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Wearable sensing

Wearables that learn to read gestures  
on the move

Taewoong Park & Chi Hwan Lee

A wearable sensing system that learns from 
motion artifacts enables reliable gesture 
control during movement.

A wearable sensing system that operates only when the body is still is 
not practical; it functions more as a laboratory instrument. For decades, 
research in human–machine interfaces (HMIs) has treated motion 
artifacts as disturbances to be eliminated rather than as engineering 
conditions to be understood. Once the body moves — through running, 
vibration, or posture shifts — sensor signals distort, gestures dissolve 
into artifacts, and the interface loses its ability to reliably connect 
human intention with machine response.

Writing in Nature Sensors, Chen and colleagues present a deep-
learning-enhanced wearable interface that remains robust under 
motion artifacts1. Their work reframes such artifacts not as contami-
nants to be filtered out but as learnable structures — features of empiri-
cal data that can be modelled and predicted (Fig. 1). The fragility of 
wearable sensing under motion has long prevented it from being 
translated beyond the lab. The authors tackle this challenge not with 
hardware stabilization, but by training the system to interpret motion 
directly. This approach marks a broader shift in the field: robustness 
in wearable sensing now arises not from isolating devices from their 
surroundings but from training systems to interpret them. Recent  
AI-driven platforms, from stress-responsive electronic skins2 to 
motion-adaptive ultrasound wearables3, exemplify this turn toward 
learning from complex, real-world signals. In HMIs, motion artifacts 
are integrated into the training distribution instead of being regarded 
as noise.

Traditional strategies for addressing motion artifacts have fol-
lowed two dominant paths. One is mechanical and materials-based — 
stiffening mounts, isolating sensors, or fabricating auxiliary channels 
to subtract drift4. The other is algorithmic — masking spectral bands, 
smoothing waveforms, or subtracting structured interference. Both 
treat motion as an external noise to be removed. This assumption 
can be inverted: rather than reconstructing an ideal ‘clean’ gesture, 
the system is trained to perceive gestures through the artifacts. The 
composite dataset comprised 46,930 segmented signals per subject 
across 19 gesture types, generated by superimposing clean gesture 
traces with motion artifacts from running, vibration, posture change, 
and simulated wave motion. The neural network learns not to reject 
these samples but to recognize gesture as an invariant pattern embed-
ded within them.

The system deploys a multilayer wearable patch integrating a 
six-channel inertial measurement unit (IMU) for accelerometry and 
gyroscopy and an electromyography (EMG) channel for grasping 
intent. A convolutional neural network (CNN) processes IMU signals 
using the composite dataset, enabling real-time gesture recognition 
during running and other disturbances. EMG signals, which resist 

inertial interference but can drift, are filtered to infer grasp execution. 
Together, these channels identify both the category of intended motion 
and its timing. Demonstrations show a user controlling a robotic arm 
while running, with the system maintaining stable motion despite 
heavy artifacts. The full control loop exhibited a latency of ~1.3 s (includ-
ing ~1 ms CNN inference time), yet produced smooth, intention-aligned 
actuation even under continuous motion.

This work reflects a broader shift in wearable sensing — from sup-
pressing variability to learning from it. The same principle under-
lies recent advances across the field: AI-enabled sweat diagnostics2, 
ultrasound systems that track rather than resist motion3, electronic 
skins that maintain readout under deformation5, and adaptive 
classifiers that learn in situ6. In parallel, neuromuscular decoding 
at the edge increasingly fuses IMU, EMG, and strain signals to infer 
gestures during motion7. Collectively, these developments suggest 
that ‘robust in motion’ is transitioning from a research aspiration to a 
baseline expectation.
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Fig. 1 | Motion-tolerant wearable human–machine interface. The wearable 
patch integrates an IMU, EMG amplifier, and wireless MCU to record gestures 
while the user moves. Composite signals, including both gesture data and  
motion artifacts, are fed into a deep-learning model that robustly decodes 
intended movements.
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devices. The conceptual inflection is decisive: the real environment is 
no longer the enemy of the signal — it becomes part of the training set.

The implications are far-reaching. If motion artifacts are no longer 
a reason to discard data, the operational scope of wearable sensing and 
HMIs extends far beyond controlled laboratories into the unstructured 
settings where people actually move — streets, vehicles, factories, even 
aquatic environments. This advance does not depend on vibration-
proof hardware or mechanically stabilized sensors, but on training 
models to interpret signals as they naturally occur. The key contribu-
tion lies not merely in preserving gesture-classification accuracy under 
artifact load, but in maintaining downstream signal fidelity precisely 
when conventional systems fail. The issue is resolved at the level that 
ultimately matters: embodied action.
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The platform also addresses a critical translational barrier: it oper-
ates without environmental or behavioural constraints. That distinc-
tion separates a proof-of-principle from a deployable class. The system 
employs parameter-based transfer learning, fine-tuned with data from 
six users; remarkably, it required only two samples per gesture from 
a new user to reach over 92% recognition accuracy — a substantial 
improvement from ~51% before transfer, eliminating the need for full 
retraining. Its sliding-window inference supports continuous opera-
tion, though the current one-second window is still suboptimal for 
latency-critical contexts such as surgical teleoperation or augmented-
reality feedback. The system filters EMG signals through conventional 
methods and analyses IMU data with the deep model; integrating these 
modalities during training could enable higher-dexterity prosthetic 
and robotic control under unconstrained motion.

Rather than suppressing motion artifacts, the challenge now is to 
train systems to interpret real-world signals across users and contexts, 
making composite dataset design, transfer learning, and cross-modal 
integration central to progress.

Parallel advances reinforce this direction. Researchers now view 
the management of motion artifacts in wearable platforms as an 
algorithmic issue6; adaptive biosensing treats nuisance variation as 
structure7; motion-tolerant ultrasound applies learning not to remove 
interference but to stabilize targets through it3; and AI-assisted soft 
electronics are converging toward inference-first architectures that no 
longer assume stillness as a precondition4,8. In that light, the authors’ 
contribution is not only technical but conceptual: it marks a shift 
toward wearable sensing systems that function by engaging with their 
environment rather than withdrawing from it.

By reversing the logic of noise handling and demonstrating sta-
bility at the level of action, the authors offer a credible template for 
motion-operable interfaces. Future efforts could extend this strategy to 
underwater communication, sports rehabilitation, or assistive robot-
ics for individuals with tremor or spasticity, where motion artifacts 
are intrinsic rather than avoidable. Integrating multimodal sensing 
streams such as ultrasound, bioimpedance, or vision could further test 
the scalability of artifact-aware learning across sensing domains. As 
wearable technologies expand to respiratory monitoring9, electronic 
skins2,6, neurological systems2, and mental-state inference10, operation 
under realistic motion will become a baseline expectation for wearable 
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	Fig. 1 Motion-tolerant wearable human–machine interface.




