Cluster-Based Distributed Face Tracking in Camera
Networks

Josiah Yoder, Henry Medeiros,

Abstract—In this paper, we present a distributed multi-camera
face tracking system suitable for large wired camera netwdks.
Unlike previous multi-camera face tracking systems, our sgtem
does not require a central server to coordinate the entire
tracking effort. Instead, an efficient camera clustering piotocol
is used to dynamically form groups of cameras for in-network
tracking of individual faces. The clustering protocol includes
cluster propagation mechanisms that allow the computatioal
load of face tracking to be transferred to different cameras
as the target objects move. Furthermore, the dynamic eleatin
of cluster leaders provides robustness against system faiks.
Our experimental results show that our cluster-based distibuted
face tracker is capable of accurately tracking multiple faes in
real-time. The overall performance of the distributed sysem is
comparable to that of a centralized face tracker, while preenting
the advantages of scalability and robustness.

Index Terms—Distributed Tracking, Object Detection, Face
Tracking, Camera Networks.

I. INTRODUCTION
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above have focused on extracting the needed information
from single camera images. However, it stands to reason that
simultaneously using multiple images taken from different
viewpoints can only lead to more robust estimation of the
pose of a face, not to speak of the enhanced ability to traek th
face/head of a person in motion. Indeed, in the generic gbnte
of object tracking, there has been much interest in combinin
information from multiple cameras [20], [21], [22].

In the existing work on the use of several cameras si-
multaneously for estimating the pose of a face, a single
computer pulls together either all of the images captured by
the cameras or the features extracted from all the images.
These centralized approaches to pose estimation andrtgacki
may involve extensive comparisons of the images, as in dense
stereo reconstruction [23] or as in the construction ofvacti
appearance models [12], [24]. Such approaches are not@asy t
implement in a distributed computing environment composed
of smart cameras — a theme central to the work reported
here. More appropriate for distributed implementations ar

As humans, our faces play a central role in how we confhose prior contributions that use lightweight object fieas

municate with one another in face-to-face encounters. &hixtracted from the individual camera images [25], [26],][27
the importance of face recognition in such communicatisns[pg]. Note that these contributions still require a censeiver
universally known, less widely acknowledged are the rolg@s process either all the images or the features extracted
played by the orientation of a face and the movement gbm all the images. There are two major shortcomings to
the head that help us understand many aspects of nonveg)ainethods that use a single processor for the computation
communications. The orientation of a face typically indésa of the face pose: (1) The processor creates a single point of
the visual focus of attention [1], [2] and can be an importafdjlure and a prominent point of vulnerability in the system
source of information in ascertaining how a person is imera and, perhaps even more importantly, (2) the number of caanera
ing with his/her environment. For example, in an applicatiothat can be connected to the processor is determined by the
scenario involving a supermarket, if a computer visioneyst capabilities of the processor. For those reasons, our focus
needed to figure out as to what object a customer was curreribte is on face pose estimation and tracking algorithms that
looking, the orientation of the face would be a strong intlica from the ground up, are designed specifically for a distatut
of that. Face/head orientation is also used in several itapdr implementation.
forms of non-verbal communications, such as when a person i distributed approach to the estimation of face pose and to
nodding his/her head to express agreement, or when a pergéfracking evidently requires coordination among the eam
is shaking his/her head sideways to express the opposite. nodes that are focusing on solving a particular instancéef t
The fact that the pose of a person’s face holds importastoblem. As is now a common practice in wireless sensor
clues as to how he/she is interacting with the environmesit hgetworks, such coordination is best achieved if one of the
motivated several researchers to work on face detection [8bdes is chosen to serve as a leader. In wireless sensor
[4], [5], [6], pose estimation [7], [8], [5], [9], [10], [11][12], networks, a collaborating set of nodes is usually refermed t
and on face tracking [13], [14], [15], [16], [17], [18], [19}t as aclusterand the leader as @uster head29], [30], [31],
goes without saying that the ability of a computer system {g2], [33]. In this paper, we will useluster leaderor simply
detect and track people’s faces in real time will open dooksader to refer to the camera node that is coordinating the
to a host of new applications ranging from human-computesmputations being carried out by a collection of camera
interaction to surveillance. The contributions we havedit nodes. This is to avoid confusion witieadthat, in the present
context, is used more appropriately to refer to the anataimic
part of the human whose face is the focus of pose estimation
and tracking.

Authors are with the School of Electrical and Computer Eagin
ing, Purdue University, West Lafayette, Indiana, 47907 AUSmail: {yo-
der2,hmedeiro,jpark}@purdue.edu.



In addition to the need for a cluster leader, a distributed
approach would also require only those camera nodes that are
relevant to the task at hand to participate in pose and tngcki
computation. That is, assuming a moderate to large network
of cameras, we would want only those camera nodes that can
actually see a face to try to compute the pose of the face
and to contribute to its tracking. As the bearer of the face
moves, this collection of the camera nodes must also “move”
accordingly. This dynamic formation of a camera node cluste @) (b)

and the subsequent propagation of the cluster requiresiehatigure 1: 6-DOF face pose representation in the world coor-
known as a clustering protocol in the jargon of wireless 8ensginates and in the image space. (a) 6-DOF pose in the world
networks [34], [35], [36], [37], [38], [39], [40]. Howevethese coordinatesp,, = [z,y, 2,0, ¢, ¥]T. (b) 6-DOF pose in the
mainstream clustering protocols are only appropriate @7-n jmage spacep; = [u, v, s, B,7]7.

directional sensor nodes. On account of the directional and

other unique properties of wireless camera sensors [42], [4

a clustering protocol that is more suited for wireless cameof roll («), pitch (3), and yaw ) angles of the fade which
networks is the one we presented in [43]. Our goal in thize measured with respect to a frontal face centeréd,at);
paper is to show how our clustering protocol can be modifiedese are distinct from the rotation angles in both the world
so that it can be used in a network of wired cameras and seewrel camera coordinate systems [44], [27].

as the underlying framework for the design of a distributed

face tracking algorithm. B. Face Pose Computation
To compute the imaged-based face poses, we search each
Il. AMULTI-CAMERA FACE TRACKING ALGORITHM frame for the occurrence of faces using standard face dmtect

We start b ting in thi i i %echniques (such as [6], [45]). The position and the sizéef t
¢ start by presenting in this section a muili-camera ounding box corresponding to each detected face is output

?hor;thm for face trackw:g. Our ip?roalph It's basfed ?n the f't y the face detector. Although our framework allows for the
at one can carry out a rougn localization o a face, Wi omputation of the rotation parameter vec#r using any

respect to all its Si).( degrees of freefjpm (6-DOF), i.n a sing ce pose estimation technique (such as [10]), in this wark w
camera image. Estimates of the position and the onentaﬁondetect only frontal faces. For a survey of face pose estimati

gface in the world coordinates, as gleaned from the indalid %chniques, see [7].
images in a camera network, constitute a set of world-base We transform a 6-DOF pose observation from the image

t?]OF g_"?g‘ o?servatlons flor the{zcti. Thesetopst_erva_tlons fregl)rdinates into the world coordinates as follows: Thedran
€ Individual cameras, along wi € uncertainties a .formation is divided into two components, one for obtaining

with them, are then integrated in the world coordinatesgisity . .04 position vectog,, and the other for obtaining the
a minimum variance estimator. A face is tracked in the world | " v vectod
w

coordinates using this integrated estimate.
Puw = f(f)z) =
A. 6-DOF Face Pose Representations { Xu ] _ { f2(u, v, 5) ] [ f.(xi)
fo (

fy(%:, 0; } - @
Before we describe our approach for multi-camera face w0, 6,7) 0(%i,0:)
tracking, let us briefly review the notation and the poseeepr The world position vector is obtained by a method similar
sentation used in this paper. Figure 1(a) illustrates tiE0g= to the one reported in [28]. That is,
pose of a face in the world coordinates. We use a common K. .
representation, a six-element vecfoy = [z, y, 2,0, ¢, ¥]T = % = £.(X;) = wRe (—Sdc) + wte, (2)
[xT 0717 for the world-coordinate representation of the pose. 5
The first three elements, denoteg = [z, v, z]7, represent the Where ,R. and ,t. are, respectively, the rotation matrix
3D position of the object and the last three elements, denond the translation vector from the camera coordinate sys-
6., = [0, ¢,%]", the rotation of the object expressed in termgm to the world coordinate system, = (ui. + vje +
of roll, pitch, and yaw. k.)/(vu? + v? + 1) the unit vector pointing toward the face
We also represent the 6-DOF pose in terms of the positibhthe camera coordinate frame, afd a constant that relates
and size of the face in the image plane and the rotation & image-based face scaldo the distance of the face from
the face with respect to a frontal face. We call this repréh€ camera. .
sentation the image-based 6-DOF pose (Fig. 1(b)), defined aghe rotation vector in the world spac#,,, is obtained by
pi = [u,v,s,a,8,7]7 = [xF,07)T wherex; = [u,v,s|” 5 e = AN 5
repres[ents the pos]ition o[f lthelf]ace afd = [a,ﬁ[, T gts Ow = £(%i, 0:) = |wRe Ry [6i]sxs 3x1’ 3
rotation. The positionx; of the face is in the form of a | . ) o
There are other possible representations for the rotatficenoobject in

bounding-box —(u,v) specify the center of th~e boundingworld or image-based coordinates. We discuss these in metel dn the
box ands the scale. The rotation parameter ved@iconsists conclusions (Sec. VI).

w
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conter ﬁ — its high-probability region forms an elongated ellipsoid

5 o which has the largest uncertainty along the backprojectgn
ﬂ (Fig. 2).

D. An Evidence Accumulation Framework for Multi-Camera
Figure 2: We represent world observations as a 6-DOF Ga@ace Pose Estimation

sian distributions. The spatial marginal of this distribathas As observations of a given face from multiple cameras

a large amount of uncertainty along the backprojected rg¥come available, they are integrated into a single estimat
which intersects the face center. of the position and the orientation of the face.
We use the Mahalanobis distance to compare the world-

i i , . frame versions of the face pose as obtained from two differen
where the rotatiopR,; compensates for perspective d|stort|ortameras.

This rotation is based on the unit vectdr defined above and . . ‘ .
the unit vector pointing along the optic axis of the camerad(pl,. p}) = (P, — Do) (34, + 25 )1 (P), — Py, (4)

k.. It is defined as the rotation about the akisx d. by the where the superscripts and & denote the two observations

\71 k . d i i . . . .
anglecos™(k, - d,) as in [27]. As described by the aboveoemg compared. To decide if two such observations are

equation, we convert the three-element image-based a0tal o nsistent (that is, they correspond to the same face in two

vectord); into an equivaleng x 3 rotation matrix(8i]sxs and - yigeran images), we compare the Mahalanobis distance to
multiply that by the appropriate rotation matrices to obtai a matching threshold”. We declare two observations to be
3 x 3 rotation matrix in the world coordinate frame. We then - ictont itd(pl, pk) < T

transform the resulting rotation matrix back into an eqigna Based on thew;Twaujtching.distances givenddp’,, p* ), we
3-element rotation vectd,,, this operation being representeqJletermine a sef of estimates that correspondw{o 7; &Jerson’s

by the notation Js . face. We employ two different approaches for computingehes
_ . consistent sets, one for a distributed implementation ef th

C. Uncertainty Modeling final world pose estimation, and the other for a centralized

To take into account the uncertainty in the computation ¢hplementation of the same. These will be discussed in
the face pose, we represent each image-based observatiofegiion IV and V.
a six-dimensional Gaussian distributign ~ N (p;, Xp.;), Once the observations of a person’s face that are consistent
where the mea; is given by the actual image-bagefdce in the sense described above are collected in afsewe
posep;, and the covariancE, ; is a diagonal matrix whose can construct from the set the following minimum variance

elements are empirically chosen parameters. estimate of the 6-DOF pose of the face in the world frame:
To obtain the distribution of the observations in world coor

dinatesp,,, the distributionp; of the image-based observation . . -1_
i Sp istributionp Imag vati E[pw] = (Cov[pw]) Z (Ef),w) P’ (5)

is propagated through the functidh of Eq. (1) using the

Unscented Transform [46]. This transform compensates for PLEE .

nonlinearities by transforming a small collection of detér- 1

N . . . k

istic sigma pointsthrough the functiorf. The mean and the Cov[py] = > (Zh) : (6)

covariance of the transformed distribution are determineth pkeg
the transformed sigma points. The transformed observaiaetior\_iere P

then given by the six-dimensional Gaussian random varialQAﬁ-th the world observatioqp’“ One of the advantages of the
.

Puw ~ N (P Xp.u)- uncertainty reduction formulas (5) and (6) is that they can b

This is obviously an approximation, but a reasonable Ongasily computed iteratively

Sankaranarayanan gnd Chellapa, .for example, have SUCCESEjhce all of the observations are integrated into a single
fully employed a S|m|lar approach n [47].' I.n fact, they Shov%stimate, a Kalman filter can be used to track each person’s
:jh;t thnla G?rl:ssm?] rarr:dom varlﬁbldi%ﬁd[stm;p;ped FO a face pose from frame to frame. This incorporates a motion

ierent plane through a homography, It QISrbUtion &M e into the estimation process and provides a prediction

Gaussian as long as its mean is sufficiently far from the li 9 the face pose in one frame based on the estimates in the
at infinity. We believe that a similar argument can be ma evious frames

for the spatial componert,, = f,(x;) of the transformation. Figure 3 is a pictorial depiction of how the 3D pose

Even for more general transforms, such as the rOta'['orb"i‘)idence gleaned from the individual cameras is integrated

component,f,, = f5(%;,0;), the Unscented Transform Sinto a minimum variance estimate of the pose of the face in

generally acknowledged to accurately estimate the mean M€ world frame. The example shown involves two cameras
covariance of the transformed distribution. . . 5 4 )
Note that the marginal distribution of the translationa;fat provide the observaqanpw and p, for the 6 DO-F ;
| s of the face po has an intuitive interpretation ose. These two observations are assumed to be consistent in
elemen pos&, P the sense of satisfying the Mahalanobis distance requiteme
2Recall that a subscript denotes an image-based observation, and @ennoned _ear“er- Both the_se Obs_ervat'on_s WOUId_ theeefor
subscriptw a world observation. be placed in the sef for evidence integration to yield the

k and ¥k ., are the mean and covariance associated



L a wireless camera network, on the other hand, each camera
Pu can only communicate with cameras within its radio range;
therefore, the communication graph for this case contains
edges only between physically proximal camera nodes. There
fore, the idea of employing a clustering protocol designed
for wireless camera networks in wired networks may seem
rather counter-intuitive. Nonetheless, as we will showhis t
section, the communication graph of wireless camera nétwor
and the vision graph of wired camera networks share many
similarities. As a consequence, the clustering protocol fo
wireless cameras that we proposed in [43] can be applied to
wired camera applications with only small changes.

In practice, for a camera network to effectively use itsosisi
graph to carry out, say, object tracking, a set of cameras in
Py some neighborhood of the network must all see the object so

that each camera in the set can extract visual features from

Figure 3: Evidence accumulation framework. ConsistentavoritS image of the object and, perhaps, form hypotheses about
observations are found using the Mahalanobis distance. Cie identity/pose of the object. All the cameras that can see
responding observations are integrated using a minimuin v object at any given instant of time will constitute a graph

ance estimator. The framework is naturally robust to inectr Which would be a subgraph of the vision graph. But that
detections. raises the question as to what we mean by a set of cameras

seeing an object simultaneously. This question is answered
by considering the set of cameras on a pairwise ba&sis.

minimum variance estimatg,,. It is important to mention any pair of cameras to see an object simultaneously means
that this approach is naturally robust to false face detmsti that the visual features extracted in the respective images
as illustrated by the observations, and p3, depicted in match. That is, a similarity criterion used to compare such
the figure. For each such presumably anomalous observaffistial features passes a decision threshéldset of cameras
in one camera, the likelihood of there existing consistetfiat sees an object at the same time will be referred to as
observations in the other cameras would be low (exceptfracking graph Obviously, a tracking graph is a dynamic
perhaps, for accidental matchings for the case of images@®ncept, in the sense that this graph will change from moment
crowded scenes when each image could include several facks)moment, depending on which cameras are best able to
detect the object, extract its features, and then pass #barée
I1l. EVENT-DRIVEN CLUSTERING IN WIRED CAMERA comparison similarity tests. Figure 4(a) illustrates oxaneple
NETWORKS of a tracking graph. In the example, all the cameras can

In this section, we describe a wired camera network protoc{%ﬁmlfy a target and thus may belong to a tracking graph.

that allows a group of cameras to collaboratively calcula © pIacg an e.d.ge be.tvx./ee_n- two nodes of a tracking graph if

the 6-DOF pose of a human face by dynamically forminEﬁere exist sufficient similarities between the featuresaex. .ed _

a cluster of cameras and electing a leader of the Clusﬁrthe two cameras. (Of course, a camera may part|C|pate n
. . multiple tracking graphs if it detects multiple objects.her

to serve as the coordinator for the collaborative efforte T . . .

clustering protocol was devised with the purpose of fadiit racking graph shown in 4(a) is complete because we assume

ing distributed tracking of objects, and it includes effitie that all tth\ cameras in this graph can extract similar festur .
. . . Now consider the case when the object features measured in
propagation mechanisms that allow the computational load t L
X two cameras are distinct, as would be the case when the surfac
be transferred to different camera nodes as the targettobje : . .
an object is colored partly red and partly black. In this

" . 0
MOVES. In add_|t|on, the protocol is robust to the_: presence Ozflse, as illustrated in Figure 4(b), although all the camera
errors in the visual features extracted from the images ef t L : )

. . can observe the same target, it is not possible to establish a
objects being tracked.

correspondence between the observations at cameras 1 and
) ) ) 2, on the one hand, and at cameras 3 and 4, on the other.
A. Cluster-Based Object Tracking with Wired Camera Neggnsequently the tracking graph in this case will not beyfull
works connected.

There are two commonly used graphs for representing aAs we previously mentioned, the purpose of our protocol is
camera network: (1) Acommunication graphin which an to form clusters of cameras that observe targets with simila
edge between two camera nodes exists if they can directigual features. In the example shown in Figure 4(a), the
communicate with each other; and (2)vésion graphin tracking graph is complete, meaning that all the cameras are
which an edge between two camera nodes exists if they halde to identify the target with essentially the same set of
overlapping fields of view. In a wired camera network, sincieatures. In this case, all the cameras in the tracking graph
each camera can communicate with all the other camerasfanm a cluster for the clustering protocol. Obviously, tlaee
the network, the communication graph is fully connected. leannot be done in the example shown in Figure 4(b). In

E={pl,pu}



to feature comparisons, another source of difficulty in agec

‘. Target ‘. Target is that even when two of the camera nodes believe that they
o ./ object o ‘/ object are looking at different objects (because of _the difference
. | in the feature values recorded), the observations made by a
) zf third camera may bear sufficient similarity to those in the
first two cameras and this third camera may believe that all
& ‘4 s & ’4 g/% three cameras are looking at the same object. To illustrate
3 ’ 3 ) this point, assume our object is very simple and consists of a
@ (®) multi-colored ball, as shown in Figure 5(a), and that thermai

Figure 4: (a) Multiple cameras detecting the same objefaaturg extracted from the images is the average cqlor value
and the corresponding tracking graph. (b) Multiple camerézthe image. Obviously, whereas cameras 2 and 3 will not be

detecting an object with distinct features and the corredjmg ~ able to establish a correspondence between their obsersati
tracking graph. camera 1 has enough information to know that the object

it sees corresponds simultaneously to the observations of
cameras 2 and 3. Similarly, cameras 1 and 4 will not be able

: s features. Under these conditions, ideallyaugd
camera networks, multiple clusters must be allowed to tragl ssible to create a single cluster that consists of all th

the same target because of communication constraintseln y&meras that can detect the same target (cameras 1, 2, 3 and
case of wired cameras, although the communication graphy, o, example). However, this would also increase the
is complete, the tracking graph is not. Therefore, multiplg,nces of grouping together camera nodes that are actually
cIuste.rs. _must allso be gllowed Fo track the same target's@eing different objects, as illustrated in Figures 5(l1) é).
least initially un_tll more mformauop about the target cha Evidently, in the two examples presented in Figures 5(b) and
extracted at which time these multiple clusters can be ntergey 5" could use camera calibration information to figure
into a single cluster. out that the objects involved are different. This is not alsva

After the clusters are created to track specific targety, thgossible, however, because of spatial uncertainties \iedol
must be allowed to propagate through the network as thcomputing the position of an object, especially along the
targets move. Cluster propagation refers to the proces$)of §amera axis.
accepting new camera nodes into a cluster as they identify an To ensure that disparate objects seen by the different cam-
recognize the same object, (2) removing the camera nodes s in a vision graph do not result in the same tracking graph
can no longer see the object, and (3) electing a new clusi@s could also raise the bar on the decision thresholds used fo
leader as the current leader leaves the cluster. Adding a n@#ss-camera feature similarity comparisons. (Obviquhigt
camera node to a cluster and removing an existing cameyiguld still not prevent the difficulties created by the casew
node from a cluster are simple operations. However, wheffferent objects do look the same from different viewpsipt
the cluster leader leaves a cluster, proper mechanisms mysivever, if cross-camera feature similarity thresholds sat
be provided to elect a new leader. In addition, since metip{oo high, that could impede the formation of a tracking graph
clusters are allowed to track the same target, as thesedusfyith more than one camera node. We have therefore adopted
collect further information about the target, they may éuen g middle approach that consists of establishing a distincti
ally be able to conclude that they are in fact traCking a comme@etween a tracking graph and a cluster. On|y those camera
object. In wireless camera networks, as the clusters paipagnodes that are one another’s immediate neighbors in a trgcki
new cameras that join them may introduce previously nofraph can form a cluster. That is, two camera nodes are
existing communication links between the clusters, thereBjlowed to join the same cluster if they both pass the cross-
allowing them to coalesce [43]. In wired camera networkgamera feature comparison similarity tests and they ark eac
the achiSition of additional information about the targety other's immediate neighbors in a tracking graph (and, by
produce a similar result in the tracking graphs. In this casgplication in the vision graph). Therefore, instead ofatiieg
what were previously two separate partitions of a trackinglarge cluster to track the same target, we prefer to t@erat
graph coalesce into a single clique, allowing what were twge formation of multiple small clusters and to allow them to
different clusters of camera nodes to operate as a singdéetlu coalesce later as more information about the target isatelie

As the reader would expect, dynamic cluster formatiodere, we can draw a parallel with the complex strategies
requires comparing the features extracted by the differeneguired to construct and update large multi-hop clusters i
camera nodes. Feature comparisons between different imag@eless sensor networks [35]. Although it is possible tate
of the same object can always be expected to be erroneaugh large clusters, the overhead involved in the procekssna
not the least because of the differences in the images redorthem undesirable for real-time, lightweight distributeubbca-
from different viewpoints. We can expect difficulties evem f tions. Similarly, although it may be possible to constracge
the simplest of the objects — unless they look the same frattusters of wired cameras by employing more sophisticated
all viewpoints. In addition to the difficulties that are imnkat multi-camera object tracking algorithms, the required sagse
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Figure 6: State transition diagram of a cluster-based objec
tracking system using a camera network.

are tracking the same object, they may coalesce into a larger
o0 @ 522 cluster. Moreover, since the network is able to keep track
© of multiple objects simultaneously, each camera may belong
to more than one cluster at the same time. In practice, that
Figure 5: (a) Multiple cameras detecting a common object h¥quires that each camera maintain a different state fdn eac

partial feature matching and the corresponding trackis®lar of the objects that it recognizes and that are currentlydein
(b) Incorrectly matched objects and the correspondin&in@C tracked by the network.

graph. (c) Sequence of incorrectly matched objects and the

corresponding tracking graph.
honding ng grap B. Clustering Protocol

In this section, we briefly describe our clustering protocol
) . . for camera networks. A more detailed description of the
and time complexity could be prohibitively large. protocol in the context of wireless camera networks can be
It is true that even the constraint that onIy immEdiat%und in [43], [48] The messages exchanged by the cameras
neighbors in a tracking graph be allowed to form a clust@sr cluster formation and propagation activities includstad
may result in a cluster that tracks multiple objects thigkinpackets that consist of visual features extracted and their
that they are the same. This is best exemplified by the simpigrresponding values for each object detected in the scene.
situation illustrated in Figure 5(c). Fortunately, unlessof QObviously, when one camera node receives such a message
the objects are moving together along the same trajectory fiom another camera node, the receiving node accepts the
which case one could argue that they be treated as a singléssage only if it has itself detected an object with similar
extended object), such a cluster is likely to break into ipléit attributes and values. As the reader would expect, at nktwor
clusters as a cluster leader departs because it can no Isegetinitialization time, the calibration information at eacansera
the object. For example, suppose cameria Figure 5(C) is node is used to construct a vision graph that is stored ayever
elected a cluster leader, and camerasd3 incorrectly decide node of the network in the form of an adjacency list. Each
that they are detecting the same object as detected by canfy@e uses the vision graph to filter out the messages from
2. In that case, a single cluster would be created to track glbose camera nodes that are not directly connected to ikin th
three targets as if they corresponded to a single target. Biion graph.
if the ObjeCt detected by cametaleaves the camera’s field 1) Cluster Leader ElectionWe emp|oy atwo-phase cluster
of view, the camera node will leave the cluster, and two neMader election algorithm. In the first phase, the nodesén th
independent clusters will be formed by cametaand 3 to  same tracking graph compete to become the leader of the
detect the remaining (and now clearly distinct) objectssIt cluster. (One possible criterion for this competition igegi in
interesting to note that a similar situation arises in vessl Section |V_B) After the first phasey at most one camera node
camera networks [43]. In such networks, all the members gfects itself as the cluster leader among its direct neighbo
a single-hop cluster must be able to communicate with thie a tracking graph, and the rest join the cluster. During the
cluster leader; however, the sensor nodes may not nedgssajgcond phase, the cameras that were left without a cluster
be able to communicate with one another directly. Therefolgader (because their cluster leader candidate joinechanot
when the cluster leader leaves the cluster, it may be neyessguster) elect the next best candidate as the cluster leader
to create multiple new clusters. 2) Cluster Propagation:Inclusion of new members into
Figure 6 shows the state transition diagram of our clusteaetive clusters takes place as follows: When a camera detect
based object tracking system using a camera network. Upgmew object, it proceeds normally, as in the cluster foromati
initialization, the network monitors the environment farya step, by sending to its neighborsgeate clustemessage and
objects of interest. As objects are detected, for each tbjeaiting for the election process to take place. However, if
one or more clusters are formed to track it. These clustdhgre is an active cluster tracking the same object, theeslus
propagate through the network to keep track of the objedesmder replies with a message requesting that the camera joi
in motion. Finally, if two or more clusters conclude thatytheits cluster. The camera that initiated the formation of a new



cluster then halts the election process and replies witiira E Camera Node 1

1
1
clustermessage. ' Face Detector | e
Removal of cluster members is trivial. When an object I Clustering | |
. . Module 1 1
leaves the field of view of a cluster member, all the membg - / '
h to do i d inf . th luster leader I Object Manager Integration !
has to do is send a message informing the cluster leader il [ Clustering |
it is leaving the cluster. The cluster leader then updatebsit | Module 2 |
of cluster members. If the cluster member is tracking midtip: Matching !
. . . iyl
objects at the moment, it terminates only the connectio Module ” !
. L . ] \ Clustering | !
related to the object that left its field of view. ! Modulek |1 |nerork
. . . t
Cluster propagation also involves leader reselection and . _ - ... ... _ ‘o) envor
cluster coalescence, which we explain below.
a) Cluster Leader Reselectiodssuming that the cluster, [
Camera Node 2 —

leader has access to the latest information about the posifi i
the target with respect to each cluster member, it is ableépk B
an updated list of the best cluster leader candidates. Wteen t

cluster leader decides to leave the cluster, it sends a gessa

to the remaining camera nodes containing a sorted list of tA@ - - = = = = = = - - o cdddd e e
best cluster leader candidates. (This message also irsciuge | Camera Node N [
additional state information for the cluster head, suchh@es .
state of the Kalman filter we will discuss in Sec. IV-C). A new
cluster leader is then selected following the second phése o
the regular cluster leader election mechanism. This agproa
not only allows for cluster fragmentation, but also for séeas

cluster coalescence. ) o2
keep track of this new face. In the example shown in Figure 7,

b) Cluster CoalescenceConsider two clusters, A and B, . .
: . k faces are being tracked by camera node 1. When a clustering
that are propagating toward each other. As explained above

. . o mddule is instantiated, it starts a new cluster leader ielect
cluster propagation entails establishing a new clusteddea o .
. . . . process. If, on the other hand, a face detected in this frame i
as the previous leader loses sight of the object. Now consi o - .
identified as one of the existing faces currently being teack

the situation when a camera IS designated to _become the What the object manager has to do is to transfer the face
leader of cluster A and is tracking the same object as cligster

Under this circumstance, the camera node that was meant £ observation to the corresponding clustering module.
' When a clustering module starts a cluster leader election,

be A's new leader is forced to join cluster B. As the member, . L .
: . .. It broadcasts this intent to its vision neighbors. When heiot
of cluster A overhear their prospective cluster leaderifmn : . : .
clustering module receives this message, it checks whtker

cluster B, they also join B. . ;
3) Cluster MaintenanceAdditional robustness to failuresfac.e pose contalnec_zl in the message corresponds to the faf:e fo
which it is responsible. Again this is done by the matching

is achieved by a p_eriodic refresh of the cluster Status'es'inr%odule within the object manager. After the cluster leader
the prqtocol IS de§|gne_d_to enable clusters to carry out C%ll'ection finishes, the clustering module reports to the aibje
laborative processing, it is reasonable to assume thateclu

members and cluster leaders exchange messages per'yodicg
Therefore, we can use a soft-state based approach [49] po kgg

track of cluster membership.

Figure 7: Block diagram of our distributed face tracker.

instantiates a new clustering module with the responsgjtibi

?nager its current cluster status, i.e., whether it became
cluster leader or a cluster member. The object manager
n then use this information to decide how to process new
observations of the specific face as follows.

For each face detected in the current frame, if the face is
IV. CLUSTER-BASED DISTRIBUTED FACE TRACKING associated with an existing cluster and the camera node is
Jgurrently a member of that cluster, the object manager tque

based distributed face tracking system. Figure 7 showsc;kbléhat the clustering module send this observation to itstetus
diagram of the system. At each camera node, as a new im el If a face detected in the current frame is associated
frame becomes available, a face detector module dete¢teall VIth @n existing cluster and the camera node is the leader

faces present in the frame and computes their correspondighat cluster, the object manager simply updates the face
world poses. This information is then delivered to the objeP9S€ €stimate using this new observation. The same happens

manager, which is responsible for checking whether th&fadgthe clustering module receives an observation from one of

detected in this frame correspond to any of the existinggfack® cluster members. In both cases, the face pose is updated
the integration module using Egs. (5) and (6).

currently being tracked or to a new detection. This is done 5‘}' 4 ;

the matching module that compares the identities of thesface | e Object manager at a given camera node does not
detected in this frame to the identities of all the existiages receive any opservatlons for a par_tlcular fac_e for several
currently being tracked. (We will describe the featuresiuse frames, it terminates the corresponding clustering modéle
establish identity in the next subsection.) If a face dedh 3| inter-node communication takes place through the eltisy modules
this frame corresponds to a new detection, the object manageeach node.

In this section we present the architecture of our clust



the camera node is currently the leader of that cluster, ©mer! Image capture
termination triggers cluster propagation so that a newtefus ~

leader can be assigned to keep track of the face. On i —iprme1 ‘ ‘ — HFramﬁ‘ ‘ E A,
other hand, if the camera node is only a cluster member, ! : : : :
termination simply triggers a report to the cluster leadet t § Clégétlgfe [Frame 1| [Frame 2| [Frame3 || | Buffer
it is leaving the cluster. : 3 : 1 3 ,
} Frame 1 H Frame 2 H Frame 3 ¢ g::olézl;g?gve

A. Use of Position as a Face ldentification Feature ' Image capure

The clustering protocol as described in Section IlI distin-  etaynchronized |
guishes between thieaturesused to identify targets and the ; /
estimatesof the target position. However, since robust fac®"? L. lmage capure;
recognition methods that work in real time under realisti = 3 : !
conditions are not yet available [50], at this time we use tt j{F,am“ ‘ lprdmez‘ ‘ — H }7 Face Detection
pose of a face as the feature that defines its identity. In, [5: v o N
the authors also use a spatial feature (object motion) &mktr capture [Franje 1 [Frame2  [Franje3 [ | Buffer

identification. One of the challenges in using the pose foe fa “ | | Collaborative
| Frame 1 H Frame 2 H Frame 3 F

identification is that, as the face moves, the face identilieo ! ) PR EET I
changes. Nonetheless, as long as the people being tracked do ‘ ‘ P—

not move too abruptly and as long as the pose estimates are Synchronization Collaboration

kept up-to-date by the object manager on a frame by frame pomnt frame interval

basis whenever their faces are detected in the camera images
we can expect our approach to face identification to work Time
without difficulties.

>
>

Figure 8: Buffer mechanism for camera synchronization. Cam
era capture and face detection are executed asynchronously
B. Cluster Leader Election Criterion The results are stored in a buffer which is processed syn-
Cluster leader election requires that we define a criterihronously during the collaboration frame intervals.
that must be satisfied by a camera node if it is to become
a cluster leader. The criterion that we use currently is thase
on the distance between the location of the face as given

S . . tlFPé cameras are allowed to share information. In subsequent
the projection ofx,, into the camera image plane and th

a?rarsnes, new synchronized collaboration frame intervatsioc

32 predefined rate that is common to all cameras. This
aW|PrkS as long as face detection can be carried ou_t in _Iess
fan one frame interval. However, since face detection time
is variable, it may occasionally take longer than one frame
interval. In that case, the detections corresponding tad tha
C. System Synchronization frame are discarded and a new frame is processed without

It is well known that synchronous distributed systems aftetriment to the collaborative processing synchronizatio
in general less complex and, for some network types, moreFigure 9 shows in detail the sequence of events that takes
efficient than asynchronous systems [52]. Since synchiranizplace during the collaboration intervals. During the brief
the time clocks of camera nodes interconnected by a losatup step, all new clustering modules are initialized and
area network is relatively simple, we chose to employ prepared to receive messages from other cameras. This step
synchronous approach for our distributed camera netwqukovides tolerance for small errors in the synchronization
system. In our system, camera clocks are synchronized usgigthe cameras. Although not strictly necessary, this step
the Network Time Protocol (NTP). Moreover, we assumgreatly improves system efficiency by not having to buffer
that all the cameras in the network have a consistent frammessages received by uninitialized clustering moduleshét
capturing rate. However, even when that is true, it is nopgm beginning of the clustering step, the clustering protol i
to synchronize the image capture times without using speceéxecuted and clusters are created, dissolved, or proghgsate
hardware. That is, it is difficult to guarantee that the timeecessary. After the states of all the clusters are updtted,
instant at which the different cameras capture their framekister members send their observations to the clusteeitsad
will be exactly the same for all cameras. To overcome thighich then integrate them into face pose estimates. After th
problem, we designed a buffering mechanism that allows tbkistering step, the cluster leaders update the estimate an
cameras to store the current detections until they reachpmediction of the location of each face using a Kalman filter.
synchronization point. The buffering mechanism is illagtid The cluster leaders also broadcast the predicted face pmses
in Figure 8. As the cameras acquire the initial frame, theyest the cluster members for association with the face detestion
the information in the buffer until they reach a synchrotima in the next frame. To avoid the cluster switching from one
point. At this point, collaborative processing is initidtand person to another, if the cluster leader detects that the new

of this criterion are that it generally creates relativebyd-
lived cluster leaders and the distance can be computed e
in each camera.
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< Frame interval ———————3> when the system loses track of a person’s face — each time
Camera | } the track is lost, a different color is used. Notice that when
! 3 ‘ ‘ ‘ ! a cluster loses track, another cluster almost immediately i

|| Broadcast || Post-

%Setup fClustering e e sing Setup .. created and starts to track the face again.
! : ! ! ! ! In the experiments we present here, we require that all the
Camera 2 | ! ; ! ; cameras in a cluster detect a frontal face. A face can be accu-
ﬂsmp H Clustering Hirs(l)j:iscast Hgﬁie i | Setup ‘ . rately tracked if it is detected by at least two cameras. When
! 1 ! ! = 1 the individual cameras have low detection rates, additiona
camera views can increase the likelihood of detecting tbe.fa
‘ ; ‘ ‘ ‘ If non-frontal face poses can be localized in the individual
Camera N ! § ! images, fewer cameras will be needed by our protocol. Even
—‘Setup HCluStering Hiﬁﬁ?ast Hgfs; i[5 ‘ ... when detecting only frontal faces, many camera configunatio
£ can be used with our current protocol. Because the clugterin
— Time —3 protocol allows for the propagation of the cluster, new caaae

. . in different orientations can pick up the tracking of theefac
Figure 9: Collaboration interval steps. After a short Setup ihe face rotates away from the old cameras
period, all the cameras share information during the ctirgie '

step. Afterwards, cluster leaders broadcast the resultbeo _ _ _
cluster members, and post-processing algorithms may take Comparison with a Centralized Method

place. To provide a quantitative evaluation of our distributed ap-
proach, we compare it to a centralized method which operates

in a similar framework but does not include the clustering
face pose estimate is far from the Kalman filter’s predictioprotocol.

it terminates the cluster by sending a message to its membergne centralized version has many of the features of the dis-
and deactivating itself. Finally, after the required pEsiag is  tributed approach. As in the distributed approach, we perfo

concluded, our system provides a time slot for the appbeatiface detection locally in each camera. Thus face detection —
of post-processing algorithms. In our current system, we Ughich takes most of the processing time in our experiments —

this slot to log the results of our experiments. is still distributed in the centralized approach. The tigiof
both approaches is also similar. In both systems, we syachro
V. EXPERIMENTS nize the processing of images as illustrated in Fig. 8. Despi

We implemented our algorithm on a network of twelvéhese similarities, there are fundamental differences/éen
firewire cameras connected to three quad-core desktop cdhe centralized and distributed versions. In the centsdliz
puters. The cameras are arranged side-by-side in the formvefsion, no leader is elected. Instead, collaborativegssiag
a 2 x 6 array all facing approximately the same directiorfakes place in two steps. In the first step, every camera sends
Each camera has a separate process assigned to it. In éagipbservations to a single node for central processinten
process, we manage the face position estimates and cans@epnd step, the central node processes all the obsewvétion
clustering assigned to that camera, and detect faces wittiegeived for that frame in batch.
boosted classifier cascade [6], [45] trained using the FERETBecause all of the estimates are available in batch, we
database [53]. Figure 10 shows four snapshots of the gralphieartition theminto set§;,l = 1,.. ., L, whereL is the number
user interface of our system. The top half of each snapsi@dtpeople in the environment, using an approximate clique
shows a computer graphics representation of the 3D positigHustering algorithm [55]. The sets are chosen to approtetya
of the camera array, the clusters tracking the faces, afdnimize the sum of intra-set costs,
the estimated poses of the detected faces. Each camera is I
represented by a small cube and the face poses are indicate . ik
by a 3D face model [54]. The circles represent cluster leader dar%gmz Z cost(PuPw) | - (1)
and the lines represent the members. A dashed circle or line
indicates that the cluster leader or member did not cortiiburhis algorithm requires both positive and negative costs to
an observation for that particular frame. The bottom part gpfoduce non-trivial clusterings, so we use the cost functio
each snapshot shows the images captured by the cameras(p’,p*) = d(pl,pr) — Tetique, Where Tpjip. deter-
and the corresponding face detections as computed by thimes the zero-cost distance, add) is given in Eq. (4).
individual cameras. Figure 12 shows a comparison between the centralized

Figure 11 shows qualitative results of one run of ouracker and our distributed approach. The tracks shownen th
experiments for one of the two people shown in Figure 1figure correspond to the coordinates of the two faces shown
The left column shows the 3D positions of the face, and thie Figure 10. As in Figure 11, different colors illustratesth
right column shows its orientation. In this figure, groundatitr moments when the system loses track of a face. Since neither
is represented by solid lines and the markers with differeapproach represents an ideal tracker, lost tracks occutin b
colors represent the estimated face poses. The reasonrigr u§Ve record two kinds of tracking errors for our system. If a
different colors on the trajectories is to illustrate thememts track is lost, and a new one is created to track a person, we cal

=1 \pl,e& pkes,pl,#pk,
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Figure 10: Snapshot of our tracking results. Top figuresplgical representation of the camera array and estimateelspos
Bottom figures: images captured by each camera and the @étisctes. The two frames at the top illustrate the propagatio
of a cluster leader.

this an "extra track.” If a tracker switches from one person traple I: Tracking performance on the two-person sequence.
anothel’, we call this a "track switch." Track switches ares&o Testing is done on 50 frameS, Spaced ten frames apart_ These

than extra tracks because they indicate that a single trackgsults are averaged over five runs for each system, eaofy usin
tracks two people. They are also much more rare in both tfi same multi-camera video sequence.

centralized and distributed systems. In ten runs of theegyst TP FP° rmser(cm) | rmser (°)
the centralized system required an averag8.6f- 0.2 extra | Centralized| 95 (95%¢) | 12 (12%) 5.8 20.8
tracks per person and O track-switches, and the distributgfiStibuted | 94 (94%) | 4 (4%) 6.1 18.7

] X ~opercentages are per frame, per person
system require@.2 £+ 0.7 extra tracks and 0.1 track switches.

We also compare the centralized and distributed approaches

based on the frame-by-frame tracking performance, as Sho}Ngl time. Each camera individually computes the world pose

in Table 1. In each frame, we associate each ground-trut the faces based on their visual features. The obsengtion

to a single integrated face estimate, if there is an estima(l)tf-:- . : : - .
within a specific matching distance. True-positivés) rep- of multiple cameras are integrated using a minimum variance
’ estimator and tracked using a Kalman filter. A clustering

resent ground-truth and integrated estimate pairs, whlkef rotocol is responsible for dvnamically creatind aroups of
positives ¢ P) represent estimates which do not correspond B P y y g group

any ground-truth. Pairs are assigned starting with theesbsgam%ras dthat track a given face and for coordinating the
ground-truth and estimates, so that it is possible for ames¢ Istribute procgssmg. _

to be within the matching distance and still be considered an*S Our experimental results show, our algorithm performs
FP. The RMSE estimates are based on thi@ pairs. These a5 well as a centralized approach while presenting the well-

results show that the distributed approach achieves cahfear K10Wn advantages of distributed systems: scalability and r
performance to the centralized version. bustness. Since the computational load is dynamicallystran

ferred among processors as the people move in the field of
view of the camera network, our algorithm can potentially
handle an arbitrary number of faces and can be scaled to much
We have presented a completely distributed face trackitayger networks. Also, since cluster leaders are dynaiyical
algorithm that estimates the 6-DOF poses of multiple faneselected and the clustering protocol is robust to systeraries],

VI. CONCLUSION
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Figure 11: Qualitative results of one experimental run & dhstributed face tracker on one of two faces (the seconal ifac
omitted for clarity).

the algorithm does not rely on a single server to proc
information, therefore avoiding a single point of failure

One limitation of our current approach is the represe
of rotations using yaw, pitch, and roll angles, which, ¢
representation of rotations i&*, have discontinuities that | VIRTAY \f V4 A
be handled as special cases. We currently restrict ous : A PR Kad

X (cm)

representations ifk3 to allow the use of standard techn s

for transforming distributions between Euclidean spalret
future, we would like to extend our method to use quate
but this requires more sophisticated techniques to trz
rotation estimates from a three-dimensional Euclidear
to a three-dimensional manifold in a four-dimensional

Another aspect that requires consideration is that tt

X (cm)

imum variance estimator — Eqgs. (5) and (6) — is ba: om0 10 150 a0 250 a0 30 a0 a0 500

frames

the assumption that the camera observations are inde

Although this is generally a good approximation, when Wejgyure 12: Comparison of tracking in the distributed (topdla
transform the observations from the image space to the Woﬂggntralized (bottom) versions. Marker color indicates the
space, we incorporate prior knowledge about the size ofyasigned to each track. Both the centralized and the ditdb
person’s face. This introduces a bias in the world spacetwhigpyroaches are approximate and track ID changes are viisible

manifests itself as observations which are consistendgerl poth approaches. The ground truth for each track is indicate
to the camera which detects them, or farther away, dependiiga plack line which is sampled evety®” frame.

on whether the person’s face is larger or smaller than eggect



Although we believe that most of this bias is removed in thes]
integration of the observations from multiple cameras — and
our experimental results support that claim — in the futurgg
we would like to carefully investigate the effects of thisbi

in the estimation of the positions of the faces.

One advantage of our approach is that while it does ngt,
require image-based tracking methods such as particlesfite
mean-shift [56], [57], [58], it does provides a good framekvo
for incorporating such trackers which operate indeperiylen‘ ]
on different camera images. These trackers would provide
additional observations which could be used to keep track %]
the faces when the interval between face detections is.largé
When new face detections become available, they could be
used to reduce the chance that the trackers drift off of e tr20]
face location.
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