
 ASSURE Final Report

Task Number: 2.5

Project PI(s): Mark C. Johnson

Contact email(s): mcjohnso@purdue.edu

Performing University: Purdue University

Date: August 3, 2020

1. Accomplishments

1.1 Task goals
This project aimed to achieve the following 1) Prepare students with experience in SoC design and as
potential recruits for NSWC Crane. 2) Install and test a 90nm SOI design flow to enable design and
fabrication. 3) Tapeout at least two SoC designs to be sent for fabrication. 4) Test both designs at Purdue
and Crane NSWC. 5) Release the open-source System Verilog code for a RISC-V based SoC to be made
available for use by Crane NSWC and the broader academic community.

1.2 Major activities

Summary
From January 2018 through July 2020, the SoCET Team has accomplished the following. In August 2018,
the team successfully taped out the AFTx04 System-On-Chip, and the fabricated chips were tested in
Fall 2019. A mico-controller architecture optimized for machine learning, SparCE1 [1], was
implemented to take advantage of matrix convolutions which contain a fair amount of zero entries and
was included in the SoCET team’s second tapeout. Non-Symmetric, CMOS Implemented Polymorphic
logic gates, based off of Dr. Appenzeller’s proposed ASSURE task 1.1, were created to demonstrate the
ability to camouflage a gate’s functionality from attempts to reverse engineer a gate level netlist.
Layouts for Electromigration Test Structures, designed by Dr. Peter Bermel’s research team, were
implemented and included in the SoCET Team’s second tapeout. In February 2020, AFTx05 was taped
out; however, the fabricated chips will not be delivered until Spring 2021. A JTAG Interface was made to
improve the time required to write a program into SRAM, as well the debugging features our SoC offers;
it will be available in AFTx06. A Phase-Locked Loop was designed to eliminate the need for an external
clock, so that the next, MIT Lincoln labs fabricated, SoC will operate at a higher clock frequency. A
Platform-Level Interrupt Controller was created to offer interrupt functionality as a step towards
maturing the feature set of the next chip iteration, AFTx06.

1 S. Sen, S. Jain, S. Venkataramani and A. Raghunathan, "SparCE: Sparsity Aware General-Purpose Core Extensions
to Accelerate Deep Neural Networks," in IEEE Transactions on Computers, vol. 68, no. 6, pp. 912-925, 1 June 2019,
doi: 10.1109/TC.2018.2879434.

ASSURE Final Report Task Number: 2.5 August 3, 2020

2

AFTx04 (1st SoC) August 2018 Tapeout
Figure 1: Top level Diagram of AFTx04 (1st SoC)

The diagram details the architecture of the AFTx04, the first chip which the team taped out in August
2018, using the MIT Lincoln Labs 90nm FDSOI Process Design Kit. The fabricated chips were delivered in
September 2019 and were functionally verified at NSWC Crane. This chip iteration included the
replacement of a previously used ARM M0 core in favor of a RISC-V created by SoCET members.
Students installed and wrote PDK compatible design flow scripts to create the layout for a RISC-V based
System-on-Chip. Once fabricated the chips were sent to NSWC Crane for functional and environmental
testing.

Features of AFTx04:

o AMBA 3.0 AHB-lite Bus
o Flip-Flop based on-chip SRAM (512 bytes)
o RISC-V processor (1st AHB Master)

o RV32I Instruction Set Architecture
o Pass Through Cache
o 2 stage Pipeline

o UART debugger (2nd AHB Master)
o AHB – APB Bridge
o 8 pin GPIO
o 32kHz Ring Oscillator

ASSURE Final Report Task Number: 2.5 August 3, 2020

3

SparCE Machine Learning Architecture
SpareCE is an on-chip machine learning architecture that utilizes sparsity in convolution arithmetic to
allow extraneous instructions to be skipped. The architecture has been designed to improve both the
speed and power consumption of this common machine learning calculation. Students Vadim Nikiforov
and Chan Weng Yan designed the module as it was described in the paper SparCE: Sparsity Aware
General-Purpose Core Extensions to Accelerate Deep Neural Networks2[1], with the intention of
demonstrating the capabilities of the architecture on an ASIC implementation.

Possible applications include the following:

● Fault detection in mechanical devices through accelerometer data
● Object detection using low resolution IR camera data
● Command recognition via microphone input

Figure 2: SparCE Block DIagram

2 S. Sen, S. Jain, S. Venkataramani and A. Raghunathan, "SparCE: Sparsity Aware General-Purpose Core Extensions
to Accelerate Deep Neural Networks," in IEEE Transactions on Computers, vol. 68, no. 6, pp. 912-925, 1 June 2019,
doi: 10.1109/TC.2018.2879434.

ASSURE Final Report Task Number: 2.5 August 3, 2020

4

Figure 3: SparCE Design Architecture

The design architecture of the SparCE module is shown in the figure above. The blocks within the dotted
boundary illustrate the interaction between functional blocks. Signals outside the boundary are inputs
from and outputs to the rest of the pipeline.

● The Sparsity Register File (SpRF) is used to dynamically track which registers in the processor’s
register file contain zero values. The SpRF contains one entry corresponding to each register in
the register file.

● The Sparce Value Checker (SVC) checks if the value is zero and updates the SpRF
correspondingly, when an instruction that writes to a register completes,

● The SASA table is a cache-like block with associative memory structure which stores the
information required to skip a region. Each entry contains the PC of the instruction prior to the
skippable region, a field which stores the condition for the region to be skippable, and the
number of instructions that can be skipped.

● The Pre-identify and Skip Redundancy Uni (PSRU) uses the SASA table to identify and skip
redundant instruction regions. For each instruction, we check if its PC contains an entry in the
SASA table. An entry in the SASA table indicates that the instruction following the current
instruction is the start of a potentially skippable region. In this case, the PSRU checks the SpRF to
identify if the registers indicated in the SASA table entry are currently zero. If so, it increments
the PC to the end of the redundant instruction sequence, thereby skipping instructions. If not,
the pipeline proceeds to execute instructions in program order.

● The Control Flow Instruction Detector (CFID) decodes the instruction in the decode stage rather
than waiting for the instruction to be decoded in the execute stage. This allows control flow
instructions to have higher precedence than skipping.

ASSURE Final Report Task Number: 2.5 August 3, 2020

5

Non-symmetric CMOS Implementation of Polymorphic Logic
In ASSURE Task 1.1: TMD FETs for secure circuits through polymorphic logic gates, Dr. Jeorg Appenzeller
proposed the use of TMD FETS3[2] to implement compact polymorphic logic cells as a solution to protect
intellectual property from counterfeit and trojan injections. The MIT-LL 90nm FDSOI available for this
project does not support fabrication of TMD FETS without some modification of the fabrication process,
so an alternative approach was taken. Intrigued by the idea of polymorphic gates, SoCET students Isaiah
Grace, John Martinuk, and Brian Graves created a CMOS, non-symmetric implementation of Dr.
Appenzeller’s polymorphic logic concept. A gate was made to function as a NAND gate or a NOR gate,
depending on the voltages applied to the power rails. Another gate was created that can behave as an
XOR gate or as a Buffer.

Specifications for the Polymorphic NAND/NOR Gate:

o Power rails of the gate, Vxx and Vyy, operate at 0V and 1.2V
o Inputs pins, A and B, have a range of 0V - 1.2V
o Output pin X will has a range of 0V - 1.2V
o When Vxx is 1.2V and Vyy is 0V, the gate takes inputs A and B and yields a NAND output, X
o When Vxx is 0V and Vyy is 1.2V, the gate takes inputs A and B and yields a NOR output, X

Figure 4: Polymorphic NAND/NOR Schematic

3 S. Das and J. Appenzeller, "WSe2 field effect transistors with enhanced ambipolar characteristics," Applied
Physics Letters 103, 103501-1-5 (2013).

ASSURE Final Report Task Number: 2.5 August 3, 2020

6

Specifications for the Polymorphic XOR/BUF Gate:

o Power rails of the gate, Vx and Vy, operate in a range of 0V - 1.2V.
o Inputs pins, A and B, have a range of 0V - 1.2V.
o Output pin X has a range of 0V - 1.2V.
o When Vx is at 1.2V and Vy is at 0V, the gate takes inputs A and B and yields an XOR output.
o When Vx is at 0V and Vy is at 1.2V, the gate acts as a buffer.

Figure 5: Polymorphic XOR/BUF Schematic

These cells were used to create a 32-bit CRC module with a configurable polynomial. This
implementation was chosen to showcase the polymorphic cells’ ability to camouflage the CRC
polynomial being used. The APB slave interface can also provide inputs, and read outputs, which go to/
come from a single NAND/NOR cell or a single XOR/BUF cell to verify the cells’ functionality in a small
scale digital design.

ASSURE Final Report Task Number: 2.5 August 3, 2020

7

Figure 6: Top Level Diagram of Polymorphic CRC Module (APB Accessible)

Additionally, a test structure which only interfaces with IO pads to independently test the functionality
of a single fabricated NAND/NOR gate, as well as an XOR/BUF gate was developed.

Figure 7: Diagram of Polymorphic Standalone Test Structure (IO Pad Accessible)

ASSURE Final Report Task Number: 2.5 August 3, 2020

8

Layout for Electromigration Test Structures
The layouts for the electromigration test structures described in ASSURE Task 2.2 were implemented
based on specifications derived by Dr. Bermel’s group. The structures are currently in the process of
being fabricated with AFTx05. Electromigration negatively impacts timing and could potentially create
an open circuit as the cross-section area of the wire decreases over long periods of current being applied
to the metal. Dr. Bermel’s team is investigating methods for measuring electromigration with the use of
voids and reservoirs:

Figure 8: Example of an Electromigration Test Structure

The ions from the reservoir will drift into, and gradually fill, the adjacent voids which will be thermally
imaged with a microscope. In order for these devices to be visible to the microscope, the test structures
were placed near the top surface of the upper layers of AFTx05 SoC, without any metal layers
obstructing the view of reservoirs and voids.

The layout requirements for these electromigration test structures were the following:

o Ensure high currents could be delivered to the test structures.
o Ensure the test structures could be imaged with use of a microscope.
o Create the layout for a set of 10 electromigration test structures, with a minimum of 4 sets.

placed in the final chip layout (40 total structures).
o Ensure that the inclusion of these test structures didn’t affect the rest of the AFTx05 design.

ASSURE Final Report Task Number: 2.5 August 3, 2020

9

AFTx05 (2nd SoC) February 2020 Tapeout
Figure 9: Diagram of AFTx05

AFTx05 is SoCET’s 5th chip iteration and was taped out on February 18th, 2020. It was the second chip
fabricated with MIT Lincoln Labs’ 90nm FDSOI design kit and significantly expanded the scope, as well as
the feature set, of AFTx04. AFTx05 is an SoC based around a RISC-V single-core processor supporting
RV32I Spec. v.2.1.

Between AFTx04 and AFTx05 the following features we added to the design:

○ Sparsity-exploiting processor optimizations targeted at machine learning workloads
○ Custom Electromigration test structures
○ Polymorphic Logic Test Structure (IO accessible) and Polymorphic CRC Module (APB Accessible)
○ Pulse Width Modulation Module
○ Timer Module
○ External SRAM Interface
○ SCAN Flip-Flops & ATE Interface

Moreover, the RTL source files used in the design, as well as the design flow scripts used with them,
have been published to the public github repository: https://github.com/Purdue-SoCET/AFTx05_Public .
The files are open-source and free to use by the larger academic community and NSWC Crane.

ASSURE Final Report Task Number: 2.5 August 3, 2020

10

JTAG Interface
JTAG is an extensible serial standard used for board-level IC testing which will be available for AFTx06,
the next chip iteration. Common extensions include support for device programming, memory
inspection and software debugging, all of which are found on most commercial microcontrollers. The
initial implementation of JTAG for SoCET included the JTAG Test Access Port (TAP), the mandatory
instructions and a subset of optional instructions from the IEEE 1149.1 standard, and a custom extension
to interact with the AHB-Lite bus. The JTAG module is comprised of 3 major components: The
aforementioned TAP, the AHB Access Point (AHB AP) created to allow interfacing with the on-chip AHB
bus, and the Clock Domain Crossing (CDC) modules designed to transfer data between the JTAG clock
domain and the SoC clock domain.

Figure 10: Top Level Diagram of JTAG Interface

The Clock Domain Crossing (CDC) portion consisted of 2 CDC FIFO modules based off of the Sunburst
CDC design [3]4, and a simple synchronizer for capturing the error flag from the AHB AP.

The AHB Access Point (AHB AP) uses a 37-bit instruction in order to perform read and write operations
on the SoC bus. The instruction format was based off of a JTAG debugger design from Texas Instruments
[4]. A normal read/write operation would require 2 such instructions: the first to set the target address,
and the second to set the target data and start the bus request. To better accommodate device
programming, an optimization allowing an auto-increment after each write was included, which
removed the addressing step in consecutive read or write operations.

4 C. Cummings, “Simulation and Synthesis Techniques for Asynchronous FIFO Design,” Sunburst Design, Provo, UT,
USA, 2002.

ASSURE Final Report Task Number: 2.5 August 3, 2020

11

Phase-Locked Loop
Students Evelyn Ware and Matthew Olinde aimed to produce a Phase-Locked Loop (PLL) design that can
provide a steady output signal, with a tunable frequency, to be used as the SoC’s clock. The component
will be available for the next chip fabricated with MIT Lincoln Labs. The output signal from a PLL
provides a more stable signal than an oscillator since it is less susceptible to temperature changes and
noise and can provide an output signal that has a much higher frequency than the reference signal.

Figure 11: Phase-Locked Loop Flow and Connections

A PLL has three main building blocks: 1) a phase detector which compares a reference signal to the
output signal and determines phase difference, 2) a loop filter to filter out high frequencies from the
phase detector output to provide a DC signal based on the phase difference, and 3) a voltage controlled
oscillator which generates an output signal at a certain frequency based on the input voltage level from
the loop filter. With a frequency divider added to the circuit, nearly any output frequency can be
generated using a single reference signal.

The phase-locked loop will be supplied with a 32kHz reference signal that comes from a, SoCET
designed, ring oscillator. The range of possible output frequencies was targeted for 10Mhz - 65Mhz.

ASSURE Final Report Task Number: 2.5 August 3, 2020

12

Platform-Level Interrupt Controller
The Platform-Level Interrupt Controller (PLIC) is a standard interrupt management protocol for
managing timer, software, and external interrupt communications by reading a memory-mapped
register. The interrupt controller will be included in AFTx06, the next chip that SoCET will tapeout. It
should be noted that there are different priority levels for different user modes (U, S, H, M). Currently,
M mode (or machine mode) is the only privilege level being configured because this is a mandatory
privilege level for the hardware platform. The PLIC takes in hardware interrupt requests and serves
them, along with an interrupt ID, to the processor. The Interrupt Controller is currently built for an
address width of 32 bits and stores information in 32-bit registers.

Figure 12: Top Level Communications Between PLIC, the External Modes, and the Processor

The Interrupt request registers translate hardware interrupt requests into pulses to be sent to other
components in the submodule. Register mask prevents masked interrupts from triggering an interrupt
request. The interrupt enable register handles logic controlling which registers are masked; it handles
status registers related to masking individual interrupts as well as interrupt masking when the disable
low priority interrupts module is enabled. The interrupt pending and priority registers module handle

ASSURE Final Report Task Number: 2.5 August 3, 2020

13

registers controlling interrupt priorities as well as the interrupt pending registers. The interrupt priority
registers indicate the priority of each hardware interrupt channel and the interrupt pending registers
indicate which registers are in the queue to be serviced. The interrupt priority resolve register handles
sending the highest priority interrupt index to the status registers for the CPU to read.

ASSURE Final Report Task Number: 2.5 August 3, 2020

14

1.3 Specific milestones and status

 Milestone Status

1 Acquire 90nm SOI design, and determine if 90nm SOI is likely to support
polymorphic logic.

Complete

2 Complete RTL for the Interrupt Handler and Floating Point Unit. In Progress

3 Familiarize team members with 90nm SOI design flow and create scripts
capable of tapping out a small SOI test chip.

Complete

4 Preliminary layout of first SoC. Complete

5 Functional verification of first SoC. Complete

6 Tape-out 1st SoC. Complete

7 Hardware testbed for 1st SoC. Complete

8 Propose changes for 2nd SoC Complete

9 Package dies for 1st SoC Complete

10 Functional, environmental test of 1st SoC Complete

11 Design revisions for 2nd SoC Complete

12 Functional verification of second SoC Complete

13 Tape-out 2nd SoC Complete

14 Hardware testbed, package dies for 2nd SoC In Progress

15 Functional, environmental test of test 2nd SoC; deliver devices to Crane and
other Purdue teams.

In Progress

16 Release open-source RISC-V Processor (2nd SoC). Complete

ASSURE Final Report Task Number: 2.5 August 3, 2020

15

1.4 Significant results

Summary
AFTx04 (1st SoC) August 2018 Tapeout: The SoC was successfully fabricated and tested at Crane; some
of the chips had a short on the UART’s tx pin. The PCBs have been fabricated and delivered; however,
their assembly has been delayed until Purdue lab procedures are updated to prevent the spread of
COVID-19.

SparCE Machine Learning Architecture: The module was functionally verified and included on the
AFTx05 tapeout with portions of the boot-up self test ensuring the skip table’s functionality on the
fabricated chip. Our simulation based benchmark led us to believe that, for the average machine
learning program, 20% of instructions were able to be skipped with the help of the architectural
modifications. It is approximated that 20% of power consumption was saved with the use of SpareCE,
but physical power analysis still needs to be conducted to verify this.

Non-Symmetric, CMOS Implemented Polymorphic logic gates: The gates were PEX simulated and
signed off to be included in the AFTx05 tapeout. Both the APB interface for the polymorphic
configurable CRC module, as well as the standalone test structure were tapeout and will be functionally
verified when the AFTx05 chips are delivered.

Layouts for Electromigration Test Structures: 80 total test structures were placed on the taped out chip
layout, and 10 unpacked dies will be delivered to Dr. Peter Bermel’s group for a total of 800 test
structures to be used as their dataset.

AFTx05 (2nd SoC) February 2020 Tapeout: The tapeout deadline was delayed when the foundry timing
libraries for the standard cell’s spice models were about 10% inaccurate. The fabricated chips will not be
delivered until Spring 2021, so testing and verification of the physical chip could not be conducted
before the end of July 2020. However, when the chips are delivered, they will be tested with both
functional and scan test vectors.

JTAG Interface: The JTAG interface was not integrated on the AFTx05 SoC in time for the tapeout;
however, it will be included in the team’s next chip iteration, AFTx06. Currently the module is in the
process of getting signed off by the UVM team.

Phase-Locked Loop: The layout has been PEX simulated and signed off; it will be included with the next
chip that is fabricated with MIT Lincoln Labs’ PDK. Another round of DRC and LVS checks will have to be
done when Lincoln Labs releases their next kit, and some components may require adjustments if the
target clock frequency of the next SoC changes from 50Mhz.

A Platform-Level Interrupt Controller: The module will be included in the team’s next chip iteration and
is currently in the process of getting signed off by the UVM team. Additionally, the software libraries,
which facilitate manipulation of the peripherals, will have to be updated to support the use of
interrupts.

ASSURE Final Report Task Number: 2.5 August 3, 2020

16

AFTx04 (1st SoC) Tapeout August 2018 Tapeout
The project achieved a successful 1st tapeout of the AFTx04 SoC in August 2018. This was a simple design
iteration, in terms of diverse peripherals; however, most of the digital design members pooled their
efforts into the development of a single 50MHz 2-stage RISC-V core which follows the RV32I instruction
and replaced a previously used ARM M0 processor. Additional component of the chip include the
following peripherals:

● UART debugger
● 8 pin GPIO
● 32kHz Ring oscillator

AFTx04 Design Flow
Figure 13 details the design flow used to tapeout AFTx04. While some of these steps are standard in
most fabrication runs, it is important to note that our flow was built by first time users of EDA software
and guided by Matt Sale’s team at NSWC Crane. Most undergraduate students never get the
opportunity to practice anything beyond logic synthesis in their coursework, while the SoCET students
were able to experience firsthand what it takes to turn RTL code into a signed off layout.

Figure 13: Design Flow for AFTx04

Typically, MIT Lincoln Labs fabricates small (relatively speaking) analog and mixed signal designs which
do not require long wires greater than 100um in length. Consequently, when AFTx04 was going through
design rule checks, a large sum of tungsten via corrosion violations were reported due the long wires
present. The solution, for the time being, was to insert buffer cells which resulted in over 80% of the
design consisting of buffer cells.

ASSURE Final Report Task Number: 2.5 August 3, 2020

17

AFTx04 Fabrication, Packaging, and Testing
The AFTx04 chips were delivered to Crane in September 2019. A sample of the set was used with an
Advantest V93000 SoC tester to be verified with the same functional test vectors that were used to sign
off the post place-and route netlist before tapeout. The majority of the chips yielded correct, expected
outputs; however, there were a few which had a short on their UART’s tx pin.

The following are the AFTx04 layout submitted to MIT Lincoln Labs (Figure 14), without metal fill
showing, the fabricated, wire bonded die (Figure 15), and the packaged AFTx05 chip (Figure 16).

 Figure 14: Submitted AFTx04 Layout Figure 15: Picture of Wire Bonded AFTx04 Die

Figure 16: Picture of Packaged AFTx05 Chip

ASSURE Final Report Task Number: 2.5 August 3, 2020

18

PCB Bring-Up
The PCB design for AFTx04 went through three revisions and the boards were delivered in June 2020.
Figure 17 outlines the plans for the board that will connect AFTx04 to the outside world, as a general-
use RISC-V microcontroller.

Figure 17: PCB Diagram

Some important notes regarding the AFTx04 chip, related to the design of the PCB:

● The GPIO pins are NOT bidirectional, so there are separate input GPIO and output GPIO pins.

● Since the voltage supply of the AFTx04 chip is limited to 1.2V, it is necessary to level shift the
voltage before interfacing with any other circuits since 1.2V is not a standard voltage level.

● AFTx04 was designed with a 10MHz target clock, but it’s critical paths should allow up to
50MHz.

● The self-test procedure on AFTx04 will pass the voltage on the input GPIO to its corresponding
output GPIO.

ASSURE Final Report Task Number: 2.5 August 3, 2020

19

Figure 18 is a picture of one of the AFTx04 PCBs. The boards will be assembled and soldered, once
Purdue lab space and procedures have been updated to prevent the spread of COVID-19.

Figure 18: Picture of Delivered AFTx04 PCB

The boards will have the following elements soldered to them within the next few months:

○ Interface for Clock signal from a signal generator
○ LED subcircuit for the output GPIO pins
○ Switch subcircuit for reset, ring oscillator enable and input GPIO
○ 1.2V to 3.3V level shifters for interfacing with other circuits (USB-UART, Led subcircuit)
○ Interface for wall power supply
○ Voltage regulators/ buck converters for voltage supplies
○ USB-UART circuit for interfacing with computer
○ ZIF (zero insertion force socket) for mounting chip
○ Headers for isolating chip from peripheral circuits
○ Reset button

ASSURE Final Report Task Number: 2.5 August 3, 2020

20

SparCE Machine Learning Architecture

Functional Verification of SparCE
The RISC-V reference emulator used by the team does not contain our sparsity optimizations, so it was
not possible to verify any new functionality that the sparsity optimizations offer over the baseline
processor. However, the reference emulator was used to ensure that the processor functions identically
as a regular RISC-V processor, when sparsity optimizations are not used.

Functional verification was used to sign off the machine learning architecture. The following are the
SparCE related self-test cases included in the ROM boot code to verify functionality in the fabricated
SoC:

Figure 19: Table of SparCE Functional Test Cases

Test Case ID Test Description

SparCE_Self_00 Basic test to ensure skipping occurs.

SparCE_Self_01 Basic test to ensure that skipping does not occur when registers have not been
initialized after reset.

SparCE_Self_02
Test to ensure that each range of skipping works for the chip. Since this test case
is written in a way such that different skip ranges apply to the same PC, this will
also test the SASA table's collision/replacement policy.

SparCE_Self_03
Test to ensure that the instruction before the SASA preceding PC will be executed.
If the instruction modifies the condition register, it WILL affect the skipping
conditions because the values are forwarded from the execute stage.

SparCE_Self_04
Test to ensure that the instruction at the SASA preceding PC will be executed. If
the instruction modifies the condition register, it will NOT affect the skipping
conditions because it cannot be forwarded from the fetch stage.

SparCE_Self_05
Test to ensure that control flow instructions which are taken at the preceding PC
will have precedence over skipping. Includes test cases where jumps/branches
and skips have the same destination.

SparCE_Self_06

Test to ensure that control flow instructions which are not taken at the preceding
PC will have precedence over skipping. For example, if the branch is not taken,
then it cannot skip either. Includes test cases where jumps/branches and skips
have the same destination.

SparCE_Self_07 Test to ensure that when SASA table is disabled, write to SASA table works but
outputs are invalid. When the SASA table is enabled, the program skips normally.

ASSURE Final Report Task Number: 2.5 August 3, 2020

21

SparCE_SASA_00
This test loops through the SASA table to check that every entry is not valid after
reset. It loops through the SASA table and attempts to fetch data from each index.
The table should always output its data as invalid

SparCE_SASA_01

This test ensures that entries are loaded correctly to the SASA table and that
reading loaded values function properly as well. It loops through every possible
entry in the SASA table. Since these are consecutive tests, there should be no
collisions, and every value should be readable immediately after writes.

SparCE_SASA_02

This test ensures that when a SASA entry has the same program counter that
already exists in the SASA table, it will update the existing entry instead of writing
to the other set. This should work regardless of associativity except for direct
mapped configuration.

SparCE_SASA_03
This test ensures that when the SASA table reaches full capacity, it forces the
original entry out of the table. This should work regardless of associativity except
for a direct mapped configuration.

SparCE_SASA_04
This test ensures that when the SASA table reaches full capacity, it forces the LRU
entry out of the table. This should work regardless of associativity except for a
direct mapped configuration.

SparCE_SASA_05

This test ensures that when the SASA table is disabled, writes to the SASA table is
still possible but outputs of the SASA table will be invalid. This test first disables
the SASA table (by writing a non-zero value to the SASA configuration register at
SASA_addr + 4) writes to the SASA table to full capacity and tries to read from the
SASA table. Output should be invalid.

SparCE_SASA_06
This test ensures that when the SASA table is disabled, writes to the SASA table is
still possible, re-enable the SASA table and outputs of the SASA table will still be
valid.

SparCE_SASA_07

This test ensures that only PC <= 0xFFFC 0000 is allowed to skip. The current SASA
table is designed for a 256kB instruction memory. Since we decided to include an
external SRAM with 2MB, this feature prevents PC > 0xFFFC 0000 to cause
skipping due to the LSB collision.

SparCE_CFID_00 Basic test to ensure that control flow instructions (e.g. branch and jumps) are
detected.

SparCE_PSRU_00 Test to ensure that the PSRU does not tell the core to skip when SASA data is
invalid.

SparCE_PSRU_01 Test to ensure that the unit functions as intended for every combination of
conditions and sparsity inputs.

ASSURE Final Report Task Number: 2.5 August 3, 2020

22

SparCE_PSRU_02 Test to ensure that the unit correctly calculates the target address for every
insts_to_skip value.

SparCE_PSRU_03 Test to ensure that skipping is correctly suppressed when encountering a control
flow instruction on the preceding_pc.

SparCE_SpRF_00 Test to ensure that registers are correctly set to 0 (except for the 0 register).

SparCE_SpRF_01 Test to ensure that writing to the registers functions as usual.

SparCE_SpRF_02 Test to ensure that registers are not written to when the enable bit is not set.

SparCE_SpRF_03 Test to ensure that the SpRF correctly reports sparse values from values that are
being written in flight.

SparCE_SVC_00 Basic test to ensure that the sparsity in a register is detected.

Toolchain for Utilizing SparCE Architecture

Figure 20: Compiler and Skip Table Generation Workflow

These are the steps which are required to compile a RISC-V executable that includes the SASA Table:

1. Compile the C source files into assembly source files using riscv64-unknown-elf-gcc
2. Run each assembly source file through the compiler to find skippable regions (multiplication

instructions’ addresses)
a. The compiler tool first analyzes each assembly source to determine the location of the

skip table
b. Once the regions are determined, the tool adds macros to the assembly file for loading

in the skip table
3. Run the riscv64-unknown-elf-gcc compiler to produce an executable binary. When compiling to

the executable, a linker file must be provided so the AFTx05 knows the entry point into the
code.

ASSURE Final Report Task Number: 2.5 August 3, 2020

23

In simulation, the sparsity optimizations were found to decrease the number of instructions performed
and therefore power draw by 20% nominally across a variety of input data sets. Physical power analysis
is required to verify this estimate. This indicates that the sparsity optimizations are functioning as
expected. It is also estimated that the sparsity factor of the input data will increase performance
exponentially. As such, the results suggest that 20% improvement can be expected on average, but
upwards of 50-60% improvement can be achieved under certain circumstances.

Non-symmetric CMOS Implementation of Polymorphic Logic

Individual Cells and Standalone Test Structure (IO Accessible)
The polymorphic cells were successfully included in the AFTx05 (2nd SoC) Tapeout. Both the polymorphic
designs were verified with DRC & LVS checks and had their PEX netlists simulated to verify the cells’
timing characteristic. The layouts for the NAND/NOR and XOR/BUF gate are shown below.

Figure 21: Layout of NAND/NOR gate

Figure 22: Layout of XOR/BUF Gate

Below are screenshots of the transient simulations which demonstrate correct functionality of both
cells. The test cases are denoted at the top of the diagrams.

ASSURE Final Report Task Number: 2.5 August 3, 2020

24

Figure 23: Transient simulation of NAND/NOR gate

Figure 24: Transient simulation of NAND/NOR gate

The independent test structure was incorporated in the 2nd SoC’s Tapeout. Below is a screenshot of the
two cells within the AFTx05 layout which will functionally verify the design of the individual cells.

ASSURE Final Report Task Number: 2.5 August 3, 2020

25

Figure 25: Standalone Test Structure (IO Accessible)

Polymorphic CRC Module (APB Accessible)
The APB peripheral was successfully incorporated with the other APB interfaces in the AFTx05 tapeout.
The following is the register map of the APB Slave interface for the 32-bit Polymorphic CRC module:

Figure 26: APB Register Map for Polymorphic CRC module
| --- |
Base Address: 0x80030000
Offset

`0x00`
`0x04`
`0x08`
`0x0C`
`0x10`
`0x14`
`0x18`
`0x1C`
`0x20`
`0x24`
`0x28`

ASSURE Final Report Task Number: 2.5 August 3, 2020

26

The following are some sample instructions for using this APB slave interface:

1. write 0x4C11DB3 (decimal = 79764915) to CRC_CONFIG
2. write 0x11122210 (decimal = 286401040) to CRC_INPUT
3. write 0x2 to CRC_CONTROL
4. write 0x42501202 (decimal = 1112543746) to CRC_INPUT
5. write 0x1 to CRC_CONTROL
6. keep reading CRC_STATUS until 0x01 is received (should take 32)
7. write 0x24FCC0 (decimal = 2424000) to CRC_INPUT
8. write 0x1 to CRC_CONTROL
9. keep reading CRC_STATUS until 0x01 is received (should take 32)
10. write 0x4222A65C (decimal = 1109567068) to CRC_INPUT
11. write 0x1 to CRC_CONTROL
12. keep reading CRC_STATUS until 0x01 is received (should take 32)
13. write 0x0000 (decimal = 0000) to CRC_INPUT
14. write 0x1 to CRC_CONTROL
15. keep reading CRC_STATUS until 0x01 is received (should take 32)
16. read CRC_OUTPUT (this is your checksum) it should be 0xDFBAF47C (decimal = 3753571452)
17. Repeat steps 2 -12
18. write 0xDFBAF47C (decimal = 3753571452) to CRC_INPUT
19. write 0x1 to CRC_CONTROL
20. keep reading CRC_STATUS until 0x01 is received (should take 32)
21. read CRC_OUTPUT (this is your checksum) it should be 0x0000 (decimal = 000000)

Layout for Electromigration Test Structures
A set of ten different electromigration test structures were designed with variations in wire width,
reservoir height, and void shape & depth.

Figure 27: Top View of a Single Set of 10 Electromigration Test Structures

ASSURE Final Report Task Number: 2.5 August 3, 2020

27

There were three approaches evaluated when determining how to probe the electromigration test
structures. Standard IO pads were first considered to deliver the current to the test structures;
however, this would have severely limited the total number of test structures placed since each set of
devices requires 20 pads. The second approach was to use the MPAD layer in the middle of the die as a
pad to probe metal layer 5, as described in the 90nm FDSOI design kit manual. Unfortunately, The MPAD
layer was unavailable for the wafer that our chips would be fabricated on. The final approach chosen
was similar to the second, in that we would be using pads in the middle of the die to probe down to
metal layer 5; however, the top layers MTK1 (Thick Metal), MRF1 (RF Metal), were used with vias going
down to metal layer 5 (where the test structures reside). The white ‘X’ inside the square is the overglass
cut.

Figure 28: An IO Pad, MPAD Layer, and Probe Pad Used (Left to Right)

Two of the devices will be utilized as control test structures which consist of normal wires (no voids or
reservoirs), connected between two probe pads. One has a wire width of 5um and the other control
structure is 2.5um in width. The following are screenshots of the non-control test structures (Note: In
Figure 25, the test structures are the purple horizontal lines, and in the figures below the wires are
shown vertically; this was done only for formatting purposes).

ASSURE Final Report Task Number: 2.5 August 3, 2020

28

A portion of the test structures only had voids with the following depths ranging from 1um - 3um.

 Figure 29: 2.5um-C1 Figure 30: 5um-C2 Figure 31: 5um-C3
 (Void 1um Deep) (Void 2um Deep) (Void 3um Deep)

 The following structures contained both rectangular voids and reservoirs.

 Figure 32: 2.5um-CR1 Figure 33: 5um-CR2 Figure 34: 5um-CR3
(Void 1um Deep w/ Reservoirs) (Void 2um Deep w/ Reservoirs) (Void 3um Deep w/ Reservoirs)

ASSURE Final Report Task Number: 2.5 August 3, 2020

29

Two of the devices had triangular reservoirs and voids in a shape.

 Figure 35: 5um-C2T Figure 36: 5um-CR2T
 (Triangular Void 2um Deep) (Triangular Void 2um Deep w/ Reservoirs)

A total of 80 electromigration test structures (8 sets) were able to be placed in the AFTx05 (shown in
Figure 33). It is expected that 10 chips will be delivered to Dr. Bermel’s group for testing within 6 - 12
months, for a sum of 800 test structures that will be used to build a dataset.

Figure 37: The 8 Sets of Placed Electromigration Structures

ASSURE Final Report Task Number: 2.5 August 3, 2020

30

AFTx05 (2nd SoC) February 2020 Tapeout

Tapeout Submission

Figure 38: AFTx05 Layout Submitted for Tapeout

The team completed tapeout of the AFTx05 SoC in February 2020; however, the chips will not be
delivered for an estimated 6 - 12 months. The tapeout deadline was initially set for November 2019;
however, an inaccuracy in the timing characteristics for the standard cell’s spice models was discovered
which resulted in a tapeout delay until MIT Lincoln Labs updated the spice models. Testing and
verification of the physical chip could not be conducted before the end of July 2020. However when the
chips are delivered they will be tested with both functional and scan test vectors at NSWC Crane.

AFTx05 Verification and Design Flow
In this design cycle, Universal Verification Methodology (UVM) was pursued by the verification team, as
suggested by Matt Sale from NSWC Crane. The AHB-APB Bridge, UAT debugger, as well as the GPIO were
able to be signed off in time for the AFTx05 tapeout. In order to address the knowledge gap most of our
verification members faced while trying to build their environments, a scaled down tutorial was made.

ASSURE Final Report Task Number: 2.5 August 3, 2020

31

Figure 39: Design Flow used for AFTx05

The design flow scripts were updated to be compatible with the December 2019 release of the MITLL
90nm FDSOI PDK. The most significant change was the inclusion of the IO pad’s liberty files, which
enabled the IO pad frame to be created during place and route; it was previously created in Cadence
Virtuoso and treated as an analog macro during PnR. Additionally the AFTx05 mapped netlist required
post-synthesis modifications to work with IO pads, otherwise 20mm, unconstrained wires would be
placed and introduce unacceptable timing delays. The PDK compatible scripts have been published
along with the RTL source code at: https://github.com/Purdue-SoCET/AFTx05_Public .

Figure 40: An Example of a Single 20mm Long Wire (Highlighted in White)

ASSURE Final Report Task Number: 2.5 August 3, 2020

32

Software Capabilities
The scripts used to facilitate the compilation of C/ C++ files into programmable 32 bit words of
instructions and data which will run on the RISC-V core and interact with AFTx05’s peripherals have
been included in the published GitHub repository: https://github.com/Purdue-
SoCET/AFTx05_Public/SW-LIBS . Additionally, future users will be able to take advantage of the SparCE
machine learning architecture and generate the necessary skip tables to decrease the instructions, as
well as the power, required to execute their programs. These scripts which generate the skip tables are
included in the same repository as the previously mentioned C/C++ compiler scripts.

The software team created C libraries to facilitate a programmer's manipulation of the peripherals of
AFTx05 with the following functions:

GPIO Functions:

● gpio_enable_input(unsigned int pins) - Sets the respective gpio 'pins' to be configured as inputs
● gpio_read_input(unsigned int pins) - Returns the value on the gpio pins given by 'pins'
● gpio_enable_output(unsigned int pins, unsigned int pin_outputs) - For the gpio 'pins', they are

configured as outputs and the value is set to the corresponding 'pin_outputs' value.
● gpio_set_output(unsigned int pins, unsigned int pin_outputs) - For the gpio 'pins', the value is

set to the corresponding 'pin_outputs' value

PWM Functions:

● pwm_set_frequency(unsigned int channel, unsigned int frequency) - Sets the period and the
duty cycle for the 'channel' based on the given 'frequency'. By default, this sets the duty cycle to
be 50%.

● pwm_set_period(unsigned int channel, unsigned int period) - Sets the 'period' for the 'channel'.
● pwm_set_duty(unsigned int channel, unsigned int duty) - Sets the 'duty' for the 'channel'.
● pwm_disable(unsigned int channel) - Disables the 'channel'.
● pwm_enable(unsigned int channel) - Enables the 'channel'.
● pwm_set_active_high(unsigned int channel) - Sets the active value to high for the 'channel'.
● pwm_set_active_low(unsigned int channel) - Sets the active value to low for the 'channel'.
● pwm_set_align_left(unsigned int channel) - Sets the active duty to be at the beginning of the

period for the 'channel'.
● pwm_set_align_center(unsigned int channel) - Sets the active duty to be in the middle of the

period for the 'channel'.

Timer Functions:

● timer_enable() - Enables the timer module counter.
● timer_disable() - Disables the timer module counter.
● timer_set_output_action(unsigned int channel, unsigned int output_action) - Set the

'output_action' for the specified 'channel'.
● timer_set_input_capture_edge(unsigned int channel, unsigned int capture_edge) - Set the

'capture_edge' for the specified 'channel'.

ASSURE Final Report Task Number: 2.5 August 3, 2020

33

● timer_set_prescaler(unsigned int pre_div) - Set the prescaler ('pre_div') value for the timer
clock

● timer_set_output_compare(unsigned int channel, unsigned int output_action, unsigned int
interrupt_enable, unsigned int value) - Set the specified 'channel' as an output compare with the
given 'output_action', comparing the 'value', and setting the 'interrupt_enable' (1 or 0).

● timer_set_input_capture(unsigned int channel, unsigned int capture_edge, unsigned int
interrupt_enable) - Set the specified 'channel' as an input capture with the given 'capture_edge',
and setting the 'interrupt_enable' (1 or 0).

● timer_read_input_capture(unsigned int channel) - Returns the timer value for when the input
was captured.

● timer_clear_interrupt(unsigned int channel) - Clears the interrupt for the specified 'channel'.
● timer_enable_cf(unsigned int channels) - Forces the comparison for the specified 'channels'.
● timer_enable_tov(unsigned int channels) - Enables toggle on overflow for the specified

'channels'.
● timer_disable_tov(unsigned int channels) - Disables toggle on overflow for the specified

'channels'.
● timer_read_count() - Returns the current value of the timer.

Poly CRC Functions:

● crc_start() - Starts the CRC generator with the current register setup.
● crc_reset() - Resets the CRC module.
● crc_set_polynomial(unsigned int polynomial) - Set the polynomial for the CRC generator.
● crc_set_input(unsigned int input) - Set the input for the CRC generator.
● crc_ready() - Returns 1 if the CRC generator is done or ready to begin.
● crc_output() - Returns the resulting value from the CRC generator.

ASSURE Final Report Task Number: 2.5 August 3, 2020

34

How to Use AFTx05
Once the processor has been powered on / reset the following boot-up code is executed:

Figure 41: Boot-Up Flow Chart

If a functional test of the chip is desired, a self-test can be run by applying a logic HIGH signal to GPIO pin
0 and resetting the chip, either with the asynchronous reset pin or synchronously with the CORE_RESET
UART command. If the test yields the correct, expected outputs, then the value of 0xAA will be output
across the GPIO pins, with pin 7 as the most significant bit and pin 0 as the least significant.

In order to run user code on AFTx05, the program must be written, through the UART, into either the
on-chip SRAM (address range: 0x00008000 - 0x000083FF), or the external SRAM (address range:
0x00008400 - 0x001F_FFFF). Once the program has been written, the UART must write, to address
0x00000000, the location that the program counter should jump to: the first written instruction’s
address. If the result of the program’s execution is not as expected, the UART can be used to debug and
explore the memory, as well as the peripherals.

ASSURE Final Report Task Number: 2.5 August 3, 2020

35

 JTAG Interface
The JTAG module was not ready to be included in the AFTx05 tapeout; however, it will be an AHB bus
master in the next chip iteration, AFTx06, to enable programming over the AHB bus. At a minimum, the
current JTAG implementation requires at least 4 pins (preferably 5 to include the optional asynchronous
reset) to operate successfully. Current testing has the JTAG running at about 10MHz, which allows for
programming many times faster than the current M0 Debugger would permit.

Presented below is a waveform demonstrating a successful AHB write. It writes the value 0x001F0400 to
ADDR 0x0 (located in BOTTOMRAM, note endianness is flipped). Notice also that the JTAG sends the
intended 0 → 1 to indicate a successful write.

Figure 42: Simulation of JTAG Writing to BOTTOMRAM

Finally, in Figure 43 one can observe that the JTAG read back that same data. In TDO, you see that it
sends the leading 1, followed by 10 cycles of 0s, followed by a 1 (indicating that it's reading back the
11th lowest bits of 0x001F0400).

Currently a UVM environment Is being utilized to verify the functionality with the newly included JTAG
interface. This module will be taped out in November 2020, if no foundry delays occur.

ASSURE Final Report Task Number: 2.5 August 3, 2020

36

Figure 43: Simulation of JTAG Reading from BOTTOMRAM

ASSURE Final Report Task Number: 2.5 August 3, 2020

37

Phase-Locked Loop

Phase Frequency Detector
The phase detector topology chosen was a phase-frequency detector. It provides a wider lock frequency
range over a phase-sensitive detector but requires the addition of a charge pump to output the correct
voltage level. The PFD circuit is shown below.

Figure 44: Phase Frequency Detector Circuit

Charge Pump
This design was finished, and a current source of ~1uA was achieved. The following requirements were
taken into consideration when designing the charge pump:

● The current Source must be built first to drive the charge pump. This current must be (~1-10 uA)
or lower. The current source must have a low current due to the nature of the closed loop
transfer function. A lower current used to drive the charge pump allows for smaller values used
in the Loop Filter's components.

● A switched circuit must be built (comparable to the one referenced), with the switches
controlled by the “UP” and “DOWN” signals of the Phase Detector.

● The currents from the current source and switch circuit must match almost exactly, any sort of
mismatch can cause the charge pump to work incorrectly or not function at all. A mismatch in
current sources between the UP and DOWN switches can cause phase error, so matching
transistor sizes to keep drain currents equal is necessary.

The following approach was taken to design the current source (The non-constant values on the
equations to the right were chosen as shown on the circuit to the left):

ASSURE Final Report Task Number: 2.5 August 3, 2020

38

Figure 45: Charge Pump Schematic

The charge pump has various current mirrors present which made having the same threshold voltages
for the transistors desirable. The ABBA|ABBA common centroid technique was implemented for this
layout. The input pairs/current mirrors were split into equal parts and arranged as shown in Figure 39.

ASSURE Final Report Task Number: 2.5 August 3, 2020

39

Figure 46: Charge Pump Layout

Voltage Controller Oscillator
The Voltage Controlled Oscillator is used to set the output frequency, as well as range of frequencies
achievable by the PLL. The design used was a current starved oscillator, which allows the frequency of
the oscillator to be controlled using the Loop Filter’s output. The design for the oscillator has various
transistor sizes to provide the drain currents and parasitic capacitances required to set the delay of the
circuit to specification. This design establishes a drain current of ~5uA and a frequency of 10MHz. The
frequency gain, which is described as the change in frequency over the change in control voltage, was
around 259.6MHz/V.

Considerations taken while designing the VCO:

● Wanted the output frequency to match the input frequency (10MHz) at a control voltage of
~500mV. This is to allow for tunable frequency in both directions.

ASSURE Final Report Task Number: 2.5 August 3, 2020

40

● We also want a very high frequency gain, described as the change in frequency over the change
in control voltage. This should be anywhere near the magnitude of hundreds of MHz/V or
GHz/V to allow a wide tuning range.

The VCO design was guided by the following equations:

The only variable required to solve for was the number of stages of inverters. In order to achieve an
output frequency of ~65MHz, a total of 43 stages was required, with no load capacitance between them.

Figure 47: Voltage Controller Oscillator Schematic

ASSURE Final Report Task Number: 2.5 August 3, 2020

41

The "frequency gain" of the VCO can be tested by applying a changing Vctrl input from 0-1.2V with a
step size of 0.1V. The output looks like the following:

Figure 48: Frequency Vs. Time [ns] Demonstrating the Range of Stable Frequencies

Figure 40 shows the frequency at 1.2V is ~250MHz. The frequency at 0.4V is ~8.5MHz. Using this we
calculated the frequency gain of the VCO (Δf/ΔV).

The layout for the VCO is very wide, but not very long. It would be better to apply a common centroid
technique here; however, with a total of ~166 transistors total (without splitting them), this would be a
difficult task. It becomes a challenge since the transistors are already at minimum sizing and couldn't be
able to be split further. Consequently, the VCO was designed to be as compact as possible to minimize
parasitics; however, the common centroid technique was not utilized for this component.

ASSURE Final Report Task Number: 2.5 August 3, 2020

42

Figure 49: Voltage Controlled Oscillator Layout

Loop Filter
The Loop Filter was designed last and used to establish the stability of the closed loop transfer function
and smooth out the output signal. This was designed to be a 2nd order Loop Filter, with the first resistor
and capacitor utilized to define the pole/zero for stability, and the 2nd capacitor to smooth the signal &
reduce jitter. The final values for these components are unrealistic in terms of size for a 32KHz ->
10MHz application, but are reasonable for 2.1MHz -> 10MHz.

When designing the loop filter, the following open loop transfer function was referred to:

● Kvco: Frequency gain of the VCO. This can be calculated as the change in frequency over the
change in control voltage input into the VCO.

● Icp: This is the magnitude of the current from the current source of the charge pump.
● F(s): Transfer function of the Loop Filter.
● M: Number of Frequency Division.

While the Voltage Controlled Oscillator and Charge Pump can be built independently and optimized, the
Loop Filter required to be tuned along with the final components of the PLL. In order to break this down
into a set of more specific values, the following requirements were outlined for the Loop Filter:

● Zeta must be 0.45 < x < 1.4.
● C1 is typically the largest but must range from ~10-400pF due to size constraints.
● Natural Frequency can be set to <~1/20 of the reference frequency, and is typically 1MHz ->

20MHz, which creates a problem with our 32KHz reference.

ASSURE Final Report Task Number: 2.5 August 3, 2020

43

● R1 is set with the equation relating Zeta to R1 and should be less than ~20KHz.
● C2 is a smoothing capacitor and should be C1/50 < C1 < C2/20 to increase stability, but limit

jitter.

These values are particularly large when dealing with a range from 32KHz input to 10MHz input, due to
the nature of the first equation for the natural frequency. Even though Icp should be low and Kvco
large, the gap causes the 1st capacitor to be in the magnitude of nanoFarads, rather than
picoFarads/femtoFarads which are more acceptable.

Due to the size of the C1, the layout for the loop filter was done simultaneously with the final layout of
the PLL in order to fit everything into a compact square.

Full Implementation
Figure 50: Schematic of Phase Locked Loop

The Phase-Locked Loop will be included in the next chip fabricated with MIT Lincoln Labs; the full
implementation in shown Figure 42.

Comments about the design of the Phase-Locked Loop’s full implementation:

● The transistor circuit after the PFD is the charge pump.

● The loop filter capacitors are placed as 3 in parallel because they are separate in the layout, and
does not cause the circuit to behave any differently.

● The "decap" in the bottom left is a symbol to recognize the array of decoupling capacitors
placed in the layout of the PLL.

From an input reference frequency of 32kHz, the following signal was generated:

ASSURE Final Report Task Number: 2.5 August 3, 2020

44

Figure 51: Waveforms for Vref, Non-Divided Output, and Final Output

In green is the ~10MHz (8MHz) signal that was output by the Phase-Locked Loop. The red is the input
reference signal of 32kHz, and the purple is the frequency divided output signal to be input to the Phase
Frequency Detector. As can be seen in these plots, the PLL produces a steady, nearly sinusoidal
waveform, at much higher frequency than the reference signal.

When developing the layout for the top level PLL, the design was made to be as square in shape and
compact as possible. In order to do this, C1 from the loop filter had to be split into 3 sections, and the
rest of the PLL was placed in the middle of those sections.

Figure 52: Layout of the Phase-Locked Loop

ASSURE Final Report Task Number: 2.5 August 3, 2020

45

Lock Speed
Lock speed can be determined by plotting the frequency of the output from the frequency divider and
observing at what time the signal stably reaches the reference frequency. This lock speed is slower with
increase with parasitics, which is why simulations using the PEX netlist yields a slower lock speed than
the ideal simulation. To estimate the locking speed of the PLL, the following equation was used to
calculate a locking speed of around a hundred microseconds.

 Figure 53: Ideal Simulation Figure 54: Simulation with Parasitics

The ideal simulation reaches ~32kHz in around 110us, and the parasitic simulation takes around 140us.
Considering the target clock frequency is 20ns, the parasitic simulation’s lock speed was deemed
acceptable.

Jitter
Jitter is a measurement of the variability for how close the output clk rises compared to the reference
signal. To get an actual measure of jitter, the average was taken of the time between these rising edges.
Below are the jitter outputs for the ideal and parasitic simulations respectively.

 Figure 55: Ideal Jitter Simulation Figure 56: Jitter Simulation with Parasitics

The jitter for the ideal simulation was measured to be ~0.83ps and for the parasitic simulation,
~37.91ps. While this seems like a significant difference; however, it is negligible when taking into
consideration that the reference clock period is on the scale of tens of microseconds (106 times larger)
and the target output period is 20ns.

ASSURE Final Report Task Number: 2.5 August 3, 2020

46

Platform-Level Interrupt Controller
The first revision of the PLIC was not functionally ready in time for the 1st Tapeout and development was
put on hold until Spring 2020 when two students resumed its progression. This next revision is near
completion in its integration with the rest of the SoC design and will be included in the next chip
iteration, AFTx06. The following is a list of tasks for this project and their current statuses.

 Figure 57: Table of PLIC Related Tasks and Corresponding Statuses

Task Status

Discovered prior documentation and code regarding prior
interrupt integration.

Complete

Composed a complete RTL of Control unit within priv to
better visualize the categories of interrupts and exceptions.

Complete

Composed starter test benches to test the priv unit within
RISC-VBusiness.

Complete

Completed skeleton file for the external interrupt Assembly
file.

Complete

Expanded the pending and status registers of core to allow
external interrupts.

Complete

Modified the combinational logic within the
priv_1_11_control.sv file to allow external interrupts to be
registered into the status register.

Complete

Verified the full functionality of the Assembly external
interrupt file.

In progress; currently investigating
uncertainties about the clear and swap
signals.

Combined the functionality of RISC-VBusiness with SoCET
Public.

Incomplete; integration with the rest of
the RISC-V must be completed first.

Integrated the interrupt_controller module to Top level Complete

Modified the previous error test case Complete

Created interface for the interrupt controller module Complete

Modified Top Level file to be able to arbitrate the request to
interrupt controller

Complete

Documented the detail of each test case Complete

Added extra test case to test the functionality under actual
load

In progress; creating additional write and
read corner cases

ASSURE Final Report Task Number: 2.5 August 3, 2020

47

1.5 Key outcomes
1) Prepared students with experience in SoC design and as potential recruits for NSWC Crane.

This project was able to provide 95 students, from Spring 2018 – Summer 2020, with VLSI and chip
building experience. Two members were recruited by NSWC Crane, and require minimal time to bring
up to speed. Additionally we were able to open the eyes of our undergraduates to aspects of SoC
development that they would have otherwise missed while working on their bachelors. The following
are examples of these aspects. Most undergraduate classes don’t offer detailed content and practice for
working with EDA software; however, our design flow students get familiarized with these tools. It’s
common that a computer engineer’s first job will be in UVM, and our verification students already
possess the background knowledge and practice to build these environments. Not every student is able
to take a compiler course; however students that join the software team are still able to gain experience
working with the RISC-V toolchain. Most digital design courses offered at the undergraduate level are at
the peripheral or processor scope, but working on the digital design team provides our students with
experience working on a full scale SoC. Most undergraduate computer engineers do not get experience
developing analog components which actually get fabricated, but our analog team offers the
opportunity to build standard cells, ADCs, PLLs, and more to be included in a tapeout. We have
bolstered our graduating students’ qualifications to secure employment in the VLSI field, as well as the
expertise they have to offer the projects they join. We have sent them off as engineers equipped with
applicable experience and familiar with the demands of today’s efforts to advance computational
technologies.

2) Installed and tested a 90nm SOI design flow to enable design and fabrication.

Our team created design flow scripts and tutorials, to facilitate the design and fabrication of the AFTx04
and AFTx05 chips. The capabilities/ content of these tools are listed below:

● Logic Synthesis
● Mapped Functional Verification
● Logic Equivalence Check (LEC)
● Place and Route (PnR)
● Static Timing Analysis
● Post-PnR Functional Verification

● IR Drop and Power Analysis
● Design Rule Check (DRC)
● Layout Vs. Schematic (LVS)
● Parasitic Extraction (PEX)
● Automatic Test Pattern Generation (ATPG)

Additionally polymorphic gates were implemented with MIT Lincoln Labs’ PDK. The characteristics of the
FD-SOI technology, particularly when reverse biasing, allowed the gate’s logical function to be controlled
by the polarity of the power rails. These gates were non-symmetric and CMOS based; however, another
version of the PDK will be made to implement the symmetric cells using Schottky-barrier transistors.

Evaluation of the September 2019 PDK revealed a couple of issues pertaining to the IO pads, which
included a new bidirectional pad. The SPICE simulation of the bidirectional pad did not match the Verilog
model provided. Moreover, signals going out from the core to the pad were inverted, while signals going
from the pads to the core were not inverted. Both of these issues were resolved in the February 2020
update to the kit.

3) Taped out, fabricated, and tested 1st SoC design.

ASSURE Final Report Task Number: 2.5 August 3, 2020

48

The AFTx04 SoC was taped out in August 2018 and the chips were delivered in September 2019. Some of
the packaged chips were tested at NSWC Crane. Using functional test vectors with Crane’s Advantest
V93000 SoC tester, the fabricated chips were able to be functionally verified. It’s important to note that
a few of the chips that were put through the tester were reported to have a short on the UART’s tx pin.

The AFTx04 chips will be mounted on PCBs and evaluated once the design is assembled. The PCB boards,
and some of the components have already been delivered; however, the board cannot be assembled
until lab space has been cleared with Purdue’s developing COVID-19 prevention policies. The board will
be soldered together and evaluated within the next 5 months.

This tapeout was able to provide our Spring 2019 members with the rare opportunity to create
hardware verified digital and analog designs, as well as insight for the design flow steps required to
fabricate an SoC which functions as intended. Moreover, the AFTx04 chip was a larger design than most
which go through MIT Lincoln Labs. A large magnitude of DRC violations were discovered, due to the size
of AFTx04, relating to tungsten via corrosion located on long wires with minimal connecting vias. The
workaround used to meet the tapeout deadline was to insert buffers to break up these long wires,
although this resulted in over 80% of the design consisting of buffer cells. This incentivized MIT Lincoln
Labs to refine their process which increased their PDK’s maximum wire length from 100um to 800um.

4) Taped out 2nd SoC design

The AFTx05 SoC was originally planned to be taped out in November 2019; however, MIT LL discovered
a ~10% inaccuracy in their hspice models’ timing characteristics. Consequently, the tapeout deadline
was pushed to February 2020, which delayed our timeline for the distribution and evaluation of the
fabricated SoC. While the physical hardware cannot be verified until the chips are delivered, it is
worthwhile to note the additional verification measures implemented in this design compared to the 1st
SoC. This iteration included some UVM signed off modules, scan chains with test patterns generated,
and design reviews with engineers from both commercial and military teams such as Cisco Systems and
NSWC Crane.

The PCBs which will host the packaged chips have been developed and are expecting to be delivered
within the next few months. However, the AFtx05 chips’ estimated delivery is sometime in Spring 2021.
A portion of these packaged chips will go to NSWC Crane to be tested with their SoC tester, although
this iteration of chips will be verified with both functional and scan test vectors. Ten of the unpackaged
dies will be sent to Dr. Bermel’s electromigration research group to probe the 800 test structures with
high density currents and study the aluminum/ titanium ion migration with their thermal microscope.

This tapeout iteration provided our members with a new opportunity this time around: to center the
focus of their curriculum required senior design projects to be SoCET based over the span of two
semesters. Typically, the scope of projects which are feasible to finish in a semester are limited in terms
of usefulness and quality. The students which have taken advantage of this opportunity were able to
create the Phase Locked-Loop, the SparCE optimizations, the polymorphic gates, and the JTAG interface.

ASSURE Final Report Task Number: 2.5 August 3, 2020

49

5) Released the open-source System Verilog code for a RISC-V based SoC to be made available for use
by Crane NSWC and the broader academic community

The AFTx05 chip is available to download at https://github.com/Purdue-SoCET/AFTx05_Public . The
intention of its publication is to serve both as a template for users new to SoC development and as a
quick, easy-to-modify build for researchers in need of a RISC-V SoC to use with their research. Our
design is currently being used, by another Purdue research group, to implement a value-similarity
optimization with similar benefits as the SparCE architecture.

What makes this publication unique to other open-source RISC-V builds is the inclusion of design flow
scripts. Permission has been obtained from Cadence Design Systems to include scripts for RTL
simulation, synthesis, place-and-route, ATPG, and LEC. Additionally, we have made arrangements with
MIT Lincoln Labs to archive the PDK used to tapeout AFTx05. This way anyone new to using EDA tools
will be able to run the scripts, with minimal modification and no errors, to rebuild our SoC from its RTL
to it’s Post Place and Route layout with ATPG.

6) Collaborate with academic and industry teams’ research ventures.

The SoCET team found opportunities to join efforts with Concertal Systems and Dr. Peter Bermel’s
electromigration research group. These collaborations were initiated to both expand the scope of
available projects to our members and provide knowledgeable students to facilitate the efforts of these
outside teams.

Most groups would be apprehensive to rely on the help of undergraduates with heavily funded projects,
but our track record has demonstrated that our skilled members are able to make meaningful
contributions. Our team was able to supply Dr. Bermel’s group with the layouts for their
electromigration structures, and also included these layouts in the AFTx05 tapeout, eliminating the
requirement for the group to seek and pay a foundry to fabricate their structures.

Furthermore, our students have been exploring Concertal System’s tools as an alternate method for
integration of IP blocks produced by the team. Concertal provides an additional avenue for open-source
dissemination of work from the team and facilitates the re-use of our IP in other SoC designs. Concertal
has helped us ensure that our IP is in a form which future users can easily repurpose for their own
design’s requirements. We have worked with Concertal to create a prototype design, using open source
IP from this project and Concertal tools, to create an SoC which will be demonstrated with brushless
motor control applications.

ASSURE Final Report Task Number: 2.5 August 3, 2020

50

2. Products
GLSVLSI ‘19 Paper: System-on-a-Chip Design as a Platform for Teaching Design and Design Flow
Integration [5]5

This paper claims that most undergraduate VLSI curriculums are taught in unconnected pieces which
complicate the creation of manageable, semester-long projects that reflect the microelectronic design
experience. The solution explored is the System-on-a-Chip Extension Technologies (SoCET) group: an
undergraduate design group modelled after industry, aiming to emphasize the integration and
cooperation required across multiple disciplines in SoC development. This is a multi-semester project
that gives undergraduates the rare opportunity to iteratively improve, prototype, fabricate, and test an
SoC. Students on the team are divided into smaller groups which focus on specific SoC design tasks.
These tasks are connected by a near industry grade design flow forcing students to address system and
design flow integration issues. This framework enables students to approach engineering as an
integrative process and learn the relationships between seemingly separate disciplines.

5 J. Covey and M. Johnson, "System-on-a-Chip Design as a Platform for Teaching Design and Design Flow
Integration," in GLSVLSI '19: Proceedings of the 2019 on Great Lakes Symposium on VLSI, GLSVLSI 2019, Tysons
Corner, VA, USA, May 9-11, 2019, pp. 249–253.

ASSURE Final Report Task Number: 2.5 August 3, 2020

51

3. Training and Professional Development
Workforce development is one of this project’s core goals. Through SoCET, 95 students gained
experience in VLSI & SoC design over the duration of ASSURE task 2.5. These students possess skill sets
which will facilitate their transition into industry with minimal time required to be brought up to speed
at their next place of work. These skill sets vary according to which of the five subteams a student has
joined. 1) The digital design team writes the System Verilog source code that describes the hardware of
the SoC. 2) The software team develops methods and code to test & demonstrate the functionality of
the SoC design. 3) The physical & analog design team is responsible for the physical implementation of
the digital and analog design. 4) The verification team develops the UVM (Universal Verification
Methodology) framework for functionally verification. 5) The post silicon team handles the packaging,
PCB test platform design, and fabricated SoC testing.

The following is the list of students which have made significant, documented contributions to the team
from Spring 2018 through Summer 2020, as well as a brief description of their accomplishments.

 Student Name Term of Participation Summary of Accomplishments

1 A J Gregorian Fall 2019 - Spring 2020
● Compiler compatible with SparCE

optimizations

2 Aditya Chakraborty Fall 2018 ● First revision of DAC

3 Aeson Akhras Spring 2019 ● ALU

4 Andrei Aldea Fall 2018 ● PCB design for IC test beds

5 Ankeet Annapur Spring 2019 ● Assisted UVM team

6 Atif Niyaz Fall 2019 – Spring 2020
● Compiler compatible with SparCE

optimizations

7 Ben Dyer Spring 2020 ● Worked with Analog team

8 Bharath Mukundan Fall 2018 ● Assisted UVM team

9 Blake Wilson Summer 2018 – Fall 2019

● Software team lead
● ROM Creation Script
● Build environments (simulation, syn,

pnr)

10 Bojun Huang Fall 2018
● GPIO test circuit (PCB)
● USB to UART converter schematic

ASSURE Final Report Task Number: 2.5 August 3, 2020

52

11 Brady Malcomson Spring 2020 – Summer 2020 ● Currently being trained

12 Brian Graves Fall 2019 ● Polymorphic XOR/BUF gate

13 Brandon Wu Spring 2020 ● Assisted Compiler team

14 Brian Helfrecht Fall 2019 – Spring 2020
● Compiler compatible with SparCE

optimizations

15 Brian Ko Spring 2020 – Summer 2020 ● FPGA emulation of AFTx05

16 Chan Weng Yan Spring 2019 – Fall 2019
● NVDLA research
● SparCE optimization

17
Chandan Bothra

 Summer 2019 – Fall 2019

● ATPG for static and dynamic Faults
● Initial Concertal Work

18 Chris Priebe Fall 2019 – Summer 2020

● Updated and reorganized
documentation

● Intro to SoCET student
● Updating SPI RTL

19 Chun Tao Summer 2019 ● Studied OpAmp Design

20 Cole Nelson Fall 2019 – Summer 2020
● Digital team lead
● JTAG

21 Cole Stecyk Fall 2019 ● Updated UART UVM environment

22 Dali Lai Spring 2020 – Summer 2020 ● Updated Oscillator

23 David Castley Spring 2018
● Inverter Virtuoso/ Calibre tutorial
● Ring Oscillator

24 Dotun Akinnola Summer 2019 ● Second revision of SPI RTL

25 Enes Shaltami Spring 2020 – Summer 2020
● Interrupt Controller Integration
● Fixed and integrated FPU

26 Evan Miller Spring 2019 ● Assisted UVM team

27 Evelyn Ware Fall 2019 – Spring 2020 ● Phase Locked Loop

28 Fred Owens Fall 2019 – Spring 2020 ● JTAG

29 Geoff Cramer Spring 2018 ● APB UVM driver and sequencer

30 Haoming Duan Summer 2020 ● AHB Bus Master redesign

31 Himank Kothari Spring 2018 ● Assisted PCB team

ASSURE Final Report Task Number: 2.5 August 3, 2020

53

32 Hsin-Han Yu Fall 2018 ● UVM scoreboard

33 Huy Minh Tran Fall 2019 – Spring 2020

● Script for USB communication with
FT232R chip

● Intro to SoCET student
● Updating SPI RTL

34 Hyunoh Song Fall 2019 ● Third revision of DAC

35 Isaiah Grace Spring 2019 – Fall 2019

● APB slave interface for Poly CRC module
● Studied Floorplanning
● Learned formal verification

36 Itsuki Sakamoto Spring 2019
● First revision of Timer UVM

37 Jacob Covey Fall 2018 - Summer 2020

● Research Assistant
● Coordinated overall operation of team
● Physical design team lead
● Second revision of DAC
● Estimate for IR Analysis of AFTx04
● GLSVLSI 2019 design flow paper
● Wire Bond Specs for AFTx04
● Scan Chain insertion

38 Jake Stevens Spring 2018 – Summer 2020
● Digital Lead
● One of two designers for RISCV core.

39 James Zampa Fall 2019
● Machine learning benchmark

environment

40 Jing Yin See Spring 2020 – Summer 2020
● Intro to SoCET student
● ADC

41 Jingchen Lei Fall 2018
● APB UVM Scoreboard
● Tutorial for account setup

42 Joe Nasti Spring 2018 – Fall 2018
● UVM environment for the GPIO
● First revision of FPU

43 John Martinuk Spring 2019 – Summer 2020

● Design Flow lead
● IR Drop Analysis (Static and Dynamic)
● Power Analysis (Static and Dynamic)
● Polymorphic NAND/NOR gate
● Electromigration Test Structure Layout
● Backend design flow for 2nd SoC tapeout

44 Karthik Maiya Fall 2019 – Spring 2020 ● JTAG

45 Keshav Raheja Fall 2018 ● Updated UVM APB sequences

ASSURE Final Report Task Number: 2.5 August 3, 2020

54

46 Kevin Mi Spring 2020 ● Assisted Analog Team

47 Liangyu Chen Fall 2018 ● Second revision of AFTx04 PCB

48 Luis Haddock Spring 2019

● Updated self-test simulation
environment

● DAC

49 Luis Materon Spring 2019 ● Updated ISA self-test script

50 Luke Kok Spring 2019 -Summer 2020 ● First revision of SPI UVM environment

51 Manik Singhal Fall 2018 – Fall 2020
● Verification team lead
● Backend design flow for 1nd SoC tapeout

52 Marco Garcia Spring 2019 ● UART UVM environment

53 Matt Olinde Fall 2019 – Spring 2020 ● Phase Locked Loop

54 Matthew Waldren Spring 2020 – Summer 2020

● Intro to SoCET student
● AFTx04 PCB
● AFTx05 PCB

55 Michael Seaborg Summer 2018 – Fall 2018

● PCB Component Selection and Pinout for
AFTx04

● OpAmp Revision 1
● Low Voltage Current Mirror Analysis
● Simple Current Mirror Design & Analysis

56
Michel Brandao

Raskin Summer 2020
● Floorplanning
● ADC/APB module

57 Minh Tran Fall 2019 ● USB communication with FT232R chip

58 Naazneen Rana Summer 2020 ● Currently being trained

59 Nicholas Haythorn Fall 2019 – Spring 2020
● Compiler compatible with SparCE

optimizations

60 Niraj Menon Fall 2018 - Spring 2020

● gcc compiler setup
● SPIKE setup
● Updated toolchain used for compiler

environment

61 Noelle Crane Fall 2018 ● AFTx04 Self-Test Code and simulation

62 Noureldin Hendy Spring 2019 ● Assisted software team

63 Oliver Krefta Spring 2020 – Summer 2020
● Intro to SoCET student
● I2C

ASSURE Final Report Task Number: 2.5 August 3, 2020

55

64 Patrick May Spring 2018 ● Interrupt Controller

65 Peyton Young Spring 2020 ● Assisted Analog team

66 Radhika Poddar Fall 2019
● Updated synthesis script
● Concertal IntelliConX compatible RISC-V

67 Raghul Prakash Spring 2020
● PWM UVM environment

68 Rajat Arora Summer 2019 – Spring 2020
● Timer UVM environment

69 Ruoyi Chen Spring 2020
● Interrupt Controller Integration
● Updating machine learning benchmark

70 Ruth Zhong Spring 2019 ● Third Revision of OpAmp

71 Sanghoon Han Spring 2020 ● FPGA emulation of AFTx05

72 Sean Hsu Spring 2020 ● Fixed and integrated FPU

73 Sean Hwang Spring 2020 ● FPGA emulation of AFTx05

74
Shaunak Robin

Oswal Spring 2020 – Summer 2020
● Worked on Concertal Motor Driver

Design

75 Shivam Sharma Spring 2018 ● AFTx03 PCB

76
Xianmeng (Simon)

Zhang Spring 2019 – Spring 2020
● Updated compiler and SPIKE simulator
● JTAG

77 Stephanie Ro Spring 2018 ● Updated Virtuoso Layout Tutorial

78 Tucker Swan Fall 2019

● Machine Learning benchmark
environment

● Developed software libraries for AFTx05

79 Vadim Nikiforov Spring 2019
● Digital Lead
● SparCE optimization

80 Victor Le Spring 2020
● Intro to SoCET student
● I2C

81
Vivekanandan

Kulumani Rajarajan Fall 2019 – Spring 2020
● Logical Equivalence Checking
● Functional Verification of RISC-V core

82 Wayne Chen Spring 2020 ● DAC

83 Xe Jin Chan Spring 2018 ● Assisted UVM team

84 Xinlue Liu Spring 2020 – Summer 2020 ● Fixed and integrated the FPU

ASSURE Final Report Task Number: 2.5 August 3, 2020

56

85 Yi Feng Wang Spring 2018 ● AFTx03 Packaging

86 Yiming Li Spring 2020 – Summer 2020 ● Compressed Scan Chain Implementation

87 Yiming Ma Spring 2018 – Spring 2019

● AFTx03 PCB
● UVM APB driver, sequencer,

comparator, predictor, and scoreboard

88 Young Joo Moon Summer 2020 ● Currently being trained

89 Youtian Chen Fall 2018 ● OpAmp revision 2

90 Yupei Cao Fall 2019 – Spring 2020 ● SPI UVM environment

91 Yuqing Fan Summer 2020 ● Currently being trained

92 Zhao Xing Lim Spring 2018 ● Assisted UVM team

93 Zhengsen Fu Summer 2020
● FPU UVM environment
● UVM tutorial

94 Zhewen Pan Fall 2019 ● AHB-APB bridge UVM environment

95 Zihan Liu Summer 2020 ● I2C UVM environment

ASSURE Final Report Task Number: 2.5 August 3, 2020

57

4. Impacts
Disciplinary Impacts

A group of students sought to implement the SparCE optimization for machine learning acceleration,
detailed in the paper [2], within the project’s 2nd SoC. They succeeded in their goal to get their
implementation into the tapeout and when the chips are delivered, the power savings will be measured.
This will provide hardware verification for the architecture proposed in the paper and further support its
legitimacy. Previously the merit to the paper’s findings was purely simulation/ emulation based;
however, the evaluation of the speed and power savings for the ASIC implementation shall demonstrate
physical results.

Another ASSURE group, led by Dr. Peter Bermel, required wafer space, as well as the layout for their
Electromigration structures to be created by one of the SoCET students. Their structures will be
fabricated and returned to the research group in approximately a year. Without the SoCET’s
contribution, the progression of their study might have been delayed, and could have potentially
increase the project’s expenses.

Human Resources

Once a student has expressed an interest in joining the SoCET team, they are sent a questionnaire that
collects their relevant experience and interests. During a team leads meeting, the student is assigned a
project based on the available set of beneficial projects, their skillset, and the hours per week & number
of semesters they’re interested in committing to SoCET work. The students would be asked to go
through tutorials applicable to the subteam they joined. Students report to their team leads every week
and their participation was typically linearly related to the number of SoCET credit hours they were
registered during the semester. This would range from 1 to 3 credit hours commitment per semester
which is the equivalent to 3 to 9 hours of SoCET work per week.

The skills which students hone during their time involved with SoCET allows for their swift entry into the
SoC/VLSI industry and research. We were able to determine the employment status of 47 former SoCET
members and found 27 are engaged in SoC/VLSI related work, 14 are in software engineering positions,
and 6 are in other kinds of engineering positions. Employers of those in SoC/VLSI related positions
include Intel (7), IBM (2), Broadcom (2), Apple (2), Bosch Australia, Cadence, Johns Hopkins Applied
Physics Lab, Lenovo / Motorola Mobility, Micron, NXP Semiconductor, Nokia, Northrop-Grumman,
Qualcomm, Shure Inc., and Texas instruments.

ASSURE Final Report Task Number: 2.5 August 3, 2020

58

Infrastructure / Institutional Resources

The design flow and build scripts we have developed have been used as examples / skeleton files by
other Purdue Research teams. This ranges from helping reduce the time required to place-and-route a
large design to helping fabricate analog devices on MIT Lincoln Lab’s 90nm PDK. Our documentation and
scripts can guide other research teams to achieve the following tasks:

o Logic Synthesis
o Mapped Functional Verification
o Logic Equivalence Check (LEC)
o Place and Route (PnR)
o Static Timing Analysis
o Post-PnR Functional Verification
o IR Drop and Power Analysis
o Importing a GDS Stream into Virtuoso

o Design Rule Check (DRC)
o Layout Vs. Schematic (LVS)
o Parasitic Extraction (PEX)
o Automatic Test Pattern Generation

(ATPG)
o Generating Functional Test Vectors
o Compiling C code (with ML optimizations)

into the RISC-V ISA equivalent
o FPGA emulation

Infrastructure / Information Resources

The AFTx05 chip is available to download at https://github.com/Purdue-SoCET/AFTx05. This repository
includes the design flow scripts required to rebuild our SoC from its RTL to its place-and-routed layout.
Additionally, users that contact MIT Lincoln Labs for the archived February 2020 version of the PDK will
be able to run the scripts, with minimal modification and no errors.

Furthermore, the following tutorials were designed to familiarize incoming students with the software
tools they’ll be using by practicing with a small scale example of what their assigned task will
encompass. To request a copy of these materials, please email John M. Martinuk (jmartinu@purdue.edu
).

Intro to Physical Design: Instructions for making an inverter using the MITLL PDK in Cadence
Virtuoso and performing with DRC and LVS checks with Mentor Graphic Calibre.

Intro to Analog Design: Practice with small signal analysis on amplifier & Op Amp designs.

Intro to PCB: Tutorial on the mechanics of creating PCB layout using KiCAD.

Intro to Digital Design: An introduction to combinational and sequential circuit design described
with systemVerilog, as well as the discrepancies between source and mapped simulations.

Intro to Design Flow: A guide and explanation for the scripts the team uses for synthesis, place-
and-route, simulation, and verification of a flex counter.

ASSURE Final Report Task Number: 2.5 August 3, 2020

59

Intro to UVM: Guide for a student creating their first UVM environment with aggregated
information from Mentor Graphic’s Verification Academy and ChipVerify to provide sufficient
background information.

Technology Transfer

All of the open-source systemVerilog files and have been published on github
(https://github.com/Purdue-SoCET/AFTx05) to the world under an apache 2.0 license. We are
transferring the repository into the hands of academia and NSWC Crane to use as a quick, easy to
modify template for projects which require a RISC-V SoC. At the moment our architecture, particularly
the SparCE architecture, is being used to implement a value-similarity optimization with one of Dr.
Anand Raghunathan’s research groups.

What makes this publication unique to other open-source RISC-V builds is the inclusion of our design
flow scripts. Permission has been obtained from Cadence Design Systems to include scripts for RTL
simulation, synthesis, place-and-route, ATPG, and LEC. Additionally, we have made arrangements with
MIT Lincoln Labs to archive the PDK used to tapeout AFTx05. This way anyone new to using EDA tools
will be able to run the scripts, with minimal modification and no errors, to rebuild our SoC from its RTL
to it’s signed off layout.

The design flow scripts which were published with Cadence Design Systems’ permission and will be
transferred to users new to using EDA tools and/ or MIT Lincoln Lab’s PDK. In order for the script to be
useful, users will still need a Cadence license and contact MIT LL for the December 2019 revision of the
PDK (with the February 2020 IO pad files). Future users would only be able to tapeout with the latest
PDK, but if they get access to the archived version mentioned, the design flow scripts in the git
repository would provide people design flow scripts which require minimal debugging.

Once the chips for the AFTx05 SoC have been fabricated, 10 unpacked dies will be transferred to Dr.
Bermel’s research team. The pads in the middle of the die will be probed with high current densities to
be driven through the 80 total electromigration structures and observed with a thermal microscope to
derive a method for measuring circuit lifetime like an odometer.

This technology is also being used with Concertal Systems. An IntelliConX compatible RISC-V was
published to their web platform for free use to reduce the cost of Concertal System on Chips which
require a processor; the other available core was from ARM and required a license. Additionally the
AFTx05 processor is serving as the core for a brushless motor controller proof of concept to highlight the
efficiency and mobility of Muz Motion’s novel motors.

ASSURE Final Report Task Number: 2.5 August 3, 2020

60

5. Changes / Problems
The turnaround time for fabrication turned out to be approximately a year. While the 2nd SoC was
successfully taped out, the batch of chips will not be delivered for another 6 - 12 months. This prevented
the project from achieving milestones 13 (Hardware testbed, package dies for second SoC) and 14
(Functional test 2nd SoC, deliver devices for environmental testing to Crane and other Purdue teams) by
the end of July 2020. However, this does not mean the milestones have been abandoned; they will be
fulfilled when the chips are delivered

Additionally, the original November 2019 tapeout was moved to February 2020 when it was discovered
that the spice models for the standard cells were inaccurate; the paths through the cells were about
10% faster than what the spice models were simulating.

The FPU and interrupt handler were postponed for a few semesters until a more experienced team of
students (still undergraduates) could be assigned to the task. Development was resumed in Spring 2020,
and the module was integrated with the reset of the design, as well as signed off by our UVM team in
Summer 2020.

The on-chip “RAM” is implemented with flip-flops instead of actual RAM cells. This work around was
used since MIT LL cells, compatible with a memory compiler, were not ready in time for the tapeout
dates.

The 1st SoC consisted of mostly buffer cells (over 80%). This was due to a maximum wire length
restriction that was put in place to avoid tungsten via corrosion. The 2nd SoC did not have such a large
amount of buffer cells. This was thanks to MIT Lincoln Lab refining their process to accommodate larger,
digital designs.

6. Special Requirements
In order for the design flow scripts, within https://github.com/Purdue-SoCET/AFTx05_Public, to work
properly, the following EDA software and PDK releases must be used:

● Cadence Incisive 15.2
● Cadence Genus 18.1
● Cadence Innovus 18.1
● Cadence Conformal 18.1
● Cadence Modus 18.1
● MIT Lincoln Labs 90nm FDSOI PDK - December 2019:

○ MITLL90_STDLIB_8T (2019.12.20)
○ MITLL90_IOPads_5_1_1 (2020.01.27)
○ Technical Contact: Pascale Gouker (pgouker@ll.mit.edu)

ASSURE Final Report Task Number: 2.5 August 3, 2020

61

7. References
[1] S. Sen, S. Jain, S. Venkataramani and A. Raghunathan, "SparCE: Sparsity Aware General-Purpose
Core Extensions to Accelerate Deep Neural Networks," in IEEE Transactions on Computers, vol. 68, no. 6,
pp. 912-925, 1 June 2019, doi: 10.1109/TC.2018.2879434.

[2] S. Das and J. Appenzeller, "WSe2 field effect transistors with enhanced ambipolar
characteristics," Applied Physics Letters 103, 103501-1-5 (2013).

[3] C. Cummings, “Simulation and Synthesis Techniques for Asynchronous FIFO Design,” Sunburst
Design, Provo, UT, USA, 2002.

[4] JTAG Programmer Overview for Hercules-Based Microcontrollers, Texas Instruments, Dallas, TX,
United States, Nov. 2015, Accessed on: September, 4th, 2019. [Online].
Available: https://www.ti.com/lit/an/spna230/spna230.pdf

[5] J. Covey and M. Johnson, "System-on-a-Chip Design as a Platform for Teaching Design and Design
Flow Integration," in GLSVLSI '19: Proceedings of the 2019 on Great Lakes Symposium on VLSI, GLSVLSI
2019, Tysons Corner, VA, USA, May 9-11, 2019, pp. 249–253.

