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1. Accomplishments 

1.1 Task goals 
This project aimed to achieve the following 1) Prepare students with experience in SoC design and as 
potential recruits for NSWC Crane. 2) Install and test a 90nm SOI design flow to enable design and 
fabrication. 3) Tapeout at least two SoC designs to be sent for fabrication. 4) Test both designs at Purdue 
and Crane NSWC. 5) Release the open-source System Verilog code for a RISC-V based SoC to be made 
available for use by Crane NSWC and the broader academic community. 

1.2 Major activities  

Summary 
From January 2018 through July 2020, the SoCET Team has accomplished the following. In August 2018, 
the team successfully taped out the AFTx04 System-On-Chip, and the fabricated chips were tested in 
Fall 2019. A mico-controller architecture optimized for machine learning, SparCE1 [1], was 
implemented to take advantage of matrix convolutions which contain a fair amount of zero entries and 
was included in the SoCET team’s second tapeout. Non-Symmetric, CMOS Implemented Polymorphic 
logic gates, based off of Dr. Appenzeller’s proposed ASSURE task 1.1, were created to demonstrate the 
ability to camouflage a gate’s functionality from attempts to reverse engineer a gate level netlist. 
Layouts for Electromigration Test Structures, designed by Dr. Peter Bermel’s research team, were 
implemented and included in the SoCET Team’s second tapeout. In February 2020, AFTx05 was taped 
out; however, the fabricated chips will not be delivered until Spring 2021. A JTAG Interface was made to 
improve the time required to write a program into SRAM, as well the debugging features our SoC offers; 
it will be available in AFTx06. A Phase-Locked Loop was designed to eliminate the need for an external 
clock, so that the next, MIT Lincoln labs fabricated, SoC will operate at a higher clock frequency. A 
Platform-Level Interrupt Controller was created to offer interrupt functionality as a step towards 
maturing the feature set of the next chip iteration, AFTx06.  

 
1 S. Sen, S. Jain, S. Venkataramani and A. Raghunathan, "SparCE: Sparsity Aware General-Purpose Core Extensions 
to Accelerate Deep Neural Networks," in IEEE Transactions on Computers, vol. 68, no. 6, pp. 912-925, 1 June 2019, 
doi: 10.1109/TC.2018.2879434. 
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AFTx04 (1st SoC) August 2018 Tapeout 
Figure 1: Top level Diagram of AFTx04 (1st SoC) 

 

The diagram details the architecture of the AFTx04, the first chip which the team taped out in August 
2018, using the MIT Lincoln Labs 90nm FDSOI Process Design Kit. The fabricated chips were delivered in 
September 2019 and were functionally verified at NSWC Crane. This chip iteration included the 
replacement of a previously used ARM M0 core in favor of a RISC-V created by SoCET members. 
Students installed and wrote PDK compatible design flow scripts to create the layout for a RISC-V based 
System-on-Chip. Once fabricated the chips were sent to NSWC Crane for functional and environmental 
testing.  

Features of AFTx04: 

o AMBA 3.0 AHB-lite Bus 
o Flip-Flop based on-chip SRAM (512 bytes)  
o RISC-V processor (1st AHB Master)  

o RV32I Instruction Set Architecture 
o Pass Through Cache 
o 2 stage Pipeline 

o UART debugger (2nd AHB Master) 
o AHB – APB Bridge 
o 8 pin GPIO 
o 32kHz Ring Oscillator  
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SparCE Machine Learning Architecture 
SpareCE is an on-chip machine learning architecture that utilizes sparsity in convolution arithmetic to 
allow extraneous instructions to be skipped. The architecture has been designed to improve both the 
speed and power consumption of this common machine learning calculation. Students Vadim Nikiforov 
and Chan Weng Yan designed the module as it was described in the paper SparCE: Sparsity Aware 
General-Purpose Core Extensions to Accelerate Deep Neural Networks2[1], with the intention of 
demonstrating the capabilities of the architecture on an ASIC implementation.  

Possible applications include the following: 

● Fault detection in mechanical devices through accelerometer data 
● Object detection using low resolution IR camera data 
● Command recognition via microphone input 

Figure 2: SparCE Block DIagram 

 

 

  

 
2 S. Sen, S. Jain, S. Venkataramani and A. Raghunathan, "SparCE: Sparsity Aware General-Purpose Core Extensions 
to Accelerate Deep Neural Networks," in IEEE Transactions on Computers, vol. 68, no. 6, pp. 912-925, 1 June 2019, 
doi: 10.1109/TC.2018.2879434. 
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Figure 3: SparCE Design Architecture 

 

The design architecture of the SparCE module is shown in the figure above. The blocks within the dotted 
boundary illustrate the interaction between functional blocks. Signals outside the boundary are inputs 
from and outputs to the rest of the pipeline.  

● The Sparsity Register File (SpRF) is used to dynamically track which registers in the processor’s 
register file contain zero values. The SpRF contains one entry corresponding to each register in 
the register file.  

● The Sparce Value Checker (SVC) checks if the value is zero and updates the SpRF 
correspondingly, when an instruction that writes to a register completes,  

● The SASA table is a cache-like block with associative memory structure which stores the 
information required to skip a region. Each entry contains the PC of the instruction prior to the 
skippable region, a field which stores the condition for the region to be skippable, and the 
number of instructions that can be skipped. 

● The Pre-identify and Skip Redundancy Uni (PSRU) uses the SASA table to identify and skip 
redundant instruction regions. For each instruction, we check if its PC contains an entry in the 
SASA table. An entry in the SASA table indicates that the instruction following the current 
instruction is the start of a potentially skippable region. In this case, the PSRU checks the SpRF to 
identify if the registers indicated in the SASA table entry are currently zero. If so, it increments 
the PC to the end of the redundant instruction sequence, thereby skipping instructions. If not, 
the pipeline proceeds to execute instructions in program order. 

● The Control Flow Instruction Detector (CFID) decodes the instruction in the decode stage rather 
than waiting for the instruction to be decoded in the execute stage. This allows control flow 
instructions to have higher precedence than skipping. 
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Non-symmetric CMOS Implementation of Polymorphic Logic 
In ASSURE Task 1.1: TMD FETs for secure circuits through polymorphic logic gates, Dr. Jeorg Appenzeller 
proposed the use of TMD FETS3[2] to implement compact polymorphic logic cells as a solution to protect 
intellectual property from counterfeit and trojan injections. The MIT-LL 90nm FDSOI available for this 
project does not support fabrication of TMD FETS without some modification of the fabrication process, 
so an alternative approach was taken.  Intrigued by the idea of polymorphic gates, SoCET students Isaiah 
Grace, John Martinuk, and Brian Graves created a CMOS, non-symmetric implementation of Dr. 
Appenzeller’s polymorphic logic concept. A gate was made to function as a NAND gate or a NOR gate, 
depending on the voltages applied to the power rails. Another gate was created that can behave as an 
XOR gate or as a Buffer. 

Specifications for the Polymorphic NAND/NOR Gate: 

o Power rails of the gate, Vxx and Vyy, operate at 0V and 1.2V  
o Inputs pins, A and B, have a range of 0V - 1.2V  
o Output pin X will has a range of 0V - 1.2V 
o When Vxx is 1.2V and Vyy is 0V, the gate takes inputs A and B and yields a NAND output, X 
o When Vxx is 0V and Vyy is 1.2V, the gate takes inputs A and B and yields a NOR output, X 

 

Figure 4: Polymorphic NAND/NOR Schematic 

                    

 
3 S. Das and J. Appenzeller, "WSe2 field effect transistors with enhanced ambipolar characteristics," Applied 
Physics Letters 103, 103501-1-5 (2013). 
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Specifications for the Polymorphic XOR/BUF Gate: 

o Power rails of the gate, Vx and Vy, operate in a range of 0V - 1.2V.    
o Inputs pins, A and B, have a range of 0V - 1.2V.  
o Output pin X has a range of 0V - 1.2V.  
o When Vx is at 1.2V and Vy is at 0V, the gate takes inputs A and B and yields an XOR output.  
o When Vx is at 0V and Vy is at 1.2V, the gate acts as a buffer. 

 

Figure 5: Polymorphic XOR/BUF Schematic 
 

 

These cells were used to create a 32-bit CRC module with a configurable polynomial. This 
implementation was chosen to showcase the polymorphic cells’ ability to camouflage the CRC 
polynomial being used. The APB slave interface can also provide inputs, and read outputs, which go to/ 
come from a single NAND/NOR cell or a single XOR/BUF cell to verify the cells’ functionality in a small 
scale digital design. 
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Figure 6: Top Level Diagram of Polymorphic CRC Module (APB Accessible)  

 
 

Additionally, a test structure which only interfaces with IO pads to independently test the functionality 
of a single fabricated NAND/NOR gate, as well as an XOR/BUF gate was developed. 

Figure 7: Diagram of Polymorphic Standalone Test Structure (IO Pad Accessible)  
 

 



ASSURE Final Report Task Number: 2.5  August 3, 2020 
 

8 
 

Layout for Electromigration Test Structures 
The layouts for the electromigration test structures described in ASSURE Task 2.2 were implemented 
based on specifications derived by Dr. Bermel’s group. The structures are currently in the process of 
being fabricated with AFTx05. Electromigration negatively impacts timing and could potentially create 
an open circuit as the cross-section area of the wire decreases over long periods of current being applied 
to the metal. Dr. Bermel’s team is investigating methods for measuring electromigration with the use of 
voids and reservoirs: 

Figure 8: Example of an Electromigration Test Structure 

 

The ions from the reservoir will drift into, and gradually fill, the adjacent voids which will be thermally 
imaged with a microscope. In order for these devices to be visible to the microscope, the test structures 
were placed near the top surface of the upper layers of AFTx05 SoC, without any metal layers 
obstructing the view of reservoirs and voids.  

The layout requirements for these electromigration test structures were the following: 

o Ensure high currents could be delivered to the test structures. 
o Ensure the test structures could be imaged with use of a microscope. 
o Create the layout for a set of 10 electromigration test structures, with a minimum of 4 sets. 

placed in the final chip layout (40 total structures). 
o Ensure that the inclusion of these test structures didn’t affect the rest of the AFTx05 design.         
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AFTx05 (2nd SoC) February 2020 Tapeout 
Figure 9: Diagram of AFTx05 

 

AFTx05 is SoCET’s 5th chip iteration and was taped out on February 18th, 2020. It was the second chip 
fabricated with MIT Lincoln Labs’ 90nm FDSOI design kit and significantly expanded the scope, as well as 
the feature set, of AFTx04. AFTx05 is an SoC based around a RISC-V single-core processor supporting 
RV32I Spec. v.2.1.  

Between AFTx04 and AFTx05 the following features we added to the design: 

○ Sparsity-exploiting processor optimizations targeted at machine learning workloads 
○ Custom Electromigration test structures 
○ Polymorphic Logic Test Structure (IO accessible) and Polymorphic CRC Module (APB Accessible) 
○ Pulse Width Modulation Module 
○ Timer Module 
○ External SRAM Interface 
○ SCAN Flip-Flops & ATE Interface 

Moreover, the RTL source files used in the design, as well as the design flow scripts used with them, 
have been published to the public github repository: https://github.com/Purdue-SoCET/AFTx05_Public . 
The files are open-source and free to use by the larger academic community and NSWC Crane.   
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JTAG Interface 
JTAG is an extensible serial standard used for board-level IC testing which will be available for AFTx06, 
the next chip iteration. Common extensions include support for device programming, memory 
inspection and software debugging, all of which are found on most commercial microcontrollers. The 
initial implementation of JTAG for SoCET included the JTAG Test Access Port (TAP), the mandatory 
instructions and a subset of optional instructions from the IEEE 1149.1 standard, and a custom extension 
to interact with the AHB-Lite bus. The JTAG module is comprised of 3 major components: The 
aforementioned TAP, the AHB Access Point (AHB AP) created to allow interfacing with the on-chip AHB 
bus, and the Clock Domain Crossing (CDC) modules designed to transfer data between the JTAG clock 
domain and the SoC clock domain.  

Figure 10: Top Level Diagram of JTAG Interface 

 

 
The Clock Domain Crossing (CDC) portion consisted of 2 CDC FIFO modules based off of the Sunburst 
CDC design [3]4, and a simple synchronizer for capturing the error flag from the AHB AP. 

The AHB Access Point (AHB AP) uses a 37-bit instruction in order to perform read and write operations 
on the SoC bus. The instruction format was based off of a JTAG debugger design from Texas Instruments 
[4]. A normal read/write operation would require 2 such instructions: the first to set the target address, 
and the second to set the target data and start the bus request. To better accommodate device 
programming, an optimization allowing an auto-increment after each write was included, which 
removed the addressing step in consecutive read or write operations. 

 

 
4 C. Cummings, “Simulation and Synthesis Techniques for Asynchronous FIFO Design,” Sunburst   Design, Provo, UT, 
USA, 2002. 
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Phase-Locked Loop 
Students Evelyn Ware and Matthew Olinde aimed to produce a Phase-Locked Loop (PLL) design that can 
provide a steady output signal, with a tunable frequency, to be used as the SoC’s clock. The component 
will be available for the next chip fabricated with MIT Lincoln Labs. The output signal from a PLL 
provides a more stable signal than an oscillator since it is less susceptible to temperature changes and 
noise and can provide an output signal that has a much higher frequency than the reference signal.  

Figure 11: Phase-Locked Loop Flow and Connections 

 

 

A PLL has three main building blocks: 1) a phase detector which compares a reference signal to the 
output signal and determines phase difference, 2) a loop filter to filter out high frequencies from the 
phase detector output to provide a DC signal based on the phase difference, and 3) a voltage controlled 
oscillator which generates an output signal at a certain frequency based on the input voltage level from 
the loop filter.  With a frequency divider added to the circuit, nearly any output frequency can be 
generated using a single reference signal.   

The phase-locked loop will be supplied with a 32kHz reference signal that comes from a, SoCET 
designed, ring oscillator. The range of possible output frequencies was targeted for 10Mhz - 65Mhz.  
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Platform-Level Interrupt Controller 
The Platform-Level Interrupt Controller (PLIC) is a standard interrupt management protocol for 
managing timer, software, and external interrupt communications by reading a memory-mapped 
register. The interrupt controller will be included in AFTx06, the next chip that SoCET will tapeout. It 
should be noted that there are different priority levels for different user modes (U, S, H, M). Currently, 
M mode (or machine mode) is the only privilege level being configured because this is a mandatory 
privilege level for the hardware platform. The PLIC takes in hardware interrupt requests and serves 
them, along with an interrupt ID, to the processor. The Interrupt Controller is currently built for an 
address width of 32 bits and stores information in 32-bit registers.  

Figure 12: Top Level Communications Between PLIC, the External Modes, and the Processor 

 

The Interrupt request registers translate hardware interrupt requests into pulses to be sent to other 
components in the submodule. Register mask prevents masked interrupts from triggering an interrupt 
request. The interrupt enable register handles logic controlling which registers are masked; it handles 
status registers related to masking individual interrupts as well as interrupt masking when the disable 
low priority interrupts module is enabled. The interrupt pending and priority registers module handle 
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registers controlling interrupt priorities as well as the interrupt pending registers. The interrupt priority 
registers indicate the priority of each hardware interrupt channel and the interrupt pending registers 
indicate which registers are in the queue to be serviced. The interrupt priority resolve register handles 
sending the highest priority interrupt index to the status registers for the CPU to read.  
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1.3 Specific milestones and status  

 Milestone Status 

1 Acquire 90nm SOI design, and determine if 90nm SOI is likely to support 
polymorphic logic. 

Complete 

2 Complete RTL for the Interrupt Handler and Floating Point Unit. In Progress 

3 Familiarize team members with 90nm SOI design flow and create scripts 
capable of tapping out a small SOI test chip.  

Complete 

4 Preliminary layout of first SoC. Complete 

5 Functional verification of first SoC. Complete 

6 Tape-out 1st SoC. Complete 

7 Hardware testbed for 1st SoC. Complete 

8 Propose changes for 2nd SoC Complete 

9 Package dies for 1st SoC Complete 

10 Functional, environmental test of 1st SoC Complete 

11 Design revisions for 2nd SoC Complete 

12 Functional verification of second SoC Complete 

13 Tape-out 2nd SoC Complete 

14 Hardware testbed, package dies for 2nd SoC In Progress 

15 Functional, environmental test of test 2nd SoC; deliver devices to Crane and 
other Purdue teams. 

In Progress 

16 Release open-source RISC-V Processor (2nd SoC). Complete 
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1.4 Significant results 

Summary 
AFTx04 (1st SoC) August 2018 Tapeout: The SoC was successfully fabricated and tested at Crane; some 
of the chips had a short on the UART’s tx pin. The PCBs have been fabricated and delivered; however, 
their assembly has been delayed until Purdue lab procedures are updated to prevent the spread of 
COVID-19. 

SparCE Machine Learning Architecture:  The module was functionally verified and included on the 
AFTx05 tapeout with portions of the boot-up self test ensuring the skip table’s functionality on the 
fabricated chip. Our simulation based benchmark led us to believe that, for the average machine 
learning program, 20% of instructions were able to be skipped with the help of the architectural 
modifications. It is approximated that 20% of power consumption was saved with the use of SpareCE, 
but physical power analysis still needs to be conducted to verify this. 

Non-Symmetric, CMOS Implemented Polymorphic logic gates: The gates were PEX simulated and 
signed off to be included in the AFTx05 tapeout. Both the APB interface for the polymorphic 
configurable CRC module, as well as the standalone test structure were tapeout and will be functionally 
verified when the AFTx05 chips are delivered. 

Layouts for Electromigration Test Structures: 80 total test structures were placed on the taped out chip 
layout, and 10 unpacked dies will be delivered to Dr. Peter Bermel’s group for a total of 800 test 
structures to be used as their dataset. 

AFTx05 (2nd SoC) February 2020 Tapeout: The tapeout deadline was delayed when the foundry timing 
libraries for the standard cell’s spice models were about 10% inaccurate. The fabricated chips will not be 
delivered until Spring 2021, so testing and verification of the physical chip could not be conducted 
before the end of July 2020. However, when the chips are delivered, they will be tested with both 
functional and scan test vectors.   

JTAG Interface: The JTAG interface was not integrated on the AFTx05 SoC in time for the tapeout; 
however, it will be included in the team’s next chip iteration, AFTx06. Currently the module is in the 
process of getting signed off by the UVM team.   

Phase-Locked Loop: The layout has been PEX simulated and signed off; it will be included with the next 
chip that is fabricated with MIT Lincoln Labs’ PDK. Another round of DRC and LVS checks will have to be 
done when Lincoln Labs releases their next kit, and some components may require adjustments if the 
target clock frequency of the next SoC changes from 50Mhz.  

A Platform-Level Interrupt Controller: The module will be included in the team’s next chip iteration and 
is currently in the process of getting signed off by the UVM team. Additionally, the software libraries, 
which facilitate manipulation of the peripherals, will have to be updated to support the use of 
interrupts.  
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AFTx04 (1st SoC) Tapeout August 2018 Tapeout 
The project achieved a successful 1st tapeout of the AFTx04 SoC in August 2018. This was a simple design 
iteration, in terms of diverse peripherals; however, most of the digital design members pooled their 
efforts into the development of a single 50MHz 2-stage RISC-V core which follows the RV32I instruction 
and replaced a previously used ARM M0 processor. Additional component of the chip include the 
following peripherals: 

● UART debugger 
● 8 pin GPIO 
● 32kHz Ring oscillator 

AFTx04 Design Flow 
Figure 13 details the design flow used to tapeout AFTx04. While some of these steps are standard in 
most fabrication runs, it is important to note that our flow was built by first time users of EDA software 
and guided by Matt Sale’s team at NSWC Crane. Most undergraduate students never get the 
opportunity to practice anything beyond logic synthesis in their coursework, while the SoCET students 
were able to experience firsthand what it takes to turn RTL code into a signed off layout. 

Figure 13: Design Flow for AFTx04 

 

Typically, MIT Lincoln Labs fabricates small (relatively speaking) analog and mixed signal designs which 
do not require long wires greater than 100um in length. Consequently, when AFTx04 was going through 
design rule checks, a large sum of tungsten via corrosion violations were reported due the long wires 
present. The solution, for the time being, was to insert buffer cells which resulted in over 80% of the 
design consisting of buffer cells.  
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AFTx04 Fabrication, Packaging, and Testing 
The AFTx04 chips were delivered to Crane in September 2019. A sample of the set was used with an 
Advantest V93000 SoC tester to be verified with the same functional test vectors that were used to sign 
off the post place-and route netlist before tapeout. The majority of the chips yielded correct, expected 
outputs; however, there were a few which had a short on their UART’s tx pin. 

The following are the AFTx04 layout submitted to MIT Lincoln Labs (Figure 14), without metal fill 
showing, the fabricated, wire bonded die (Figure 15), and the packaged AFTx05 chip (Figure 16). 

           Figure 14: Submitted AFTx04 Layout                  Figure 15: Picture of Wire Bonded AFTx04 Die

 

Figure 16: Picture of Packaged AFTx05 Chip 
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PCB Bring-Up 
The PCB design for AFTx04 went through three revisions and the boards were delivered in June 2020. 
Figure 17 outlines the plans for the board that will connect AFTx04 to the outside world, as a general-
use RISC-V microcontroller. 

Figure 17: PCB Diagram 

 

Some important notes regarding the AFTx04 chip, related to the design of the PCB: 

● The GPIO pins are NOT bidirectional, so there are separate input GPIO and output GPIO pins. 

● Since the voltage supply of the AFTx04 chip is limited to 1.2V, it is necessary to level shift the 
voltage before interfacing with any other circuits since 1.2V is not a standard voltage level. 

● AFTx04 was designed with a 10MHz target clock, but it’s critical paths should allow up to 
50MHz.  

● The self-test procedure on AFTx04 will pass the voltage on the input GPIO to its corresponding 
output GPIO. 
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Figure 18 is a picture of one of the AFTx04 PCBs. The boards will be assembled and soldered, once 
Purdue lab space and procedures have been updated to prevent the spread of COVID-19. 

Figure 18: Picture of Delivered AFTx04 PCB 

 

The boards will have the following elements soldered to them within the next few months: 

○ Interface for Clock signal from a signal generator 
○ LED subcircuit for the output GPIO pins 
○ Switch subcircuit for reset, ring oscillator enable and input GPIO 
○ 1.2V to 3.3V level shifters for interfacing with other circuits (USB-UART, Led subcircuit) 
○ Interface for wall power supply 
○ Voltage regulators/ buck converters for voltage supplies 
○ USB-UART circuit for interfacing with computer 
○ ZIF (zero insertion force socket) for mounting chip 
○ Headers for isolating chip from peripheral circuits 
○ Reset button 
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SparCE Machine Learning Architecture 

Functional Verification of SparCE 
The RISC-V reference emulator used by the team does not contain our sparsity optimizations, so it was 
not possible to verify any new functionality that the sparsity optimizations offer over the baseline 
processor. However, the reference emulator was used to ensure that the processor functions identically 
as a regular RISC-V processor, when sparsity optimizations are not used. 

Functional verification was used to sign off the machine learning architecture. The following are the 
SparCE related self-test cases included in the ROM boot code to verify functionality in the fabricated 
SoC: 

Figure 19: Table of SparCE Functional Test Cases 

Test Case ID Test Description 

SparCE_Self_00 Basic test to ensure skipping occurs. 

SparCE_Self_01 Basic test to ensure that skipping does not occur when registers have not been 
initialized after reset. 

SparCE_Self_02 
Test to ensure that each range of skipping works for the chip. Since this test case 
is written in a way such that different skip ranges apply to the same PC, this will 
also test the SASA table's collision/replacement policy. 

SparCE_Self_03 
Test to ensure that the instruction before the SASA preceding PC will be executed. 
If the instruction modifies the condition register, it WILL affect the skipping 
conditions because the values are forwarded from the execute stage. 

SparCE_Self_04 
Test to ensure that the instruction at the SASA preceding PC will be executed. If 
the instruction modifies the condition register, it will NOT affect the skipping 
conditions because it cannot be forwarded from the fetch stage. 

SparCE_Self_05 
Test to ensure that control flow instructions which are taken at the preceding PC 
will have precedence over skipping. Includes test cases where jumps/branches 
and skips have the same destination. 

SparCE_Self_06 

Test to ensure that control flow instructions which are not taken at the preceding 
PC will have precedence over skipping. For example, if the branch is not taken, 
then it cannot skip either. Includes test cases where jumps/branches and skips 
have the same destination. 

SparCE_Self_07 Test to ensure that when SASA table is disabled, write to SASA table works but 
outputs are invalid. When the SASA table is enabled, the program skips normally. 
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SparCE_SASA_00 
This test loops through the SASA table to check that every entry is not valid after 
reset. It loops through the SASA table and attempts to fetch data from each index. 
The table should always output its data as invalid 

SparCE_SASA_01 

This test ensures that entries are loaded correctly to the SASA table and that 
reading loaded values function properly as well. It loops through every possible 
entry in the SASA table. Since these are consecutive tests, there should be no 
collisions, and every value should be readable immediately after writes. 

SparCE_SASA_02 

This test ensures that when a SASA entry has the same program counter that 
already exists in the SASA table, it will update the existing entry instead of writing 
to the other set. This should work regardless of associativity except for direct 
mapped configuration. 

SparCE_SASA_03 
This test ensures that when the SASA table reaches full capacity, it forces the 
original entry out of the table. This should work regardless of associativity except 
for a direct mapped configuration. 

SparCE_SASA_04 
This test ensures that when the SASA table reaches full capacity, it forces the LRU 
entry out of the table. This should work regardless of associativity except for a 
direct mapped configuration. 

SparCE_SASA_05 

This test ensures that when the SASA table is disabled, writes to the SASA table is 
still possible but outputs of the SASA table will be invalid. This test first disables 
the SASA table (by writing a non-zero value to the SASA configuration register at 
SASA_addr + 4) writes to the SASA table to full capacity and tries to read from the 
SASA table. Output should be invalid. 

SparCE_SASA_06 
This test ensures that when the SASA table is disabled, writes to the SASA table is 
still possible, re-enable the SASA table and outputs of the SASA table will still be 
valid.  

SparCE_SASA_07 

This test ensures that only PC <= 0xFFFC 0000 is allowed to skip. The current SASA 
table is designed for a 256kB instruction memory. Since we decided to include an 
external SRAM with 2MB, this feature prevents PC > 0xFFFC 0000 to cause 
skipping due to the LSB collision. 

SparCE_CFID_00 Basic test to ensure that control flow instructions (e.g. branch and jumps) are 
detected.  

SparCE_PSRU_00 Test to ensure that the PSRU does not tell the core to skip when SASA data is 
invalid.  

SparCE_PSRU_01 Test to ensure that the unit functions as intended for every combination of 
conditions and sparsity inputs.  
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SparCE_PSRU_02 Test to ensure that the unit correctly calculates the target address for every 
insts_to_skip value.  

SparCE_PSRU_03 Test to ensure that skipping is correctly suppressed when encountering a control 
flow instruction on the preceding_pc.  

SparCE_SpRF_00 Test to ensure that registers are correctly set to 0 (except for the 0 register). 

SparCE_SpRF_01 Test to ensure that writing to the registers functions as usual.  

SparCE_SpRF_02 Test to ensure that registers are not written to when the enable bit is not set.  

SparCE_SpRF_03 Test to ensure that the SpRF correctly reports sparse values from values that are 
being written in flight.  

SparCE_SVC_00 Basic test to ensure that the sparsity in a register is detected.  

 

 

Toolchain for Utilizing SparCE Architecture  

Figure 20: Compiler and Skip Table Generation Workflow 

 

These are the steps which are required to compile a RISC-V executable that includes the SASA Table: 

1. Compile the C source files into assembly source files using riscv64-unknown-elf-gcc 
2. Run each assembly source file through the compiler to find skippable regions (multiplication 

instructions’ addresses) 
a. The compiler tool first analyzes each assembly source to determine the location of the 

skip table 
b. Once the regions are determined, the tool adds macros to the assembly file for loading 

in the skip table 
3. Run the riscv64-unknown-elf-gcc compiler to produce an executable binary. When compiling to 

the executable, a linker file must be provided so the AFTx05 knows the entry point into the 
code. 
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In simulation, the sparsity optimizations were found to decrease the number of instructions performed 
and therefore power draw by 20% nominally across a variety of input data sets. Physical power analysis 
is required to verify this estimate. This indicates that the sparsity optimizations are functioning as 
expected. It is also estimated that the sparsity factor of the input data will increase performance 
exponentially. As such, the results suggest that 20% improvement can be expected on average, but 
upwards of 50-60% improvement can be achieved under certain circumstances. 

Non-symmetric CMOS Implementation of Polymorphic Logic 

Individual Cells and Standalone Test Structure (IO Accessible) 
The polymorphic cells were successfully included in the AFTx05 (2nd SoC) Tapeout. Both the polymorphic 
designs were verified with DRC & LVS checks and had their PEX netlists simulated to verify the cells’ 
timing characteristic. The layouts for the NAND/NOR and XOR/BUF gate are shown below.  

Figure 21: Layout of NAND/NOR gate 

 

Figure 22: Layout of XOR/BUF Gate 

 

Below are screenshots of the transient simulations which demonstrate correct functionality of both 
cells. The test cases are denoted at the top of the diagrams. 
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Figure 23: Transient simulation of NAND/NOR gate 

 

Figure 24: Transient simulation of NAND/NOR gate 

 

The independent test structure was incorporated in the 2nd SoC’s Tapeout. Below is a screenshot of the 
two cells within the AFTx05 layout which will functionally verify the design of the individual cells.  
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Figure 25:  Standalone Test Structure (IO Accessible) 

 
 

 

 

 

Polymorphic CRC Module (APB Accessible) 
The APB peripheral was successfully incorporated with the other APB interfaces in the AFTx05 tapeout. 
The following is the register map of the APB Slave interface for the 32-bit Polymorphic CRC module: 

Figure 26: APB Register Map for Polymorphic CRC module 
| ----------------------------------------------------- | 
|                 Base Address: 0x80030000              | 
| ----------------------------------------------------- | 
| Offset | Register name    | Read/Write | Reset value  | 
| ------ | ---------------- | ---------- | ------------ | 
| `0x00` | NAND_NOR_CONTROL | R/W        | `0x00000000` | 
| `0x04` | NAND_NOR_INPUT   | R/W        | `0x00000000` | 
| `0x08` | NAND_NOR_OUTPUT  | R          | `0x00000001` | 
| `0x0C` | XOR_BUF_CONTROL  | R/W        | `0x00000000` | 
| `0x10` | XOR_BUF_INPUT    | R/W        | `0x00000000` | 
| `0x14` | XOR_BUF_OUTPUT   | R          | `0x00000000` | 
| `0x18` | CRC_CONTROL      | R/W        | `0x00000000` | 
| `0x1C` | CRC_CONFIG       | R/W        | `0x00000000` | 
| `0x20` | CRC_STATUS       | R          | `0x00000000` | 
| `0x24` | CRC_INPUT        | R/W        | `0x00000000` | 
| `0x28` | CRC_OUTPUT       | R          | `0x00000000` | 
| ----------------------------------------------------- | 
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The following are some sample instructions for using this APB slave interface: 

1. write 0x4C11DB3 (decimal = 79764915) to CRC_CONFIG 
2. write 0x11122210 (decimal = 286401040) to CRC_INPUT 
3. write 0x2 to CRC_CONTROL 
4. write 0x42501202 (decimal = 1112543746) to CRC_INPUT 
5. write 0x1 to CRC_CONTROL 
6. keep reading CRC_STATUS until 0x01 is received (should take 32) 
7. write 0x24FCC0 (decimal = 2424000) to CRC_INPUT 
8. write 0x1 to CRC_CONTROL 
9. keep reading CRC_STATUS until 0x01 is received (should take 32) 
10. write 0x4222A65C (decimal = 1109567068) to CRC_INPUT 
11. write 0x1 to CRC_CONTROL 
12. keep reading CRC_STATUS until 0x01 is received (should take 32) 
13. write 0x0000 (decimal = 0000 ) to CRC_INPUT 
14. write 0x1 to CRC_CONTROL 
15. keep reading CRC_STATUS until 0x01 is received (should take 32) 
16. read CRC_OUTPUT (this is your checksum) it should be 0xDFBAF47C (decimal = 3753571452) 
17. Repeat steps 2 -12 
18. write 0xDFBAF47C (decimal = 3753571452 ) to CRC_INPUT 
19. write 0x1 to CRC_CONTROL 
20. keep reading CRC_STATUS until 0x01 is received (should take 32) 
21. read CRC_OUTPUT (this is your checksum) it should be 0x0000 (decimal = 000000) 

 

Layout for Electromigration Test Structures 
A set of ten different electromigration test structures were designed with variations in wire width, 
reservoir height, and void shape & depth.  

Figure 27: Top View of a Single Set of 10 Electromigration Test Structures 
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There were three approaches evaluated when determining how to probe the electromigration test 
structures.  Standard IO pads were first considered to deliver the current to the test structures; 
however, this would have severely limited the total number of test structures placed since each set of 
devices requires 20 pads. The second approach was to use the MPAD layer in the middle of the die as a 
pad to probe metal layer 5, as described in the 90nm FDSOI design kit manual. Unfortunately, The MPAD 
layer was unavailable for the wafer that our chips would be fabricated on. The final approach chosen 
was similar to the second, in that we would be using pads in the middle of the die to probe down to 
metal layer 5; however, the top layers MTK1 (Thick Metal), MRF1 (RF Metal), were used with vias going 
down to metal layer 5 (where the test structures reside). The white ‘X’ inside the square is the overglass 
cut.   

Figure 28: An IO Pad, MPAD Layer, and Probe Pad Used (Left to Right) 

 
 

Two of the devices will be utilized as control test structures which consist of normal wires (no voids or 
reservoirs), connected between two probe pads. One has a wire width of 5um and the other control 
structure is 2.5um in width. The following are screenshots of the non-control test structures (Note: In 
Figure 25, the test structures are the purple horizontal lines, and in the figures below the wires are 
shown vertically; this was done only for formatting purposes). 
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A portion of the test structures only had voids with the following depths ranging from 1um - 3um. 

         Figure 29: 2.5um-C1                           Figure 30: 5um-C2                               Figure 31: 5um-C3  
            (Void 1um Deep)                               (Void 2um Deep)                                  (Void 3um Deep)    
 

   
                             
 
 The following structures contained both rectangular voids and reservoirs. 
 
           Figure 32: 2.5um-CR1                           Figure 33: 5um-CR2                             Figure 34: 5um-CR3  
(Void 1um Deep w/ Reservoirs )          (Void 2um Deep w/ Reservoirs)      (Void 3um Deep w/ Reservoirs)  
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Two of the devices had triangular reservoirs and voids in a shape. 
 

               Figure 35: 5um-C2T                                          Figure 36: 5um-CR2T 
                  (Triangular Void 2um Deep)                            (Triangular Void 2um Deep w/ Reservoirs)  
 

  

 

A total of 80 electromigration test structures (8 sets) were able to be placed in the AFTx05 (shown in 
Figure 33). It is expected that 10 chips will be delivered to Dr. Bermel’s group for testing within 6 - 12 
months, for a sum of 800 test structures that will be used to build a dataset.  

Figure 37: The 8 Sets of Placed Electromigration Structures 



ASSURE Final Report Task Number: 2.5  August 3, 2020 
 

30 
 

AFTx05 (2nd SoC) February 2020 Tapeout 

Tapeout Submission 

Figure 38: AFTx05 Layout Submitted for Tapeout 

 

The team completed tapeout of the AFTx05 SoC in February 2020; however, the chips will not be 
delivered for an estimated 6 - 12 months. The tapeout deadline was initially set for November 2019; 
however, an inaccuracy in the timing characteristics for the standard cell’s spice models was discovered 
which resulted in a tapeout delay until MIT Lincoln Labs updated the spice models. Testing and 
verification of the physical chip could not be conducted before the end of July 2020. However when the 
chips are delivered they will be tested with both functional and scan test vectors at NSWC Crane.   

AFTx05 Verification and Design Flow 
In this design cycle, Universal Verification Methodology (UVM)  was pursued by the verification team, as 
suggested by Matt Sale from NSWC Crane. The AHB-APB Bridge, UAT debugger, as well as the GPIO were 
able to be signed off in time for the AFTx05 tapeout. In order to address the knowledge gap most of our 
verification members faced while trying to build their environments, a scaled down tutorial was made. 
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Figure 39: Design Flow used for AFTx05 

 

The design flow scripts were updated to be compatible with the December 2019 release of the MITLL 
90nm FDSOI PDK. The most significant change was the inclusion of the IO pad’s liberty files, which 
enabled the IO pad frame to be created during place and route; it was previously created in Cadence 
Virtuoso and treated as an analog macro during PnR. Additionally the AFTx05 mapped netlist required 
post-synthesis modifications to work with IO pads, otherwise 20mm, unconstrained wires would be 
placed and introduce unacceptable timing delays. The PDK compatible scripts have been published 
along with the RTL source code at: https://github.com/Purdue-SoCET/AFTx05_Public . 

Figure 40: An Example of a Single 20mm Long Wire (Highlighted in White) 
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Software Capabilities  
The scripts used to facilitate the compilation of C/ C++ files into programmable 32 bit words of 
instructions and data which will run on the RISC-V core and interact with AFTx05’s peripherals have 
been included in the published GitHub repository: https://github.com/Purdue-
SoCET/AFTx05_Public/SW-LIBS . Additionally, future users will be able to take advantage of the SparCE 
machine learning architecture and generate the necessary skip tables to decrease the instructions, as 
well as the power, required to execute their programs. These scripts which generate the skip tables are 
included in the same repository as the previously mentioned C/C++ compiler scripts. 

The software team created C libraries to facilitate a programmer's manipulation of the peripherals of 
AFTx05 with the following functions:  
 
GPIO Functions: 

● gpio_enable_input(unsigned int pins) - Sets the respective gpio 'pins' to be configured as inputs 
● gpio_read_input(unsigned int pins) - Returns the value on the gpio pins given by 'pins' 
● gpio_enable_output(unsigned int pins, unsigned int pin_outputs) - For the gpio 'pins', they are 

configured as outputs and the value is set to the corresponding 'pin_outputs' value. 
● gpio_set_output(unsigned int pins, unsigned int pin_outputs) - For the gpio 'pins', the value is 

set to the corresponding 'pin_outputs' value 

PWM Functions: 

● pwm_set_frequency(unsigned int channel, unsigned int frequency) - Sets the period and the 
duty cycle for the 'channel' based on the given 'frequency'. By default, this sets the duty cycle to 
be 50%. 

● pwm_set_period(unsigned int channel, unsigned int period) - Sets the 'period' for the 'channel'. 
● pwm_set_duty(unsigned int channel, unsigned int duty) - Sets the 'duty' for the 'channel'. 
● pwm_disable(unsigned int channel) - Disables the 'channel'. 
● pwm_enable(unsigned int channel) - Enables the 'channel'. 
● pwm_set_active_high(unsigned int channel) - Sets the active value to high for the 'channel'. 
● pwm_set_active_low(unsigned int channel) - Sets the active value to low for the 'channel'. 
● pwm_set_align_left(unsigned int channel) - Sets the active duty to be at the beginning of the 

period for the 'channel'. 
● pwm_set_align_center(unsigned int channel) - Sets the active duty to be in the middle of the 

period for the 'channel'. 

Timer Functions: 

● timer_enable() - Enables the timer module counter. 
● timer_disable() - Disables the timer module counter. 
● timer_set_output_action(unsigned int channel, unsigned int output_action) - Set the 

'output_action' for the specified 'channel'. 
● timer_set_input_capture_edge(unsigned int channel, unsigned int capture_edge) - Set the 

'capture_edge' for the specified 'channel'. 
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● timer_set_prescaler(unsigned int pre_div) - Set the prescaler ('pre_div') value for the timer 
clock 

● timer_set_output_compare(unsigned int channel, unsigned int output_action, unsigned int 
interrupt_enable, unsigned int value) - Set the specified 'channel' as an output compare with the 
given 'output_action', comparing the  'value', and setting the 'interrupt_enable' (1 or 0). 

● timer_set_input_capture(unsigned int channel, unsigned int capture_edge, unsigned int 
interrupt_enable) - Set the specified 'channel' as an input capture with the given 'capture_edge', 
and setting the 'interrupt_enable' (1 or 0). 

● timer_read_input_capture(unsigned int channel) - Returns the timer value for when the input 
was captured. 

● timer_clear_interrupt(unsigned int channel) - Clears the interrupt for the specified 'channel'. 
● timer_enable_cf(unsigned int channels) - Forces the comparison for the specified 'channels'. 
● timer_enable_tov(unsigned int channels) - Enables toggle on overflow for the specified 

'channels'.  
● timer_disable_tov(unsigned int channels) - Disables toggle on overflow for the specified 

'channels'.  
● timer_read_count() - Returns the current value of the timer. 

 

Poly CRC Functions: 

● crc_start() - Starts the CRC generator with the current register setup. 
● crc_reset() - Resets the CRC module. 
● crc_set_polynomial(unsigned int polynomial) - Set the polynomial for the CRC generator. 
● crc_set_input(unsigned int input) - Set the input for the CRC generator. 
● crc_ready() - Returns 1 if the CRC generator is done or ready to begin. 
● crc_output() - Returns the resulting value from the CRC generator. 
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How to Use AFTx05 
Once the processor has been powered on / reset the following boot-up code is executed: 

 

Figure 41: Boot-Up Flow Chart 

 

If a functional test of the chip is desired, a self-test can be run by applying a logic HIGH signal to GPIO pin 
0 and resetting the chip, either with the asynchronous reset pin or synchronously with the CORE_RESET 
UART command. If the test yields the correct, expected outputs, then the value of 0xAA will be output 
across the GPIO pins, with pin 7 as the most significant bit and pin 0 as the least significant. 

In order to run user code on AFTx05, the program must be written, through the UART, into either the 
on-chip SRAM (address range: 0x00008000 - 0x000083FF), or the external SRAM (address range: 
0x00008400 - 0x001F_FFFF). Once the program has been written, the UART must write, to address 
0x00000000, the location that the program counter should jump to: the first written instruction’s 
address. If the result of the program’s execution is not as expected, the UART can be used to debug and 
explore the memory, as well as the peripherals. 
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     JTAG Interface 
The JTAG module was not ready to be included in the AFTx05 tapeout; however, it will be an AHB bus 
master in the next chip iteration, AFTx06, to enable programming over the AHB bus. At a minimum, the 
current JTAG implementation requires at least 4 pins (preferably 5 to include the optional asynchronous 
reset) to operate successfully. Current testing has the JTAG running at about 10MHz, which allows for 
programming many times faster than the current M0 Debugger would permit. 

Presented below is a waveform demonstrating a successful AHB write. It writes the value 0x001F0400 to 
ADDR 0x0 (located in BOTTOMRAM, note endianness is flipped). Notice also that the JTAG sends the 
intended 0 → 1 to indicate a successful write. 

Figure 42: Simulation of JTAG Writing to BOTTOMRAM 

 

Finally, in Figure 43 one can observe that the JTAG read back that same data. In TDO, you see that it 
sends the leading 1, followed by 10 cycles of 0s, followed by a 1 (indicating that it's reading back the 
11th lowest bits of 0x001F0400). 

Currently a UVM environment Is being utilized to verify the functionality with the newly included JTAG 
interface. This module will be taped out in November 2020, if no foundry delays occur. 
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Figure 43: Simulation of JTAG Reading from BOTTOMRAM 
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Phase-Locked Loop 

Phase Frequency Detector 
The phase detector topology chosen was a phase-frequency detector.  It provides a wider lock frequency 
range over a phase-sensitive detector but requires the addition of a charge pump to output the correct 
voltage level. The PFD circuit is shown below.   

Figure 44: Phase Frequency Detector Circuit  

 

 

Charge Pump 
This design was finished, and a current source of ~1uA was achieved.  The following requirements were 
taken into consideration when designing the charge pump: 

● The current Source must be built first to drive the charge pump. This current must be (~1-10 uA) 
or lower. The current source must have a low current due to the nature of the closed loop 
transfer function.  A lower current used to drive the charge pump allows for smaller values used 
in the Loop Filter's components. 

● A switched circuit must be built (comparable to the one referenced), with the switches 
controlled by the “UP” and “DOWN” signals of the Phase Detector. 

● The currents from the current source and switch circuit must match almost exactly, any sort of 
mismatch can cause the charge pump to work incorrectly or not function at all. A mismatch in 
current sources between the UP and DOWN switches can cause phase error, so matching 
transistor sizes to keep drain currents equal is necessary. 

 

The following approach was taken to design the current source (The non-constant values on the 
equations to the right were chosen as shown on the circuit to the left): 
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Figure 45: Charge Pump Schematic  

 

The charge pump has various current mirrors present which made having the same threshold voltages 
for the transistors desirable. The ABBA|ABBA common centroid technique was implemented for this 
layout. The input pairs/current mirrors were split into equal parts and arranged as shown in Figure 39.  
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Figure 46: Charge Pump Layout  

 

 

Voltage Controller Oscillator 
The Voltage Controlled Oscillator is used to set the output frequency, as well as range of frequencies 
achievable by the PLL.  The design used was a current starved oscillator, which allows the frequency of 
the oscillator to be controlled using the Loop Filter’s output.  The design for the oscillator has various 
transistor sizes to provide the drain currents and parasitic capacitances required to set the delay of the 
circuit to specification.  This design establishes a drain current of ~5uA and a frequency of 10MHz.  The 
frequency gain, which is described as the change in frequency over the change in control voltage, was 
around 259.6MHz/V. 

Considerations taken while designing the VCO: 

● Wanted the output frequency to match the input frequency (10MHz) at a control voltage of 
~500mV.  This is to allow for tunable frequency in both directions. 
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● We also want a very high frequency gain, described as the change in frequency over the change 
in control voltage.  This should be anywhere near the magnitude of hundreds of MHz/V or 
GHz/V to allow a wide tuning range. 

The VCO design was guided by the following equations: 

 

The only variable required to solve for was the number of stages of inverters.  In order to achieve an 
output frequency of ~65MHz, a total of 43 stages was required, with no load capacitance between them. 

Figure 47: Voltage Controller Oscillator Schematic  
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The "frequency gain" of the VCO can be tested by applying a changing Vctrl input from 0-1.2V with a 
step size of 0.1V.  The output looks like the following: 

 

Figure 48: Frequency Vs. Time [ns] Demonstrating the Range of Stable Frequencies  

 

Figure 40 shows the frequency at 1.2V is ~250MHz.  The frequency at 0.4V is ~8.5MHz.  Using this we 
calculated the frequency gain of the VCO (Δf/ΔV). 

The layout for the VCO is very wide, but not very long.  It would be better to apply a common centroid 
technique here; however, with a total of ~166 transistors total (without splitting them), this would be a 
difficult task.  It becomes a challenge since the transistors are already at minimum sizing and couldn't be 
able to be split further. Consequently, the VCO was designed to be as compact as possible to minimize 
parasitics; however, the common centroid technique was not utilized for this component. 

  



ASSURE Final Report Task Number: 2.5  August 3, 2020 
 

42 
 

 

Figure 49: Voltage Controlled Oscillator Layout  

 

Loop Filter 
The Loop Filter was designed last and used to establish the stability of the closed loop transfer function 
and smooth out the output signal.  This was designed to be a 2nd order Loop Filter, with the first resistor 
and capacitor utilized to define the pole/zero for stability, and the 2nd capacitor to smooth the signal & 
reduce jitter.  The final values for these components are unrealistic in terms of size for a 32KHz -> 
10MHz application, but are reasonable for 2.1MHz -> 10MHz. 

When designing the loop filter, the following open loop transfer function was referred to: 

 

● Kvco: Frequency gain of the VCO.  This can be calculated as the change in frequency over the 
change in control voltage input into the VCO. 

● Icp: This is the magnitude of the current from the current source of the charge pump. 
● F(s): Transfer function of the Loop Filter. 
● M: Number of Frequency Division. 

While the Voltage Controlled Oscillator and Charge Pump can be built independently and optimized, the 
Loop Filter required to be tuned along with the final components of the PLL.  In order to break this down 
into a set of more specific values, the following requirements were outlined for the Loop Filter: 

 

● Zeta must be 0.45 < x < 1.4. 
● C1 is typically the largest but must range from ~10-400pF due to size constraints. 
● Natural Frequency can be set to <~1/20 of the reference frequency, and is typically 1MHz -> 

20MHz, which creates a problem with our 32KHz reference. 
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● R1 is set with the equation relating Zeta to R1 and should be less than ~20KHz. 
● C2 is a smoothing capacitor and should be C1/50 < C1 < C2/20 to increase stability, but limit 

jitter. 

These values are particularly large when dealing with a range from 32KHz input to 10MHz input, due to 
the nature of the first equation for the natural frequency.  Even though Icp should be low and Kvco 
large, the gap causes the 1st capacitor to be in the magnitude of nanoFarads, rather than 
picoFarads/femtoFarads which are more acceptable. 

Due to the size of the C1, the layout for the loop filter was done simultaneously with the final layout of 
the PLL in order to fit everything into a compact square. 

Full Implementation 
Figure 50: Schematic of Phase Locked Loop  

 

The Phase-Locked Loop will be included in the next chip fabricated with MIT Lincoln Labs; the full 
implementation in shown Figure 42.   

Comments about the design of the Phase-Locked Loop’s full implementation: 

● The transistor circuit after the PFD is the charge pump.   

● The loop filter capacitors are placed as 3 in parallel because they are separate in the layout, and 
does not cause the circuit to behave any differently. 

● The "decap" in the bottom left is a symbol to recognize the array of decoupling capacitors 
placed in the layout of the PLL. 

 
From an input reference frequency of 32kHz, the following signal was generated: 
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Figure 51: Waveforms for Vref, Non-Divided Output, and Final Output 

 

In green is the ~10MHz (8MHz) signal that was output by the Phase-Locked Loop.  The red is the input 
reference signal of 32kHz, and the purple is the frequency divided output signal to be input to the Phase 
Frequency Detector. As can be seen in these plots, the PLL produces a steady, nearly sinusoidal 
waveform, at much higher frequency than the reference signal.   

When developing the layout for the top level PLL, the design was made to be as square in shape and 
compact as possible.  In order to do this, C1 from the loop filter had to be split into 3 sections, and the 
rest of the PLL was placed in the middle of those sections. 

Figure 52: Layout of the Phase-Locked Loop 
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Lock Speed 
Lock speed can be determined by plotting the frequency of the output from the frequency divider and 
observing at what time the signal stably reaches the reference frequency.  This lock speed is slower with 
increase with parasitics, which is why simulations using the PEX netlist yields a slower lock speed than 
the ideal simulation.  To estimate the locking speed of the PLL, the following equation was used to 
calculate a locking speed of around a hundred microseconds. 

 

                           Figure 53: Ideal Simulation                                        Figure 54: Simulation with Parasitics  

 

The ideal simulation reaches ~32kHz in around 110us, and the parasitic simulation takes around 140us. 
Considering the target clock frequency is 20ns, the parasitic simulation’s lock speed was deemed 
acceptable. 

Jitter 
Jitter is a measurement of the variability for how close the output clk rises compared to the reference 
signal. To get an actual measure of jitter, the average was taken of the time between these rising edges. 
Below are the jitter outputs for the ideal and parasitic simulations respectively. 

                    Figure 55: Ideal Jitter Simulation                              Figure 56: Jitter Simulation with Parasitics  

 

The jitter for the ideal simulation was measured to be ~0.83ps and for the parasitic simulation, 
~37.91ps. While this seems like a significant difference; however, it is negligible when taking into 
consideration that the reference clock period is on the scale of tens of microseconds (106 times larger) 
and the target output period is 20ns. 



ASSURE Final Report Task Number: 2.5  August 3, 2020 
 

46 
 

Platform-Level Interrupt Controller 
The first revision of the PLIC was not functionally ready in time for the 1st Tapeout and development was 
put on hold until Spring 2020 when two students resumed its progression. This next revision is near 
completion in its integration with the rest of the SoC design and will be included in the next chip 
iteration, AFTx06. The following is a list of tasks for this project and their current statuses. 

  Figure 57: Table of PLIC Related Tasks and Corresponding Statuses 

Task Status 

Discovered prior documentation and code regarding prior 
interrupt integration. 

Complete 

Composed a complete RTL of Control unit within priv to 
better visualize the categories of interrupts and exceptions. 

Complete 

Composed starter test benches to test the priv unit within 
RISC-VBusiness. 

Complete 

Completed skeleton file for the external interrupt Assembly 
file. 

Complete 

Expanded the pending and status registers of core to allow 
external interrupts. 

Complete 

Modified the combinational logic within the 
priv_1_11_control.sv file to allow external interrupts to be 
registered into the status register. 

Complete 

Verified the full functionality of the Assembly external 
interrupt file. 

In progress; currently investigating 
uncertainties about the clear and swap 
signals. 

Combined the functionality of RISC-VBusiness with SoCET 
Public. 

Incomplete; integration with the rest of 
the RISC-V must be completed first.   

Integrated the interrupt_controller module to Top level Complete 

Modified the previous error test case Complete 

Created interface for the interrupt controller module Complete 

Modified Top Level file to be able to arbitrate the request to 
interrupt controller 

Complete 

Documented the detail of each test case  Complete 

Added extra test case to test the functionality under actual 
load 

In progress; creating additional write and 
read corner cases 
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1.5 Key outcomes 
1) Prepared students with experience in SoC design and as potential recruits for NSWC Crane.  

This project was able to provide 95 students, from Spring 2018 – Summer 2020, with VLSI and chip 
building experience. Two members were recruited by NSWC Crane, and require minimal time to bring 
up to speed. Additionally we were able to open the eyes of our undergraduates to aspects of SoC 
development that they would have otherwise missed while working on their bachelors. The following 
are examples of these aspects. Most undergraduate classes don’t offer detailed content and practice for 
working with EDA software; however, our design flow students get familiarized with these tools. It’s 
common that a computer engineer’s first job will be in UVM, and our verification students already 
possess the background knowledge and practice to build these environments. Not every student is able 
to take a compiler course; however students that join the software team are still able to gain experience 
working with the RISC-V toolchain. Most digital design courses offered at the undergraduate level are at 
the peripheral or processor scope, but working on the digital design team provides our students with 
experience working on a full scale SoC. Most undergraduate computer engineers do not get experience 
developing analog components which actually get fabricated, but our analog team offers the 
opportunity to build standard cells, ADCs, PLLs, and more to be included in a tapeout. We have 
bolstered our graduating students’ qualifications to secure employment in the VLSI field, as well as the 
expertise they have to offer the projects they join. We have sent them off as engineers equipped with 
applicable experience and familiar with the demands of today’s efforts to advance computational 
technologies. 

2) Installed and tested a 90nm SOI design flow to enable design and fabrication.  

Our team created design flow scripts and tutorials, to facilitate the design and fabrication of the AFTx04 
and AFTx05 chips. The capabilities/ content of these tools are listed below: 

● Logic Synthesis 
● Mapped Functional Verification 
● Logic Equivalence Check (LEC) 
● Place and Route (PnR) 
● Static Timing Analysis 
● Post-PnR Functional Verification 

● IR Drop and Power Analysis 
● Design Rule Check (DRC) 
● Layout Vs. Schematic (LVS) 
● Parasitic Extraction (PEX) 
● Automatic Test Pattern Generation (ATPG) 

Additionally polymorphic gates were implemented with MIT Lincoln Labs’ PDK. The characteristics of the 
FD-SOI technology, particularly when reverse biasing, allowed the gate’s logical function to be controlled 
by the polarity of the power rails. These gates were non-symmetric and CMOS based; however, another 
version of the PDK will be made to implement the symmetric cells using Schottky-barrier transistors.   
 
Evaluation of the September 2019 PDK revealed a couple of issues pertaining to the IO pads, which 
included a new bidirectional pad. The SPICE simulation of the bidirectional pad did not match the Verilog 
model provided. Moreover, signals going out from the core to the pad were inverted, while signals going 
from the pads to the core were not inverted. Both of these issues were resolved in the February 2020 
update to the kit. 
 
3) Taped out, fabricated, and tested 1st SoC design.  
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The AFTx04 SoC was taped out in August 2018 and the chips were delivered in September 2019. Some of 
the packaged chips were tested at NSWC Crane. Using functional test vectors with Crane’s Advantest 
V93000 SoC tester, the fabricated chips were able to be functionally verified. It’s important to note that 
a few of the chips that were put through the tester were reported to have a short on the UART’s tx pin.  

The AFTx04 chips will be mounted on PCBs and evaluated once the design is assembled. The PCB boards, 
and some of the components have already been delivered; however, the board cannot be assembled 
until lab space has been cleared with Purdue’s developing COVID-19 prevention policies. The board will 
be soldered together and evaluated within the next 5 months.  

This tapeout was able to provide our Spring 2019 members with the rare opportunity to create 
hardware verified digital and analog designs, as well as insight for the design flow steps required to 
fabricate an SoC which functions as intended. Moreover, the AFTx04 chip was a larger design than most 
which go through MIT Lincoln Labs. A large magnitude of DRC violations were discovered, due to the size 
of AFTx04, relating to tungsten via corrosion located on long wires with minimal connecting vias. The 
workaround used to meet the tapeout deadline was to insert buffers to break up these long wires, 
although this resulted in over 80% of the design consisting of buffer cells. This incentivized MIT Lincoln 
Labs to refine their process which increased their PDK’s maximum wire length from 100um to 800um.  

4) Taped out 2nd SoC design 

The AFTx05 SoC was originally planned to be taped out in November 2019; however, MIT LL discovered 
a ~10% inaccuracy in their hspice models’ timing characteristics. Consequently, the tapeout deadline 
was pushed to February 2020, which delayed our timeline for the distribution and evaluation of the 
fabricated SoC. While the physical hardware cannot be verified until the chips are delivered, it is 
worthwhile to note the additional verification measures implemented in this design compared to the 1st 
SoC. This iteration included some UVM signed off modules, scan chains with test patterns generated, 
and design reviews with engineers from both commercial and military teams such as Cisco Systems and 
NSWC Crane.  

The PCBs which will host the packaged chips have been developed and are expecting to be delivered 
within the next few months. However, the AFtx05 chips’ estimated delivery is sometime in Spring 2021. 
A portion of these packaged chips will go to NSWC Crane to be tested with their SoC tester, although 
this iteration of chips will be verified with both functional and scan test vectors. Ten of the unpackaged 
dies will be sent to Dr. Bermel’s electromigration research group to probe the 800 test structures with 
high density currents and study the aluminum/ titanium ion migration with their thermal microscope.  

This tapeout iteration provided our members with a new opportunity this time around: to center the 
focus of their curriculum required senior design projects to be SoCET based over the span of two 
semesters. Typically, the scope of projects which are feasible to finish in a semester are limited in terms 
of usefulness and quality. The students which have taken advantage of this opportunity were able to 
create the Phase Locked-Loop, the SparCE optimizations, the polymorphic gates, and the JTAG interface.   
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5) Released the open-source System Verilog code for a RISC-V based SoC to be made available for use 
by Crane NSWC and the broader academic community 

The AFTx05 chip is available to download at https://github.com/Purdue-SoCET/AFTx05_Public . The 
intention of its publication is to serve both as a template for users new to SoC development and as a 
quick, easy-to-modify build for researchers in need of a RISC-V SoC to use with their research. Our 
design is currently being used, by another Purdue research group, to implement a value-similarity 
optimization with similar benefits as the SparCE architecture. 

What makes this publication unique to other open-source RISC-V builds is the inclusion of design flow 
scripts. Permission has been obtained from Cadence Design Systems to include scripts for RTL 
simulation, synthesis, place-and-route, ATPG, and LEC. Additionally, we have made arrangements with 
MIT Lincoln Labs to archive the PDK used to tapeout AFTx05. This way anyone new to using EDA tools 
will be able to run the scripts, with minimal modification and no errors, to rebuild our SoC from its RTL 
to it’s Post Place and Route layout with ATPG.    

6) Collaborate with academic and industry teams’ research ventures. 

The SoCET team found opportunities to join efforts with Concertal Systems and Dr. Peter Bermel’s 
electromigration research group. These collaborations were initiated to both expand the scope of 
available projects to our members and provide knowledgeable students to facilitate the efforts of these 
outside teams.  

Most groups would be apprehensive to rely on the help of undergraduates with heavily funded projects, 
but our track record has demonstrated that our skilled members are able to make meaningful 
contributions. Our team was able to supply Dr. Bermel’s group with the layouts for their 
electromigration structures, and also included these layouts in the AFTx05 tapeout, eliminating the 
requirement for the group to seek and pay a foundry to fabricate their structures.  

Furthermore, our students have been exploring Concertal System’s tools as an alternate method for 
integration of IP blocks produced by the team. Concertal provides an additional avenue for open-source 
dissemination of work from the team and facilitates the re-use of our IP in other SoC designs. Concertal 
has helped us ensure that our IP is in a form which future users can easily repurpose for their own 
design’s requirements. We have worked with Concertal to create a prototype design, using open source 
IP from this project and Concertal tools, to create an SoC which will be demonstrated with brushless 
motor control applications. 

  



ASSURE Final Report Task Number: 2.5  August 3, 2020 
 

50 
 

2. Products 
GLSVLSI ‘19 Paper: System-on-a-Chip Design as a Platform for Teaching Design and Design Flow 
Integration [5]5 

This paper claims that most undergraduate VLSI curriculums are taught in unconnected pieces which 
complicate the creation of manageable, semester-long projects that reflect the microelectronic design 
experience. The solution explored is the System-on-a-Chip Extension Technologies (SoCET) group: an 
undergraduate design group modelled after industry, aiming to emphasize the integration and 
cooperation required across multiple disciplines in SoC development. This is a multi-semester project 
that gives undergraduates the rare opportunity to iteratively improve, prototype, fabricate, and test an 
SoC. Students on the team are divided into smaller groups which focus on specific SoC design tasks. 
These tasks are connected by a near industry grade design flow forcing students to address system and 
design flow integration issues. This framework enables students to approach engineering as an 
integrative process and learn the relationships between seemingly separate disciplines. 

 

 

  

 
5 J. Covey and M. Johnson, "System-on-a-Chip Design as a Platform for Teaching Design and Design Flow 
Integration," in GLSVLSI '19: Proceedings of the 2019 on Great Lakes Symposium on VLSI, GLSVLSI 2019, Tysons 
Corner, VA, USA, May 9-11, 2019, pp. 249–253. 
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3. Training and Professional Development 
Workforce development is one of this project’s core goals. Through SoCET, 95 students gained 
experience in VLSI & SoC design over the duration of ASSURE task 2.5. These students possess skill sets 
which will facilitate their transition into industry with minimal time required to be brought up to speed 
at their next place of work. These skill sets vary according to which of the five subteams a student has 
joined. 1) The digital design team writes the System Verilog source code that describes the hardware of 
the SoC. 2) The software team develops methods and code to test & demonstrate the functionality of 
the SoC design. 3) The physical & analog design team is responsible for the physical implementation of 
the digital and analog design. 4) The verification team develops the UVM (Universal Verification 
Methodology) framework for functionally verification. 5) The post silicon team handles the packaging, 
PCB test platform design, and fabricated SoC testing.  

 

The following is the list of students which have made significant, documented contributions to the team 
from Spring 2018 through Summer 2020, as well as a brief description of their accomplishments. 

 Student Name Term of Participation Summary of Accomplishments 

1 A J Gregorian Fall 2019 - Spring 2020 
● Compiler compatible with SparCE 

optimizations 

2 Aditya Chakraborty  Fall 2018 ● First revision of DAC 

3 Aeson Akhras Spring 2019 ● ALU 

4 Andrei Aldea  Fall 2018 ● PCB design for IC test beds 

5 Ankeet Annapur  Spring 2019 ● Assisted UVM team 

6 Atif Niyaz  Fall 2019 – Spring 2020 
● Compiler compatible with SparCE 

optimizations 

7 Ben Dyer  Spring 2020 ● Worked with Analog team 

8 Bharath Mukundan  Fall 2018 ● Assisted UVM team 

9 Blake Wilson  Summer 2018 – Fall 2019 

● Software team lead 
● ROM Creation Script 
● Build environments (simulation, syn, 

pnr) 

10 Bojun Huang  Fall 2018 
● GPIO test circuit (PCB) 
● USB to UART converter schematic 
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11 Brady Malcomson  Spring 2020 – Summer 2020 ● Currently being trained 

12 Brian Graves   Fall 2019 ● Polymorphic XOR/BUF gate 

13 Brandon Wu  Spring 2020 ● Assisted Compiler team 

14 Brian Helfrecht  Fall 2019 – Spring 2020 
●  Compiler compatible with SparCE 

optimizations 

15 Brian Ko  Spring 2020 – Summer 2020 ● FPGA emulation of AFTx05 

16 Chan Weng Yan  Spring 2019 – Fall 2019 
● NVDLA research 
● SparCE optimization 

17 
Chandan Bothra 

  Summer 2019 – Fall 2019 

● ATPG for static and dynamic Faults 
● Initial Concertal Work 

 

18 Chris Priebe  Fall 2019 – Summer 2020 

● Updated and reorganized 
documentation 

● Intro to SoCET student 
● Updating SPI RTL 

19 Chun Tao  Summer 2019 ● Studied OpAmp Design 

20 Cole Nelson  Fall 2019 – Summer 2020 
● Digital team lead 
● JTAG 

21 Cole Stecyk  Fall 2019 ● Updated UART UVM environment 

22 Dali Lai  Spring 2020 – Summer 2020 ● Updated Oscillator 

23 David Castley Spring 2018 
● Inverter Virtuoso/ Calibre tutorial 
● Ring Oscillator 

24 Dotun Akinnola  Summer 2019 ● Second revision of SPI RTL 

25 Enes Shaltami  Spring 2020 – Summer 2020 
● Interrupt Controller Integration 
● Fixed and integrated FPU 

26 Evan Miller  Spring 2019 ● Assisted UVM team 

27 Evelyn Ware  Fall 2019 – Spring 2020 ● Phase Locked Loop 

28 Fred Owens  Fall 2019 – Spring 2020 ● JTAG 

29 Geoff Cramer  Spring 2018 ● APB UVM driver and sequencer 

30 Haoming Duan  Summer 2020 ● AHB Bus Master redesign 

31 Himank Kothari  Spring 2018 ● Assisted PCB team 
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32 Hsin-Han Yu  Fall 2018 ● UVM scoreboard 

33 Huy Minh Tran  Fall 2019 – Spring 2020 

● Script for USB communication with 
FT232R chip 

● Intro to SoCET student 
● Updating SPI RTL 

34 Hyunoh Song  Fall 2019 ● Third revision of DAC 

35 Isaiah Grace  Spring 2019 – Fall 2019 

● APB slave interface for Poly CRC module 
● Studied Floorplanning 
● Learned formal verification 

36 Itsuki Sakamoto   Spring 2019 
● First revision of Timer UVM 

 

37 Jacob Covey  Fall 2018 - Summer 2020 

● Research Assistant 
● Coordinated overall operation of team 
● Physical design team lead 
● Second revision of DAC 
● Estimate for IR Analysis of AFTx04 
● GLSVLSI 2019 design flow paper 
● Wire Bond Specs for AFTx04 
● Scan Chain insertion 

38 Jake Stevens  Spring 2018 – Summer 2020 
● Digital Lead 
● One of two designers for RISCV core. 

39 James Zampa  Fall 2019 
● Machine learning benchmark 

environment 

40 Jing Yin See  Spring 2020 – Summer 2020 
● Intro to SoCET student 
● ADC 

41 Jingchen Lei  Fall 2018 
● APB UVM Scoreboard 
● Tutorial for account setup 

42 Joe Nasti  Spring 2018 – Fall 2018 
● UVM environment for the GPIO 
● First revision of FPU 

43 John Martinuk  Spring 2019 – Summer 2020 

● Design Flow lead 
● IR Drop Analysis (Static and Dynamic) 
● Power Analysis (Static and Dynamic) 
● Polymorphic NAND/NOR gate 
● Electromigration Test Structure Layout 
● Backend design flow for 2nd SoC tapeout 

44 Karthik Maiya  Fall 2019 – Spring 2020 ● JTAG 

45 Keshav Raheja  Fall 2018 ● Updated UVM APB sequences 
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46 Kevin Mi  Spring 2020 ● Assisted Analog Team 

47 Liangyu Chen  Fall 2018 ● Second revision of AFTx04 PCB 

48 Luis Haddock  Spring 2019 

● Updated self-test simulation 
environment 

● DAC 

49 Luis Materon  Spring 2019 ● Updated ISA self-test script 

50 Luke Kok  Spring 2019 -Summer 2020 ● First revision of SPI UVM environment 

51 Manik Singhal  Fall 2018 – Fall 2020 
● Verification team lead 
● Backend design flow for 1nd SoC tapeout 

52 Marco Garcia  Spring 2019 ● UART UVM environment 

53 Matt Olinde  Fall 2019 – Spring 2020 ● Phase Locked Loop 

54 Matthew Waldren  Spring 2020 – Summer 2020 

● Intro to SoCET student 
● AFTx04 PCB 
● AFTx05 PCB 

55 Michael Seaborg  Summer 2018 – Fall 2018 

● PCB Component Selection and Pinout for 
AFTx04 

● OpAmp Revision 1 
● Low Voltage Current Mirror Analysis 
● Simple Current Mirror Design & Analysis 

56 
Michel Brandao 

Raskin  Summer 2020 
● Floorplanning 
● ADC/APB module 

57 Minh Tran Fall 2019 ● USB communication with FT232R chip 

58 Naazneen Rana  Summer 2020 ● Currently being trained 

59 Nicholas Haythorn  Fall 2019 – Spring 2020 
●  Compiler compatible with SparCE 

optimizations 

60 Niraj Menon  Fall 2018 - Spring 2020 

● gcc compiler setup 
● SPIKE setup 
● Updated toolchain used for compiler 

environment 

61 Noelle Crane  Fall 2018 ● AFTx04 Self-Test Code and simulation 

62 Noureldin Hendy  Spring 2019 ● Assisted software team 

63 Oliver Krefta  Spring 2020 – Summer 2020 
● Intro to SoCET student 
● I2C 
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64 Patrick May  Spring 2018 ● Interrupt Controller 

65 Peyton Young  Spring 2020 ● Assisted Analog team 

66 Radhika Poddar Fall 2019  
● Updated synthesis script 
● Concertal IntelliConX compatible RISC-V 

67 Raghul Prakash  Spring 2020 
● PWM UVM environment 

 

68 Rajat Arora  Summer 2019 – Spring 2020 
● Timer UVM environment 

 

69 Ruoyi Chen  Spring 2020 
● Interrupt Controller Integration 
● Updating machine learning benchmark 

70 Ruth Zhong  Spring 2019 ● Third Revision of OpAmp 

71 Sanghoon Han  Spring 2020 ● FPGA emulation of AFTx05 

72 Sean Hsu  Spring 2020 ● Fixed and integrated FPU 

73 Sean Hwang  Spring 2020 ● FPGA emulation of AFTx05 

74 
Shaunak Robin 

Oswal  Spring 2020 – Summer 2020 
● Worked on Concertal Motor Driver 

Design 

75 Shivam Sharma  Spring 2018 ● AFTx03 PCB 

76 
Xianmeng (Simon) 

Zhang  Spring 2019 – Spring 2020 
● Updated compiler and SPIKE simulator 
● JTAG 

77 Stephanie Ro  Spring 2018 ● Updated Virtuoso Layout Tutorial 

78 Tucker Swan  Fall 2019 

● Machine Learning benchmark 
environment 

● Developed software libraries for AFTx05 

79 Vadim Nikiforov  Spring 2019 
● Digital Lead 
● SparCE optimization 

80 Victor Le  Spring 2020 
● Intro to SoCET student 
● I2C 

81 
Vivekanandan 

Kulumani Rajarajan  Fall 2019 – Spring 2020 
● Logical Equivalence Checking 
● Functional Verification of RISC-V core 

82 Wayne Chen  Spring 2020 ● DAC 

83 Xe Jin Chan  Spring 2018 ● Assisted UVM team 

84 Xinlue Liu  Spring 2020 – Summer 2020 ● Fixed and integrated the FPU 
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85 Yi Feng Wang  Spring 2018 ● AFTx03 Packaging 

86 Yiming Li  Spring 2020 – Summer 2020 ● Compressed Scan Chain Implementation 

87 Yiming Ma  Spring 2018 – Spring 2019 

● AFTx03 PCB 
● UVM APB driver, sequencer, 

comparator, predictor, and scoreboard 

88 Young Joo Moon  Summer 2020 ● Currently being trained 

89 Youtian Chen  Fall 2018 ● OpAmp revision 2 

90 Yupei Cao  Fall 2019 – Spring 2020 ● SPI UVM environment 

91 Yuqing Fan  Summer 2020 ● Currently being trained 

92 Zhao Xing Lim  Spring 2018 ● Assisted UVM team 

93 Zhengsen Fu  Summer 2020 
● FPU UVM environment 
● UVM tutorial 

94 Zhewen Pan  Fall 2019 ● AHB-APB bridge UVM environment 

95 Zihan Liu  Summer 2020 ● I2C UVM environment 
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4. Impacts 
Disciplinary Impacts 

A group of students sought to implement the SparCE optimization for machine learning acceleration, 
detailed in the paper [2], within the project’s 2nd SoC. They succeeded in their goal to get their 
implementation into the tapeout and when the chips are delivered, the power savings will be measured. 
This will provide hardware verification for the architecture proposed in the paper and further support its 
legitimacy. Previously the merit to the paper’s findings was purely simulation/ emulation based; 
however, the evaluation of the speed and power savings for the ASIC implementation shall demonstrate 
physical results. 

Another ASSURE group, led by Dr. Peter Bermel, required wafer space, as well as the layout for their 
Electromigration structures to be created by one of the SoCET students. Their structures will be 
fabricated and returned to the research group in approximately a year. Without the SoCET’s 
contribution, the progression of their study might have been delayed, and could have potentially 
increase the project’s expenses.   

 

Human Resources 

Once a student has expressed an interest in joining the SoCET team, they are sent a questionnaire that 
collects their relevant experience and interests. During a team leads meeting, the student is assigned a 
project based on the available set of beneficial projects, their skillset, and the hours per week & number 
of semesters they’re interested in committing to SoCET work. The students would be asked to go 
through tutorials applicable to the subteam they joined. Students report to their team leads every week 
and their participation was typically linearly related to the number of SoCET credit hours they were 
registered during the semester. This would range from 1 to 3 credit hours commitment per semester 
which is the equivalent to 3 to 9 hours of SoCET work per week.  

The skills which students hone during their time involved with SoCET allows for their swift entry into the 
SoC/VLSI industry and research. We were able to determine the employment status of 47 former SoCET 
members and found 27 are engaged in SoC/VLSI related work, 14 are in software engineering positions, 
and 6 are in other kinds of engineering positions. Employers of those in SoC/VLSI related positions 
include Intel (7), IBM (2), Broadcom (2), Apple (2), Bosch Australia, Cadence, Johns Hopkins Applied 
Physics Lab, Lenovo / Motorola Mobility, Micron, NXP Semiconductor, Nokia, Northrop-Grumman, 
Qualcomm, Shure Inc., and Texas instruments.  
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Infrastructure / Institutional Resources 

The design flow and build scripts we have developed have been used as examples / skeleton files by 
other Purdue Research teams. This ranges from helping reduce the time required to place-and-route a 
large design to helping fabricate analog devices on MIT Lincoln Lab’s 90nm PDK. Our documentation and 
scripts can guide other research teams to achieve the following tasks: 

o Logic Synthesis 
o Mapped Functional Verification 
o Logic Equivalence Check (LEC) 
o Place and Route (PnR) 
o Static Timing Analysis 
o Post-PnR Functional Verification 
o IR Drop and Power Analysis 
o Importing a GDS Stream into Virtuoso 

o Design Rule Check (DRC) 
o Layout Vs. Schematic (LVS) 
o Parasitic Extraction (PEX) 
o Automatic Test Pattern Generation 

(ATPG) 
o Generating Functional Test Vectors 
o Compiling C code (with ML optimizations) 

into the RISC-V ISA equivalent 
o FPGA emulation 

 

Infrastructure / Information Resources 

The AFTx05 chip is available to download at https://github.com/Purdue-SoCET/AFTx05. This repository 
includes the design flow scripts required to rebuild our SoC from its RTL to its place-and-routed layout. 
Additionally, users that contact MIT Lincoln Labs for the archived February 2020 version of the PDK will 
be able to run the scripts, with minimal modification and no errors.    

Furthermore, the following tutorials were designed to familiarize incoming students with the software 
tools they’ll be using by practicing with a small scale example of what their assigned task will 
encompass. To request a copy of these materials, please email John M. Martinuk (jmartinu@purdue.edu 
). 

Intro to Physical Design: Instructions for making an inverter using the MITLL PDK in Cadence 
Virtuoso and performing with DRC and LVS checks with Mentor Graphic Calibre.  

Intro to Analog Design: Practice with small signal analysis on amplifier & Op Amp designs. 

Intro to PCB: Tutorial on the mechanics of creating PCB layout using KiCAD. 

Intro to Digital Design: An introduction to combinational and sequential circuit design described 
with systemVerilog, as well as the discrepancies between source and mapped simulations.  

Intro to Design Flow: A guide and explanation for the scripts the team uses for synthesis, place-
and-route, simulation, and verification of a flex counter. 
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Intro to UVM: Guide for a student creating their first UVM environment with aggregated 
information from Mentor Graphic’s Verification Academy and ChipVerify to provide sufficient 
background information. 

 

Technology Transfer 

All of the open-source systemVerilog files and have been published on github 
(https://github.com/Purdue-SoCET/AFTx05) to the world under an apache 2.0 license. We are 
transferring the repository into the hands of academia and NSWC Crane to use as a quick, easy to 
modify template for projects which require a RISC-V SoC. At the moment our architecture, particularly 
the SparCE architecture, is being used to implement a value-similarity optimization with one of Dr. 
Anand Raghunathan’s research groups. 

What makes this publication unique to other open-source RISC-V builds is the inclusion of our design 
flow scripts. Permission has been obtained from Cadence Design Systems to include scripts for RTL 
simulation, synthesis, place-and-route, ATPG, and LEC. Additionally, we have made arrangements with 
MIT Lincoln Labs to archive the PDK used to tapeout AFTx05. This way anyone new to using EDA tools 
will be able to run the scripts, with minimal modification and no errors, to rebuild our SoC from its RTL 
to it’s signed off layout.  

The design flow scripts which were published with Cadence Design Systems’ permission and will be 
transferred to users new to using EDA tools and/ or MIT Lincoln Lab’s PDK. In order for the script to be 
useful, users will still need a Cadence license and contact MIT LL for the December 2019 revision of the 
PDK (with the February 2020 IO pad files). Future users would only be able to tapeout with the latest 
PDK, but if they get access to the archived version mentioned, the design flow scripts in the git 
repository would provide people design flow scripts which require minimal debugging. 

Once the chips for the AFTx05 SoC have been fabricated, 10 unpacked dies will be transferred to Dr. 
Bermel’s research team. The pads in the middle of the die will be probed with high current densities to 
be driven through the 80 total electromigration structures and observed with a thermal microscope to 
derive a method for measuring circuit lifetime like an odometer. 

This technology is also being used with Concertal Systems. An IntelliConX compatible RISC-V was 
published to their web platform for free use to reduce the cost of Concertal System on Chips which 
require a processor; the other available core was from ARM and required a license. Additionally the 
AFTx05 processor is serving as the core for a brushless motor controller proof of concept to highlight the 
efficiency and mobility of Muz Motion’s novel motors.  
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5. Changes / Problems  
The turnaround time for fabrication turned out to be approximately a year. While the 2nd SoC was 
successfully taped out, the batch of chips will not be delivered for another 6 - 12 months. This prevented 
the project from achieving milestones 13 (Hardware testbed, package dies for second SoC) and 14 
(Functional test 2nd SoC, deliver devices for environmental testing to Crane and other Purdue teams) by 
the end of July 2020. However, this does not mean the milestones have been abandoned; they will be 
fulfilled when the chips are delivered  

Additionally, the original November 2019 tapeout was moved to February 2020 when it was discovered 
that the spice models for the standard cells were inaccurate; the paths through the cells were about 
10% faster than what the spice models were simulating. 

The FPU and interrupt handler were postponed for a few semesters until a more experienced team of 
students (still undergraduates) could be assigned to the task. Development was resumed in Spring 2020, 
and the module was integrated with the reset of the design, as well as signed off by our UVM team in 
Summer 2020.  

The on-chip “RAM” is implemented with flip-flops instead of actual RAM cells. This work around was 
used since MIT LL cells, compatible with a memory compiler, were not ready in  time for the tapeout 
dates.  

The 1st SoC consisted of mostly buffer cells (over 80%). This was due to a maximum wire length 
restriction that was put in place to avoid tungsten via corrosion. The 2nd SoC did not have such a large 
amount of buffer cells. This was thanks to MIT Lincoln Lab refining their process to accommodate larger, 
digital designs. 

6. Special Requirements 
In order for the design flow scripts, within https://github.com/Purdue-SoCET/AFTx05_Public, to work 
properly, the following EDA software and PDK releases must be used: 

● Cadence Incisive 15.2 
● Cadence Genus  18.1 
● Cadence Innovus  18.1 
● Cadence Conformal 18.1 
● Cadence Modus  18.1 
● MIT Lincoln Labs 90nm FDSOI PDK - December 2019: 

○ MITLL90_STDLIB_8T (2019.12.20) 
○ MITLL90_IOPads_5_1_1 (2020.01.27) 
○ Technical Contact: Pascale Gouker (pgouker@ll.mit.edu) 
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