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ABSTRACT:

There is a great deal of interest in fusing together the information provided by different satellites for real-time change detection on
the surface of the earth. For detecting important types of changes on the ground, it is necessary to inject geometry into the data
provided by low-res satellites using multi-view imaging satellites that record each point on the ground from multiple perspectives.
Combining these perspectives and generating a DSM (Digital Surface Model) gives us the geometry needed for a more meaningful
analysis of satellite data. Before such an analysis can be carried out, it is necessary to align the images from all available satel-
lites. Automatic image alignment, however, requires features on the ground that can be identified and correctly matched across
different images using computer vision algorithms. While such features are common in urban areas, that is not always the case in
predominantly rural areas that present a more-or-less uniform texture to the sensors. In this paper we present methods for auto-
matic identification and alignment of featureless regions. Featureless regions are identified using point spread maps, which are a
byproduct of DSM generation. The subsequent strategy for aligning featureless regions depends on the proportion of featureless
regions to feature-rich regions. If most of the AOI (Area of Interest) is feature-rich, we ignore featureless regions when estimating
inter-satellite image alignment parameters and apply those parameters to the entire AOI. Finally, we present a technique to propagate
and fuse parameters from feature-rich regions to featureless regions.

1. INTRODUCTION

Monitoring the changes on the surface of the earth, and doing so
in real-time to the extent possibe, has acquired new importance
on account of the proliferation of earth imaging satellites. The
changes of interest include those that are man-made for civilian
and military applications and those that may be caused by nat-
ural phenomena such as flooding, earthquakes, forest fires, hur-
ricanes, etc. Since different satellites yield information at differ-
ent spatial resolutions and in different spectral bands, ideally a
change detection framework would fuse together all of the evid-
ence available from all the satellites before drawing inferences
regarding the changes on the ground. An important compon-
ent of this data fusion would be the high-precision geometry
provided by the multi-view high-res satellites for understand-
ing the changes more accurately, both spatially and semantic-
ally. As to how one can extract high-precision geometry from
multi-view high-res satellite images, it could be through the sort
of algorithms presented in (Comandur and Kak, 2021). And,
as to the need for such geometry, we will just repeat what has
now become a common refrain among algorithm developers for
satellite images: Without the geometry, you would not be able
to tell the difference between a change taking place in a large
parking lot from a similar change taking place on the roof of a
Walmart store.

Before one can attempt a fusion of multi-satellite data in the
sense described above, it is necessary to align all the images
from the different satellites over a given AOI (Area of Interest).
In the work described in this paper, our goal is to align the low-
res Landsat and Sentinel images with the multi-view high-res
Maxar images.

A key step in the multi-satellite image alignment work described
in this paper is the construction of a DSM (Digital Surface

Model) from the multi-view high-res images. A DSM indicates
height values at each lat/long point on the ground at a higher
resolution than, say, the 30m SRTM DEM (Shuttle Radar Topo-
graphy Mission Digital Elevation Model). We use the DSM to
orthorectify with high precision the bundle-adjusted1 off-nadir
high-res images from Maxar. Subsequently, the high-res or-
thorectified images are aligned with the low-res Landsat and
Sentinal images in our MuRA (Multi Resolution Alignment)
framework (Deshmukh et al., 2023) as described in the rest of
this paper.

The process described above works quite well for AOIs that
are of primarily urban areas. The main reason as to why the
urban areas produce better results than the more rural areas is
that the DSM’s over the latter tend to be noisy. The DSM gen-
eration logic is based on extracting keypoints from the high-res
Maxar images, the keypoints being the high-variance pixels in
the images (that is, the pixels where the data is varying max-
imally in all directions). The keypoints may be extracted using
one of a large number of algorithms now available for that pur-
pose, including the more recently proposed deep-learning based
solutions. We have obtained best results with the algorithm
FAST+VGG (Rosten and Drummond, 2006, Simonyan and Zis-
serman, 2015) in which FAST is used for keypoint extraction
and the VGG neural network for estimating the descriptor vec-
tors associated with the keypoints. In urban areas, the keypo-
ints extracted by such algorithms correspond to different types
of corners on building roofs and facades, road intersections,
road markings, etc. However, in the more rural areas, espe-
cially when there are plowed fields and wooded regions in the
areas, the same keypoint extractors yield a random assortment
of points. Subsequently, when these points are fed into a ste-

1 The Appendix at the end of the paper presents further information on
how we carry out bundle adjustment of the multi-view Maxar images.
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reo algorithm for generating the DSM, one ends up with 3D
noise, as we will show in this paper. The bottom line is that
the noisy DSMs constitute unreliable height values and those,
in turn, result in poorly orthorectified imagery, making multi-
satellite image alignment difficult. In the rest of this paper, we
will refer to those portions of an AOI where the DSM is noisy
as the “featureless regions”.

As an example, in Figure 1 we show DSMs generated for an
urban area rich with features in Jacksonville, FL and for com-
parison show in Figure 2 DSMs generated for a more rural area
of fields next to a town in Demmin, Germany. In Figure 2a,
the lack of correctly matched features in the field resulted in
noisy spikes that dominate the height range when visualizing
the DSM, preventing the buildings in the adjacent town from
being displayed as clearly as the buildings. This portion of
Demmin is a smaller part of a larger 800 km2 AOI that con-
tains both towns with good features and featureless countryside.
When presented with such an AOI, the issues are twofold: (1)
We must determine what portions of the AOI have reliable DSM
(i.e., without noisy spikes) that can produce good quality ortho-
images. (2) Once the reliable portions of the AOI have been
identified, we need to estimate alignment parameters from those
portions and apply those parameters to the rest of the AOI. In
this paper, we present an extension of the MuRA framework
that automatically identifies regions of an AOI with trustworthy
DSMs and propagates the alignment parameters estimated from
the feature-rich to the featureless regions.

The rest of our paper is outlined as follows: First we briefly
discuss previous work for multi-satellite image alignment. In
Section 3 we explain the MuRA framework. Then we present
our method for detecting featureless regions in Section 4 and
our alignment parameter propagation scheme in Section 5. This
section explains what exactly is meant by propagating align-
ment parameters and how parameters are fused when there are
multiple sets of parameters to choose from. Finally, in Sec-
tion 6, we apply our updated framework to the previously men-
tioned 800 km2 AOI in Germany and compare relative align-
ment accuracy with and without the featureless region logic
using USGS’ GAASS (Geometric Alignment and Assessment)
metric.

2. RELATED WORK

Over the years there have been several works focused on multi-
satellite image alignment. The common thread in all of these
methods is to compare either features or intensities between a
reference image and an unaligned image. Based on this compar-
ison, a transformation is estimated and applied to the unaligned
image.

ARRSI (Automatic Registration of Remote-Sensing Images)
(Wong and Clausi, 2007) detects features of interest using a
phase congruence model (Kovesi, 1999) to align Landsat 7 and
Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar
(SIR-C/X-SAR) . NASA’s AROP (Automated Registration and
Orthorectification Package) (Gao et al., 2009) uses cross- cor-
relation to align Landsat and ASTER images by estimating a
polynomial model corresponding to either a shift, affine, or
quadratic correction. Similar to AROP, the work in (Behling et
al., 2014) also uses cross-correlation to align ASTER and SPOT
images to Landsat reference images, but only estimates a shift
correction for more robust and efficient alignment. The frame-
work described in (Yan et al., 2016) aligns pairs of Landsat and

(a) A 100 km2 DSM generated from 29 Maxar images at (downsampled)
1.5 m resolution

(b) Details from a 2.5 km2 DSM generated from 28 Maxar images at
0.25m resolution

(c) Details from another 2.5 km2 DSM generated from 28 Maxar images
at 0.25m resolution

Figure 1. DSMs from an AOI in downtown Jacksonville, FL,
USA. We typically generate large-area DSMs at 1.5m resolution

and small-area DSMs at 0.25m resolution.

Sentinel images by constructing a Gaussian image pyramid, ex-
tracting features at each level using the Förstner corner detector
(Förstner and Gülch, 1987) and performing least squares match-
ing. EMMOSI (Liu et al., 2017) aligns images from the Gaofen
and Ziyuan3 satellites by finding initial feature matches with a
modified SIFT operator known as Uniform Robust (UR)-SIFT,
then ”propagating” (i.e., detecting additional) matches using
geometric correspondences and probabilistic relaxation.

The method proposed in (Skakun et al., 2017) uses phase cor-
relation (Foroosh et al., 2002) for estimating alignment para-
meters between Landsat and Sentinel. Phase correlation in-
volves transforming images to the frequency domain, then cal-
culating alignment parameters using the cross-power spectrum
of the frequency domain images. There is also a comparison
in (Skakun et al., 2017) of different methods of modeling the
alignment transformation: poylnomial models, radial basis func-
tions, and non-linear random forests. The AROSICS frame-



(a) DSM for tile 1 generated from 19 Maxar images

(b) DSM for tile 3 generated from 27 Maxar images

(c) DSM for tile 8 generated from 24 Maxar images

Figure 2. Noisy DSMs for 90 km2 tiles (as labelled in Figure 6)
of an AOI in Demmin, Germany that were generated from

Maxar images at (downsampled) 1.5 m resolution

work (Automated and Robust Open-Source Image Coregistra-
tion Software) in (Scheffler et al., 2017) also uses the concept
of phase correlation to align Landsat and Sentinel images. This
framework has the option to estimate alignment parameters from
an ”image subset” within the AOI and apply them to the entire
AOI. This subset region size is manually specified, and the loc-
ation is chosen based on which portions of the reference and
unaligned image overlap (assuming these two images do not
have the same footprint). The framework described in our pa-
per detects subset regions for parameter estimation automatic-
ally based on DSM noise and includes additional case by case
logic for propagating and fusing alignment parameters. In order
to understand this logic, we must first review MuRA.

3. MULTI-SATELLITE IMAGE ALIGNMENT

The MuRA framework (Deshmukh et al., 2023) takes inspir-
ation from AROP (Gao et al., 2009) to align lower-resolution
satellite images to an image from a higher-resolution satellite.
Figure 3 shows a diagram of the steps of MuRA. When explain-
ing MuRA, we refer to the lower resolution images we want
to align, typically from Landsat or Sentinel, as warp images
and the higher-resolution image we are aligning to, typically
from Maxar or Planet, as the base image. While it is tech-
nically possible to use Landsat or Sentinel as the base image

for MuRA, doing so results in much worse alignment accuracy
than if Maxar is used. This is because Maxar images are rich
with geometric information, so we can perform intra-satellite
alignment of these images with much higher absolute accuracy
than with Landsat or Sentinel. MuRA aligns warp images to the

Figure 3. Overview of MuRA framework

base image by estimating and applying a warp polynomial. The
polynomial can be chosen to apply a shift, affine, or quadratic
correction based on the polynomial order. In our experience,
a shift correction provides the best relative accuracy (based on
the GAASS metric) for aligning the warp images. Formally, for
each pixel coordinate in a warp image (x̂w, ŷw), we want to es-
timate (in the 0-order case) the polynomial coefficients a1 and
b1 such that

x̂w = a1 + xb

ŷw = b1 + yb
(1)

Where (xb, yb) are coordinates in the base image. While the
polynomial is estimated using images from the Panchromatic
band, it can be applied to imagery of other bands.

The steps of estimating the warp polynomial are as follows.
First the base and warp images are reduced to a common “work-
ing” resolution. Then keypoints are identified and matched
in both images using an algorithm for feature extraction and
matching such as SIFT (Lowe, 1999) or FAST+VGG (Rosten
and Drummond, 2006, Simonyan and Zisserman, 2015). The
idea is that the feature extraction and matching algorithm of
choice can be used in MuRA on a plug-n-play basis. Once we
match features in both images, we use RANSAC to find the
largest inlier tiepoint set. This inlier tie point set is used to
estimate the coefficients for the warp polynomial by solving a
linear least square problem for a1 and b1 that minimizes the
reprojection error for (x̂w, ŷw).



The MuRA framework is usually able to align Landsat warp
images to a Maxar base image with subpixel relative accuracy
for AOIs that are rich in features. AOIs that are richer in fea-
tures or have good quality ortho base images are more likely
to have a larger inlier tiepoint set than those that are relatively
featureless. Since the polynomial coefficients are estimated us-
ing linear least squares, a larger inlier tiepoint set would res-
ult in polynomial coefficients that yield higher alignment ac-
curacy. When an AOI has a featureless regions, the resulting
ortho-images have artifacts that can lead to false matches and
therefore a smaller inlier tiepoint set. In the next section, we
describe a method for detecting featureless regions that would
yield poor quality ortho-images. By detecting these regions, we
can subsequently apply MuRA only to portions of the AOI that
would provide the largest inlier tiepoint sets.

4. AUTOMATICALLY DETECTING FEATURELESS
REGIONS

To determine what regions in an AOI MuRA should estimate
polynomial coefficients from, we need to detect what regions
of the AOI are featureless. We consider a region featureless
if the DSM generated for that region has noisy spikes like the
DSM shown in Figure 2. When performing stereo matching
in featureless regions, we are more likely to have erroneous
matches due to the homogeneity of textures. These erroneous
matches can result in incorrect Z-values during triangulation,
hence the resulting spikes in the DSM. Detecting featureless re-
gions then becomes an issue of how to automatically find these
noisy spikes in a DSM. Fortunately, a byproduct of DSM gen-
eration known as a point spread map can indicate where these
spikes lie. In Figure 4, notice that the spiky portions of the DSM
(Figure 4a) correspond to higher point spread values in Figure
4b and featureless fields in Figure 4c.

In order to explain what a point spread map is, we must first
briefly describe the DSM generation process. Given a set of
multi-view images we form stereo pairs such that each image
in the pair has sufficiently different viewing angle to make tri-
angulation possible (Patil et al., 2019a). These pairs are then
rectified using an approach similar to that of (de Franchis et
al., 2014), where we can assume an affine camera model for
sufficiently small image tiles. We use the dense stereo match-
ing algorithm tMGM (Patil et al., 2019b) to produce a dispar-
ity map for finding dense correspondences for the stereo pair.
These dense correspondences are needed to perform triangu-
lation, which results in a point cloud. We will have a point
cloud for each stereo pair, which are then fused into a single
point cloud. We can assume that at each lat/long location in a
given AOI, we will have a collection of points from this fused
point cloud. To get the final height value for the DSM at a
given lat/long location, we take the median Z-value of the top N
highest points at that location (N is a predetermined hyperpara-
meter). The point spread value at that lat/long location is given
by taking the standard deviation (instead of the median) of the
Z-values of those points. Therefore, a point spread map indic-
ates the standard deviation of height values at any location in
a DSM, and effectively measures the uncertainty for the height
values. Since we want to classify regions of the AOI as feature-
less or feature-rich, we use Otsu’s method to threshold the point
spread map, yielding a binary mask for the entire AOI.

(a) DSM with noise

(b) Point Spread Map corresponding to noisy DSM

(c) Google Earth image corresponding to noisy DSM

Figure 4. Comparison of a noisy DSM and its point spread map.
Also shown is the corresponding Google Earth image showing

that the noisy portion of the DSM is a field

5. A FRAMEWORK FOR ALIGNING FEATURELESS
REGIONS

Once the featureless regions of an AOI have been detected, es-
timating polynomial coefficients from the feature-rich regions
is relatively straightforward. We can use our binary mask to
apply MuRA only to the portions with usable DSM. However,
the method by which we apply these alignment parameters (i.e.,
polynomial coefficients) to the featureless regions is a bit more
complicated. Therefore we break down our featureless region
alignment procedure into three different strategies (Figure 5a)
used for three different AOI cases (Figure 5b).

For case 1, if AOI is mostly feature-rich, we apply MuRA to
the entire AOI and simply ignore featureless regions using the
mask. If there is a single region that has a usable DSM (case2),
then we only apply MuRA to that region. The alignment para-



(a) Overall framework for automatic detection and alignment of
featureless regions

(b) Hypothetical AOIs where each case logic is appropriate

Figure 5. The strategy for aligning featureless regions of an AOI
depends on how much of the AOI is feature-rich and how

concentrated those feature-rich regions are

meters are then propagated out to the featureless regions by
simply applying these parameters to the entire AOI. Case 3 is
when there are multiple regions that are feature-rich, but are too
spread out to ignore featureless regions like in case 1. In such
a case, we would estimate alignment parameters only from the
feature-rich regions as in case 2, but when propagating these
parameters we would need to fuse multiple sets of polynomial
coefficients to align featureless regions.

To align a given point in the featureless region of an AOI using
the case 3 logic, we apply an aggregate polynomial calculated
using a weighted average of all polynomial coefficients estim-
ated from feature-rich regions. The weighting of each set of
polynomial coefficients is based on how much we “trust” those
alignment parameters for aligning a given point. The factors
we consider for our level of trust include how close the point
we are aligning is to each feature-rich region and the average
point spread value of each of these regions. The reasoning for
this is that a point is more likely to be accurately aligned using
parameters that were estimated from a region in close proxim-
ity to that point. However, if that region has a relatively noisy
DSM, its alignment parameters may not be as accurate as, say,
parameters from a region that is further away but has a much
cleaner DSM. For a point x that we want to align, we compute
its alignment parameters {ax

i }, {bxi } from the parameters of r
feature-rich regions as follows:

{ax
i } =

r∑
j=1

{aj
i}

1

pjdj

{bxi } =

r∑
j=1

{bji}
1

pjdj

(2)

Where dj is the normalized distance from center of the jth
feature-rich region to x and pj is that region’s average point
spread value.

Figure 6. A Google Earth image of the 800 km 2 AOI in
Germany split into numbered tiles used for our experiments.

6. EXPERIMENTAL RESULTS AND DISCUSSION

To demonstrate the improvements of this extension to the MuRa
framework, we aligned the previously mentioned 800 km2 test
AOI in Germany both with and without a mask. For DSM gen-
eration, the AOI was split into nine 90 km 2 tiles (as visualized
in Figure 6 with Google Earth imagery) of Maxar (WorldView-
3) imagery that was downsampled to 1.5m resolution.

Figure 7. The mask generated from the point spread maps for
the Germany AOI. The white regions indicate the featureless

areas that need to be masked out

The mask generated for this AOI is shown in Figure 7, and the
effect of this mask on removing noise in the DSM can be seen
in Figure 8. Notice that all of the red circled regions indicating
noisy spikes in Figure 8a are masked out in Figure 8b. To high-
light how much noise is removed in the DSM, in Figure 9 we
zoomed into several tiles.

Once we orthorectified the available Maxar images, we aligned
275 Landsat 8 images. We used case 1 logic, where MuRA is
applied to the entire AOI with the featureless regions masked
out, for this AOI since most of it is feature-rich as indicated by
Figure 7. In general, case 1 is the most common case we en-
countered in AOIs we align with MuRA. To evaluate the relat-
ive alignment accuracy of our framework, we used the GAASS
metric developed by USGS. This metric operates on pairs of
aligned images closest in date recorded, with one image la-
belled the “reference image” and the other labelled the “com-
parison image”. Each of these images are split into 100 × 100
corresponding patches. Then for each pair of corresponding
patches, we compute the NCC (Normalized Cross Correlation)



Tile # Tile 1 Tile 2 Tile 3 Tile 4 Tile 5 Tile 6 Tile 7 Tile 8 Tile 9
Alignment Type No Mask Mask No Mask Mask No Mask Mask No Mask Mask No Mask Mask No Mask Mask No Mask Mask No Mask Mask No Mask Mask

CE90 Mean 6.977 5.793 7.674 6.971 6.995 6.035 8.079 6.545 6.957 5.648 8.991 6.234 3.911 3.911 13.371 8.0465 7.772 6.692
CE90 Std-Dev 7.839 4.313 6.501 4.606 6.451 4.502 8.07 4.031 6.653 4.18 9.046 4.671 N/A N/A 9.716 3.195 8.639 5.693
CE90 Median 4.377 4.377 6.435 6.435 4.741 4.741 5.169 5.169 4.547 4.547 4.404 3.801 3.911 3.911 11.268 7.993 4.547 4.547

Percent Masked N/A 0.214 N/A 0.401 N/A 0.324 N/A 0.354 N/A 0.354 N/A 0.34 N/A 0.551 N/A 0.484 N/A 0.507

Table 1. GAASS Metrics for the same set of images for masked and non-masked cases

(a) Original DSM with noisy rural areas circled in red areas with reliable
DSM (urban or good rural areas) in green.

(b) Masked DSM. Blue regions indicate masked-out areas.

Figure 8. All tiles for the noisy DSM of 800 km 2 AOI in
Germany before and after the noise mask is applied.

over a range of X and Y offsets by sliding the patch on the
comparison image. For the set of NCC values in each slid-
ing direction, we fit a quadratic function as shown in Figure
10. The minimum of this function in each direction is our er-
ror in meters. The error over all patches is computed based on
the CE90 (circular error in the 90th percentile) (Subcommittee,
1998). We compute the mean, standard deviation, and median
of the CE90 over all images pairs evaluated for relative accur-
acy.

For a fair comparison between using a mask and not using one
for MuRA, we compare GAASS metrics only for the same set
of images in Table 1. While the median CE90 is comparable
for both the mask and non-masked cases, the mean and stand-
ard deviation CE90 are usually much lower. While GAASS
metrics are compared for the same set of images, the most strik-
ing improvement when using the case 1 logic is the number of
successfully aligned images. When we say that an image is
successfully aligned, that means that MuRA is able to estimate
alignment parameters for that image. If MuRA is unable to find
any inlier tiepoints between the base and warp image, then it
cannot estimate alignment parameters. We think using the mask
increases the number of successfully aligned images because it
prevents MuRA from detecting bad keypoints in the feature-
less regions of an AOI and as a result reduces the likelihood of
false matches. As shown in Table 2, the case 1 logic with the
mask allows MuRA to align many more Landsat images than
without the mask. For the purpose of change detection, having

(a) Tile 3

(b) Tile 5

(c) Tile 8

Figure 9. A sampling of DSM tiles before (left) and after (right)
the mask is applied

Figure 10. Diagram showing how the GAASS metric is
computed between two images.

good coverage (i.e., a large number of aligned images) in a time
series is important.

Tile 1 Tile 2 Tile 3 Tile 4 Tile 5 Tile 6 Tile 7 Tile 8 Tile 9
Mask 275 233 275 275 274 273 245 265 168
No Mask 78 40 82 47 43 55 8 16 32

Table 2. A comparison of the number of Landsat images (out of
275 total) that can be succesfully aligned when using a mask

(i.e., case 1 alignment logic) and not using a mask during
alignment parameter estimation.

7. CONCLUSION

This paper presents an extension of the MuRA framework for
aligning the high-res and low-res satellite images over AOIs that
contain featureless regions, these being regions that give rise to
significant levels of noise in the DSMs. Using a thresholded
point spread map, we can automatically detect which regions of
the AOI are featureless. Once these regions are detected we can



use one of three possible strategies to align the AOI based on
how much of the AOI is featureless. In the experiments shown
in this paper, MuRA automatically detects and masks out the
featureless regions of a large AOI in Germany, calculates the the
alignment parameters from the non-masked areas, and extends
these parameters to the entire AOI. With this logic, MuRA is
able to align many more images with this extension, while hav-
ing comparable if not better relative alignment accuracy. There-
fore the addition of alignment logic for featureless contributes
meaningful improvement to MuRA. For future work, we plan
on conducting experiments to evaluate the alignment logic with
AOIs that fall under case 3. We also want to further evaluate the
alignment accuracy of this extended framework, potentially cal-
culating the absolute alignment accuracy using GCPs (Ground
Control Points).
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A. APPENDIX

This appendix presents an overview of our probabilistic frame-
work for carrying out bundle adjustment of the multi-view Maxar
images. This is a critical step in the generation of DSMs from
Maxar images. High resolution satellite images use Rational
Polynomial Coefficient (RPC) camera model (Prpc(X) : R3 7→
R2) which maps a 3D world point (X ∈ R3) to its correspond-
ing pixel location (x ∈ R2) in the image. As demonstrated
in (Grodecki and Dial, 2003), the RPC camera model can ef-
fectively be parameterized with only bias correction parameters
(δ ∈ R2) in image space coordinates to carry out bundle ad-
justment of cameras, we denote the parameterized camera as
Prpc(δ,X) .

We carry out bundle adjustment of Maxar data by formulating a
Maximum A Posteriori (MAP) problem to estimate the bias cor-
rection parameters. When we are presented with a set of N im-
ages ({Ii}Ni=1) with corresponding RPC cameras ({P(i)

rpc}Ni=1)
and a set of inlier tiepoints ({Mij} ∀ 1 ≤ i < j ≤ N :

Mij = {x(i)
k ↔ x

(j)
k |x(i)

k ∈ Ii, x
(j)
k ∈ Ij} ∀ 0 ≤ k ≤ |Mij |),

we associate a putative world point with every tiepoint (x(i)
k ↔

x
(j)
k ↔ X

(ij)
k ). The MAP problem can be converted into a min-

imization of regularized reprojection error as shown in Equa-
tion 3 to compute bias correction parameters for all images with
zero-mean Gaussian prior.

{δ∗i }, {X
∗(ij)
k } = argmin

{δi},{X
(ij)
k

}

Lrep + λLreg (3)

Where Lrep and Lreg are the reprojection error and regulariza-
tion term respectively given by Equation 4 and λ is the weight
of regularization term which is inversely proportional to the co-
variance of the Gaussian prior.

Lrep =
∑

1≤i<j≤N

|Mij |∑
k=1

(
∥x(i)

k − P(i)
rpc(δi, X

(ij)
k )∥22+

∥x(j)
k − P(j)

rpc(δj , X
(ij)
k )∥22

)
Lreg =

N∑
i=1

∥δi∥22

(4)

For our formulation we choose λ = 0.5 and solve the above
minimization problem using sparse bundle adjustment similar
to what is described in (Lourakis and Argyros, 2009).
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