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ABSTRACT

Electrical impedance tomography (EIT) is a promising tool for nondestructive evaluation (NDE) of materials that
exhibit stimulus-responsive electrical conductivity. Solution of the EIT problem requires regularization because it is
ill-posed. While smoothness-promoting regularization methods are widely used in materials-based EIT, they are not
ideal for characterizing localized damage. Here. we infroduce a novel regularization method that combines a
traditional smoothing regularization technique with one that promotes sparsity. The method is demonstrated on
experimental data of two three-dimensional composite structures that were subjected to impact damage. The mixed
regularization method is shown to outperform traditional smoothing regularization methods.
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INTRODUCTION

Electrical impedance tomography (EIT) is a non-invasive method of spatially mapping the electrical conductivity
distribution of a domain based on external voltage-current measurements. This modality has been investigated for
damage detection, localization, and characterization in conductive composites for structural health monitoring
(SHM). We refer to [1] for an extensive review of previous work.

The EIT inverse problem is mathematically ill-posed and therefore requires regularization to solve. Materials-
focused practitioners of EIT commonly use smoothness-promoting methods such as Tikhonov regularization. This is
limiting because much more advanced types of regularization exist and have potential to significantly improve EIT
for material state awareness. Thus, in this work we propose a novel regularization technique for the EIT inverse
problem. Specifically. we solve the inverse problem in the Bayesian framework and apply a mixed prior which
combines a smoothness prior with a conditionally Gaussian prior that favors sparse solutions. The proposed mixed
formulation is experimentally validated on two different three-dimensional composite structures: a carbon black
(CB)-modified glass fiber/epoxy tube and a carbon fiber/epoxy laminate shaped as a representative NACA airfoil.
Both specimens were subjected to low-velocity impact damage via a drop-tower rig. The mixed prior is shown to
outperform the smoothness prior on its own.

EIT FORWARD AND INVERSE PROBLEMS

The EIT forward problem is to predict voltages on the boundary of the domain given the conductivity distribution
inside the domain and a set of current injections. It starts with Laplace’s equation for steady-state diffusion in the
absence of internal sources,
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V-oVp =0 (Eq. 1)

where ¢ is the conductivity distribution and ¢ is the electric potential in the domain. This equation combined with
the complete electrode model [2] constitutes the forward model for EIT. For our application, the forward problem is
solved using finite element techniques.

The inverse problem is to predict the conductivity distribution inside the domain of interest based on voltage
measurements on the boundary of the domain. In this work we utilize difference imaging, meaning we wish to find
the change in conductivity between two different measurement times (i.e. before and after damage).

To mathematically formulate the inverse problem for difference imaging, we denote y = V,,(t,) — V,,,(t,) as the
change between two sets of boundary voltage measurements recorded at times t; and t,. Denote also ¢ and ¢ + o
as the conductivity at times t; and t,, respectively, in the forward model. Using a truncated Taylor series expansion
to linearize the forward model (see [1]). we can write

y ~ |6 (Eq.2)

where | is the Jacobian of the forward model computed with respect to ¢. In the case of an isotropic material, §o is
the spatially varying scalar conductivity change in the forward model. For anisotropic materials, the conductivity
tensor is written as ¢ = k&, where k is selected such that det(&) = 1. In that case, the EIT inverse problem seeks to
find the spatially varying change in x. 6x. For notational simplicity, we denote by y either 6k or ¢ depending on
the material system (i.e. §¢ for the electrically isotropic tube and §x for the electrically anisotropic airfoil).

Thus, the goal of the inverse problem is to find the conductivity change y such that
y* = argminllJy — ylI*> + allR(y)||? (Eq. 3)

where R is a regularization operator and « is a weight that controls the contribution of the regularization term. This
work introduces a novel method to formulate the regularization operator.

BAYESIAN MIXED REGULARIZATION

We solve the inverse problem in the Bayesian framework, so that the solution to the inverse problem is given by the
posterior distribution of the unknown conditioned on the measured data. Recall that the posterior distribution is the
product of the likelihood distribution of the data conditioned on the unknown and the prior distribution of the
unknown. The likelihood distribution accounts for any discrepancy between the data and the forward model. while
the prior distribution incorporates any information we have about the unknown before taking the data into account.

Here we assume our data have been corrupted by Gaussian measurement noise with standard deviation w, resulting
in a Gaussian likelihood distribution.

1
n(y 1) < esxp(—5= 1y - yI?) (Eq. 4)
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Traditionally, EIT makes use of a Gaussian smoothness prior (see [3]) of the form

1
7() < exp (- 37 ILye), (Eq. 5)

where L is the discrete Laplace operator and p controls the range of values allowable by the prior. While this prior is
commonly used, it has a tendency to overestimate the size of the damage area and to underestimate the loss in
conductivity due to damage. To mitigate these effects, we formulate a mixed prior which combines the traditional
smoothness prior with a conditionally Gaussian prior (see [4]) that favors sparse solutions. The conditionally
Gaussian prior assumes that the individual components of y are independent and each follow a Gaussian distribution
with mean zero and unknown variance. The variance of each component is estimated along with y as part of the
inverse problem.

In practice, we estimate the reciprocal of the variance of each component denoted by A;. Because it is unknown, we
must assign A;, a prior distribution; specifically, we assume that A, follows an exponential distribution with mean
1/p. The full expression for the joint prior for y and A is then given by

1 B~ v
m(y, ) « exp (_E Ay ]? — EZ Ay + EZ logﬂk) (Eq. 6)
k=1 k=1

where A is a diagonal matrix whose entries are given by 4. The total prior for y is the product of the smoothness
and focal priors, resulting in the following posterior distribution:

n n
1 1 1 B 1
m(7,21y)  exp (—mllh'—yllz — g LI =S IAYIE = 5> A+ EZIogﬂk). (Eq.7)
k=1 k=1

The algorithm to find the MAP estimates of y and A is iterative. The details of the algorithm can be found in [4].

EXPERIMENTAL SETUP

The proposed method was experimentally validated on a carbon black (CB)-modified glass fiber/epoxy tube and a
carbon fiber/epoxy laminate shaped as a NACA 4424 airfoil. Both the tube and airfoil were impacted twice using a
CEAST 9340 drop tower. EIT measurements were collected on both specimens before and after each impact.
Validation data for the tube was acquired from [5]; data for the airfoil was obtained from [6]. Further details on the
construction of each specimen and the experimental setup can be found in [5] for the tube and [6] for the airfoil.

RESULTS

We applied the mixed prior to all combinations of specimen and number of impacts. Results are shown in Figures 1
for the airfoil and 2 for the tube. For comparison, we also solved the inverse problem assuming only the smoothness
prior. These results are shown alongside the results using the mixed prior.
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Figure 1. Results of applying the smoothness prior and the mixed prior to the airfoil data. The results for
the airfoil after a single impact are shown on the left, and results after two impacts are shown on the right.
The first impact was 15 J, and the second was 12 J.

The mixed prior is able to localize both impacts in the airfoil data and outperforms the smoothness prior. Note that
while the smoothness prior is able to localize both impacts, it also identifies several other regions of conductivity
change that do not correspond to real damage. The mixed prior is able to suppress these artifacts and localize only
the impact damage. The mixed prior performs similarly well on the tube data and is able to localize both impacts.
We note that some artifacts remain even with the use of the mixed prior; we hypothesize that this is due to noise in

the tube data.
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Figure 2. Results of applying the smooth and mixed priors to the tube data. The results for the single
impact are shown on the left, and results for two impacts are shown on the right. The first impact was 14 J,

and the second was 10 J.

CONCLUSIONS

We developed a novel regularization method to localize impact damage from EIT measurements. This method was
successfully validated on experimental EIT data of three-dimensional composite structures with known damage and
seems to outperform traditional smoothness-promoting regularization methods. This result is a key step to
incorporate more sophisticated regularization techniques into EIT for NDE and transition EIT from a proof-of-

concept phase into practice.
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