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A wearable sensing system that learns from
motion artifacts enables reliable gesture
control during movement.

A wearable sensing system that operates only when the body is still is
not practical;it functions more asalaboratory instrument. For decades,
research in human-machine interfaces (HMIs) has treated motion
artifacts as disturbances to be eliminated rather than as engineering
conditions to be understood. Once the body moves — through running,
vibration, or posture shifts — sensor signals distort, gestures dissolve
into artifacts, and the interface loses its ability to reliably connect
humanintention with machine response.

Writing in Nature Sensors, Chen and colleagues present a deep-
learning-enhanced wearable interface that remains robust under
motion artifacts'. Their work reframes such artifacts not as contami-
nants tobefiltered out but aslearnable structures — features of empiri-
cal data that can be modelled and predicted (Fig. 1). The fragility of
wearable sensing under motion has long prevented it from being
translated beyond the lab. The authors tackle this challenge not with
hardware stabilization, but by training the system to interpret motion
directly. This approach marks a broader shift in the field: robustness
in wearable sensing now arises not from isolating devices from their
surroundings but from training systems to interpret them. Recent
Al-driven platforms, from stress-responsive electronic skins’ to
motion-adaptive ultrasound wearables?, exemplify this turn toward
learning from complex, real-world signals. In HMIs, motion artifacts
areintegrated into the training distributioninstead of being regarded
asnoise.

Traditional strategies for addressing motion artifacts have fol-
lowed two dominant paths. One is mechanical and materials-based —
stiffening mounts, isolating sensors, or fabricating auxiliary channels
to subtract drift*. The other is algorithmic — masking spectral bands,
smoothing waveforms, or subtracting structured interference. Both
treat motion as an external noise to be removed. This assumption
can be inverted: rather than reconstructing an ideal ‘clean’ gesture,
the system is trained to perceive gestures through the artifacts. The
composite dataset comprised 46,930 segmented signals per subject
across 19 gesture types, generated by superimposing clean gesture
traces with motion artifacts from running, vibration, posture change,
and simulated wave motion. The neural network learns not to reject
these samplesbut torecognize gesture as aninvariant patternembed-
ded within them.

The system deploys a multilayer wearable patch integrating a
six-channel inertial measurement unit (IMU) for accelerometry and
gyroscopy and an electromyography (EMG) channel for grasping
intent. A convolutional neural network (CNN) processes IMU signals
using the composite dataset, enabling real-time gesture recognition
during running and other disturbances. EMG signals, which resist
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Fig.1|Motion-tolerant wearable human-machine interface. The wearable
patchintegrates an IMU, EMG amplifier, and wireless MCU to record gestures
while the user moves. Composite signals, including both gesture dataand
motion artifacts, are fed into a deep-learning model that robustly decodes
intended movements.

inertialinterference but can drift, are filtered to infer grasp execution.
Together, these channelsidentify both the category of intended motion
and its timing. Demonstrations show a user controlling arobotic arm
while running, with the system maintaining stable motion despite
heavy artifacts. The full controlloop exhibited alatency of -1.3 s (includ-
ing~1ms CNNinference time), yet produced smooth, intention-aligned
actuation even under continuous motion.

Thiswork reflects abroader shift in wearable sensing — from sup-
pressing variability to learning from it. The same principle under-
lies recent advances across the field: Al-enabled sweat diagnostics?,
ultrasound systems that track rather than resist motion?, electronic
skins that maintain readout under deformation®, and adaptive
classifiers that learn in situ®. In parallel, neuromuscular decoding
at the edge increasingly fuses IMU, EMG, and strain signals to infer
gestures during motion’. Collectively, these developments suggest
that ‘robust in motion’ is transitioning from a research aspiration to a
baseline expectation.
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The platformalso addresses a critical translational barrier: it oper-
ates without environmental or behavioural constraints. That distinc-
tion separates a proof-of-principle from adeployable class. The system
employs parameter-based transfer learning, fine-tuned with data from
six users; remarkably, it required only two samples per gesture from
anew user to reach over 92% recognition accuracy — a substantial
improvement from ~51% before transfer, eliminating the need for full
retraining. Its sliding-window inference supports continuous opera-
tion, though the current one-second window is still suboptimal for
latency-critical contexts such as surgical teleoperation or augmented-
reality feedback. The system filters EMG signals through conventional
methods and analyses IMU data with the deep model; integrating these
modalities during training could enable higher-dexterity prosthetic
and robotic control under unconstrained motion.

Rather thansuppressing motion artifacts, the challenge nowis to
trainsystemstointerpret real-world signals across users and contexts,
making composite dataset design, transfer learning, and cross-modal
integration central to progress.

Parallel advances reinforce this direction. Researchers now view
the management of motion artifacts in wearable platforms as an
algorithmic issue®; adaptive biosensing treats nuisance variation as
structure’; motion-tolerant ultrasound applies learning not to remove
interference but to stabilize targets through it’; and Al-assisted soft
electronics are converging toward inference-first architectures that no
longer assume stillness as a precondition*®. In that light, the authors’
contribution is not only technical but conceptual: it marks a shift
toward wearable sensing systems that function by engaging with their
environment rather than withdrawing fromiit.

By reversing the logic of noise handling and demonstrating sta-
bility at the level of action, the authors offer a credible template for
motion-operableinterfaces. Future efforts could extend this strategy to
underwater communication, sports rehabilitation, or assistive robot-
ics for individuals with tremor or spasticity, where motion artifacts
are intrinsic rather than avoidable. Integrating multimodal sensing
streams such as ultrasound, bioimpedance, or vision could further test
the scalability of artifact-aware learning across sensing domains. As
wearable technologies expand to respiratory monitoring’, electronic
skins*¢, neurological systems?, and mental-state inference', operation
under realistic motion willbecome abaseline expectation for wearable

devices. The conceptualinflectionis decisive: the real environment is
nolonger the enemy of the signal — it becomes part of the training set.

Theimplications are far-reaching. If motion artifacts are no longer
areasonto discard data, the operational scope of wearable sensing and
HMIs extends far beyond controlled laboratories into the unstructured
settings where people actually move — streets, vehicles, factories, even
aquatic environments. This advance does not depend on vibration-
proof hardware or mechanically stabilized sensors, but on training
models to interpret signals as they naturally occur. The key contribu-
tionlies not merely in preserving gesture-classificationaccuracy under
artifact load, but in maintaining downstream signal fidelity precisely
when conventional systems fail. The issue is resolved at the level that
ultimately matters: embodied action.
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	Wearables that learn to read gestures on the move

	Fig. 1 Motion-tolerant wearable human–machine interface.




