Purdue University

Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

4-24-2013

moreBugs: A New Dataset for Benchmarking
Algorithms for Information Retrieval from
Software Repositories

Shivani Rao
School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN campus, sgrao@purdue.edu

Avinash Kak
School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN campus, kak@purdue.edu

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

Rao, Shivani and Kak, Avinash, "moreBugs: A New Dataset for Benchmarking Algorithms for Information Retrieval from Software
Repositories” (2013). ECE Technical Reports. Paper 447.
http://docs.lib.purdue.edu/ecetr/447

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for

additional information.

http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F447&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F447&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F447&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F447&utm_medium=PDF&utm_campaign=PDFCoverPages

moreBugs: A New Dataset for Benchmarking Algorithms

for Information Retrieval from Software Repositories

Shivani Rao

Avinash Kak

TR-ECE-13-07

April 24, 2013

Purdue University
School of Electrical and Computer Engineering
465 Northwestern Avenue

West Lafayette, IN 47907-1285

moreBugs: A New Dataset for Benchmarking
Algorithms for Information Retrieval from Software
Repositories

Shivani Rao
School of Electrical and
Computer Engineering
Purdue University
West Lafayette, IN
Email: sgrao@purdue.edu

Abstract—This report presents moreBugs, a new publicly
available dataset derived from the Aspect] and JodaTime repos-
itories for the benchmarking of algorithms for retrieval from
software repositories. As a case in point, moreBugs contains all
the information required to evaluate a search-based bug localiza-
tion framework — it includes a set of closed/resolved bugs mined
from the bug-tracking system, and, for each bug, its patch-file list
and the corresponding snapshot of the repository extracted from
version history. moreBugs tracks commit-level changes made
to a software repository along with its release information. In
addition to the benchmarking of bug localization algorithms, the
other algorithms whose benchmarking moreBugs should prove
useful for include: change detection, impact analysis, software
evolution, vocabulary evolution, incremental learning, and so on.

I. INTRODUCTION

It goes without saying that the research questions that can
be posed on any data-mining related topic are circumscribed
by the features incorporated in the datasets that are publicly
available to test and validate the hypotheses! Recently re-
searchers have used text mining tools to mine information
from version control systems like CVS, SVN and Git and
bug tracking systems like SourceForge and Bugzilla to create
ground-truth or evaluation or oracle datasets for evaluating
novel approaches to software defect prediction [3], impact
analysis [4], duplicate bug retrieval [5], etc.

With regard to the benchmarking datasets for fault lo-
calization algorithms, two such prominent datasets are: (a)
SIR (Software-Artifact Infrastructure Repository) and (b) the
iBugs dataset created by Dallmeier and Zimmerman [6].
SIR contains 130 bugs that are artificially induced. SIR is
meant mainly for the evaluation of static and dynamic bug
localization techniques. Similarly, the iBugs dataset was
created to support the evaluation of static and dynamic bug

I'When such benchmark datasets are not available, an alternative technique
for demonstrating the effectiveness of new algorithms consists of user stud-
ies [1] [2]. However, collecting user-feedback to evaluate a new tool is not
always convenient because it requires that a group of users be first trained to
use the tool. There are several limitations to the feedback provided by such
users: the number of users involved, their prior experience with similar tools,
various aspects of their technical and personal background, etc.

Avinash Kak
School of Electrical and
Computer Engineering
Purdue University
West Lafayette, IN
Email: kak@purdue.edu

localization techniques and contains real bugs from three
software projects: Aspect], Rhino, and JodaTime. Since the
goal of 1Bugs was to support evaluation of static and dynamic
bug localization techniques, this dataset only includes a pre-fix
and Post-fix snapshot of the repository for each bug and the
corresponding test suites.

While intended originally for the evaluation of just static
and dynamic bug localization, note, however, that the 1Bugs
dataset has been used recently for research in IR based
approaches for bug localization [7] [8]. Attempting to use
iBugs for the evaluation of IR based algorithms has led to a
realization of the shortcomings of the dataset for that purpose.
One of the main limitations of iBugs is that it is based on the
version histories at the revision points that only correspond to
the big fixes. iBugs ignores important information from the
version histories such as release history, commit level changes,
commit messages, and so on. While the additional information
available in version histories may not be useful for static and
dynamic bug localization techniques, these can aid in code
understanding [1], [2], [9]-[11].

While iBugs has served the community well during the last
five years, we believe it is time to raise the bar with regard
to the “richness” of what is contained in such datasets so that
a broader set of research questions can be posed. In addition
to bug localization and prediction, we expect this larger set of
questions to involve impact analysis [4], software vocabulary
(lexicon) evolution [12], and so on. We believe that answering
these questions is going to require that a dataset include not
only the information that is commonly gleaned from the bug
tracking systems, but also the information that is recorded by
the versioning tools for every revision of a software library.
Our new dataset, moreBugs, is an answer to these questions.

With regard to the datasets needed for the evaluation of IR-
based bug-localization algorithms [13] [14] [15], one needs
to mine a set of closed/resolved bugs from the bug-tracking
system of a software project and for each bug extract (a) the
pre-fix snapshot of the repository from the version history;
(b) the textual content of the bug reports to form the queries;

TABLE I: moreBugs Specifications

[[Aspect] [JodaTime
Version Control System Git Git
Number of tags/releases 77 32
Number of revisions 7477 1537
Total duration of the project ana- | 02/12- 12/2 03/12-12/6
lyzed
Average number of source files/re- | 3177 373
vision
Bug tracking system Bugzilla SourceForge
Number of bugs from VCS 450 57
Number of bugs in Bugzilla 350 45

and (c) the source files that were changed in order to close
the bug. The source files in (c) are needed for the purposes of
evaluating the effectiveness of a bug localization algorithm. In
the past, researchers have created such benchmark datasets by
mining version histories and bug-tracking systems of Eclipse,
SWT, ZXing [8], Mozilla Rhino [16], and so on. Unfortunately
these datasets are not made publicly available except for a list
of bugIDs used to identify the bugs. This makes it impossible
to reproduce the results reported.

In this we paper, we present moreBugs, a benchmark
dataset that is constructed by mining two different open
source projects: Aspect] and JodaTime. As summarized in
Table I, moreBugs is based on mining over 10 years of
development history for both these projects. We linked the
commit messages stored in the respective version tools with
the metadata information in the bug tracking system by simple
pattern matching techniques. In addition to providing the raw
source files, moreBugs also provides the parsed versions that
are formatted as TREC style XML files. This is to facilitate
experimentation with open-source retrieval tools like Lucene
and Lemur. Since mining unstructured version histories from
the version tools is time-consuming, cumbersome, and prone
to inconsistencies and errors [17], we hope moreBugs will
help researchers focus on the implementation of ideas instead
of on the parsing of the source files that we had to undertake in
order to construct the dataset. Last but not the least we have
documented commit-level changes as well as release infor-
mation. Thus, in addition to bug localization and prediction,
we expect this dataset to be useful to researchers that aim
to answer research questions involving impact analysis [4],
software vocabulary (lexicon) evolution [12], and so on.

II. RESEARCH DIRECTIONS LIKELY TO BENEFIT FROM
MOREBUGS

Later in this paper, we will provide a detailed account of all
the information that is mined from the version histories and
the bug tracking system for a software library. For the purpose
of this section, we provide here brief descriptions of the same
so that the reader can better appreciate it when we say that
the moreBugs dataset would be good for a particular line of
research:

o A pre-fix snapshot of the repository for each bug
o The title, description and comments filed in the bug
tracking system for each bug

o The set of source files that were fixed in order to resolve
the bug (patch-list or change-list)

e The changes made to the software on a revision to
revision basis

o Release history of the software

o Commit messages relevant to each commit

With all this information made conveniently available,
we believe that moreBugs will be useful for formulating
questions and validating hypotheses in at least the following
research issues: a) IR based bug localization; b) Vocabulary
evolution; and c) Impact analysis.

A. IR Based Bug Localization

IR based bug localization means to locate a bug from its
textual description; we want to find the files, methods, classes,
etc., that are directly related to the problem causing abnormal
execution behavior of the software using retrieval techniques.
IR based bug localization approaches are an alternative to the
more traditional static and dynamic bug localization techniques
[7] [18] [16]. The IR based approaches are not only indepen-
dent of the programming language and the business concepts
of a software system, they are also scalable and extensible to
large software systems.

IR based bug localization approaches treat bug localization
as a search task, where the bug report is the query and
the source files are the database of documents. Thus any
benchmark dataset used for an evaluation of an IR based
method for bug localization would need a set of bugs and,
for each bug, (i) textual content extracted from the bug report;
(i1) the set of files fixed in response to that bug report (that
would form the “oracle set” for the purpose of evaluation);
and (iii) the bug’s pre-fix snapshot of the repository which is
indexed to create the database of source files. As previously
mentioned, evaluation of IR based bug localization techniques
has been much facilitated by the availability of the 1Bugs [6]
dataset. Although this dataset was created primarily for the
evaluation of static and dynamic bug localization techniques,
its usefulness for the evaluation of IR approaches has now been
well established [8] [7]. The pre-fix and post-fix snapshot of
the software is made available as a part of the repository, but,
as we mentioned previously, only at the points of bug fixes.

While the above mentioned list of items extracted for each
bug is necessary for any dataset meant for the evaluation
of IR algorithms for bug localization, the structured nature
of software repositories allows one to incorporate additional
information that enables testing of more sophisticated retrieval
algorithms — along the lines of recent work in [18], [19],
and [20] — that depend on both version histories and bug
tracking reports. The moreBugs dataset can be expected to
give a boost to this new line of research by a more thorough
incorporation of the version histories. This new dataset pulls
in the version histories over a time period of 10 years for
Aspect] and JodaTime, while recording the changes made at
each commit, and linking the bug fixing information with the
revision history information.

B. Change or Impact Analysis

Given a bug description or a change request (CR) (or a
feature request), change or impact analysis is the process
of identifying the software entities that will be potentially
impacted as a result of implementing the bug-fix or the CR.
Canfora and Cerulo [4] have cast impact analysis as a search
task, in that, the proposed CR is treated as a query and the
source code entities are treated as documents. The authors
have also studied the use of history information available
in the commit messages and bug-fixing history in order to
improve the model representation of the source code entities
for impact analysis. While their study involves three datasets
mined from open-source projects, the study suffers from two
main shortcomings: (a) The datasets used are not publicly
available; and (b) The size of the datasets used ranges from 89
source files to 1538 source files. Also note that the maximum
number of CRs used for testing was only 700. On the other
hand, moreBugs contains 7477 and 1573 CRs in AspectJ and
JodaTime respectively. Out of these, 350 of them are linked
to bug-fixing in Aspect] and 45 for JodaTime.

C. Vocabulary Evolution

IR approaches to retrieval typically require the creation of a
vocabulary set of the terms used in the source repository and
the bug reports. Constructing a vocabulary entails stemming,
stop-word removal, and handling special situations related to
camel-case identifiers (e.g. PrintToFile), hard words (e.g
Print_File), soft words (e.g. printfile), the presence
of Unicode and other special characters, etc. One may also
want to eliminate redundant and ubiquitous terms such as
“Copyright” and software constructs that only add noise to
the representation of documents and files. Additionally, the
terms/words/identifiers of a vocabulary may be classified ac-
cording to the content in which they appear [12].

Note that the vocabulary associated with a software library
is not a static concept since the libraries are typically in a
constant state of flux as they are modified in response to bug
reports and as new features are added to them. Researchers
have studied the impact of software vocabulary evolution
on fault proneness [21], software system clustering [22],
comments quality, and knowledge discovery and divergence.
Software vocabulary evolution has also been studied by Abebe
et al. [12]; their case studies were performed by mining
version histories of the software over eight releases. Antoniol
et al. [23] have studied the evolution of software lexicon and
raised important research questions about its relationship to the
evolution of program structure for three large software systems
over 19 to 24 releases. The moreBugs dataset provides the
original source files as well as parsed source files for 32
releases for JodaTime and 77 releases for Aspect]. Thus,
moreBugs should prove useful as an evaluation dataset for
vocabulary evolution studies.

III. RELATED WORK

Over the past five to six years, researchers have used text
mining tools to create various datasets, often not publicly

available, for the evaluation of different types of software
maintenance tools. Using their own evaluation dataset, Fischer
et al. [9] have shown that information available from bug
tracking system can be mined and used for enhancing the ver-
sion information and together they can be used for reasoning
about the past and anticipating the future evolution of software
projects. They used Mozilla’s CVS as the version control
system and Bugzilla as the bug tracking system for their
study. Canfora and Cerulo [4] have mined version histories
from CVS and the information contained in the Bugzilla
bug tracking system for three open-source projects — Gedit,
ArgoUML, and Firefox — in order to evaluate their impact
analysis algorithm. Open source projects like Mozilla, JEdit,
Rhino and Eclipse have been mined for evaluation IR-based
bug localization techniques using models like, LDA, LSA,
Unigram and VSM [13], [16] [7]

There do exist publicly available datasets for the evaluation
of tools for fault prediction and traceability link recovery.
Traceability link recovery tasks help link the requirements
to source files and fault prediction estimates the bugginess
of classes and source files in the future releases by studying
the patterns in the past and current releases. Zimmermann et
al. [3] mined version histories in order to create a dataset
for evaluating defect prediction techniques. These datasets
however, do not work with version to version changes, but
metrics computed on classes from one release to the other.

IV. HOW moreBugs WAS CREATED

We now present what went into the creation of moreBugs.
As previously mentioned, this benchmark dataset was derived
from the Aspect] and JodaTime repositories. Both of these
projects are now managed by Git, a new “Decentralized
Source Code Management” (DSCM) system that has emerged
as a popular alternative to CVS and SVN for open-source
projects [25]. It is worth noting that there are some major
differences between Git, on the one hand, and the more
traditional versioning tools like SVN and CVS. Whereas Git
allows for a completely decentralized development of code
where the information is allowed to flow privately between any
two developers (rather than through a centralized system as in
SVN and CVS). Since Git is decentralized, it is possible for
there to exist several different versions of a software library,
all at the same time. When such is the case, one would want
to track only the “official repository”, the one hosted at the
github.

In what follows we enumerate each of the steps taken to
create the benchmark dataset. The step zero in any analysis
and mining of a versioning system is the checking out of the
repository from the github and then syncing to the HEAD:

e git clone github
e git checkout HEAD

Figure 1 shows the organization of the data collected in
moreBugs for a software project.

metalnfo/

revisions/

rev0 revl reviN

RevlList bug2
BuglList
Commits = / \
Ta OuUrce Source .
s [Soee | FilesD Lok
Bugs EilesM Description
Commit Messages EilesC Comments

All files in FilesR All files Relevancelist
ChangeList corpus/ in revision Corpus/ All files __
* in revision FileList
* xml/

FileList, ChangeList
AlistID, DlistiD
MlistiD, ClistiD, RlistiD
xmilf

FileList, RelList,
Title, Description,
Comments
xml/

Fig. 1: The organization of the moreBugs dataset for each of software projects: Aspect] and JodaTime

A. Log Analysis

The Git log contains valuable information pertaining to
the commits made by the developers. The log has all the
information related to a commit: the author, the date/time,
and the changes made to the software for a particular commit
operation (as illustrated in Figures 2 and 3). Each commit is
identified by a unique SHA-1 hash code that we denote by
commitID. The log also encodes the information about the
tags and the bugs in the commit messages. For example, in
Figure 2, the tag information is shown next to the commitID.
Similarly, the bugID is included in the commit messages by
enclosing it in square brackets (Figure 3). Thus by simple
pattern matching, it is possible to find out if a commit is related
to a bug or a tag. Since Git’s commits are identified by a SHA-
1 hash value, we assign to it an SVN style revision number
that we denote by revID for each commitID.

Thus by performing basic pattern matching on the log we
are able to create the following three tables: commit_revs,
tags_revs and commit_bugs. Sample entries from each
of these tables are shown in Table II for JodaTime. As this
table illustrates, a bug fix may involve multiple commits. Thus
it is important to create a fourth table called prefix_bug
that records the revision number revI D of the pre-fix revision
for that bug.

In order to track the evolution of a software project, we
first find the list of files affected by each commit using the
git diff command. Source files that are affected by a
commit are typically added, modified, deleted, renamed or
copied. If commitIDI and commitID2 are the consecutive
commits and revIDI and revID2 the corresponding revi-
sion numbers, then git diff -name-status -C com-
mitIDI1..commitID2 gives us the list of files that are affected
at revision number revID2. We parse these changes by pat-
tern matching to detect if a file listed in the change-list
belongs to one of the following categories: added, modi-
fied, deleted, copied, renamed. The change-list as well as
the files in each of these categories are documented sepa-
rately as FilesA.txt, FilesM.txt, FilesD.txt,
FilesC.txt and FilesR.txt (as shown in Figure 1).

TABLE II: Sample data structure entries for JodaTime

commit_revs

commitlD reviD

"7394...58a46" 643

"08c3...5a006" 644

commit_bugs

buglD revID

2827359 1334

2465359 1338

2465359 1339

tags_revs

reviD tagName

185 PRE_PARTIAL_REFACTOR
352 WITH_MILLIS_DURATION
prefix_bug

bugID revID

2827359 1334

2465359 1338

By using Git’s log and diff feature, we have so far explained
the data collection process pertaining to extraction of the
metadata information.

B. Check out files

In this step, we actually check out the affected files for
each revision into the revisions/revID/sourceFiles
directory. For the revisions that are tagged or la-
beled as the pre-fix revision for a bug, we check out
all the files into a tags/tagName/sourceFiles or
bug/buglD/sourceFiles directory. Given the commit
hash for a revision, we check out the corresponding snap-
shot of the repository using the command git checkout
<commitID>. The affected files or the entire repository is then
copied to the sourceFiles/ folder.

C. A Suitable Data Structure to Represent the Changes

In order to track the history of the files we use a table that
we refer to as the fileList table. Table III shows some
sample entries in this data structure. The first field is used to
record fileID, a number assigned to each file. The second field
contains the actual file name. The third field records the last
revision where the file was modified. This makes it convenient

(tag: v0.9)

commit 8fedb261410c9ecfbefeaf864cllde8334bd5bca
Author: Stephen Colebourne <scolebourne@joda.org>
Date: Tue Dec 16 22:14:09 2003 +0000

Setup joda-time

git-svn-id: https://joda-time.svn.sourceforge.net/

svnroot/joda-time/trunk@5 lelcfbb7-5c0e-0410-

az2f0-£98d92ec03al

JodaTime/build.properties.sample | 6 +
JodaTime/build.xml | 226 +++++++++++t++H+HHtH++H+++
JodaTime/checkstyle.xml | 79 ++++++++++++4+
JodaTime/maven.xml | 4 +
JodaTime/project.properties | 8 ++
JodaTime/project.xml | 101 +++++++++++++++++

)

6 files changed, 424 insertions(+), 0 deletions

(=)

Fig. 2: An excerpt from the Git log for JodaTime indicating the version number in the commit line at the top

commit 66c4alcl0d33243fb0a6£850d350226ab4d55a6¢
Author:

Date: Wed Jun 6 11:35:56 2012 +0100

Change some StringBuffer uses to StringBuilder

RELEASE-NOTES. txt

.../org/joda/time/IllegalFieldValueException. java

src/main/java/org/joda/time/Partial. java

.../Jjava/org/joda/time/convert/ConverterSet. java

|
|
|
.../Jjava/org/joda/time/chrono/BasicChronology. java |
|
.../Jjava/org/joda/time/format/DateTimeFormat. java |

|

.../Jjava/org/joda/time/tz/ZoneInfoProvider. java
7 files changed, 7 insertions(+),

(HEAD, origin/master, origin/HEAD, master)

Stephen Colebourne <scolebourne@joda.org>

[3532330]

DN NN

6 deletions (-)

Fig. 3: An excerpt from the Git log for JodaTime indicating the bugID information embedded in the commit line

M JodaTime/src/java/org/joda/time/chrono/package.html
A JodaTime/src/java/org/joda/time/convert/AbstractConverter. java
A JodaTime/src/java/org/joda/time/convert/CalendarConverter. java

C085 JodaTime/src/test/org/joda/test/time/chrono/gj/TestJulianDayOfMonthField. java
JodaTime/src/java/org/joda/time/convert/Converter. java

A

Fig. 4: An excerpt from the change

to visit the previous revision of a particular source file. The
last field indicates if the file is deleted or not. For example, if
D == 1 for an entry in the table, then the corresponding
file does not exist in the repository and the LastRevID is
the last revision where the file was deleted. The fileList
table encodes all information that is needed to access files
in the current revision of the repository, and helps us detect
inconsistencies. For example, if a file is being deleted (as
specified by the log in metaInfo/Git_changeLog/ and
for the corresponding entry in the fileList table we find
that D = 1, then it means that a file that was previously
deleted is being deleted again, which is an inconsistency. The
fileList table is updated at each revision based on the
changes extracted for that revision.

We should mention that an important side effect of the
process that generates this table is the pruning away of
certain files whose names do not meet designated extension

JodaTime/src/java/org/joda/time/convert/ConverterManager. java

history for revision 9 of JodaTime

criteria. We only index and track source files and the related
documentation files (readme, xmls, htmls, txts, makefiles) in
our fileList table. After this round of elimination, some
revisions may contain no changes. The revisions that actually
do affect files are recorded in the metaInfo/revList file.

D. Parse Bug Reports

Next, we turn out attention to bugs. The bugIDs in the first
column of the bug_prefix table is used to locate bugs with
the same ID as filed in the bug tracking system. Note that not
all the bugs mined from the commit logs are found in the
bug tracking system. Depending on how sophisticated a bug
tracking system is, it may have an XML export facility (as
found in Bugzilla, see Figure 5) or one may have to write
a parser to scrape the HTML pages that contain information
related to the bugs (as for SourceForge). For bugs filed with the
SourceForge issue tracking system, we have created a custom

TABLE III: Sample entries of the fileList Structure

[fileID | fileName [LastRevID | D |
147 "JodaTime/src/test/org/joda/test/time/iso/TestiISOMinuteOfDayDate TimeField.java" 3 0
148 "JodaTime/src/test/org/joda/test/time/iso/TestiISOMinuteOfHourDateTimeField.java" 3 0
151 "JodaTime/src/test/org/joda/test/time/iso/TestISOSecondOfMinuteDateTimeField.java" 3 0
152 "JodaTime/src/test/org/joda/test/time/iso/TestSuiteISO.java" 3 0
153 "JodaTime/build.xml" 4 0
156 "JodaTime/project.xml" 4 0

parser using Python’s url11ib2 and BeautifulSoup libraries
to scrape information about a bug given its URL. Typically,
any issue/bug tracking system contains information about the
time, date of reporting of the bug, the author and the developer
it is assigned to, the status of the bug, severity and priority
and so on (see Figure 5). Among fields that contain textual
information are the title, the description and user comments.
We mine the textual information in the title, description and
comments for each bug and store it in the folder bugs/bugID.

E. Creating Relevance List

In order to evaluate bug localization tasks, we need an oracle
set of relevant source files that were fixed in order to close a
bug. This information may or may not be available depending
on the kind of issue tracking system used to track bugs for the
software. Bugzilla mandates that the patch-list be documented
and made available to all users of the software. Sourceforge, on
the other hand, makes this information available only to project
administrators. In such scenarios, we determine this list from
the files that were affected by the commit corresponding to the
bug fix. This oracle set fileID of the relevant source files for
each bug is stored in Bugs/buglD/Relevancelist .txt.
Given the fileList structure and the names of the source
files that belong to the patchlist or RelevanceList, we
create a RelList that contains only the filelDs of the
relevant source files.

F. Cleaning Up of the Raw Source Files For IR Algorithms

So far we have described mining of the Git log, checking
out of the relevant source files for each revision bug or a
tag, and the creation of an index of the source files via the
fileList table. We also described parsing of the bug reports
and linking them to the version control tool used. We will next
discuss one final step: parsing and cleaning up of the source
files to make them ready for the modeling and the retrieval
steps of IR algorithms.

The parsed source files are stored under their fileIDs
and not fileNames. For example, the parsed version of the
file TestISOMinuteOfDayDateTimeField. java
is stored as corpus—0147.xml in the
revisions/revID/corpus/xml and
revisions/revID/corpus/txt Dbecause its fileID
is 147 according to the fileList table (see Table III). The
XML files are formatted in TREC-style and can be easily
used for experiments with the popular open-source tools
used for information retrieval. Each of the source files and
documentation files are passed through the following stages
of text pre-processing:

o Elimination of Unicode characters and special characters

o Identifier splitting: While splitting camel-case words
(printFile), hard-words (print_file) into
individual meaningful terms is trivial, soft-words
(e.g.printfile) require slightly more involved
processing. We have employed greedy methods similar
those those developed by Field et al [26] for splitting of
soft-words into meaning terms(e.g. printfile)

We also need to mention here that we did not perform any
sort of stop-word removal or stemming while creating our text-
like documents from the source files. This is mainly to aid in
flexibility with respect to the two stages of text pre-processing
to the users of moreBugs.

Parsing source files for bugs and tags: Given the
fileList table and the other structures that record the
evolution of the software, we only need to clean up the affected
files at each revision. This step is made efficient as a result of
the information stored in the fileList table.

V. DATASETS CREATED AND THEIR STATS

As mentioned, we mined two software repositories in order
to create moreBugs: Aspect] and JodaTime. The specifica-
tions of the two datasets thus created are tabulated in Table I.
The moreBugs dataset is available? for download.

In order to get a better understanding of the history of the
two projects, we have computed the histogram of the number
of source files affected (modified, added, deleted, copied, or
renamed) at each revision. We have plotted the histogram of
the number of files affected at each revision in Figures 6
and 7 for JodaTime and Aspect] respectively. These figures
demonstrate that the frequency of modifications of the source
files is higher than the frequencies for the addition or deletion.
For a majority of the revisions, at most one file is deleted
or added. On the other hand, the distribution of the number
of source files modified in a revision is more uniform. The
number of revisions when more than five files are affected is
very low.

To present some vocabulary-related results obtained with
moreBugs, Figures 9 and 8 show the histogram of the
number of terms affected at each revision for the two projects
in the dataset. Note that at most 10 terms are added or deleted
a majority of the time. The distribution of the number of terms
modified at any revision is slightly more uniform. The findings
in this report are very similar to the paper by Haiduc et. al [?],
in that, the vocabulary changes slowly for a software that has

Zhttps://engineering.purdue.edu/RVL/Database/moreBugs/

<bug>
<bug_1d>43030</bug_id>

<creation_ts>2003-09-12 12:59:00 -0400</creation_ts>
<short_desc>unit tests failing due to misuse of getAbsolutePath()</short_desc>

<delta_ts>2003-09-17 03:06:00 —-0400</delta_ts>
<classification_id>4</classification_id>
<classification>Tools</classification>
<product>AspectJ</product>
<version>1.1l.1</version>

<op_sys>Windows XP</op_sys>
<bug_status>RESOLVED</bug_status>
<resolution>FIXED</resolution>

<bug_file_loc/>

<status_whiteboard/>

<keywords/>

<priority>Pl</priority>
<bug_severity>normal</bug_severity>
<target_milestone>---</target_milestone>
<everconfirmed>1</everconfirmed>

<reporter name="Jim Hugunin">jim-aj</reporter>

<assigned_to name="Adrian Colyer">adrian.colyer</assigned_to>

<long_desc isprivate="0">
<commentid>185952</commentid>

<who name="Jim Hugunin">jim-aj</who>
<bug_when>2003-09-12 12:59:40 -0400</bug_when>

<thetext>Many of the unit tests in org.aspectj.ajdt.ajc.BuildArgParserTestCase and in

org.aspectj.ajde.StructureModelTest are failing for me.
to be due to the behavior of File.getAbsolutePath() .

These failures appear
My suspicion is that these

failures are caused by recent changes to the structure model code to remove

calls to File.getCanonicalPath{().
</bug>

Fig. 5: Sample bugzilla bug

1500,

Histogram of Changes
1000 ol
500 q
I Number o les affected per revision
o— L LB 1 P —
1

2 35 >5

Number of Revisions

Fig. 6: JodaTime: Histogram of changes on a per-revision basis

7000

Il Added
[l Modified

Histogram of Changes
6000

o
o
o
=3

4000 4

30001 1

Number of Revisions

Number of files affected per revision
1000 b
0

1 2 3-5 >5

N
=3
=3
=3

Fig. 7: Aspect]: Histogram of changes on a per-revision basis

1500 =
Ml Added

Ml modified
E’Deieted

Modification Statistics of Vocabulary

1000~

Number of Revisions

5001

wayl

0-10 10-20 20-50 50-100 >=100
Number of terms modified

Fig. 8: Histogram of changes made to the vocabulary on a per-
revision basis computed using 1573 revisions of JodaTime’s
history

reached maturation and that new files do not always add new
identifier terms to the vocabulary of the software.

VI. How 1O USE MOREBUGS

In this section, we illustrate the use of moreBugs for the
three application areas mentioned in Section II. For two of
the three application areas — IR based bug localization and
vocabulary evolution — we also present case studies using
JodaTime and Aspect]. Table IV shows what part of the
information stored in moreBugs will be useful for each of
these three research areas listed in section II.

70001 T T T e
- Wl Added

Ml Modified

Modification Statistics of Vocabulary
6000
[peleted

50001
40001

30001

Number of Revisions

20001

- I I I I I
o Ir—\.ﬁ—___

0-10 10-20 20-50 50-100 >100
Number of terms modified

Fig. 9: Histogram of changes made to the vocabulary on a
per-revision basis computed using 7477 revisions of Aspect]’s
history

TABLE IV: Information needs for three applications of more-
Bugs

A B C

Bug description Yes Yes No
Fixed files Yes Yes No
Commit messages Yes No No

Commit-level Changes | Yes | Yes/No | Yes
Bug-level Changes Yes Yes No
Release Information No No Yes
Parsed Source Files Yes Yes Yes

A. Impact analysis
B. IR based bug localization
C. Software Vocabulary Evolution

A. IR based bug localization

IR based bug localization approaches treat bug localization
as a search task, where the bug report is the query and
the source files are the database of documents. Thus any
benchmark dataset used for an evaluation of an IR based
method for bug localization would need a set of bugs and,
for each bug, (i) textual content extracted from the bug report;
(ii) the set of files fixed in response to that bug report (that
would form the “oracle set” for the purpose of evaluation);
and (iii) the bug’s pre-fix snapshot of the repository which is
used to create an index for the purposes of searching.

All the bugs known to moreBugs are stored in the di-
rectory Dataset/metaInfo/bugList. Given the struc-
ture of the dataset (Figure 1), the information needed for
evaluation of a bug buglD is contained in the directory
Dataset/bugs/buglD/ folder. For each bug in bugList,
this folder contains the following items:

1) The original source files that are placed in the directory
SourceFiles/ corresponding to the pre-fix snapshot
of the software library.

2) The parsed source files in the directories xml/ and
txt/ are in the TREC-style XML format and plain
text format, respectively. The file names are num-
bered according to the fileList table. For exam-
ple (See Table III), the parsed version of the file
TestISOMinuteOfDayDateTimeField. java is
stored as corpus—-0147.xml.

3) The three components of a bug description,
Title.txt, Description.txt and
Comments.txt, are in plain-text format. These
serve as the textual content used to query the index of
source files.

4) Oracle set of relevant files for evaluation of any bug is

listed in the file RelevancelList.

As mentioned before, there are three parts of a bug report:
title, description and comments, that can be used for retrieval.

B. Vocabulary Evolution

As mentioned earlier, studying vocabulary evolution for a
software library gives useful insights into the evolution of the
software itself and aids in code understanding. Most of the
vocabulary-related experiments have carried out on software
libraries have tracked changes from one version (release) to
another. In addition, these studies have involved exploring
relationships between different kinds of identifiers found in
the source code (method names, class names, comments, etc.).

In order to use moreBugs for vocabulary evolution, we
only need the release history of the software stored in
Database/tags/ folder (See Figure 1). The list of tags is
stored in Table Database/metaInfo/tags_revs. Each
tag points to a snapshot of the software library. The orig-
inal source files at each release (or tag) can be found in
the directory Database/tags/tagName/SourceFiles/
and the parsed source files in the directories Corpus/xml
and Corpus/txt folders’.

C. IR based Impact Analysis

In order to evaluate any novel IR based impact anal-
ysis algorithm we need a set of CRs (Change Requests)
and for each CRs: (i) description of the CR; (ii) the
files that were affected by the CR (including those cor-
responding to bug(s) related to the CR) to serve as the
oracle set as well as to facilitate model-building; (iii) the
source files at that revision to serve as the search-able
index. All of this information is recorded in moreBugs
in the Database/revisions/ folder. The list of revi-
sions can be found in Database/metaInfo/revList.
For each of the revisions, the set of files affected
(added, modified, deleted, renamed or copied) is stored in
revisions/revID/changeList.txt. The descriptions
of the CRs are extracted from the changelog and stored
in Database/metaInfo/commit_messages.xml di-
rectory in XML format.

VII. LIMITATIONS OF THE CURRENT VERSION OF THE
DATASETS

The primary limitation of our study is that we have only
tracked the evolution of certain kinds of files. These are the
Java source files and the following documents: HTML, XML,
text, README and Makefiles. Files with other extensions are
not indexed or tracked. A second limitation arises from the

3 Again, these source files are named according their placement in the
fileList table.

fact that we have chosen to eliminate all Unicode and special
characters while parsing the source files. In addition, the final
vocabulary depends on the choice of the identifier splitting
method used. However, this issue can be mitigated by using
the raw source files directly and writing a custom parser that
suits the need of the task at hand. Third, like any legacy
software repository, there is a 15% chance of finding non
essential changes in version histories [27]. These changes are
redundant mainly because they may involve moving files from
one directory to other or renaming files [28] [29] (often called
as rename re-factoring). While, we have explicitly handled the
non-essential changes that occur due to renaming of the files,
there could be other non-essential/redundant changes that we
did not detect.

A user of moreBugs should be aware of the two biases
that come into play when mining version histories and bug
tracking systems [30]: (1) the commit feature bias, and (2)
the bug feature bias. While bug feature bias can be observed
or quantified, commit feature bias cannot be measured. It is
possible that our datasets suffer from the bug-feature bias.

VIII. CONCLUSION AND FUTURE WORK

Considering that moreBugs is based on information ex-
tracted from 10 years of development for Aspect] and Jo-
daTime, the dataset is relatively large, especially when it is
compared to typical benchmarking datasets available today.
The Aspect] part of moreBugs is derived from 7477 revi-
sions, 77 releases, and 450 bugs, whereas the JodaTime part
is derived from 1573 revisions, 32 releases and 57 bugs. We
suppose one could say that the large size of moreBugs is in
consonance with the “big data” focus of modern times.

The main advantage of moreBugs is that it provides
revision to revision changes that are easy to track using
convenient data structures. We believe moreBugs will be
useful for research in vocabulary evolution, bug localization,
impact analysis and so on. The work presented in this paper
also illustrates the usability of the dataset for investigating
these three research topics.

Note that this is only the first version of moreBugs. Our
future goal is to create an SQL database instead of mere tables
to store and retrieve the metadata information. Note also that
so far we have tracked the evolution of the software projects
using only their main/trunk branches. We hope to extend our
analysis to the other branches of the repositories as well. For
the current version, the source files were parsed using simple
parsing rules and identifier splitting techniques. For future
versions, we plan to experiment with the scr2srcML tool [31].
We also plan to use ChangeDistiller [32] to prune out non-
essential changes.

REFERENCES

[1] A. W. Bradley and G. C. Murphy, “Supporting Software History
Exploration,” in Proceedings of the 8th Working Conference on Mining
Software Repositories, ser. MSR 11, 2011, pp. 193-202.

[2] D. Cubranic, G. Murphy, J. Singer, and K. Booth, “Hipikat: A Project
Memory for Software Development,” Software Engineering, IEEE
Transactions on, vol. 31, no. 6, pp. 446 — 465, June 2005.

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

T. Zimmermann, R. Premraj, and A. Zeller, “Predicting Defects
for Eclipse,” in Predictor Models in Software Engineering, 2007.
PROMISE’07: ICSE Workshops 2007. International Workshop on, May
2007, p. 9.

G. Canfora and L. Cerulo, “Fine Grained Indexing of Software Reposi-
tories to Support Impact Analysis,” in Proceedings of the 2006 interna-
tional workshop on Mining software repositories, ser. MSR ’06, 2006,
pp. 105-111.

X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, “An Approach
to Detecting Duplicate Bug Reports Using Natural Language and
Execution Information,” in Proceedings of the 30th international
conference on Software engineering, ser. ICSE 08, 2008, pp. 461-470.
[Online]. Available: http://doi.acm.org/10.1145/1368088.1368151

V. Dallmeier and T. Zimmermann, “Extraction of Bug Localization
Benchmarks from History,” in ASE '07: Proceedings of the Twenty-
Second IEEE/ACM International Conference on Automated Software
Engineering. New York, NY, USA: ACM, 2007, pp. 433-436.

S. Rao and A. Kak, “Retrieval from Software Libraries for Bug
Localization: A Comparative Study of Generic and Composite
Text Models,” in Proceeding of the 8th working conference
on Mining Software Repositories, ser. MSR ’11. New York,
NY, USA: ACM, 2011, pp. 43-52. [Online]. Available: http:
//doi.acm.org/10.1145/1985441.1985451

J. Zhou, H. Zhang, and D. Lo, “Where Should the Bugs be Fixed? -
More Accurate Information Retrieval-Based Bug Localization Based on
Bug Reports,” in Proceedings of the 2012 International Conference on
Software Engineering, ser. ICSE 2012. Piscataway, NJ, USA: IEEE
Press, 2012, pp. 14-24.

M. Fischer, M. Pinzger, and H. Gall, “Populating a release history
database from version control and bug tracking systems,” in Software
Maintenance, 2003. ICSM 2003. Proceedings. International Conference
on, Sept. 2003, pp. 23 — 32.

T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining Mental Models:
A Study of Developer Work Habits,” in Proceedings of the 28th
international conference on Software engineering, ser. ICSE 06, 2006,
pp. 492-501.

A. J. Ko, R. DeLine, and G. Venolia, “Information Needs in Collocated
Software Development Teams,” in Proceedings of the 29th International
Conference on Software Engineering, ser. ICSE, 2007, pp. 344-353.

S. Abebe, S. Haiduc, A. Marcus, P. Tonella, and G. Antoniol, “Analyzing
the Evolution of the Source Code Vocabulary,” in Software Maintenance
and Reengineering, 2009. CSMR ’09. 13th European Conference on,
March 2009, pp. 189 —198.

A. Marcus, A. Sergeyev, V. Rajlich, and J. I. Maletic, “An Information
Retrieval Approach to Concept Location in Source code,” in In Proceed-
ings of the 11th Working Conference on Reverse Engineering (WCRE
2004. 1EEE Computer Society, 2004, pp. 214-223.

G. Gay, S. Haiduc, A. Marcus, and T. Menzies, “On the Use of Rele-
vance Feedback in ir-based Concept Location,” Software Maintenance,
IEEE International Conference on, vol. 0, pp. 351-360, 2009.

A. Marcus and J. I. Maletic, “Recovering Documentation-to-Source-
Code Traceability Links using Latent Semantic Indexing,” in ICSE
'03: Proceedings of the 25th International Conference on Software
Engineering. Washington, DC, USA: IEEE Computer Society, 2003,
pp. 125-135.

S. K. Lukins, N. A. Karft, and E. H. Letha, “Source Code Retrieval for
Bug Localization using Latent Dirichlet Allocation,” in 15th Working
Conference on Reverse Engineering, 2008.

D. Port, A. Nikora, J. Hihn, and L. Huang, “Experiences with Text
Mining Large Collections of Unstructured Systems Development Arti-
facts at JPL,” in Software Engineering (ICSE), 2011 33rd International
Conference on, May 2011, pp. 701 -710.

B. Sisman and A. Kak, “Incorporating Version Histories in Information
Retrieval Based Bug Localization,” in Mining Software Repositories
(MSR), 2012 9th IEEE Working Conference on, June 2012, pp. 50 —
59.

A. T. Nguyen, T. T. Nguyen, J. Al-Kofahi, H. V. Nguyen, and T. Nguyen,
“A Topic-Based Approach for Narrowing the Search Space of Buggy
Files from a Bug Report,” in Automated Software Engineering (ASE),
2011 26th IEEE/ACM International Conference on, Nov. 2011, pp. 263
—272.

J. Zhou, H. Zhang, and D. Lo, “Where Should the Bugs be Fixed?
More Accurate Information Retrieval-Based Bug Localization Based on

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Bug Reports,” in Software Engineering (ICSE), 2012 34th International
Conference on, June 2012, pp. 14 -24.

V. Arnaoudova, L. Eshkevari, R. Oliveto, Y.-G. GuelA andhelA and-
neuc, and G. Antoniol, “Physical and Conceptual Identifier Dispersion:
Measures and Relation to Fault Proneness,” in Software Maintenance
(ICSM), 2010 IEEE International Conference on, Sept. 2010, pp. 1 =5.
A. Corazza, S. Martino, V. Maggio, and G. Scanniello, “Investigating
the Use of Lexical Information for Software System Clustering,” in
Software Maintenance and Reengineering (CSMR), 2011 15th European
Conference on, March 2011, pp. 35 —44.

G. Antoniol, Y.-G. Gueheneuc, E. Merlo, and P. Tonella, “Mining the
Lexicon Used by Programmers during Sofware Evolution,” in Software
Maintenance, 2007. ICSM 2007. IEEE International Conference on, Oct.
2007, pp. 14 -23.

J. Cleland-Huang, A. Czauderna, A. Dekhtyar, O. Gotel, J. H. Hayes,
E. Keenan, G. Leach, J. Maletic, D. Poshyvanyk, Y. Shin, A. Zisman,
G. Antoniol, B. Berenbach, A. Egyed, and P. Maeder, “Grand Chal-
lenges, Benchmarks, and Tracelab: Developing Infrastructure for the
Software Traceability Research Community,” in Proceedings of the 6th
International Workshop on Traceability in Emerging Forms of Software
Engineering, ser. TEFSE ’11, 2011, pp. 17-23.

C. Bird, P. Rigby, E. Barr, D. Hamilton, D. German, and P. Devanbu,
“The Promises and Perils of Mining Git,” in Mining Software Reposi-
tories, 2009. MSR ’09. 6th IEEE International Working Conference on,
May 2009, pp. 1 -10.

D. B. H. Field and D. Lawrie., “An Empirical Comparison of Techniques
for Extracting Concept Abbreviations from Identifiers.” in Proceedings
of IASTED International Conference on Software Engineering and
Applications, 2006.

D. Kawrykow and M. P. Robillard, “Non-essential Changes in Version
Histories,” in Proceedings of the 33rd International Conference on
Software Engineering, ser. ICSE °11, 2011, pp. 351-360. [Online].
Available: http://doi.acm.org/10.1145/1985793.1985842

Y. Yu, T. T. Tun, and B. Nuseibeh, “Specifying and Detecting Meaning-
ful Changes in Programs,” in Automated Software Engineering (ASE),
2011 26th IEEE/ACM International Conference on, Nov. 2011, pp. 273
—282.

S. Thangthumachit, S. Hayashi, and M. Saeki, “Understanding Source
Code Differences by Separating Refactoring Effects,” in Software En-
gineering Conference (APSEC), 2011 18th Asia Pacific, Dec. 2011, pp.
339 -347.

C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein, V. Filkov,
and P. Devanbu, “Fair and Balanced?: Bias in Bug-fix Datasets,” in
Proceedings of the the 7th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on The
foundations of software engineering, ser. ESEC/FSE ’09. New
York, NY, USA: ACM, 2009, pp. 121-130. [Online]. Available:
http://doi.acm.org/10.1145/1595696.1595716

J. Maletic, M. Collard, and A. Marcus, “Source Code Files as Struc-
tured Documents,” in Program Comprehension, 2002. Proceedings. 10th
International Workshop on, 2002, pp. 289 — 292.

B. Fluri, M. Wursch, M. Pinzger, and H. Gall, “Change Distilling:
Tree Differencing for Fine-Grained Source Code Change Extraction,”
Software Engineering, IEEE Transactions on, vol. 33, no. 11, pp. 725
743, Nov. 2007.

	Purdue University
	Purdue e-Pubs
	4-24-2013

	moreBugs: A New Dataset for Benchmarking Algorithms for Information Retrieval from Software Repositories
	Shivani Rao
	Avinash Kak

