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� PZT sensors is effective to monitor the compressive strength gain of cement.
� RMSD and CC index exhibited qualitative trends of strength gain of cement.
� The RMSD is more efficient than CC index in estimating the compressive strength of cement paste.
� The EMI is a reliable NDT method to enable in-situ monitoring strength gain of cement.
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This paper aims to investigate the feasibility of using piezoelectric-based sensors to characterize the com-
pressive strength gain process of cement paste blended with supplementary cementitious materials. The
electromechanical impedance technique was used for in-situ monitoring of the strength gain of cement
pastes. Two different indices of root mean square deviation (RMSD) and correlation coefficient (CC) have
been used to establish a quantitative correlation between the conductance signature obtained by lead zir-
conate titanate (PZT) sensors and the compressive strength of cement paste. Both indices exhibited a rea-
sonable qualitative trend which was compatible with the trend of strength gain of cement pastes.
However, the RMSD was found to be more efficient than CC index in estimating the compressive strength
of cement paste over time. The experimental results indicate that EMI can be used as a nondestructive
testing (NDT) method to enable in-situ measurement of strength gain process of cement paste with sup-
plementary cementitious materials.

Published by Elsevier Ltd.
1. Introduction

Developing accurate non-destructive testing methods for deter-
mining the in-situ strength of concrete structures has attracted
great attention recently. Monitoring real-time strength develop-
ment of concrete is not only important to determine the in-situ
mechanical properties of the structure, but also to ensure the
safety of the structure itself during construction. For example, it
is important to determine the in-situ strength of concrete for
optimal traffic opening time since fast-paced construction sched-
ule exposes concrete pavements and/or structures undergoing
substantial loading conditions even at its early ages [1–3]. The cur-
rent methods for monitoring the strength gain process of concrete
are inefficient and expensive, often causing construction delays or
cost overruns [4]. Moreover, these methods require a tedious series
of laboratory experiments and cannot provide continuous informa-
tion about early age properties. For instance, maturity testing is the
common method to determine the optimal traffic opening time.
However, maturity testing requires extensive calibrations of matu-
rity meter for each different mix design and they are very ineffi-
cient and costly. As such, these tests including mechanical
measurement and chemical analysis are not suitable for monitor-
ing in-situ large-scale concrete structures, and the results are often
heavily influenced by the drying process and sample preparation
[5,6]. To overcome these challenges, previous literature has

http://crossmark.crossref.org/dialog/?doi=10.1016/j.conbuildmat.2018.03.165&domain=pdf
https://doi.org/10.1016/j.conbuildmat.2018.03.165
mailto:luna@purdue.edu
https://doi.org/10.1016/j.conbuildmat.2018.03.165
http://www.sciencedirect.com/science/journal/09500618
http://www.elsevier.com/locate/conbuildmat


Table 2
Compositions of cement pastes (by weight of cement).

Sample OPC FA SF W/B

REF 1 – – 0.3
FA 1 0.1 – 0.3
SF 1 – 0.1 0.3

Fig. 1. A PZT patch was bonded to the surface of cement paste.
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examined the possibility of using lead zirconate titanate (PZT)
based electromechanical impedance technique to characterize
the properties of cementitious materials. The EMI technique
involves bonding a PZT patch to the surface of the structure which
is then electrically excited using an impedance analyzer. The con-
tinuous measurement of the electromechanical impedance of the
PZT can provide the host structure properties. In fact, any changes
in the properties of the host structure are mainly reflected in the
measured electrical impedance of the PZT patch. The EMI tech-
nique employing PZT patches has been demonstrated successfully
for concrete structural health monitoring or damage detection [7–
19]. In recent years, the applicability of the EMI technique has been
extended to cementitious material property monitoring. The EMI
technique has proven as a promising method for strength develop-
ment monitoring and hydration monitoring of cementitious mate-
rials at early-age conditions, typically up to 7 days [20–24].
Moreover, the researchers are interested in developing innovative
EMI techniques and establishing evaluation indices to make the
monitoring more accurate and effective. For instance, Bahador
et al. developed a reusable PZT transducer and an embedded PZT
transducer to monitor the initial hydration of concrete [25]. Simi-
larly, Lim et al. monitored the early age hydration of concrete sam-
ples by EMI technique with a PZT patch and found that the
admittance signature can reveal the stiffness of the concrete
increases in the process of hardening [26]. Voutetaki et al. and Cha-
lioris et al. proposed a wireless impedance/admittance monitoring
system and explored its ability in damage detection of concrete
beam by the combined implementation of embedded smart piezo-
electric aggregates and externally epoxy bonded piezoelectric
patches [27,28]. In the work conducted by Wang et al., a novel
EMI method using an embedded PZT patch was utilized to deter-
mine the strength of concrete as well as evaluate the damage
development in concrete subjecting to loading. The indexes of root
mean square deviation index (RMSD) and cross-correlation coeffi-
cient (CC) have been proven to be reliable ones of quantitative
assessment of strength gain and structure health [29–31]. These
two statistically scalar values have also been employed to effec-
tively evaluate the growth of damage severity of concrete in the
publication reported by Chalioris et al. [32].

Up to now, the feasibility of using PZT sensor for evaluating the
mechanical properties of concrete structures has been addressed.
However, the feasibility of EMI method on an understanding of
the strength gains of concrete containing supplementary cementi-
tious materials (SCMs) has not been studied. Unlike conventional
strength gain process in a plain concrete, the addition of SCMs
changes the hydration rate of cement which results in a different
strength gain process from that of a plain concrete. Based on the
measurement of electrical conductivity and strength, the change
in hydration process and mechanical property was found in the
cement paste blended with SCMs including silica fume, slag, fly
ash, limestone, crushed clay bricks and polycarboxylate superplas-
ticizer [33–38]. Some relevant matters have also been considered
in these publications [39–42].

To this end, this paper aims to systematically investigate the
feasibility of using EMI technique for in-situ monitoring of strength
gain of cement pastes containing SCMs. To evaluate the efficiency
of the PZT sensors in monitoring the strength gain of SCM blended
cement, fly ash and silica fume were added to the cement paste
which induces a change in strength gain process of cement paste.
Table 1
Chemical composition and physical property of OPC.

Material C3S C2S C3A C4

OPC 58 (%) 13 (%) 7 (%) 10
The outcome of this work can assist in the evaluation of using
piezoelectric-based NDT method to determine the strength gain
process of cement paste.

2. Experimental program

2.1. Materials and sample preparation

In order to study the hydration behavior of cement pastemateri-
als, three different mixes were used including ordinary portland
cement (OPC), fly ash class C (FA) and silica fume (SF). The OPC, SF,
and FA complied with ASTM C150-17, ASTM C618-15, and ASTM
C1240-15, respectively. The OPC, ASTM Type I, was used in this
study. Table 1 shows some physical and chemical properties of
OPC. A control cement paste sample containing only OPC was made
to serve as reference sample (REF). In this study,OPCwas replacedby
FAandSFat adosage level of 10%bymassof binder. Thewater tobin-
der ratio (w/b) was kept constant for all the mixes at 0.30. Table 2
presents the composition of three mixes. The compressive strength
of cement paste was determined using the 50 mm cube samples.
The specimens were kept stored in a controlled chamber at 20 ± 2 �C.
After24 h; the specimensweredemoldedandcured ina curing room
at23 ± 2 �C.Thecompressive strength testswereconductedat1, 3, 7,
14 and 28 days, according to ASTM C39 [43]. The tests were per-
formed on three specimens and the average valueswere considered.
The EMI signature was recorded for all the samples before conduct-
ing the compressive strength test at a certain age. In order to mea-
sure EMI signatures, a 10 mm � 10 mm � 0.2 mm PZT patch was
attached to the specimen, as shown in Fig. 1. Fig. 2 illustrates the
EMI set up, an impedance analyzer (1260 Solartron), and a computer
equipped with data acquisition software.
AF Na2O Blaine fineness Density

(%) 0.7 (%) 377 (m2/kg) 3150 kg/m3



Fig. 2. (a) Hydration monitoring tests on cement paste using an impedance analyzer, (b) Mechatronic model illustrating the impedance-based structural hydration
monitoring.

Fig. 3. The conductance signature of FA samples at 1, 3, 7, 14 and 28 days.

Fig. 4. The conductance signature of REF, FA and SF samples at 3 days.
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2.2. Signal analysis

The PZT patch is subjected to a spatially uniform electrical field
due to the finite size of the patch. The patch has half-length equal
to l and thickness h. The mechatronic model of EMI technique is
shown in Fig. 2 (b). The PZT’s admittance (Y) was demonstrated
to be the inverse of the impedance [44]. Bhalla et al. [45] proposed
the below formula for the electrical admittance of PZT patch model
by introducing the concept of ‘‘effective mechanical impedance” as
follows:

Y ¼ Gþ Bj ¼ 4w
l2

h
e33 � 2d2

31Y
E

ð1� vÞ þ
2d2

31Y
E

ð1� vÞ
Za

Za þ Zs

� �
tan kl
kl

" #
ð1Þ

where Y is the electrical admittance, YE is Young’s modulus, G is
conductance, B is susceptance, j is the imaginary unit, e33 is electri-
cal permittivity, d31 is a piezoelectric coefficient, m is the Poisson’s
ratio, g is mechanical loss, d is dielectric loss, j is the wavenumber,
Za is the impedance of the PZT patch and Zs is impedance of the
structure. Therefore, any change in properties of the specimens
can be reflected in impedance signature of PZT patch which is mon-
itored and analyzed using the above formula.

3. Results and discussion

The frequency band with high mode density is preferred in EMI
method as it provides more information about the properties of the
specimen [46]. Therefore, selecting an appropriate range of fre-
quency is of great importance. In this study, the frequency range
of 2–500 kHz was selected as it has been suggested in previous
works [21]. Fig. 3 shows the obtained conductance signature for
FA sample at the age of 1, 3, 7, 14 and 28 days. The conductance
signature was obtained from the average of five repeated measure-
ments to minimize the noise and error. As can be seen in Fig. 3,
there is a strong conductance resonant peak at 400 kHz along with
some other obvious dominant peaks in the frequency range of
50–200 kHz. Most of the signature resonant peaks shift upward
over time. The clear shift in critical resonant peaks might represent
the strength gain process of the cement paste samples over time.
Fig. 4 shows the signature conductance for all three mixtures at
three days. All the conductance signatures exhibited almost the
same trend of resonant peaks. However, a clear deviation can be
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observed in the frequency range of 20–100 kHz. The SF conduc-
tance signature exhibited a higher conductance resonant peak as
compared to FA and REF mix. This deviation can be attributed to
the higher strength gain of SF mix in the early ages. This might
be due to the higher pozzolanic activity of SF at early ages, which
leads to the formation of additional C-S-H gel resulting in higher
compressive strength [47–49]. Also, FA mix exhibited the lowest
resonate conductance peak in a frequency mentioned above range
which can be correlated to the lower rate of cement hydration in
the presence of FA [50] since the strength gain of cement paste
depends on the rate of the cement hydration. The electrical impe-
dance of cement paste is manifested as a result of any change in
mechanical properties of cement paste. Hence, any changes in elec-
trical impedance can be detected by EMI technique using PZT
patch. This result indicated the sensitivity of using EMI sensing
technique for in-situ monitoring of the strength development in
cement paste containing different SCMs. The main goal of monitor-
ing the strength gain in concrete is to obtain useful information
about the in-situ quality of concrete to provide guidance for con-
struction scheduling, such as the optimal traffic opening time. So
far, the EMI conductance signature exhibits only qualitative infor-
mation on the strength gain of cement paste containing different
SCMs over time. However, a quantitative index must be established
to use EMI sensing method as a reliable method to estimate the
compressive strength and assess the quality of concrete. The
admittance signatures measured by PZT are used to monitor cer-
tain properties of the host structure. The admittance signature is
composed of the conductance and susceptance. Conductance has
been successfully used to monitor cement hydration due to its bet-
ter reflection of the structural change in the host structure [51].
The changes in conductance spectrums consist lateral and vertical
shifts in admittance signature which can be easily recorded and
quantified [52]. The root means square deviation (RMSD) as one
of the statistical techniques was applied in this study to correlate
the hydration condition with the changes in the PZT conductance
signatures. RMSD is defined as:

RMSD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

ðyi � xiÞ2

XN
i¼1

ðxiÞ2

vuuuuuuut ð2Þ
Fig. 5. RMSD index versus the compressive streng
where xi is the baseline signature of PZT and yi is the corresponding
conductance for each monitoring time at different ages. Also, the
correlation coefficient (CC) index was employed in this study to
determine the relationship between two conductance signatures.
In most cases, the results of the CC index are in a good agreement
with those of RMSD, in particular, when there is a large difference
between the baseline signature and the subsequent signature
[53]. The CC index equals the covariance of two measured data
divided by their standard deviation:

CC ¼ Covðx; yÞ
rx � ry

ð3Þ

where rx and ry are standard deviation of x and y, Cov (x,y) is the
covariance of x and y given by

Cov ¼ 1
N

XN
i¼1

ðxi � xmÞðyi � ymÞ ð4Þ

where xm and ym are the mean values of x and y, and N is the num-
ber of the samples. In order to monitor the changes in conductance
signature over time, a baseline conductance signature was estab-
lished. The conductance signature of each sample at specific age
was further compared to the baseline signature, and the difference
was determined using RMSD and CC index. The RMSD plot along
with the obtained compressive strength data for all three mixes
are shown in Fig. 5. As expected, the compressive strength increases
up to day 14, and the rate of strength gain become slower after-
ward. It can be seen that the RMSD values increase over time
regardless of the type of mixes. The obtained RMSD values show a
good correlation with the compressive strength gain for all the
mixes. However, RMSD index overestimates the compressive
strength for all the mixes except for the ones at early ages of SF
mix. That might be a drawback of RMSD index which exhibits only
absolute values regardless of the deviation direction of conductance
signatures. Moreover, the correlation between the compressive
strength of cement pastes and CC index of conductance signature
was established, as shown in Fig. 6. In general, the CC index exhib-
ited a reasonable qualitative trend which was compatible with the
trend of strength gain of cement pastes. However, a big deviation
was observed for FA and REF mix at 28 days. The results confirm
that the CC index is not an accurate index to predict the compres-
sive strength value. All the obtained compressive strength data
th of all the samples at 3, 7, 14 and 28 days.



Fig. 6. CC index versus the compressive strength of all the samples at 3, 7, 14 and 28 days.

Table 3
The obtained compressive strength data along with the RMSD and CC index.

Days SF-Strength (MPa) RMSD-SF CC-SF REF-Strength (MPa) RMSD-REF CC-REF FA-Strength (MPa) RMSD-FA CC-FA

3 63.10 24.27 39.08 58.87 19.82 25.25 56.27 13.96 30.76
7 66.49 31.36 42.03 60.72 24.72 28.55 58.63 20.79 34.14
14 69.46 42.01 45.36 64.59 36.86 31.80 60.70 27.30 37.45
28 71.97 46.48 47.12 68.44 43.06 33.30 62.87 33.67 38.98
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along with the RMSD and CC index is presented in Table 3. In order
to compare the efficiency of each index, all the compressive
strength was plotted against each of index value. A linear least
square regression fitting curve was calculated for each set of the
data. Fig. 7 presents the CC and RMSD index to estimate the com-
pressive strength along with a correlation coefficient. The obtained
correlation coefficients for RMSD and CC were R2 = 0.90 and
Fig. 7. The correlation between the RMSD and CC index with the compressive
strength of all the mixes.
R2 = 0.54, respectively. From the obtained results; one can conclude
that the RMSD index reflects the variations of the compressive
strength of cement paste more accurate than the CC index of con-
ductance signature.
4. Conclusions

This paper studied the feasibility of using the EMI method to
characterize the compressive strength gain process of cement
paste containing the SCMs. The EMI signatures for three different
mixes of cement paste were obtained at 1, 3, 7, 14, and 28 days.
The compressive strength of all the cement paste specimens were
also determined using conventional ASTM C39 testing method to
validate the reliability of using EMI sensing method for strength
gain monitoring. The obtained conductance signatures for all three
mixes proved the viability of using EMI method to monitor the
strength gain in cement paste sample. Two different indices of
RMSD and CC have been used to establish a quantitative correla-
tion between the conductance signature and the compressive
strength. Both indices exhibited reasonable qualitative trends
which were compatible with the trend of strength gain of cement
pastes. However, The RMSDwas found to be more accurate than CC
index in estimating the compressive strength of cement paste over
time. The deviation between the experimental data and predicted
value by EMI technique increased over the time for all the speci-
mens. The result suggests EMI method can be used as a NDT
method for in-situ measurement of strength gain process of
cement paste, particularly for the early-age properties. The future
work involves evaluating the efficiency of EMI method to estimate
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the hydration process and strength gain process of mortar past and
concrete need to be carried out.
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