
1

Cluster-Based Distributed Face Tracking in Camera
Networks

Josiah Yoder, Henry Medeiros, Johnny Park, and Avinash C. Kak

Abstract—In this paper, we present a distributed multi-camera
face tracking system suitable for large wired camera networks.
Unlike previous multi-camera face tracking systems, our system
does not require a central server to coordinate the entire
tracking effort. Instead, an efficient camera clustering protocol
is used to dynamically form groups of cameras for in-network
tracking of individual faces. The clustering protocol includes
cluster propagation mechanisms that allow the computational
load of face tracking to be transferred to different cameras
as the target objects move. Furthermore, the dynamic election
of cluster leaders provides robustness against system failures.
Our experimental results show that our cluster-based distributed
face tracker is capable of accurately tracking multiple faces in
real-time. The overall performance of the distributed system is
comparable to that of a centralized face tracker, while presenting
the advantages of scalability and robustness.

Index Terms—Distributed Tracking, Object Detection, Face
Tracking, Camera Networks.

I. I NTRODUCTION

As humans, our faces play a central role in how we com-
municate with one another in face-to-face encounters. While
the importance of face recognition in such communications is
universally known, less widely acknowledged are the roles
played by the orientation of a face and the movement of
the head that help us understand many aspects of nonverbal
communications. The orientation of a face typically indicates
the visual focus of attention [1], [2] and can be an important
source of information in ascertaining how a person is interact-
ing with his/her environment. For example, in an application
scenario involving a supermarket, if a computer vision system
needed to figure out as to what object a customer was currently
looking, the orientation of the face would be a strong indicator
of that. Face/head orientation is also used in several important
forms of non-verbal communications, such as when a person is
nodding his/her head to express agreement, or when a person
is shaking his/her head sideways to express the opposite.

The fact that the pose of a person’s face holds important
clues as to how he/she is interacting with the environment has
motivated several researchers to work on face detection [3],
[4], [5], [6], pose estimation [7], [8], [5], [9], [10], [11], [12],
and on face tracking [13], [14], [15], [16], [17], [18], [19]. It
goes without saying that the ability of a computer system to
detect and track people’s faces in real time will open doors
to a host of new applications ranging from human-computer
interaction to surveillance. The contributions we have cited

Authors are with the School of Electrical and Computer Engineer-
ing, Purdue University, West Lafayette, Indiana, 47907, USA. email: {yo-
der2,hmedeiro,jpark}@purdue.edu.

above have focused on extracting the needed information
from single camera images. However, it stands to reason that
simultaneously using multiple images taken from different
viewpoints can only lead to more robust estimation of the
pose of a face, not to speak of the enhanced ability to track the
face/head of a person in motion. Indeed, in the generic context
of object tracking, there has been much interest in combining
information from multiple cameras [20], [21], [22].

In the existing work on the use of several cameras si-
multaneously for estimating the pose of a face, a single
computer pulls together either all of the images captured by
the cameras or the features extracted from all the images.
These centralized approaches to pose estimation and tracking
may involve extensive comparisons of the images, as in dense-
stereo reconstruction [23] or as in the construction of active
appearance models [12], [24]. Such approaches are not easy to
implement in a distributed computing environment composed
of smart cameras — a theme central to the work reported
here. More appropriate for distributed implementations are
those prior contributions that use lightweight object features
extracted from the individual camera images [25], [26], [27],
[28]. Note that these contributions still require a centralserver
to process either all the images or the features extracted
from all the images. There are two major shortcomings to
all methods that use a single processor for the computation
of the face pose: (1) The processor creates a single point of
failure and a prominent point of vulnerability in the system;
and, perhaps even more importantly, (2) the number of cameras
that can be connected to the processor is determined by the
capabilities of the processor. For those reasons, our focus
here is on face pose estimation and tracking algorithms that,
from the ground up, are designed specifically for a distributed
implementation.

A distributed approach to the estimation of face pose and to
its tracking evidently requires coordination among the camera
nodes that are focusing on solving a particular instance of the
problem. As is now a common practice in wireless sensor
networks, such coordination is best achieved if one of the
nodes is chosen to serve as a leader. In wireless sensor
networks, a collaborating set of nodes is usually referred to
as acluster and the leader as acluster head[29], [30], [31],
[32], [33]. In this paper, we will usecluster leaderor simply
leader to refer to the camera node that is coordinating the
computations being carried out by a collection of camera
nodes. This is to avoid confusion withheadthat, in the present
context, is used more appropriately to refer to the anatomical
part of the human whose face is the focus of pose estimation
and tracking.



2

In addition to the need for a cluster leader, a distributed
approach would also require only those camera nodes that are
relevant to the task at hand to participate in pose and tracking
computation. That is, assuming a moderate to large network
of cameras, we would want only those camera nodes that can
actually see a face to try to compute the pose of the face
and to contribute to its tracking. As the bearer of the face
moves, this collection of the camera nodes must also “move”
accordingly. This dynamic formation of a camera node cluster
and the subsequent propagation of the cluster requires whatis
known as a clustering protocol in the jargon of wireless sensor
networks [34], [35], [36], [37], [38], [39], [40]. However,these
mainstream clustering protocols are only appropriate for non-
directional sensor nodes. On account of the directional and
other unique properties of wireless camera sensors [41], [42],
a clustering protocol that is more suited for wireless camera
networks is the one we presented in [43]. Our goal in this
paper is to show how our clustering protocol can be modified
so that it can be used in a network of wired cameras and serve
as the underlying framework for the design of a distributed
face tracking algorithm.

II. A M ULTI -CAMERA FACE TRACKING ALGORITHM

We start by presenting in this section a multi-camera al-
gorithm for face tracking. Our approach is based on the fact
that one can carry out a rough localization of a face, with
respect to all its six degrees of freedom (6-DOF), in a single
camera image. Estimates of the position and the orientationof
a face in the world coordinates, as gleaned from the individual
images in a camera network, constitute a set of world-based 6-
DOF pose observations for the face. These observations from
the individual cameras, along with the uncertainties associated
with them, are then integrated in the world coordinates using
a minimum variance estimator. A face is tracked in the world
coordinates using this integrated estimate.

A. 6-DOF Face Pose Representations

Before we describe our approach for multi-camera face
tracking, let us briefly review the notation and the pose repre-
sentation used in this paper. Figure 1(a) illustrates the 6-DOF
pose of a face in the world coordinates. We use a common
representation, a six-element vectorp̃w = [x, y, z, θ, φ, ψ]T =
[x̃T

w, θ̃
T
w ]T for the world-coordinate representation of the pose.

The first three elements, denotedx̃w = [x, y, z]T , represent the
3D position of the object and the last three elements, denoted
θ̃w = [θ, φ, ψ]T , the rotation of the object expressed in terms
of roll, pitch, and yaw.

We also represent the 6-DOF pose in terms of the position
and size of the face in the image plane and the rotation of
the face with respect to a frontal face. We call this repre-
sentation the image-based 6-DOF pose (Fig. 1(b)), defined as
p̃i = [u, v, s, α, β, γ]T = [x̃T

i , θ̃
T
i ]T where x̃i = [u, v, s]T

represents the position of the face andθ̃i = [α, β, γ]T its
rotation. The positionx̃i of the face is in the form of a
bounding-box —(u, v) specify the center of the bounding
box ands the scale. The rotation parameter vectorθ̃i consists

(a) (b)

Figure 1: 6-DOF face pose representation in the world coor-
dinates and in the image space. (a) 6-DOF pose in the world
coordinates,̃pw = [x, y, z, θ, φ, ψ]T . (b) 6-DOF pose in the
image space,̃pi = [u, v, s, α, β, γ]T .

of roll (α), pitch (β), and yaw (γ) angles of the face1, which
are measured with respect to a frontal face centered at(u, v);
these are distinct from the rotation angles in both the world
and camera coordinate systems [44], [27].

B. Face Pose Computation

To compute the imaged-based face poses, we search each
frame for the occurrence of faces using standard face detection
techniques (such as [6], [45]). The position and the size of the
bounding box corresponding to each detected face is output
by the face detector. Although our framework allows for the
computation of the rotation parameter vectorθ̃i using any
face pose estimation technique (such as [10]), in this work we
detect only frontal faces. For a survey of face pose estimation
techniques, see [7].

We transform a 6-DOF pose observation from the image
coordinates into the world coordinates as follows: The trans-
formation is divided into two components, one for obtaining
the world position vector̃xw and the other for obtaining the
world rotation vectorθ̃w,

p̃w = f(p̃i) =
[

x̃w

θ̃w

]

=

[

fx(u, v, s)
fθ(u, v, α, β, γ)

]

=

[

fx(x̃i)

fθ(x̃i, θ̃i)

]

. (1)

The world position vector is obtained by a method similar
to the one reported in [28]. That is,

x̃w = fx(x̃i) = wRc

(

Ks

s
d̂c

)

+ wtc, (2)

where wRc and wtc are, respectively, the rotation matrix
and the translation vector from the camera coordinate sys-
tem to the world coordinate system,̂dc = (ûic + vĵc +
k̂c)/(

√
u2 + v2 + 1) the unit vector pointing toward the face

in the camera coordinate frame, andKs a constant that relates
the image-based face scales to the distance of the face from
the camera.

The rotation vector in the world space,θ̃w, is obtained by

θ̃w = fθ(x̃i, θ̃i) =
[

wRc cRl [θ̃i]3×3

]

3×1

, (3)

1There are other possible representations for the rotation of an object in
world or image-based coordinates. We discuss these in more detail in the
conclusions (Sec. VI).



3

Camera

center

Figure 2: We represent world observations as a 6-DOF Gaus-
sian distributions. The spatial marginal of this distribution has
a large amount of uncertainty along the backprojected ray
which intersects the face center.

where the rotationcRl compensates for perspective distortion.
This rotation is based on the unit vectord̂c defined above and
the unit vector pointing along the optic axis of the camera,
k̂c. It is defined as the rotation about the axisk̂c × d̂c by the
angle cos−1(k̂c · d̂c) as in [27]. As described by the above
equation, we convert the three-element image-based rotation
vector θ̃i into an equivalent3× 3 rotation matrix[θ̃i]3×3 and
multiply that by the appropriate rotation matrices to obtain a
3 × 3 rotation matrix in the world coordinate frame. We then
transform the resulting rotation matrix back into an equivalent
3-element rotation vector̃θw, this operation being represented
by the notation[·]3×1.

C. Uncertainty Modeling

To take into account the uncertainty in the computation of
the face pose, we represent each image-based observation as
a six-dimensional Gaussian distributionpi ∼ N (pi,Σp,i),
where the meanpi is given by the actual image-based2 face
posep̃i, and the covarianceΣp,i is a diagonal matrix whose
elements are empirically chosen parameters.

To obtain the distribution of the observations in world coor-
dinatespw, the distributionpi of the image-based observation
is propagated through the functionf of Eq. (1) using the
Unscented Transform [46]. This transform compensates for
nonlinearities by transforming a small collection of determin-
istic sigma pointsthrough the functionf . The mean and the
covariance of the transformed distribution are determinedfrom
the transformed sigma points. The transformed observationis
then given by the six-dimensional Gaussian random variable
pw ∼ N (pw,Σp,w).

This is obviously an approximation, but a reasonable one.
Sankaranarayanan and Chellapa, for example, have success-
fully employed a similar approach in [47]. In fact, they show
that when a Gaussian random variable inR

2 is mapped to a
different plane through a homography, its distribution remains
Gaussian as long as its mean is sufficiently far from the line
at infinity. We believe that a similar argument can be made
for the spatial component̃xw = fx(x̃i) of the transformation.
Even for more general transforms, such as the rotational
component,θ̃w = fθ(x̃i, θ̃i), the Unscented Transform is
generally acknowledged to accurately estimate the mean and
covariance of the transformed distribution.

Note that the marginal distribution of the translational
elements of the face posexw has an intuitive interpretation

2Recall that a subscripti denotes an image-based observation, and a
subscriptw a world observation.

— its high-probability region forms an elongated ellipsoid
which has the largest uncertainty along the backprojectionray
(Fig. 2).

D. An Evidence Accumulation Framework for Multi-Camera
Face Pose Estimation

As observations of a given face from multiple cameras
become available, they are integrated into a single estimate
of the position and the orientation of the face.

We use the Mahalanobis distance to compare the world-
frame versions of the face pose as obtained from two different
cameras:

d(pj
w,p

k
w) = (pj

w − pk
w)T (Σj

p,w + Σk
p,w)−1(pj

w − pk
w), (4)

where the superscriptsj and k denote the two observations
being compared. To decide if two such observations are
consistent (that is, they correspond to the same face in two
different images), we compare the Mahalanobis distance to
a matching thresholdT . We declare two observations to be
consistent ifd(pj

w,p
k
w) < T .

Based on the matching distances given byd(pj
w,p

k
w), we

determine a setE of estimates that correspond to a person’s
face. We employ two different approaches for computing these
consistent sets, one for a distributed implementation of the
final world pose estimation, and the other for a centralized
implementation of the same. These will be discussed in
Section IV and V.

Once the observations of a person’s face that are consistent
in the sense described above are collected in a setE , we
can construct from the set the following minimum variance
estimate of the 6-DOF pose of the face in the world frame:

E [p̂w] = (Cov [p̂w])
∑

pk
w∈E

(

Σk
p,w

)−1

pk
w (5)

Cov [p̂w] =





∑

pk
w∈E

(

Σk
p,w

)−1





−1

. (6)

Here,pk
w and Σk

p,w are the mean and covariance associated
with the world observationpk

w. One of the advantages of the
uncertainty reduction formulas (5) and (6) is that they can be
easily computed iteratively.

Once all of the observations are integrated into a single
estimate, a Kalman filter can be used to track each person’s
face pose from frame to frame. This incorporates a motion
model into the estimation process and provides a prediction
of the face pose in one frame based on the estimates in the
previous frames.

Figure 3 is a pictorial depiction of how the 3D pose
evidence gleaned from the individual cameras is integrated
into a minimum variance estimate of the pose of the face in
the world frame. The example shown involves two cameras
that provide the observationsp2

w and p4
w for the 6-DOF

pose. These two observations are assumed to be consistent in
the sense of satisfying the Mahalanobis distance requirement
mentioned earlier. Both these observations would therefore
be placed in the setE for evidence integration to yield the



4

�

�

Figure 3: Evidence accumulation framework. Consistent world
observations are found using the Mahalanobis distance. Cor-
responding observations are integrated using a minimum vari-
ance estimator. The framework is naturally robust to incorrect
detections.

minimum variance estimatêpw. It is important to mention
that this approach is naturally robust to false face detections,
as illustrated by the observationsp1

w and p3

w depicted in
the figure. For each such presumably anomalous observation
in one camera, the likelihood of there existing consistent
observations in the other cameras would be low (except,
perhaps, for accidental matchings for the case of images of
crowded scenes when each image could include several faces).

III. E VENT-DRIVEN CLUSTERING IN WIRED CAMERA

NETWORKS

In this section, we describe a wired camera network protocol
that allows a group of cameras to collaboratively calculate
the 6-DOF pose of a human face by dynamically forming
a cluster of cameras and electing a leader of the cluster
to serve as the coordinator for the collaborative effort. The
clustering protocol was devised with the purpose of facilitat-
ing distributed tracking of objects, and it includes efficient
propagation mechanisms that allow the computational load to
be transferred to different camera nodes as the target object
moves. In addition, the protocol is robust to the presence of
errors in the visual features extracted from the images of the
objects being tracked.

A. Cluster-Based Object Tracking with Wired Camera Net-
works

There are two commonly used graphs for representing a
camera network: (1) Acommunication graphin which an
edge between two camera nodes exists if they can directly
communicate with each other; and (2) avision graph in
which an edge between two camera nodes exists if they have
overlapping fields of view. In a wired camera network, since
each camera can communicate with all the other cameras in
the network, the communication graph is fully connected. In

a wireless camera network, on the other hand, each camera
can only communicate with cameras within its radio range;
therefore, the communication graph for this case contains
edges only between physically proximal camera nodes. There-
fore, the idea of employing a clustering protocol designed
for wireless camera networks in wired networks may seem
rather counter-intuitive. Nonetheless, as we will show in this
section, the communication graph of wireless camera networks
and the vision graph of wired camera networks share many
similarities. As a consequence, the clustering protocol for
wireless cameras that we proposed in [43] can be applied to
wired camera applications with only small changes.

In practice, for a camera network to effectively use its vision
graph to carry out, say, object tracking, a set of cameras in
some neighborhood of the network must all see the object so
that each camera in the set can extract visual features from
its image of the object and, perhaps, form hypotheses about
the identity/pose of the object. All the cameras that can see
an object at any given instant of time will constitute a graph
which would be a subgraph of the vision graph. But that
raises the question as to what we mean by a set of cameras
seeing an object simultaneously. This question is answered
by considering the set of cameras on a pairwise basis.For
any pair of cameras to see an object simultaneously means
that the visual features extracted in the respective images
match. That is, a similarity criterion used to compare such
visual features passes a decision threshold.A set of cameras
that sees an object at the same time will be referred to as
a tracking graph. Obviously, a tracking graph is a dynamic
concept, in the sense that this graph will change from moment
to moment, depending on which cameras are best able to
detect the object, extract its features, and then pass the feature
comparison similarity tests. Figure 4(a) illustrates one example
of a tracking graph. In the example, all the cameras can
identify a target and thus may belong to a tracking graph.
We place an edge between two nodes of a tracking graph if
there exist sufficient similarities between the features extracted
by the two cameras. (Of course, a camera may participate in
multiple tracking graphs if it detects multiple objects.) The
tracking graph shown in 4(a) is complete because we assume
that all the cameras in this graph can extract similar features.
Now consider the case when the object features measured in
two cameras are distinct, as would be the case when the surface
of an object is colored partly red and partly black. In this
case, as illustrated in Figure 4(b), although all the cameras
can observe the same target, it is not possible to establish a
correspondence between the observations at cameras 1 and
2, on the one hand, and at cameras 3 and 4, on the other.
Consequently the tracking graph in this case will not be fully
connected.

As we previously mentioned, the purpose of our protocol is
to form clusters of cameras that observe targets with similar
visual features. In the example shown in Figure 4(a), the
tracking graph is complete, meaning that all the cameras are
able to identify the target with essentially the same set of
features. In this case, all the cameras in the tracking graph
form a cluster for the clustering protocol. Obviously, the same
cannot be done in the example shown in Figure 4(b). In



5

Target

object

1

2

3
4

1

2

3
4

(a)

Target

object

1

2

3
4

1

2

3
4

(b)

Figure 4: (a) Multiple cameras detecting the same object
and the corresponding tracking graph. (b) Multiple cameras
detecting an object with distinct features and the corresponding
tracking graph.

this case, each clique in the tracking graph forms its own
cluster. For the example shown, cameras 1 and 2 would
form one cluster and cameras 3 and 4 another. In wireless
camera networks, multiple clusters must be allowed to track
the same target because of communication constraints. In the
case of wired cameras, although the communication graph
is complete, the tracking graph is not. Therefore, multiple
clusters must also be allowed to track the same target, at
least initially until more information about the target canbe
extracted at which time these multiple clusters can be merged
into a single cluster.

After the clusters are created to track specific targets, they
must be allowed to propagate through the network as the
targets move. Cluster propagation refers to the process of (1)
accepting new camera nodes into a cluster as they identify and
recognize the same object, (2) removing the camera nodes that
can no longer see the object, and (3) electing a new cluster
leader as the current leader leaves the cluster. Adding a new
camera node to a cluster and removing an existing camera
node from a cluster are simple operations. However, when
the cluster leader leaves a cluster, proper mechanisms must
be provided to elect a new leader. In addition, since multiple
clusters are allowed to track the same target, as these clusters
collect further information about the target, they may eventu-
ally be able to conclude that they are in fact tracking a common
object. In wireless camera networks, as the clusters propagate,
new cameras that join them may introduce previously non-
existing communication links between the clusters, thereby
allowing them to coalesce [43]. In wired camera networks,
the acquisition of additional information about the targetmay
produce a similar result in the tracking graphs. In this case,
what were previously two separate partitions of a tracking
graph coalesce into a single clique, allowing what were two
different clusters of camera nodes to operate as a single cluster.

As the reader would expect, dynamic cluster formation
requires comparing the features extracted by the different
camera nodes. Feature comparisons between different images
of the same object can always be expected to be erroneous,
not the least because of the differences in the images recorded
from different viewpoints. We can expect difficulties even for
the simplest of the objects — unless they look the same from
all viewpoints. In addition to the difficulties that are inherent

to feature comparisons, another source of difficulty in our case
is that even when two of the camera nodes believe that they
are looking at different objects (because of the differences
in the feature values recorded), the observations made by a
third camera may bear sufficient similarity to those in the
first two cameras and this third camera may believe that all
three cameras are looking at the same object. To illustrate
this point, assume our object is very simple and consists of a
multi-colored ball, as shown in Figure 5(a), and that the main
feature extracted from the images is the average color value
in the image. Obviously, whereas cameras 2 and 3 will not be
able to establish a correspondence between their observations,
camera 1 has enough information to know that the object
it sees corresponds simultaneously to the observations of
cameras 2 and 3. Similarly, cameras 1 and 4 will not be able
to recognize that their observations correspond to the same
object, but cameras 2 and 3 can create an effective visual
connection between cameras 1 and 4 by partially matching
the target’s features. Under these conditions, ideally it should
be possible to create a single cluster that consists of all the
cameras that can detect the same target (cameras 1, 2, 3 and
4 in our example). However, this would also increase the
chances of grouping together camera nodes that are actually
seeing different objects, as illustrated in Figures 5(b) and (c).
Evidently, in the two examples presented in Figures 5(b) and
(c), one could use camera calibration information to figure
out that the objects involved are different. This is not always
possible, however, because of spatial uncertainties involved
in computing the position of an object, especially along the
camera axis.

To ensure that disparate objects seen by the different cam-
eras in a vision graph do not result in the same tracking graph,
we could also raise the bar on the decision thresholds used for
cross-camera feature similarity comparisons. (Obviously, that
would still not prevent the difficulties created by the case when
different objects do look the same from different viewpoints.)
However, if cross-camera feature similarity thresholds are set
too high, that could impede the formation of a tracking graph
with more than one camera node. We have therefore adopted
a middle approach that consists of establishing a distinction
between a tracking graph and a cluster. Only those camera
nodes that are one another’s immediate neighbors in a tracking
graph can form a cluster. That is, two camera nodes are
allowed to join the same cluster if they both pass the cross-
camera feature comparison similarity tests and they are each
other’s immediate neighbors in a tracking graph (and, by
implication in the vision graph). Therefore, instead of creating
a large cluster to track the same target, we prefer to tolerate
the formation of multiple small clusters and to allow them to
coalesce later as more information about the target is collected.
Here, we can draw a parallel with the complex strategies
required to construct and update large multi-hop clusters in
wireless sensor networks [35]. Although it is possible to create
such large clusters, the overhead involved in the process makes
them undesirable for real-time, lightweight distributed applica-
tions. Similarly, although it may be possible to construct large
clusters of wired cameras by employing more sophisticated
multi-camera object tracking algorithms, the required message



6

Target

object

1

2 3

4

1

2 3

4

(a)

1 2

1 2

(b)

1 2 3

1 2 3

(c)

Figure 5: (a) Multiple cameras detecting a common object by
partial feature matching and the corresponding tracking graph.
(b) Incorrectly matched objects and the corresponding tracking
graph. (c) Sequence of incorrectly matched objects and the
corresponding tracking graph.

and time complexity could be prohibitively large.

It is true that even the constraint that only immediate
neighbors in a tracking graph be allowed to form a cluster
may result in a cluster that tracks multiple objects thinking
that they are the same. This is best exemplified by the simple
situation illustrated in Figure 5(c). Fortunately, unlessall of
the objects are moving together along the same trajectory (in
which case one could argue that they be treated as a single
extended object), such a cluster is likely to break into multiple
clusters as a cluster leader departs because it can no longersee
the object. For example, suppose camera2 in Figure 5(c) is
elected a cluster leader, and cameras1 and3 incorrectly decide
that they are detecting the same object as detected by camera
2. In that case, a single cluster would be created to track all
three targets as if they corresponded to a single target. But
if the object detected by camera2 leaves the camera’s field
of view, the camera node will leave the cluster, and two new
independent clusters will be formed by cameras1 and 3 to
detect the remaining (and now clearly distinct) objects. Itis
interesting to note that a similar situation arises in wireless
camera networks [43]. In such networks, all the members of
a single-hop cluster must be able to communicate with the
cluster leader; however, the sensor nodes may not necessarily
be able to communicate with one another directly. Therefore,
when the cluster leader leaves the cluster, it may be necessary
to create multiple new clusters.

Figure 6 shows the state transition diagram of our cluster-
based object tracking system using a camera network. Upon
initialization, the network monitors the environment for any
objects of interest. As objects are detected, for each object
one or more clusters are formed to track it. These clusters
propagate through the network to keep track of the objects
in motion. Finally, if two or more clusters conclude that they

Interacting

Object moves

Monitoring

Tracking

Object detected

Formation of clusters

Propagation

Approaches other clusters

Object lost

Fragmentation

Coalescence

Figure 6: State transition diagram of a cluster-based object
tracking system using a camera network.

are tracking the same object, they may coalesce into a larger
cluster. Moreover, since the network is able to keep track
of multiple objects simultaneously, each camera may belong
to more than one cluster at the same time. In practice, that
requires that each camera maintain a different state for each
of the objects that it recognizes and that are currently being
tracked by the network.

B. Clustering Protocol

In this section, we briefly describe our clustering protocol
for camera networks. A more detailed description of the
protocol in the context of wireless camera networks can be
found in [43], [48]. The messages exchanged by the cameras
for cluster formation and propagation activities include data
packets that consist of visual features extracted and their
corresponding values for each object detected in the scene.
Obviously, when one camera node receives such a message
from another camera node, the receiving node accepts the
message only if it has itself detected an object with similar
attributes and values. As the reader would expect, at network
initialization time, the calibration information at each camera
node is used to construct a vision graph that is stored at every
node of the network in the form of an adjacency list. Each
node uses the vision graph to filter out the messages from
those camera nodes that are not directly connected to it in the
vision graph.

1) Cluster Leader Election:We employ a two-phase cluster
leader election algorithm. In the first phase, the nodes in the
same tracking graph compete to become the leader of the
cluster. (One possible criterion for this competition is given in
Section IV-B.) After the first phase, at most one camera node
elects itself as the cluster leader among its direct neighbors
in a tracking graph, and the rest join the cluster. During the
second phase, the cameras that were left without a cluster
leader (because their cluster leader candidate joined another
cluster) elect the next best candidate as the cluster leader.

2) Cluster Propagation:Inclusion of new members into
active clusters takes place as follows: When a camera detects
a new object, it proceeds normally, as in the cluster formation
step, by sending to its neighbors acreate clustermessage and
waiting for the election process to take place. However, if
there is an active cluster tracking the same object, the cluster
leader replies with a message requesting that the camera join
its cluster. The camera that initiated the formation of a new



7

cluster then halts the election process and replies with ajoin
clustermessage.

Removal of cluster members is trivial. When an object
leaves the field of view of a cluster member, all the member
has to do is send a message informing the cluster leader that
it is leaving the cluster. The cluster leader then updates its list
of cluster members. If the cluster member is tracking multiple
objects at the moment, it terminates only the connection
related to the object that left its field of view.

Cluster propagation also involves leader reselection and
cluster coalescence, which we explain below.

a) Cluster Leader Reselection:Assuming that the cluster
leader has access to the latest information about the position of
the target with respect to each cluster member, it is able to keep
an updated list of the best cluster leader candidates. When the
cluster leader decides to leave the cluster, it sends a message
to the remaining camera nodes containing a sorted list of the
best cluster leader candidates. (This message also includes any
additional state information for the cluster head, such as the
state of the Kalman filter we will discuss in Sec. IV-C). A new
cluster leader is then selected following the second phase of
the regular cluster leader election mechanism. This approach
not only allows for cluster fragmentation, but also for seamless
cluster coalescence.

b) Cluster Coalescence:Consider two clusters, A and B,
that are propagating toward each other. As explained above,
cluster propagation entails establishing a new cluster leader
as the previous leader loses sight of the object. Now consider
the situation when a camera is designated to become the new
leader of cluster A and is tracking the same object as clusterB.
Under this circumstance, the camera node that was meant to
be A’s new leader is forced to join cluster B. As the members
of cluster A overhear their prospective cluster leader joining
cluster B, they also join B.

3) Cluster Maintenance:Additional robustness to failures
is achieved by a periodic refresh of the cluster status. Since
the protocol is designed to enable clusters to carry out col-
laborative processing, it is reasonable to assume that cluster
members and cluster leaders exchange messages periodically.
Therefore, we can use a soft-state based approach [49] to keep
track of cluster membership.

IV. CLUSTER-BASED DISTRIBUTED FACE TRACKING

In this section we present the architecture of our cluster-
based distributed face tracking system. Figure 7 shows a block
diagram of the system. At each camera node, as a new image
frame becomes available, a face detector module detects allthe
faces present in the frame and computes their corresponding
world poses. This information is then delivered to the object
manager, which is responsible for checking whether the faces
detected in this frame correspond to any of the existing faces
currently being tracked or to a new detection. This is done by
the matching module that compares the identities of the faces
detected in this frame to the identities of all the existing faces
currently being tracked. (We will describe the features used to
establish identity in the next subsection.) If a face detected in
this frame corresponds to a new detection, the object manager

Clustering

Module 1

Clustering

Module 2

Clustering

Module k

...

Object Manager

Matching

Module

Integration

Module

Face Detector

Network

Camera Node 1

Camera Node 2

Camera Node N

...

Figure 7: Block diagram of our distributed face tracker.

instantiates a new clustering module with the responsibility to
keep track of this new face. In the example shown in Figure 7,
k faces are being tracked by camera node 1. When a clustering
module is instantiated, it starts a new cluster leader election
process. If, on the other hand, a face detected in this frame is
identified as one of the existing faces currently being tracked,
all that the object manager has to do is to transfer the face
pose observation to the corresponding clustering module.

When a clustering module starts a cluster leader election,
it broadcasts this intent to its vision neighbors. When another
clustering module receives this message, it checks whetherthe
face pose contained in the message corresponds to the face for
which it is responsible. Again this is done by the matching
module within the object manager. After the cluster leader
election finishes, the clustering module reports to the object
manager its current cluster status, i.e., whether it became
a cluster leader or a cluster member. The object manager
can then use this information to decide how to process new
observations of the specific face as follows.

For each face detected in the current frame, if the face is
associated with an existing cluster and the camera node is
currently a member of that cluster, the object manager requests
that the clustering module send this observation to its cluster
leader.3 If a face detected in the current frame is associated
with an existing cluster and the camera node is the leader
of that cluster, the object manager simply updates the face
pose estimate using this new observation. The same happens
if the clustering module receives an observation from one of
its cluster members. In both cases, the face pose is updated
by the integration module using Eqs. (5) and (6).

If the object manager at a given camera node does not
receive any observations for a particular face for several
frames, it terminates the corresponding clustering module. If

3All inter-node communication takes place through the clustering modules
at each node.



8

the camera node is currently the leader of that cluster, its
termination triggers cluster propagation so that a new cluster
leader can be assigned to keep track of the face. On the
other hand, if the camera node is only a cluster member, its
termination simply triggers a report to the cluster leader that
it is leaving the cluster.

A. Use of Position as a Face Identification Feature

The clustering protocol as described in Section III distin-
guishes between thefeaturesused to identify targets and the
estimatesof the target position. However, since robust face
recognition methods that work in real time under realistic
conditions are not yet available [50], at this time we use the
pose of a face as the feature that defines its identity. In [51],
the authors also use a spatial feature (object motion) for track
identification. One of the challenges in using the pose for face
identification is that, as the face moves, the face identifieralso
changes. Nonetheless, as long as the people being tracked do
not move too abruptly and as long as the pose estimates are
kept up-to-date by the object manager on a frame by frame
basis whenever their faces are detected in the camera images,
we can expect our approach to face identification to work
without difficulties.

B. Cluster Leader Election Criterion

Cluster leader election requires that we define a criterion
that must be satisfied by a camera node if it is to become
a cluster leader. The criterion that we use currently is based
on the distance between the location of the face as given by
the projection ofxw into the camera image plane and the
camera center of the camera in question. The main advantages
of this criterion are that it generally creates relatively long-
lived cluster leaders and the distance can be computed easily
in each camera.

C. System Synchronization

It is well known that synchronous distributed systems are
in general less complex and, for some network types, more
efficient than asynchronous systems [52]. Since synchronizing
the time clocks of camera nodes interconnected by a local
area network is relatively simple, we chose to employ a
synchronous approach for our distributed camera network
system. In our system, camera clocks are synchronized using
the Network Time Protocol (NTP). Moreover, we assume
that all the cameras in the network have a consistent frame
capturing rate. However, even when that is true, it is not simple
to synchronize the image capture times without using special
hardware. That is, it is difficult to guarantee that the time
instant at which the different cameras capture their frames
will be exactly the same for all cameras. To overcome this
problem, we designed a buffering mechanism that allows the
cameras to store the current detections until they reach a
synchronization point. The buffering mechanism is illustrated
in Figure 8. As the cameras acquire the initial frame, they store
the information in the buffer until they reach a synchronization
point. At this point, collaborative processing is initiated and

Face Detection

Image
capture

Image capture 
frame interval

Image
capture

Camera 1

Camera 2

Image capture
not synchronized
between cameras

 

Image capture 
frame interval

Collaborative
processing

Collaboration
frame interval

Frame 1 Frame 2 Frame 3

Frame 1 Frame 2 Frame 3

Frame 1 Frame 2 Frame 3

Frame 1 Frame 2 Frame 3

Frame 1 Frame 2 Frame 3

Frame 1 Frame 2 Frame 3

Buffer

Face Detection

 

Collaborative
processing

Buffer

Synchronization
point

Time

Figure 8: Buffer mechanism for camera synchronization. Cam-
era capture and face detection are executed asynchronously.
The results are stored in a buffer which is processed syn-
chronously during the collaboration frame intervals.

the cameras are allowed to share information. In subsequent
frames, new synchronized collaboration frame intervals occur
at a predefined rate that is common to all cameras. This
works as long as face detection can be carried out in less
than one frame interval. However, since face detection time
is variable, it may occasionally take longer than one frame
interval. In that case, the detections corresponding to that
frame are discarded and a new frame is processed without
detriment to the collaborative processing synchronization.

Figure 9 shows in detail the sequence of events that takes
place during the collaboration intervals. During the brief
setup step, all new clustering modules are initialized and
prepared to receive messages from other cameras. This step
provides tolerance for small errors in the synchronization
of the cameras. Although not strictly necessary, this step
greatly improves system efficiency by not having to buffer
messages received by uninitialized clustering modules. Atthe
beginning of the clustering step, the clustering protocol is
executed and clusters are created, dissolved, or propagated as
necessary. After the states of all the clusters are updated,the
cluster members send their observations to the cluster leaders,
which then integrate them into face pose estimates. After the
clustering step, the cluster leaders update the estimate and
prediction of the location of each face using a Kalman filter.
The cluster leaders also broadcast the predicted face posesto
the cluster members for association with the face detections
in the next frame. To avoid the cluster switching from one
person to another, if the cluster leader detects that the new



9

Figure 9: Collaboration interval steps. After a short setup
period, all the cameras share information during the clustering
step. Afterwards, cluster leaders broadcast the results tothe
cluster members, and post-processing algorithms may take
place.

face pose estimate is far from the Kalman filter’s prediction,
it terminates the cluster by sending a message to its members
and deactivating itself. Finally, after the required processing is
concluded, our system provides a time slot for the application
of post-processing algorithms. In our current system, we use
this slot to log the results of our experiments.

V. EXPERIMENTS

We implemented our algorithm on a network of twelve
firewire cameras connected to three quad-core desktop com-
puters. The cameras are arranged side-by-side in the form of
a 2 × 6 array all facing approximately the same direction.
Each camera has a separate process assigned to it. In each
process, we manage the face position estimates and camera
clustering assigned to that camera, and detect faces with a
boosted classifier cascade [6], [45] trained using the FERET
database [53]. Figure 10 shows four snapshots of the graphical
user interface of our system. The top half of each snapshot
shows a computer graphics representation of the 3D positions
of the camera array, the clusters tracking the faces, and
the estimated poses of the detected faces. Each camera is
represented by a small cube and the face poses are indicated
by a 3D face model [54]. The circles represent cluster leaders
and the lines represent the members. A dashed circle or line
indicates that the cluster leader or member did not contribute
an observation for that particular frame. The bottom part of
each snapshot shows the images captured by the cameras
and the corresponding face detections as computed by the
individual cameras.

Figure 11 shows qualitative results of one run of our
experiments for one of the two people shown in Figure 10.
The left column shows the 3D positions of the face, and the
right column shows its orientation. In this figure, ground truth
is represented by solid lines and the markers with different
colors represent the estimated face poses. The reason for using
different colors on the trajectories is to illustrate the moments

when the system loses track of a person’s face — each time
the track is lost, a different color is used. Notice that when
a cluster loses track, another cluster almost immediately is
created and starts to track the face again.

In the experiments we present here, we require that all the
cameras in a cluster detect a frontal face. A face can be accu-
rately tracked if it is detected by at least two cameras. When
the individual cameras have low detection rates, additional
camera views can increase the likelihood of detecting the face.
If non-frontal face poses can be localized in the individual
images, fewer cameras will be needed by our protocol. Even
when detecting only frontal faces, many camera configurations
can be used with our current protocol. Because the clustering
protocol allows for the propagation of the cluster, new cameras
in different orientations can pick up the tracking of the face
as the face rotates away from the old cameras.

A. Comparison with a Centralized Method

To provide a quantitative evaluation of our distributed ap-
proach, we compare it to a centralized method which operates
in a similar framework but does not include the clustering
protocol.

The centralized version has many of the features of the dis-
tributed approach. As in the distributed approach, we perform
face detection locally in each camera. Thus face detection —
which takes most of the processing time in our experiments —
is still distributed in the centralized approach. The timing of
both approaches is also similar. In both systems, we synchro-
nize the processing of images as illustrated in Fig. 8. Despite
these similarities, there are fundamental differences between
the centralized and distributed versions. In the centralized
version, no leader is elected. Instead, collaborative processing
takes place in two steps. In the first step, every camera sends
the observations to a single node for central processing. Inthe
second step, the central node processes all the observations it
received for that frame in batch.

Because all of the estimates are available in batch, we
partition them into setsEl, l = 1, . . . , L, whereL is the number
of people in the environment, using an approximate clique
clustering algorithm [55]. The sets are chosen to approximately
minimize the sum of intra-set costs,

argmin
L,El

L
∑

l=1





∑

p
j
w∈El,pk

w∈El,p
j
w 6=pk

w

cost(pj
w,p

k
w)



 . (7)

This algorithm requires both positive and negative costs to
produce non-trivial clusterings, so we use the cost function
cost(pj

w,p
k
w) = d(pj

w,p
k
w) − Tclique, whereTclique deter-

mines the zero-cost distance, andd(·) is given in Eq. (4).
Figure 12 shows a comparison between the centralized

tracker and our distributed approach. The tracks shown in the
figure correspond to thex coordinates of the two faces shown
in Figure 10. As in Figure 11, different colors illustrate the
moments when the system loses track of a face. Since neither
approach represents an ideal tracker, lost tracks occur in both.
We record two kinds of tracking errors for our system. If a
track is lost, and a new one is created to track a person, we call



10

Figure 10: Snapshot of our tracking results. Top figures: graphical representation of the camera array and estimated poses.
Bottom figures: images captured by each camera and the detected faces. The two frames at the top illustrate the propagation
of a cluster leader.

this an "extra track." If a tracker switches from one person to
another, we call this a "track switch." Track switches are worse
than extra tracks because they indicate that a single tracker
tracks two people. They are also much more rare in both the
centralized and distributed systems. In ten runs of the system,
the centralized system required an average of3.6 ± 0.2 extra
tracks per person and 0 track-switches, and the distributed
system required2.2± 0.7 extra tracks and 0.1 track switches.

We also compare the centralized and distributed approaches
based on the frame-by-frame tracking performance, as shown
in Table I. In each frame, we associate each ground-truth
to a single integrated face estimate, if there is an estimate
within a specific matching distance. True-positives (TP ) rep-
resent ground-truth and integrated estimate pairs, while false-
positives (FP ) represent estimates which do not correspond to
any ground-truth. Pairs are assigned starting with the closest
ground-truth and estimates, so that it is possible for an estimate
to be within the matching distance and still be considered an
FP . TheRMSE estimates are based on theTP pairs. These
results show that the distributed approach achieves comparable
performance to the centralized version.

VI. CONCLUSION

We have presented a completely distributed face tracking
algorithm that estimates the 6-DOF poses of multiple faces in

Table I: Tracking performance on the two-person sequence.
Testing is done on 50 frames, spaced ten frames apart. These
results are averaged over five runs for each system, each using
the same multi-camera video sequence.

TP a FP a rmseT(cm) rmseR(◦)
Centralized 95 (95%) 12 (12%) 5.8 20.8
Distributed 94 (94%) 4 (4%) 6.1 18.7
apercentages are per frame, per person

real time. Each camera individually computes the world pose
of the faces based on their visual features. The observations
of multiple cameras are integrated using a minimum variance
estimator and tracked using a Kalman filter. A clustering
protocol is responsible for dynamically creating groups of
cameras that track a given face and for coordinating the
distributed processing.

As our experimental results show, our algorithm performs
as well as a centralized approach while presenting the well-
known advantages of distributed systems: scalability and ro-
bustness. Since the computational load is dynamically trans-
ferred among processors as the people move in the field of
view of the camera network, our algorithm can potentially
handle an arbitrary number of faces and can be scaled to much
larger networks. Also, since cluster leaders are dynamically
elected and the clustering protocol is robust to system failures,



11

0 100 200 300 400 500
0

50

100

150

200
X

 (
cm

)

frames

0 100 200 300 400 500
0

50

100

150

200

Y
 (

cm
)

frames

0 100 200 300 400 500
0

50

100

150

200

Z
 (

cm
)

frames

0 100 200 300 400 500

−40

−20

0

20

40

ψ
 (

de
gr

ee
s)

frames

0 100 200 300 400 500

−40

−20

0

20

40

φ 
(d

eg
re

es
)

frames

0 100 200 300 400 500

−40

−20

0

20

40
θ 

(d
eg

re
es

)

frames

Figure 11: Qualitative results of one experimental run of the distributed face tracker on one of two faces (the second face is
omitted for clarity).

the algorithm does not rely on a single server to process the
information, therefore avoiding a single point of failure.

One limitation of our current approach is the representation
of rotations using yaw, pitch, and roll angles, which, as any
representation of rotations inR3, have discontinuities that must
be handled as special cases. We currently restrict ourselves to
representations inR3 to allow the use of standard techniques
for transforming distributions between Euclidean spaces.In the
future, we would like to extend our method to use quaternions,
but this requires more sophisticated techniques to transform
rotation estimates from a three-dimensional Euclidean space
to a three-dimensional manifold in a four-dimensional space.

Another aspect that requires consideration is that the min-
imum variance estimator — Eqs. (5) and (6) — is based on
the assumption that the camera observations are independent.
Although this is generally a good approximation, when we
transform the observations from the image space to the world
space, we incorporate prior knowledge about the size of a
person’s face. This introduces a bias in the world space which
manifests itself as observations which are consistently closer
to the camera which detects them, or farther away, depending
on whether the person’s face is larger or smaller than expected.

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

X
 (

cm
)

frames

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

X
 (

cm
)

frames

Figure 12: Comparison of tracking in the distributed (top) and
centralized (bottom) versions. Marker color indicates theID
assigned to each track. Both the centralized and the distributed
approaches are approximate and track ID changes are visiblein
both approaches. The ground truth for each track is indicated
by a black line which is sampled every10th frame.



12

Although we believe that most of this bias is removed in the
integration of the observations from multiple cameras — and
our experimental results support that claim — in the future
we would like to carefully investigate the effects of this bias
in the estimation of the positions of the faces.

One advantage of our approach is that while it does not
require image-based tracking methods such as particle filters or
mean-shift [56], [57], [58], it does provides a good framework
for incorporating such trackers which operate independently
on different camera images. These trackers would provide
additional observations which could be used to keep track of
the faces when the interval between face detections is large.
When new face detections become available, they could be
used to reduce the chance that the trackers drift off of the true
face location.

ACKNOWLEDGMENTS

This work was sponsored by Olympus Corporation. The
authors wish to thank Hidekazu Iwaki and Akio Kosaka for
many helpful discussions.

REFERENCES

[1] R. Stiefelhagen, M. Finke, J. Yang, and A. Waibel, “From gaze to focus
of attention,” inProceedings of the International Conference on Visual
Information and Information Systems. Springer, 1999, pp. 761–768.

[2] K. Smith, S. Ba, D. Gatica-Perez, and J.-M. Odobez, “Tracking the vi-
sual focus of attention for a varying number of wandering people,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 30,
no. 7, pp. 1212–1229, 2008.

[3] H. Rowley, S. Baluja, and T. Kanade, “Neural network based face detec-
tion,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 20, no. 1, pp. 23–38, 1998.

[4] H. Schneiderman and T. Kanade, “A statistical method for3D object
detection applied to faces and cars,” inProceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2000.

[5] C. Huang, H. Ai, Y. Li, and S. Lao, “High-performance rotation invariant
multiview face detection,”IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 29, no. 4, pp. 671–686, 2007.

[6] P. Viola and M. Jones, “Robust real-time face detection,” International
Journal of Computer Vision, vol. 57, no. 2, pp. 137–154, 2004.

[7] E. Murphy-Chutorian and M. Trivedi, “Head pose estimation in com-
puter vision: A survey,”IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 31, no. 4, pp. 607–626, Apr. 2009.

[8] L. Brown, Y. Tian, I. Center, and N. Hawthorne, “Comparative study
of coarse head pose estimation,” inProceedings of the Workshop on
Motion and Video Computing, 2002, pp. 125–130.

[9] L. Zhao, G. Pingali, and I. Carlbom, “Real-time head orientation
estimation using neural networks,” inProceedings of the International
Conference on Image Processing, 2002.

[10] E. Murphy-Chutorian, A. Doshi, and M. Trivedi, “Head pose estimation
for driver assistance systems: A robust algorithm and experimental eval-
uation,” in Proceedings of the IEEE Intelligent Transportation Systems
Conference, Sept 2007, pp. 709–714.

[11] B. Raytchev, I. Yoda, and K. Sakaue, “Head pose estimation by nonlinear
manifold learning,” inProceedings of the International Conference on
Pattern Recognition, 2004.

[12] T. Cootes, G. Edwards, and C. Taylor, “Active appearance models,”IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 23,
no. 6, p. 681, Jun. 2001.

[13] T. Maurer and C. von der Malsburg, “Tracking and learning graphs
and pose on image sequences of faces,” inProceedings of the IEEE
International Conference on Automatic Face and Gesture Recognition,
1996, pp. 176–181.

[14] T. S. Jebara and A. Pentland, “Parametrized structure from motion for
3D adaptive feedback tracking of faces,” inProceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 1997, pp. 144–
150.

[15] A. Schödl, A. Haro, and I. Essa, “Head tracking using a textured
polygonal model,” inWorkshop on Perceptual User Interfaces, 1998,
pp. 43–48.

[16] J. Heinzmann and A. Zelinsky, “3-D facial pose and gaze point estima-
tion using a robust real-time tracking paradigm,” inProceedings of the
International Conference on Automatic Face and Gesture Recognition,
1998, pp. 142–147.

[17] D. Decarlo and D. Metaxas, “Optical flow constraints on deformable
models with applications to face tracking,”International Journal of
Computer Vision, vol. 38, no. 2, pp. 99–127, 2000.

[18] M. La Cascia, S. Sclaroff, and V. Athitsos, “Fast, Reliable Head Tracking
under Varying Illumination: An Approach Based on Registration of
Texture-Mapped 3D Models,”IEEE Transactions on Pattern Analysis
and Machine Intelligence, pp. 322–336, 2000.

[19] J. Tu, T. Huang, and H. Tao, “Accurate head pose trackingin low
resolution video,” inProceedings of the IEEE International Conference
on Automatic Face and Gesture Recognition, 2006.

[20] Z. Zhang, A. Scanlon, W. Yin, L. Yu, and P. L. Venetianer,“Video
surveillance using a multi-camera tracking,” inMulti-Camera Networks:
Principles and Applications, H. Aghajan and A. Cavallaro, Eds. Else-
vier, 2009, ch. 18, pp. 435–456.

[21] S. Calderara, R. Cucchiara, R. Vezzani, and A. Prati, “Statistical
pattern recognition for multi-camera detection, tracking, and trajectory
analysis,” in Multi-Camera Networks: Principles and Applications,
H. Aghajan and A. Cavallaro, Eds. Elsevier, 2009, ch. 16, pp.389–414.

[22] J. Wu and M. Trivedi, “A two-stage head pose estimation framework and
evaluation,”Pattern Recognition, vol. 41, no. 3, pp. 1138–1158, 2008.

[23] L. Morency, A. Rahimi, N. Checka, and T. Darrell, “Fast stereo-based
head tracking for interactive environments,” inProceedings of the IEEE
International Conference on Automatic Face and Gesture Recognition,
2002, pp. 390–395.

[24] S. Koterba, S. Baker, I. Matthews, C. Hu, J. Xiao, J. Cohn, and
T. Kanade, “Multi-view AAM fitting and camera calibration,”Proceed-
ings of the IEEE International Conference on Computer Vision, 2005.

[25] M. Yasumoto, H. Hongo, H. Watanabe, and K. Yamamoto, “Face
direction estimation using multiple cameras for human computer in-
teraction,” inProceedings of the International Conference on Advances
in Multimodal Interfaces – ICMI. Springer, 2000, pp. 222–229.

[26] C. Chang, C. Wu, and H. Aghajan, “Pose and gaze estimation in multi-
camera networks for non-restrictive HCI,” inProceedings of the IEEE
International Workshop on HCI, vol. 4796. Springer, 2007, p. 128.

[27] E. Murphy-Chutorian and M. Trivedi, “3D tracking and dynamic
analysis of human head movements and attentional targets,”Proceed-
ings of the International Conference on Distributed Smart Cameras
(ICDSC’08), 2008.

[28] H. Iwaki, G. Srivastava, A. Kosaka, J. Park, and A. Kak, “A novel
evidence accumulation framework for robust multi-camera person de-
tection,” in Proceedings of the ACM/IEEE International Conference on
Distributed Smart Cameras, Sep. 2008, pp. 1–10.

[29] W. B. Heinzelman, A. P. Chandrakasan, and H. Balakrishnan, “An
Application-Specific Protocol Architecture for Wireless Microsensor
Networks,” IEEE Transactions on Wireless Communications, vol. 1,
no. 4, pp. 660–670, Oct. 2002.

[30] S. Bandyopadhyay and E. Coyle, “An energy efficient hierarchical
clustering algorithm for wireless sensor networks,” inProc. IEEE
INFOCOM, vol. 3, 2003, pp. 1713– 1723.

[31] O. Younis and S. Fahmy, “HEED: A hybrid, energy-efficient, distributed
clustering approach for ad hoc sensor networks,”IEEE Transactions on
Mobile Computing, vol. 3, no. 4, pp. 366–379, Oct.-Dec. 2004.

[32] S. Soro and W. Heinzelman, “Prolonging the lifetime of wireless
sensor networks via unequal clustering,” inProceeedings of the IEEE
International Parallel and Distributed Processing Symposium, April
2005.

[33] C. Liu, J. Liu, J. Reich, P. Cheung, and F. Zhao, “Distributed group
management for track initiation and maintenance in target localization
applications,” inProceedings of the IEEE International Workshop on
Information Processing in Sensor Networks, Apr. 2003.

[34] W.-P. Chen, J. Hou, and L. Sha, “Dynamic clustering for acoustic target
tracking in wireless sensor networks,”IEEE Transactions on Mobile
Computing, vol. 3, no. 3, pp. 258–271, Jul. 2004.

[35] W. Zhang and G. Cao, “DCTC: Dynamic convoy tree-based collabo-
ration for target tracking in sensor networks,”IEEE Transactions on
Wireless Communications, vol. 3, no. 5, pp. 1689–1701, Sep. 2004.

[36] Y.-C. Tseng, S.-P. Kuo, H.-W. Lee, and C.-F. Huang, “Location tracking
in a wireless sensor network by mobile agents and its data fusion
strategies,”The Computer Journal, vol. 47, no. 4, pp. 448–460, Apr.
2004.



13

[37] X.-H. Kuang, R. Feng, and H.-H. Shao, “A lightweight target-tracking
scheme using wireless sensor network,”Measurement Science and
Technology, vol. 19, no. 2, p. 025104 (7pp), 2008.

[38] Q. Fang, F. Zhao, and L. Guibas, “Lightweight Sensing and Commu-
nication Protocols for Target Enumeration and Aggregation,” in ACM
Symp. on Mobile Ad Hoc Networking and Computing (MobiHoc), 2003,
pp. 165 – 176.

[39] F. Bouhafs, M. Merabti, and H. Mokhtar, “Mobile event monitoring pro-
tocol for wireless sensor networks,” inProceedings of the International
Conference on Advanced Information Networking and Applications
Workshops, AINAW ’07, vol. 1, 2007, pp. 864–869.

[40] W. Yang, Z. Fu, J.-H. Kim, and M.-S. Park, “An adaptive dynamic
cluster-based protocol for target tracking in wireless sensor networks,”
in Joint 9th Asia-Pacific Web Conference Advances in Data and Web
Management, APWeb 2007, and 8th International Conference on Web-
Age Information Management, WAIM 2007, 2007, pp. 157–167.

[41] S. Soro and W. Heinzelman, “On the coverage problem in video-
based wireless sensor networks,” inProceedings of the International
Conference on Broadband Networks, Oct. 2005, pp. 932–939 Vol. 2.

[42] ——, “A survey of visual sensor networks,”Advances in Multimedia,
vol. 2009, pp. 1–21, 2009.

[43] H. Medeiros, J. Park, and A. Kak, “Distributed object tracking using a
cluster-based kalman filter in wireless camera networks,”IEEE Journal
of Selected Topics in Signal Processing, vol. 2, no. 4, pp. 448–463, Aug.
2008.

[44] Y. Tian, L. Brown, J. Connell, S. Pankanti, A. Hampapur,A. Senior,
and R. Bolle, “Absolute head pose estimation from overhead wide-
angle cameras,” inProceedings of the IEEE International Workshop on
Analysis and Modeling of Faces and Gestures, 2003.

[45] R. Lienhart and J. Maydt, “An extended set of Haar-like features
for rapid object detection,”Proceedings of the IEEE International
Conference on Image Processing, vol. 1, no. 1, pp. 900–903, Sep. 2002.

[46] S. Julier and J. Uhlmann, “A new extension of the Kalman filter to
nonlinear systems,” inProceedings of the International Symposium on
Aerospace/Defense Sensing, Simulation and Controls, vol. 3, 1997.

[47] A. Sankaranarayanan and R. Chellappa, “Optimal multi-view fusion of
object locations,” inProceedings of IEEE Workshop on Motion and
Video Computing. Citeseer, Jan. 2008, pp. 1–8.

[48] H. Medeiros, J. Park, and A. Kak, “A light-weight event-driven protocol
for sensor clustering in wireless camera networks,”Proceedings of the
ACM/IEEE International Conference on Distributed Smart Cameras,
vol. 2, no. 4, pp. 203–210, Sep. 2007.

[49] J. Kurose and K. Ross,Computer Networking: A Top-Down Approach
Featuring the Internet, 3rd ed. Addison Wesley, 2005.

[50] W. Zhao, R. Chellappa, P. Phillips, and A. Rosenfeld, “Face recognition:
A literature survey,”ACM Computing Surveys, vol. 35, no. 4, pp. 399–
458, 2003.

[51] Y. Sheikh, O. Javed, and M. Shah, “Object association across multiple
cameras,” in Multi-Camera Networks: Principles and Applications,
H. Aghajan and A. Cavallaro, Eds. Elsevier, 2009, ch. 17, pp.415–434.

[52] N. Lynch, Distributed Algorithms. Morgan Kaufmann, 1997.
[53] P. Phillips, H. Wechsler, J. Huang, and P. Rauss, “The FERET database

and evaluation procedure for face-recognition algorithms,” Image and
Vision Computing, vol. 16, no. 5, pp. 295–306, 1998.

[54] V. Blanz and T. Vetter, “A morphable model for the synthesis of 3D
faces,” inProceedings of the ACM SIGGRAPH Conference on Computer
Graphics, 1999, pp. 187–194.

[55] V. Ferrari, T. Tuytelaars, and L. Van Gool, “Real-time affine region
tracking and coplanar grouping,” inProceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, vol. 2, 2001.

[56] D. Comaniciu and P. Meer, “Mean shift: a robust approachtoward
feature space analysis,”IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 24, no. 5, pp. 603–619, May 2002.

[57] P. Perez, C. Hue, J. Vermaak, and M. Gangnet, “Color-based proba-
bilistic tracking,” European Conference on Computer Vision, vol. 1, pp.
661–675, 2002.

[58] K. Nummiaro, E. Koller-Meier, and L. V. Gool, “An adaptive color-
based particle filter,”Image and Vision Computing, vol. 21, no. 1, pp.
99 – 110, Jan. 2003.

Josiah Yoder received the BS CompE degree from
Rose-Hulman Institute of Technology in 2005. He
is currently pursuing a PhD degree in the School
of Electrical and Computer Engineering at Purdue
University. His research interests include computer
vision, machine learning, human-computer interac-
tion, and distributed computing.

Henry Medeiros received the BE and MS degrees in
Electrical Engineering from the Federal University
of Technology, Parana, Brazil, in 2003 and 2005
respectively. He is currently pursuing his PhD degree
in the School of Electrical and Computer Engi-
neering at Purdue University. His current research
interests include sensor networks, computer vision,
and embedded systems.

Johnny Park received the B.S., M.S., and Ph.D.
degrees from the School of Electrical and Computer
Engineering, Purdue University, West Lafayette, IN,
in 1998, 2000, and 2004, respectively. He was a
Principal Research Scientist at Purdue University
where he led a large research project on distributed
camera networks. He is currently a Research Assis-
tant Professor in the School of Electrical and Com-
puter Engineering at Purdue University. His research
interests span various topics in distributed sensor
networks, computer graphics, computer vision and

robotics.

Avinash C. Kak is a professor of electrical and com-
puter engineering at Purdue University. His research
and teaching include sensor networks, computer
vision, robotics, and high-level computer languages.
He is a coauthor of Principles of Computerized
Tomographic Imaging, which was republished as a
classic in applied mathematics by SIAM, and of
Digital Picture Processing, which is also considered
by many to be a classic in computer vision and
image processing. His recent book Programming
with Objects (John Wiley & Sons, 2003) is used by

a number of leading universities as a text on object orientedprogramming.
His latest book Scripting with Objects, also published by John Wiley, focuses
on object-oriented scripting. These are two of the three books for an “Objects
Trilogy” that he is creating. The last, expected to be finished sometime in
2010, will be titled Designing with Objects.


