allows the SSIP to reconstruct a displacement

field close to the true displacement field using relatively few sensors. Increasing the

number of sensors generally brings the SSIP displacement reconstruction closer to the

exact solution, but there is often a clear point where improvements in accuracy begin

to diminish.
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• Fusing resistivity and displacement data allows the SSIP to reconstruct a reasonably

accurate displacement field from resistivity data with low SNR, in some cases down to

30 dB SNR. However, noise induced reconstruction artifacts intensify at lower SNR.

• Fusing resistivity and displacement data does not guarantee an accurate displacement

field reconstruction when there are outliers in the resistivity data, but increasing the

number of sensors generally improves the quality of the reconstruction. However,

significant aberrations in the reconstruction are likely to persist.

• Fusing resistivity and strain data improves the accuracy of the SSIP displacement field

reconstruction. However, while the shape of the displacement field was well captured,

the magnitude of the displacement was under-predicted.

• Fusing resistivity and strain data allows the SSIP to maintain roughly the same quality

displacement reconstruction for resistivity data SNR above 50 dB.

• Fusing resistivity and strain data does not improve the SSIP displacement field recovery

by an appreciable amount when the resistivity data has outliers.

• The SSIP when supplemented with discrete displacement data outperforms the recon-

structions supplemented with strain data in terms of displacement field reconstruction

accuracy, the number of sensors required for a reasonably accurate displacement, and

reliability when resistivity data contains more noise.

• SDF is generally not a reliable approach to deal with resistivity data with outliers.

• The resistivity-strain data fusion method involves adapting an existing displacement

reconstruction method known as iFEM. The resistivity-strain data fusion reconstruc-

tions are a clear improvement over the use of iFEM independently.

7.3 Outlook for Future Work

While the methods and computational results in this thesis show successful implementa-

tion of SDF in the SSIP, these results are preliminary and serve as a foundation for future
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exploration of this topic. More research must be performed before the SSIP is ready to

be deployed in conjunction with other NDE sensors for real-time condition monitoring of

engineering structures. Below are suggestions by the author for future work.

1. The work presented in this thesis was purely computational. Experimental validation

of these methods is a clear next step in advancing the SSIP SDF problem.

2. As mentioned several times in this thesis, the quality of the SSIP displacement field

reconstruction can depend on sensor location. Studies on sensor location optimization

can be explored to develop efficient sensor networks tailored for SSIP displacement

field recovery.

3. Outlier resistivity data presented a challenge for the SSIP, even when enhanced with

SDF. Future work should explore more outlier-robust formulations, such as the 1-

norm error minimization schemes solved via the primal-dual interior point method, in

conjunction with SDF.
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A. ADDITIONAL STRAIN DATA FUSION METHODS

This appendix will elaborate upon the strain SDF methods discussed in section  4.3 that were

not selected for further investigation in this thesis. The following will present a detailed

mathematical formulation of these methods as well as their displacement reconstruction

results.

A.1 Mathematical Formulation

In section  4.3 , two resistivity-strain data fusion methods were briefly discussed that were

not selected for further investigation. The first involved augmenting the SSIP G matrix,

and the second involved reformulating the SSIP as a constrained least squares problem and

applying known strain data as linear constraints. These methods are hereon referred to as

the ‘G Augmentation’ and ‘Linear Equality Constraint’ (LEC) methods, respectively. The

strain SDF method chosen in the thesis is referred to as the ‘SSIP-iFEM’ method. What

follows is a detailed mathematical formulation of the G Augmentation and LEC methods.

To reiterate, the resistivity-strain data fusion methods in this thesis are predicated on

incorporating strain-displacement relations to constrain the SSIP. Recall that the SSIP has

been adapted to be applicable to a finite element mesh. Thus, the strain-displacement

relations are expressed in matrix form in equation (  4.9 ) for a single hexahedral element,

denoted as Be. Be is simply a mapping of the element nodal displacements to each unique

strain component defined by equation (  4.7 ). However, both the G Augmentation and LEC

methods treat strain as a nodal quantity because strain gauges, in practice, measure strains

at a point, whereas finite element analysis typically treats strains as an elemental value.

Therefore, a method is required to project the elemental strains to the nodes.

The L2 projection is method that can project the values of an arbitrary function with

values known at the Gaussian integration points of a finite element mesh to the mesh’s

nodes [ 84 ]. The projection is performed by solving the matrix equation (  A.1 ) for Ψ, where

M is known as the mass matrix, Ψ is the global vector of projected nodal values, and Θ

is known as the L2 projection forcing vector. In the context of projected strains, Ψ are the

nodal projected strains, and Θ contains the strains known at the integration points. M is a
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symmetric matrix with the number of rows and columns equal to the total number of nodes

in the mesh. For dimensional compatibility, the length of Θ must also equal the total number

of nodes. Therefore, the integration point rule used must yield the same total number of

integration points as there are nodes in the mesh. Thus, in this work, a 2 × 2 × 2 integration

point rule for three-dimensional hexahedral elements was used.

MΨ = Θ (A.1)

M and Θ are assembled from elemental matrices and vectors. Equation (  A.2 ) defines

equation ( A.1 ) for a single mesh element. In the equation below, Me is the elemental mass

matrix, ψe are the projected nodal strains for a single element, and θe is the elemental

forcing vector. For three-dimensional hexahedral elements, Me and θe are formulated using

equations ( A.3 ) and (  A.4 ), respectively, where NA are the trilinear interpolation functions,

defined in equation (  3.11 ), and εN
e is the value of the strain component at the Nth integration

point of the eth element. The triple integrals are being performed over the volume of the

iso-parametric hexahedral element. The superscript A and B represent the node number,

while the superscript N represents the integration point number. For hexahedral elements

using a 2×2×2 integration point rule, A, B, and N all run from 1 to 8. ε must be a constant

because, generally, for the L2 projection, the values defined at the integration points must

be constants.

Meψe = θe (A.2)

Me =
∫∫∫

Vξ

NANB|detJ |dξ1dξ2dξ3 =
∫∫∫

N1N1|detJ |dVξ · · ·
∫∫∫

N1N8|detJ |dVξ

... . . . ...∫∫∫
N8N1|detJ |dVξ · · ·

∫∫∫
N8N8|detJ |dVξ

 (A.3)
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θe =
∫∫∫

Vξ

NNεN
e |detJ |dξ1dξ2dξ3 =


∫∫∫

N1ε1
e|detJ |dVξ

...∫∫∫
N8ε8

e|detJ |dVξ

 (A.4)

The next step is to express εe in equation (  A.4 ) in terms of strain-displacement relations.

This can be done via equation (  A.5 ). However, as mentioned earlier, εN
e needs to be a

constant, but equation (  A.5 ) calculates a vector, with each vector component corresponding

to a different strain component.

εe = Bede,i (A.5)

To surmount this problem, Be is split into six row vectors, with each vector mapping

the nodal displacements to one strain component. These row vectors are denoted by B
εij
e .

For instance, the strain-displacement vector mapping the nodal displacements to the strain

component ε11 would be denoted as Bε11
e . Bε11

e consists of the first row of Be. The product

of Bε11
e and de,i results in a constant ε11 for each integration point, making it compatible

for substitution into equation ( A.4 ). Proceeding with the formulation, now just considering

the projection of ε11, equation (  A.4 ) becomes equation ( A.6 ). In the second line of equation

( A.6 ), de,i is removed from the integrand because the nodal displacements are constants and

independent from the integral. Additionally, by combining NN with Bε11
e , the integrand

becomes a matrix, which is more succinctly expressed as Cε11
e . Cε11

e is explicitly defined in

equation (  A.7 ).

θe =
∫∫∫

Vξ

NN(Bε11
e de,i)|detJ |dξ1dξ2dξ3

=
[∫∫∫

Vξ

NNBε11
e |detJ |dξ1dξ2dξ3

]
de,i

= Cε11
e de,i

(A.6)
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Cε11
e =

∫∫∫
Vξ


N1 ∂N1

∂x1
0 0 N1 ∂N2

∂x1
0 0 · · · N1 ∂N8

∂x1
0 0

... ... ... ... ... ... . . . ... ... ...

N8 ∂N1

∂x1
0 0 N8 ∂N2

∂x1
0 0 · · · N8 ∂N8

∂x1
0 0

 |detJ |dVξ (A.7)

Next, the elemental Cε11
e and de,i matrices and vectors are assembled into a global matrix

and vector encompassing the entire finite element mesh. Thus, Θ can be expressed as

equation (  A.8 ).

Θε11 = Cε11d (A.8)

By substituting equation (  A.8 ) into equation (  A.1 ) and solving for Ψ, equation (  A.9 ) is

obtained. In the equation below, Ψε11 are the ε11 strains at the nodes of the finite element

mesh. Therefore, to fully formulate the nodal strain-displacement relations, solving five

additional matrix equations for each remaining strain component are necessary.

Ψε11 = M−1Cε11d (A.9)

To incorporate equation (  A.9 ) into the SSIP, d and Ψε11 are converted to δd and δΨε11 ,

respectively. δd is the difference between the true and SSIP predicted displacement field,

and δΨε11 is the difference between the measured and SSIP predicted ε11. Thus, equation

( A.9 ) is recast as equation (  A.10 ).

δΨε11 = M−1Cε11δd (A.10)

The matrix product M−1Cε11 is the strain-displacement matrix mapping the global nodal

displacements to the global nodal ε11 strains.

A.1.1 G Augmentation

Now, consider that nodes of the finite element mesh are selected to be SS, and that the

sensors measure ε11. For the G Augmentation method, the rows of M−1Cε11 corresponding
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to SS nodes are concatenated to the G matrix. The remaining rows of M−1Cε11 not as-

sociated with a node with strain data are ignored. δΨε11 is formulated by subtracting the

SSIP predicted ε11 from the known ε11 data and recalculated each SSIP iteration as the SSIP

predicted ε11 is updated. δΨε11 is then concatenated to δρ such that the order of the entries

of δΨε11 matched the order of the rows of M−1Cε11 . The same procedure is performed if a

different strain component or multiple strain components are known. In the case of multiple

known strain components, the rows concatenated to G are a composite of many different

strain-displacement matrices; therefore, equation (  A.11 ), which shows the general form of

SSIP with strain SDF via G Augmentation, a superscript εij is used for C and δΦ instead

of any specific strain component.

d∗ = arg min
d

∥∥∥∥∥
[
δρ

δΨεij

]
−
[

G

M−1Cεij

]
δd

∥∥∥∥∥
2

(A.11)

The iterative process to reconstruct the displacement field proceeds normally, the only

difference being that δd is now calculated using equation (  A.12 ) below. In the below, recall

that L is the discrete Laplacian used for regularization, and α is the scalar regularization

parameter.

δd =
[ G

M−1Cεij

]T [
G

M−1Cεij

]
+ α2LT L

−1 [
G

M−1Cεij

]T [
δρ

δΨεij

]
(A.12)

A.1.2 Linear Equality Constraint

The LEC method utilizes the same M−1Cεij and δΦεij matrices and vectors formulated

earlier in this section. However, instead of concatenating additional rows directly to original

SSIP G matrix and δρ vector, the SSIP is recast as a constrained least-squares minimization

and the additional rows are expressed as linear equality constraints. The optimization prob-

lem statement describing the Linear Constraint Method is given in equation (  A.13 ), where

f is the objective function, h are the equality constraints, and k is the number of equality

constraints. Each row taken from the strain-displacement matrices becomes a single equality

constraint.
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minimize f(d) =
∥∥∥∥∥
[
δρ

0

]
−
[

G

αL

]
δd

∥∥∥∥∥
2

subject to hk(d) = [M−1Cεij ]kδd − δΦεij
k = 0, k = 1, . . . , k.

(A.13)

To solve for δd, the MATLAB ‘lsqlin’ function is used.

A.2 Displacement Reconstruction Results

Figure  A.1 below compares the displacement reconstructions using the SSIP-iFEM, G

Augmentation, and Linear Constraint strain SDF methods with 50 SS. Reconstructions are

performed on the mounting bracket geometry. For the G Augmentation and LEC methods,

α is selected to be 1 × 106, whereas recall that the SSIP-iFEM method does not require

regularization. The exact displacement and ε22, ε33, and ε23 strain field solutions are given

in figure  A.4 .

Figure A.1. Displacement reconstruction with 50 SS using the (a) SSIP-
iFEM, (b) G Augmentation, (c) weighted G Augmentation, and (d) LEC
methods.
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It can be seen that the G Augmentation method under-predicts the displacement mag-

nitude. In fact, the reconstruction is very similar to the reconstruction without the use of

any sensors. This suggests that this strain SDF method is not having any notable effect on

the reconstruction. This may be because the magnitude of the entries of the additional rows

concatenated to G are much smaller relative to the entries of G. Thus, a reconstruction

was also performed with a weight of 1 × 103 multiplied to both M−1Cεij and δΨεij , which

made the terms of M−1Cεij on average the same order of magnitude as the entries of G.

The result is that the reconstruction is closer to the exact solution, albeit the displacement

magnitude is now over-predicted. Nevertheless, the shape of the displacement field is better

captured.

On the other hand, the LEC method over-predicts the displacement magnitude to a

higher degree than the weighted G Augmentation method. If we break the reconstructions

down to displacement components seen in figure  A.2 , the majority of the over-prediction is

in the z displacement component, which is the largest magnitude displacement component in

the exact solution. From these displacement reconstructions, it is clear that the SSIP-iFEM

method greatly outperforms the other methods.

Seeing that the G Augmentation and LEC displacement reconstructions are not accu-

rate despite the addition of strain data, the reconstructed ε22, ε33, and ε23 strain fields are

visualized in figure  A.3 to determine if the additional strain data improved the strain field

recovery. These strain components are visualized because these are the in-plane strain com-

ponents relative to the mounting bracket web that are measured by the SS. In general, the

G Augmentation and LEC strain reconstructions underpredict the strain magnitude. Addi-

tionally, the sensor locations are distinctly visible. Although the strains are more accurate

near SS, the overall shape of the strain field is not well captured. The LEC method fails

to capture the shape of the ε33 and ε23 fields. While the G Augmentation method recon-

structs a similar ε23 field, it performs marginally better for the ε33 strains. Once again, the

iFEM-SSIP method demonstrates much better strain reconstructions with regard to both

magnitude and shape.

In addition to the displacement and strain reconstructions not being as accurate, the

two unused strain SDF methods are more computationally expensive than the SSIP-iFEM
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SDF method. First, a matrix inversion and product is required to formulate the strain-

displacement matrix for each strain component, M−1Cεij , whereas in the SSIP-iFEM method,

no matrix inversions or products are required, and a single K matrix contains all the strain-

displacement relations for all strain components. Second, as the number of SS was increased,

it was observed that longer computational time was required to complete one SSIP iteration.

In contrast, the SSIP-iFEM method did not exhibit any notable change in computational

time with the increase of the number of SS.
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Figure A.2. Displacement reconstructions with 50 SS using the (a) SSIP-
iFEM, (b) weighted G Augmentation, and (c) LEC methods split into dis-
placement components.
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Figure A.3. ε22, ε33, and ε23 reconstructions with 50 SS using the (a) SSIP-
iFEM, (b) weighted G Augmentation, and (c) LEC methods.
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Figure A.4. Exact solution (a) displacement magnitude, (b) displacement
components, and (c) ε22, ε33, and ε23 strains.
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