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Semantic Labeling of Large-Area Geographic
Regions Using Multi-View and Multi-Date Satellite

Images and Noisy OSM Training Labels
Bharath Comandur and Avinash C. Kak

Abstract—We present a novel multi-view training framework
and CNN architecture for combining information from multiple
overlapping satellite images and noisy training labels derived
from OpenStreetMap (OSM) to semantically label buildings and
roads across large geographic regions (100 km2). Our approach to
multi-view semantic segmentation yields a 4-7% improvement in
the per-class IoU scores compared to the traditional approaches
that use the views independently of one another. A unique (and,
perhaps, surprising) property of our system is that modifications
that are added to the tail-end of the CNN for learning from
the multi-view data can be discarded at the time of inference
with a relatively small penalty in the overall performance. This
implies that the benefits of training using multiple views are
absorbed by all the layers of the network. Additionally, our
approach only adds a small overhead in terms of the GPU-
memory consumption even when training with as many as 32
views per scene. The system we present is end-to-end automated,
which facilitates comparing the classifiers trained directly on true
orthophotos vis-a-vis first training them on the off-nadir images
and subsequently translating the predicted labels to geographical
coordinates. With no human supervision, our IoU scores for the
buildings and roads classes are 0.8 and 0.64 respectively which
are better than state-of-the-art approaches that use OSM labels
and that are not completely automated.

Index Terms—Multi-View Semantic Segmentation, OSM, Deep
Learning, CNN, Noisy Labels, DSM

I. INTRODUCTION

IN this work, we are interested in answering the following
question – Is there an optimal way to combine multi-

view and multi-date satellite images, and noisy training labels
derived from OpenStreetMap (OSM) [1] for the task of seman-
tically labeling buildings and roads on the ground over large
geographic regions (100 km2)? Note that labeling points on
the ground is more challenging than labeling pixels in images
because the former requires that we first map each point on
the ground to the correct pixel in each image. This is only
possible if (1) the multi-date and multi-view images are not
only aligned with one another but are also aligned well in an
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absolute sense to the real world; and (2) if we have accurate
knowledge of the heights of the points on the ground.

Before summarizing our main contributions, to give the
reader a glimpse of the power of the approach presented in
this study, we show some sample results in Fig. 1.

Towards answering the aforementioned question, we put
forth the following contributions:

1) We present a novel multi-view training paradigm that
yields improvements in the range 4-7% in the per-class
IoU (Intersection over Union) metric. Our evaluation
directly demonstrates that updating the weights of the
convolutional neural network (CNN) by simultaneously
learning from multiple views of the same scene can help
alleviate the burden of noisy training labels.

2) We present a direct comparison between training classi-
fiers on 8-band true orthophoto images vis-a-vis training
them on the original off-nadir images captured by the
satellites. The fact that we use OSM training labels poses
challenges for the latter approach, as it necessitates the
need to transform labels from geographic coordinates into
the off-nadir image-pixel coordinates. Such a transfor-
mation requires that we have knowledge of the heights
of the points. The comparison presented in this study
is unlike most published work in the literature that use
pre-orthorectified single-view images. Additionally, we
have released our software for creating true orthophotos,
for public use. Interested researchers can download this
software from the link at [2].

3) In order to make the above comparison possible, we
present a true end-to-end automated framework that
aligns large multi-view, multi-date images (each con-
taining about 43008 × 38000 pixels), constructs a high-
resolution accurate Digital Surface Model (DSM) over
a 100 km2 area (which is needed for establishing cor-
respondences between the pixels in the off-nadir images
and points on the ground), and learns from noisy OSM
labels without any additional human supervision.

For our study, we use WorldView-3 (WV3) [4] images
collected over two regions in Ohio and California, USA. We
use 32 images for each region. The images were collected
across a span of 2 years under varying conditions. Automatic
alignment and DSM construction are carried out for both
regions. Smaller sections of these DSMs are shown in Fig.
2.

The rest of this manuscript is organized as follows. In
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Single-View
Training

(Baseline)

Multi-View
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Fig. 1. To illustrate the power of our approach, the buildings in the bottom row were extracted by our approach based on multi-view training for semantic
labeling. Compare with the top row where the training is based on single-views. Building points are marked in translucent blue.

Section II, we briefly review relevant literature. Section III
provides details on aligning images, creating large-area DSMs,
and deriving training labels from OSM. Section IV presents
different approaches for training and inference using CNNs.
Section V discusses a strategy for using training labels derived
from OSM to label off-nadir images. Experimental evaluation
is described in Section VI. Concluding remarks are presented
in Section VII.

II. LITERATURE REVIEW

State-of-the-art approaches that demonstrate the use of
labels derived from OSM for finding roads and/or buildings in
overhead images include the studies described in [5], [6], [7],
[8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19],
[20] and [21]. Many of these approaches use some category of
neural networks as part of their machine-learning frameworks.
For instance, while the study described in [5] uses a CNN
backbone to extract keypoints that are subsequently input to a
recurrent neural network (RNN) to extract building polygons
and road networks, the approach presented in [6] constructs
a road network in an iterative fashion by using a CNN to
detect the next road segment given the previously extracted
road network. The work discussed in [10] builds upon the
approach in [6] by using a generative adversarial network
(GAN) [22] to further refine the outputs. In addition, the recent
contributions in [23], [24], [25], [26], [27], [28] and [29]
use datasets with precise training labels for semantic labeling
of overhead imagery. All these approaches use single-view
images that are usually pre-orthorectified.

Some examples of popular datasets for semantic labeling of
overhead imagery with manually-generated and/or manually-
corrected training labels can be found in [30], [31], [32], [33],
[34], [35], [36], [37], [38] and [39]. The dataset presented in
[32] provides satellite images, airborne LiDAR, and building

labels (derived from LiDAR) that are manually corrected. The
DeepGlobe dataset [30] provides satellite images and precise
labels (annotated by experts) for land cover classification
and road and building detection. The study described in [34]
combines multi-view satellite imagery and large-area DSMs
(obtained from commercial vendors) [33] with building labels
that are initialized using LiDAR from the HSIP 133 cities data
set [40]. The IEEE GRSS Data Fusion Contest dataset [35],
[36] provides true ortho images, LiDAR and hyperspectral
data along with precise groundtruth labels for 17 local climate
zones. A summary of the top-performing algorithms on this
dataset can be found in [41].

We will restrict our discussion of prior contributions that use
information from multiple views to CNN-based approaches.
Variants of multi-view CNNs have been proposed primarily
for segmentation of image-sequences and video frames, and
for applications such as 3D shape recognition/segmentation
and 3D pose estimation. State-of-the-art examples include the
approaches described in [42], [43], [44], [45], [46], [47], [48],
[49], [50], [51], [52], [53] and [54]. These contributions share
one or more of the following attributes: (1) They synthetically
generate multiple views by either projecting 3D data into
different planes, or by viewing the same image at multiple
scales; (2) They extract features from multiple views, con-
catenate/pool such features and/or enforce consistency checks
between the features; (3) They use only a few views (of the
order of 5 or less). For instance, while the study described
in [42] improves semantic segmentation of RGB-D video
sequences by enforcing consistency checks after projecting the
sequences into a reference view at training time, the approach
presented in [44] estimates 3D hand pose by first projecting
the input point clouds onto three planes, subsequently training
CNNs for each plane and then fusing the output predictions.

With respect to the field of remote-sensing, multi-date
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(a) (b)

(c) (d)

Fig. 2. We have uploaded as Supporting Material the flyby videos and the images of the DSMs for two large areas, a 120 km2 area from Ohio and a 62
km2 area from California. The flyby videos can also be viewed at the link at [3]. The top two images depict two small sections from the Ohio DSM, and the
bottom two images depict two small sections from the California DSM. The DSM depictions have been colored according to the elevation values within the
boundaries of each section.

satellite images have been used for applications such as
change detection. For instance, the study described in [55]
demonstrates unsupervised change-detection between a single
pair of images with deep features extracted using a cycle-
consistent GAN [56]. However, there do not exist many studies
that use CNNs for labeling of multi-view and multi-date
satellite images. A relevant contribution is the one described
in [57] that won the 2019 IEEE GRSS Data Fusion Contest
for Multi-View Semantic Stereo [58]. The work in [59] also
uses off-nadir WV3 images for semantic labeling. Both these
approaches still treat the different views of the same scene on
the ground independently during training. To the best of our
knowledge, there has not existed prior to our work reported
here a true multi-view approach for semantic segmentation

using satellite images.

We also include a brief review of the literature related to
constructing DSMs from satellite images. Fully automated
approaches for constructing DSMs from satellite images have
been discussed in [60], [61], [62], [63], [64], [65] and [66].
While the studies described in [61], [62] and [64] process pairs
of images to construct multiple pairwise point clouds that are
subsequently fused to construct a dense DSM, the contribution
in [63] compares such approaches with an alternative approach
that divides the 3D scene into voxels, projects each voxel into
all the images and subsequently reasons about the probability
of occupancy of each voxel using the corresponding pixel
features from all the images. In all of these contributions,
the DSMs that are constructed cover relatively small areas.
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The large-area DSM contribution in [67] is based on a small
number of in-track images that are typically captured seconds
or minutes apart by the Pléiades satellite. In addition to the
aforementioned contributions, the study in [68] provides a
dataset containing stereo-rectified images and the associated
groundtruth disparity maps for different world regions, that
can be used for benchmarking stereo-matching algorithms.

III. A FRAMEWORK FOR LARGE-AREA IMAGE
ALIGNMENT, DSM CREATION, AND GENERATING

TRAINING SAMPLES FROM OSM

As stated in the Introduction section, our goal is to generate
accurate semantic labels for the points on the ground (as
opposed to the pixels in the images). Solving this problem
requires correcting the positioning errors in the satellite cam-
eras and estimating accurate elevation information for each
point on the ground — since only then we can accurately
establish the relationship between the pixels in the images and
the points on the ground. This will also enable us to establish
correspondences between the pixels of the multiple views of
the same scene.

Therefore, an important intermediate step in our processing
chain is the calculation of the DSM. To the best of our
knowledge, there is no public contribution that discusses a
complete framework for automatic alignment and creation of
large-area DSMs over a 100 km2 region using satellite images
taken as far apart as 2 years. Because of the role played
by high-quality large-area DSMs in our framework, we have
highlighted this part of the framework in the Introduction and
shown some sample results in Fig. 2.

An overview of the overall framework presented in this
study is shown in Fig. 3. The system has three inputs that
are shown by the orange colored boxes: (1) panchromatic
and 8-band multispectral satellite images; (2) the metadata
associated with the images; and (3) the OSM vectors. After
the CNN is trained in the manner described in the rest of this
manuscript, the framework directly outputs semantic labels
for the world points. In the rest of this section, we will
briefly describe the major components of the framework, apart
from the machine-learning component. These components are
described in greater detail in the Appendices.
Tiling and Image Alignment: The notion of a tile is used

only for aligning the images and for constructing a
DSM. For the CNN-based machine-learning part of the
system, we work directly with the whole images and
with the OSM for the entire area of interest. Tiling is
made necessary by the following two considerations: (1)
The alignment correction parameters for a full satellite
image cannot be assumed to be the same over the entire
image; (2) The computational requirements for image-
to-image alignment and DSM construction become too
onerous for full-sized images. We have included evidence
for the need for tiling in Appendix I-B. On a related
note, the study reported in [69] describes an approach that
divides a large region into smaller chips for the purpose of
land cover clustering. After tiling, the images are aligned
with bundle-adjustment algorithms, which is a standard

practice for satellite images. Alignment in this context
means calculating corrections for the rational polynomial
coefficients (RPCs) of each image.

DSM Construction: A DSM is constructed from the dispar-
ity map generated by the hierarchical tSGM algorithm
[70]. Stereo matching is only applied to those pairs that
pass certain prespecified criteria with respect to differ-
ences in the view angles, sun angles, time of acquisition,
etc., subject to the maximization of the azimuth angle
coverage. The disparity maps and corrected RPCs are
used to construct pairwise point clouds. Since the images
have already been aligned, the corresponding point clouds
are also aligned and can be fused without any further 3D
alignment. Tile-level DSMs are merged into a large-area
DSM.

Generating Training Samples: The training data is gener-
ated by using an F ×F window to randomly sample the
images after they have been pansharpened and orthorec-
tified using the DSM. We refer to such an F ×F window
on the ground as a ground-window. The parameter F is
empirically set to 572 in our experiments1. Subsequently,
the OSM vectors are converted to raster format with the
same resolution as in the orthorectified images. Thus there
is a label for each geographic point in the orthorectified
images. The OSM roads are thickened to have a constant
width of 8m. Since the images are aligned with sub-
pixel accuracy and are orthorectified, the training samples
from the multiple images that view the same ground-
window correspond to one another on a point-by-point
basis, thereby giving us multi-view training data.

IV. MULTI-VIEW TRAINING AND INFERENCE

A. Motivation for our Proposed Approach
Our multi-view training framework is motivated by the

following factors:
Convenience: With newer and better single-view CNNs being

designed so frequently, it would be convenient if the
multi-view fusion module could be designed as an add-on
to an existing pretrained architecture. This would make it
easy to absorb the latest improvements in the single-view
architectures directly into the multi-view fusion frame-
work. We won’t have to rethink the feature concatenation
for each new single-view CNN architecture. Additionally,
we want to efficiently train the single-view weights in
parallel across multiple GPUs and carry out fusion on a
single GPU.

Multi-Date Images: The satellite images could have been
collected years apart under different illumination and
atmospheric conditions. Thus, our task is very different
from traditional multi-view approaches that work with
3D shapes or images captured by moving a (handheld)
camera around the same scene.

Varying Number of Views: The number of views covering
a ground-window can vary between 1 to all available

1Note that the value of F can change depending on the resolution of the
images. F should be chosen such that the windows are large enough to capture
sufficient spatial context around the objects of interest.
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Fig. 3. Overview of our framework. The three inputs are shown in orange-colored boxes. All outputs produced by the system are shown in green-colored
boxes. The modules in blue-colored ellipses operate on a tile-wise basis.

images (32 in our case). This causes practical challenges
in backpropagating gradients when using CNNs that
assume the availability of a fixed number of views for
concatenating features. At the same time, we do not
want to exclude windows that are covered by less than a
specified number of views. Our goal is to use all available
training data and all available views for every ground-
window.

B. Multi-View Fusion Module

Fig. 4 shows an overview of our multi-view training frame-
work where we propose that the multi-view information be
aggregated at the predictions stage. In this sense, our approach
is related to the strategies discussed in [49] and [54]. While
the contribution in [49] considers the “RGB” and the depth
channel of the same RGB-D image as two “views” (which is
a much simpler case), the 3D shape segmentation approach
in [54] synthetically generates multiple-views of the same 3D
object. In contrast, the significantly more complex nature of
our data makes our problem very different from these tasks.

The multi-view fusion module shown in Fig. 4 can be added
to any existing/pretrained single-view CNN. We experimented
with different choices for this module and present two that
gave good performance yields. These are shown in Fig. 5 and
we denote them as MV-A (Multi-View-A) and MV-B(Multi-
View-B) respectively. Both MV-A and MV-B consist of a
single block of weights with kernel size, stride and padding
set to 1.

In the following discussion, V denotes a subset of views for
a single ground-window. N is the number of views in V . H
and W are the height and width of a single view respectively.
M is the maximum number of possible views for a ground-
window. CL is the number of target classes.

As shown in Fig. 4, the Single-View (SV) CNN outputs a
tensor of shape (CL, H,W ) for each of N views which are
concatenated along the batch axis to yield a tensor of shape
(N,CL, H,W ), which we denote as TN

MV . This tensor is then

inserted into a larger tensor which we denote as TMV . Each
view has a fixed index in TMV . Missing views are filled with
zeros. The difference between MV-A and MV-B can now be
explained as follows.
MV-A: In this case, TN

MV is reshaped into a tensor of shape
(1, N × CL, H,W ). It is then inserted into TMV which
is of shape (1,M × CL, H,W ). TMV is then input to
the MV-A module which subsequently outputs a tensor
of shape (1, CL, H,W ). MV-A thus contains a total of
M ×CL trainable weights, one for each channel of each
view.

MV-B: In this case, TN
MV is first reshaped into a tensor of

shape (CL, N,H,W ). It is then inserted into TMV which
is of shape (CL,M,H,W ). TMV is then input to the
MV-B module which subsequently outputs a tensor of
shape (CL, 1, H,W ). MV-B thus contains a total of M
trainable weights, one for each view. The first and second
axis of this tensor are swapped to yield a tensor of shape
(1, CL, H,W ) which is then used to calculate the loss.

C. Multi-View Loss Function

The total loss is defined as

L = α · LSV + β · LMV (1)

where LSV represents the single-view loss, LMV represents
the multi-view loss and α and β are scalars used to weight
the two loss functions. The single-view loss is calculated as
follows.

LSV =
1

N

N∑
i=1

CEi(Gi, Ti) (2)

where CEi is the pointwise cross-entropy loss for the ith

view, N is the number of views in a subset V of views that
cover a single ground-window and Ti is the output tensor of
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Fig. 4. Overview of Multi-View Training

(a)

(b)

Fig. 5. Two choices for Multi-View Fusion. At top is MV-A in which the weights of the MV Fusion layer are different for each channel of each view. At
bottom is MV-B where the weights of the MV Fusion layer are shared by all the channels of a view.

the SV CNN for the ith view. To calculate CEi, we mask the
OSM labels for the ground-window with the occlusion mask
of the ith view. This masked ground-truth is denoted by Gi in
the equation above. Note that this mask is implicitly computed
during the process of true orthorectification. The gradients of
LSV are not backpropagated at these masked points. What this
means is that for each individual view, LSV only focuses on
portions of the ground-window that are visible in that view.

The pointwise cross-entropy loss between two probability
distributions A and B, each defined over CL classes, is
calculated as follows.

CE(A,B) = −
∑
p

CL∑
j=1

A(p, j) · log(B(p, j)) (3)

where p refers to a single point. A(p, j) is the probability
that point p belongs to class j as defined by A. B(p, j) is the
probability that point p belongs to class j as defined by B.

The multi-view loss is calculated as follows.

LMV = CE(G,PMV ) (4)

where CE(G,PMV ) is the pointwise cross-entropy loss for
the ground-window. This is calculated using the unmasked
OSM label G and the output PMV of the MV Fusion module.
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PMV can be viewed as a final probability distribution that is
estimated by fusing the individual probability distributions that
are output by the SV CNN for each of the N views. We can
denote PMV as a function f(T1, T2, ..., TN ) where f depends
upon the architecture of the MV Fusion module. Note that f
is differentiable. Thus, Eq. 4 can be rewritten as

LMV = CE(G, f(T1, T2, ..., TN )) (5)

Substituting the expression for the CE loss from Eq. 3 into
Eq. 5, we get the following expression for LMV .

LMV = −
∑
p

CL∑
j=1

G(p, j) · log(f(T1, T2, ..., TN )(p, j)) (6)

Note that LMV is not linearly separable over the views
in V. In other words, unlike LSV , we cannot separate it into
a sum of losses for each view. Thus, LMV captures the
predictions of the network in an ensemble sense over multiple
views covering a ground-window. When backpropagating the
gradients of L, the gradients from LMV are influenced by the
relative differences between the predictions for each view, and
this in turn translates into better weight-updates. Moreover, by
using LMV , the network is shown labels for all portions of
the ground including those that are missing in some views of
V . This enables the network to make better decisions about
occluded regions using multiple views.

D. Strategies for Multi-View Training and Inference

1) Approaches for Data-Loading: The term “data-loading”
refers to how the data samples are grouped into batches
and input to the CNN. We use two different data-loading
approaches.
Single-View Data-Loading (SV DATALOAD): This is a

conventional data-loading strategy where a single training
batch can contain views of different ground-windows.
The batch size is constant and only depends on the
available GPU memory. SV DATALOAD uses all the
available data.

Multi-View Data-Loading (MV DATALOAD): Under this
strategy, a training batch consists solely of views that
cover the same ground-window. The number of such
views can vary from window to window. However, due
to memory constraints, we cannot load all 32 views onto
the GPUs simultaneously. As a work around, we use
the following approach. Let |Q| denote a pre-specified
number of views that can fit into the GPU memory, R
denote the set of available views for a ground-window and
|R| denote the total number of views in R. If |R| < |Q|,
we skip loading this ground-window. If |R| > |Q|, we
randomly split R into a collection of overlapping subsets
{Qj}, such that each Qj has |Q| views and ∪Qj = R
where ∪ denotes the union operator. The tensor TMV

that is input to the MV Fusion module is reset to zero
before inputting each Qj to the CNN. Note that this
random split has the added advantage that the CNN

sees a different collection of views for the same ground-
window in different epochs, which should help it to learn
better.

The design of MV DATALOAD is motivated by our obser-
vation that if we allow the batch size to change significantly
for every ground-window (based on the corresponding number
of available views), it significantly slows down the rate of
convergence. Therefore, we exclude ground-windows with less
than |Q| views, and for the remaining windows we make sure
that every subset Qj has |Q| views. This enforces a constant
batch size of |Q|, resulting in faster convergence.

2) Training Strategies: We use the following different
strategies to train the CNNs.

Single-View Training (SV TRAIN): In this strategy,
the SV CNN is trained independently of the MV Fusion
module. We apply the SV DATALOAD approach to use all
available data. One can also interpret this as setting β = 0 in
Eq. 1 and freezing the weights of the MV Fusion module.

We now define three different multi-view training strategies
as follows.
MV TRAIN-I: We first train the SV CNN using SV TRAIN.

Subsequently, we use MV DATALOAD to only train the
MV Fusion module by setting α = 0 in Eq. 1, and by
freezing the weights of the SV CNN. Hence, LMV only
affects the weights of the MV Fusion module and does
not affect the SV CNN.

MV TRAIN-II: We first train the SV CNN using SV TRAIN.
Subsequently, both the pretrained SV CNN and the MV
Fusion module are trained together using MV DAT-
ALOAD and the total loss as defined in Eq. 1. Thus,
the LMV loss influences the weight updates of the SV
CNN as well. In practice, we lower the initial learning
rate of the SV CNN as it has already been trained and
we only want to fine-tune its weights.

MV TRAIN-III: In this strategy, we do not pretrain the SV
CNN, but rather train both the SV CNN and the MV Fu-
sion module together from scratch using the total loss L
(Eq. 1), and MV DATALOAD. This has the disadvantage
that the network never sees ground-windows with less
than |Q| views, where |Q| is a user-specified parameter.
One might expect this reduction in the amount of training
data to negatively impact performance, especially given
the sparse nature of the OSM labels. Our experimental
evaluation confirms this.

To make a decision on when to stop training, a common
practice in machine-learning is to use a validation dataset.
However, in our case the validation data is also drawn from
OSM (to avoid any human intervention), and is therefore noisy.
To handle this, we make the following proposal. We train a
network until the training loss stops decreasing. At the end of
every epoch, we measure the IoU using the validation data.
For inference, we save the network weights from two epochs –
one with the smallest validation loss and the largest validation
IoU, and the other with the smallest training loss and an IoU
that is within an acceptable range of the largest validation IoU
(to reduce the chances of overfitting to the training data). We
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denote the former as EPOCH-MIN-VAL (EMIN-VAL) and the
latter as EPOCH-MIN-TRAIN (EMIN-TRAIN) respectively.

3) Inference: To establish a baseline, we use a SV CNN
trained with the SV TRAIN strategy defined above, and merge
the predictions from overlapping views via majority voting.
We will denote this approach as SV CNN + VOTE. We
also implemented an alternative strategy of simply averaging
the predicted probabilities across overlapping views, which
produced nearly identical results to majority voting. For the
sake of brevity, we only report the results from SV CNN +
VOTE as the baseline.

Inference using the SV CNN + MV Fusion module is
noticeably faster than SV CNN + VOTE, because the former
combines multi-view information directly on the GPU. For
inference, the MV DATALOAD approach can be used with a
single minor modification. Instead of resetting the TMV tensor
to zeros before inputting each subset Qj of R, it is only reset
to zeros once for each ground-window. This means that the
final prediction for a ground-window is still made using all
the views.

V. SEMANTIC SEGMENTATION USING OFF-NADIR IMAGES

Up till now, our discussion was focused on using true
orthophotos for semantic segmentation. However, for many
applications, it would be useful to directly train CNNs on the
off-nadir images. Even for labeling world points, it would
be interesting to compare the approach from the previous
section vis-a-vis first training CNNs on the original off-
nadir images, and subsequently orthorectifying the predicted
labels. However, this would require a way to project the OSM
training labels from geographic coordinates into the off-nadir
images. Most prior OSM-based studies in the literature are
ill-equipped to carry out such a comparison because they use
pre-orthorectified images. Our end-to-end automated pipeline,
which includes the ability to create large-area DSMs, enables
us to solve the problem stated above in the manner described
below.

Since each building and buffered road-segment is repre-
sented by a polygon in OSM, we use the following procedure
to create smooth labels in the off-nadir images. For a specific
polygon and a specific off-nadir image,

1) We obtain the longitude and latitude coordinates of the
vertices of the polygon from OSM.

2) Using the longitude and latitude coordinates, we find
the corresponding height values of the vertices from the
DSM.

3) Using the RPC equations and the latitude, longitude and
height coordinates, we project each vertex into the off-
nadir image.

4) Subsequently all the pixels contained inside a projected
polygon are marked with the correct label. Portions of
the polygon that fall outside the image are ignored.

The above procedure is repeated for every polygon and
off-nadir image. In practice, the polygons can be projected
independently of one another in parallel. This method is
very fast, but does come at a cost. Consider an example of
projecting a polygon representing a building-roof into an off-
nadir image. If the DSM height for a corner of this polygon

is incorrect, then, because we first project vector data into the
image and subsequently rasterize it, the projected shape of
the entire building-roof label could become distorted. Thus,
the noise in the DSM has greater impact on the noise in the
training labels when using off-nadir images vis-a-vis using
true orthophotos.

A possible alternative strategy is to first map each pixel
in each off-nadir image into its longitude and latitude coor-
dinates, and subsequently check if this point lies inside an
OSM polygon. However, inverse projection needs an iterative
solution and cannot be done directly with the RPC equations.
Such a strategy will be significantly slower than our adopted
method.

VI. EXPERIMENTAL EVALUATION AND RESULTS

We use two datasets to evaluate the different components of
our framework. The first dataset consists of 32 WV3 images
covering a 120 km2 region in Ohio and the second dataset
consists of 32 WV3 images covering a 62 km2 region in
California. The latter is part of the publicly available Spacenet
[31] repository. Building and road label data is downloaded
from the OSM website. No other preprocessing is done before
feeding the data to our framework. Alignment and large-area
DSM construction are evaluated using both datasets. For an
extensive quantitative assessment of the performances of the
different semantic segmentation strategies, we divided the 120
km2 region in Ohio into a 109 km2 region for training, a
1 km2 region for validation, and an unseen 10 km2 region
for inference. The unseen region contains precise manual
annotations. The last region is “unseen” because no samples in
the training and the validation regions fall inside that region.

We select the popular U-Net [71] as the SV CNN because
it is lightweight and has been used in many prior studies
with overhead imagery [15], [9], [13]. The U-Net is modified
to accept 8 band data, and we add batch-normalization [72]
layers. Since OSM labels are sparse, we weight the cross
entropy losses with the weights set to 0.2, 0.4 and 0.4 for the
background, building and road classes respectively. Training
is done using 4 NVIDIA Gtx-1080 Ti GPUs. Due to GPU
memory constraints, the parameter |Q| for MV DATALOAD
is set to 16.

We will present the results of the semantic-segmentation
studies in the main body of the manuscript. Quantitative
evaluation of the image-to-image alignment and inter-tile DSM
alignment are included in Appendix V.

A. Single-View vs Multi-View CNNs

We have carried out experiments with different combi-
nations of CNNs, training strategies and inference models.
For clarity, we present the most interesting results in this
manuscript. The relevant notations have already been defined
in Section IV-D. To assist the reader, we will explain the
notation used in the tables below with an example. Consider
the first row in Table I. This row corresponds to the case of
training a Single-View CNN using SV TRAIN. At inference
time, the EPOCH-MIN-VAL weights are used and the predic-
tions from different views are merged using majority voting.
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TABLE I
COMPARISON OF SV TRAIN VS MV TRAIN-II

CNN Training Inference IoU

Buildings Roads

SV CNN + VOTE SV TRAIN EMIN-VAL 0.75 0.57

SV CNN + MV-A MV TRAIN-II EMIN-VAL 0.79 0.55

SV CNN + MV-B MV TRAIN-II EMIN-VAL 0.80 0.57

SV CNN + VOTE SV TRAIN EMIN-TRAIN 0.75 0.56

SV CNN + MV-A MV TRAIN-II EMIN-TRAIN 0.73 0.6

SV CNN + MV-B MV TRAIN-II EMIN-TRAIN 0.73 0.64

Table I shows the best gains that we get by using multi-
view training and inference, vis-a-vis single-view training and
majority voting. The first three rows correspond to running
inference using the EPOCH-MIN-VAL weights. Using MV
TRAIN-II to train the SV CNN + MV-B network, we out-
perform the baseline with a 5% increase in the IoU for the
building class, while performing comparably with the baseline
for the road class. With the MV-A module, the IoU for the
building class improves by 4%, but that of the road class
decreases by 2%.

The noise in the training and validation labels for roads
is much more than that for buildings because we assume a
constant width of 8 m for all roads, and because the centerlines
of roads (as marked in OSM) are often not along their true
centers. To handle this, in Section IV-D, we proposed to also
save the network weights for the epoch with the minimum
training loss and good validation IoU. By using the validation
IoU, we reduce the chances of these network weights being
overfitted to the data. Our intuition is borne out by the last
three rows of Table I. When compared to the baseline, using
MV TRAIN-II with the SV CNN + MV-A and the SV CNN
+ MV-B networks increases the IoU for the road class by 4%
and 8% respectively while slightly lowering the building IoU
by 2%. It is interesting to note that in contrast, EPOCH-MIN-
VAL and EPOCH-MIN-TRAIN perform comparably for the
SV TRAIN strategy. Based on these results, we conclude that
the MV TRAIN-II strategy is a good approach for multi-view
training and the MV-B Fusion module yields the maximum
gains. We recommend using EPOCH-MIN-VAL for segment-
ing buildings, and EPOCH-MIN-TRAIN for segmenting roads.
We should point out that the SV CNN + VOTE baseline is
trained on the same data as the SV CNN + MV Fusion module
(trained with MV TRAIN II), and therefore the improvements
are not due to data augmentation.

B. Does Multi-View Training Improve the Single-View CNN?

To obtain additional insights into how multi-view training
improves accuracy, we carry out two ablation studies using the
SV CNN + MV-B network because it yielded the maximum
gains with the MV TRAIN-II strategy.

For the first study, we freeze the pretrained SV CNN and
only train the MV-B module using the MV TRAIN-I strategy.
The corresponding IoU scores are reported in the first two rows
of Table II. Comparing these two rows with the baseline (SV

CNN + VOTE) shown in Table I, we see that we do not get
any noticeable improvements. Remember that in MV TRAIN-
I, the multi-view loss (LMV ) only modifies the weights of the
MV Fusion module. This points to the need for allowing LMV

to influence the weights of the SV CNN as well, as is done
by MV TRAIN-II.

TABLE II
IMPACT OF MULTI-VIEW TRAINING ON THE SINGLE-VIEW CNN

CNN Training Inference IoU

Buildings Roads

SV CNN + MV-B MV TRAIN-I EMIN-VAL 0.75 0.57

SV CNN + MV-B MV TRAIN-I EMIN-TRAIN 0.75 0.57

SV(MV) + VOTE MV TRAIN-II EMIN-VAL 0.80 0.55

SV(MV) + VOTE MV TRAIN-II EMIN-TRAIN 0.74 0.62

SV CNN + MV-B MV TRAIN-II EMIN-VAL 0.80 0.57

SV CNN + MV-B MV TRAIN-II EMIN-TRAIN 0.73 0.64

For the second study, we take the best performing SV CNN
+ MV-B network that was trained using the MV TRAIN-II
strategy and remove the MV-B module from it. We denote this
SV CNN as SV(MV) CNN. We run inference using this SV(MV)
CNN and merge the predictions from overlapping views using
majority voting. The corresponding IoUs are shown in the third
and fourth rows of Table II. Comparing these two rows with
the baseline SV CNN + VOTE in Table I, we see that multi-
view training has significantly improved the performance
of the SV(MV) network itself, without any increase in
the number of trainable parameters. This indicates that
intelligently training a SV CNN using all the available views
for a scene can alleviate the effect of noise in the training
labels, without changing the original architecture of the SV
CNN. We reproduce the IoUs of the complete SV CNN +
MV-B network trained with MV TRAIN-II, in the fifth and
sixth rows of Table II. Comparing the 3rd and 5th rows, and
the 4th and 6th rows, we see that the MV Fusion module does
provide an additional 2% improvement in the IoU for the road
class, over the SV(MV) network.

C. The Need for Using a Combination of SV DATALOAD and
MV DATALOAD

As another experiment, when we employ the MV TRAIN-
III strategy to train the SV CNN + MV-B network from scratch
using the MV DATALOAD method, the IoU for the building
class drops down significantly to 0.62, when compared to the
baseline in Table I. This is as expected because in this case,
the network is trained with fewer training samples. It never
sees ground-windows with less than |Q| views. Therefore, it
is important that the network be trained with as much non-
redundant data as possible and with multi-view constraints, as
is done by using a combination of SV DATALOAD and MV
DATALOAD in MV TRAIN-II.

D. Comparison to Prior State-of-the-Art
For a fair comparison, we consider the most relevant prior

state-of-the-art studies that use multi-view off-nadir images for
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semantic segmentation. The work presented in [57] discusses
the entry that won the 2019 IEEE GRSS Data Fusion Contest
for Multi-view Semantic Stereo. This approach trains single-
view networks using both WV3 images and DSMs over a small
10-20 km2 region with precisely annotated human labels
and reports an IoU of about 0.8 for the building class. The
performance gains come from training the network on DSMs
which helps to segment buildings more accurately. Our best
IoU for the building class is also 0.8, but we use only noisy
training labels that are automatically derived from a much
larger 100 km2 region. It is possible that by adding the DSMs
as inputs to our network, we could further improve the IoU.

Our IoU for the building class is noticeably better than
that reported by the work in [59], which trains single-view
CNNs on WV3 images and OSM labels covering 1-2 km2.
Most of the other studies in the literature use single-view
pre-orthorectified images. It should be pointed out that our
multi-view training strategy could be applied to any of those
network architectures.

Using DeepLabv3+ as the SV CNN:

For another comparison, we change the SV CNN from a
U-Net to a pretrained DeepLabv3+ (DLabv3) CNN with a
WideResNet38 trunk [73] that is one of the top performers on
the CityScapes benchmark dataset [74]. We modify the first
layer to accept 8 bands. With this modification, the network
has ∼137 million trainable parameters whereas in comparison
the U-Net only has ∼31 million parameters.

We first train the network using SV TRAIN. Due to the size
of the network, we set the batch size to 12 for SV TRAIN. At
inference time we use majority voting. This strategy is denoted
as SV(DLabv3) + VOTE. For the multi-view training, we append
the MV-B Fusion module to the network and then employ the
MV TRAIN-II strategy. Recall that this is the best performing
strategy for the U-Net. |Q| is set to 12 for the MV TRAIN-II
strategy.

In Table III we show the IoUs for the DeepLabv3+ ex-
periments. Firstly, we note that SV(DLabv3) + VOTE achieves
an IoU of 0.828 and 0.553 for the building and road classes
respectively. It should be kept in mind that this network has
already been trained on a large amount of precise labels from
the CityScapes dataset [74]. What is interesting is that these
numbers are comparable to the corresponding IoUs of 0.80
and 0.57 for the U-Net + MV-B network trained with MV
TRAIN-II, despite the fact that the U-Net has significantly
fewer trainable parameters than the DeepLabv3+ network and
that it has been trained only on noisy labels.

The second row of Table III has the entry for running infer-
ence using the EPOCH-MIN-VAL weights of the SV(DLabv3)
+ MV-B network after being trained with MV TRAIN-II.
Compared to the SV(DLabv3) + VOTE, the building IoU goes
down by 2.8% whereas the road IoU goes up by 5%. The
mean IoU goes up by 1% when we use multi-view training.
One possible reason for this small improvement is that we are
already at the limits of how much a CNN can learn, given
the extent of noise in the system. Another possibility is that

since the DeepLabv3+ network is much bigger than the U-
Net, and since the multi-view features are fused at the end,
one can expect the influence of the multi-view loss (LMV ) on
the earlier layers of the DeepLabv3+ network to be reduced
when compared to the case of the U-Net. We might get better
results by fusing the multi-view data at an earlier stage in the
network. This needs further investigation.

TABLE III
COMPARISON OF SV TRAIN WITH MV TRAIN-II WHEN USING

DEEPLABV3+ AS THE SV CNN

CNN Training Inference
Model

IoU

Buildings Roads

SV(DLabv3) + VOTE SV TRAIN EMIN-VAL 0.828 0.553

SV(DLabv3) + MV-B MV TRAIN-II EMIN-VAL 0.800 0.605

E. Training on True Orthophotos vs on Off-Nadir Images

In Section V, we have described our framework for creating
training labels to directly train a SV CNN on the off-nadir
images. For evaluation, we use this trained CNN to label
those portions of the off-nadir images that correspond to the
“unseen” inference region. For a fair comparison, the predicted
labels are then orthorectified so that the evaluation is done in
the same orthorectified space. Predictions from overlapping
images are merged via majority voting.

When the off-nadir images and projected OSM labels are
used for training, both the EPOCH-MIN-VAL and EPOCH-
MIN-TRAIN weights yield IoU scores of 0.73 and 0.55 for
the building and road classes respectively. These scores are
2% lower than the corresponding numbers for the SV CNN
+ VOTE that is trained on true orthophotos. As mentioned in
Section V, one possible reason for this reduced IoU might
be the increased error in the OSM labels when projected
into the off-nadir images. Another reason could be that the
CNN finds it difficult to separate the building walls from the
roofs in the off-nadir images. In contrast, vertical building
walls are not present in true orthophotos. Nevertheless, we
have demonstrated that it is possible to train a CNN on off-
nadir images using noisy labels, and obtain decent IoU scores.
Such a CNN can be directly used with new off-nadir images
without having to align or orthorectify the images. Multi-view
training using off-nadir images is also possible, albeit more
challenging, which we leave for future work.

F. Qualitative Results

In Figs. 6, 8 and 9, we show some typical examples
of semantic labels output by our CNN. In addition, Fig. 1
highlights how multi-view training can help the CNN to seg-
ment challenging buildings such as residential buildings which
are often occluded by trees, roofs made of highly reflective
surfaces, and small buildings. With respect to segmentation
of roads, parking lots pose a difficult challenge because their
shapes and spectral signatures are very similar to those of true
roads. However, multi-view training is able to learn from the
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(a) Ortho View (b) Predicted Labels

(c) Ortho View (d) Predicted Labels

Fig. 6. Examples of orthorectified images and semantic labels output by our pipeline. Buildings are marked in blue and roads are marked in magenta.

differences caused by the absence and presence of vehicles in
images captured on different dates, and this is illustrated in
Fig. 7.

VII. CONCLUSIONS

We have presented a novel multi-view training paradigm
that significantly improves the accuracy of semantic labeling
over large geographic areas. The proposed approach intelli-
gently exploits information from multi-view and multi-date
images to provide robustness against noise in the training
labels. Our approach also speeds up inference, with minimal
increase in the GPU memory requirements. Additionally, we
have demonstrated that it is possible to use OSM training data
to reliably segment large-area geographic regions and off-nadir
satellite images without any human supervision. While we
have focused on end-to-end automatic labeling of geographic

areas, the ideas put forth in this study can be incorporated
into other multi-view semantic-segmentation applications. Our
research opens up exciting possibilities for multi-view training
in related deep-learning tasks such as object detection and
panoptic segmentation.

With respect to semantic segmentation, one possible di-
rection of future research is to design an architecture for
multi-stage fusion of information from multiple views. More
precisely, the features from different views could be combined
at multiple layers of a CNN to yield possible improvements
in accuracy. On a related note, one could also conduct a study
to determine which layers of the SV CNN are influenced
by the multi-view loss. Another exciting possibility would
be to develop a multi-view framework for off-nadir images.
This would require the use of lookup arrays to map between
the pixels (in different images) that correspond to the same
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Single-View
Training

Multi-View
Training

Fig. 7. Examples illustrating how multi-view training helps to distinguish parking lots from true roads. Predicted road labels are marked in magenta

world point, and to correctly backpropagate gradients. Yet
another research direction would be to create normalized
DSMs and input them to the multi-view CNN framework.
With respect to large-area image alignment and DSM creation,
it might be advantageous to investigate the use of a second
stage of alignment to resolve the generally small alignment
differences between neighboring tiles. In addition, it should
be possible to model the errors in the image-alignment and
stereo-matching algorithms and subsequently use these models
to construct more accurate DSMs. We plan to use our end-to-
end automated framework to carry out these studies as part of
future research.

APPENDIX I
ALIGNMENT OF FULL-SIZED SATELLITE IMAGES

A. Tiling

The WorldView-3 images we have used in this study are
typically of size 43008×38000 in pixels and cover an area of
the ground of size 147 km2. In general, images of this size
must be broken into image patches, with each image patch
covering a tile on the ground. This is made necessary by the
following three considerations:
• As we describe in Appendix I-B, the corrections to the

camera model calculated for high-precision alignment of
the images with one another cannot be assumed to be
constant across an entire satellite image.

• The image alignment algorithms usually start with the
extraction of tie points from the images. Tie points are the
corresponding key points (like those yielded by interest
operators like SIFT and SURF) in pairs of images. The
computational effort required for extracting the tie points
goes up quadratically as the size of the images increases
since the key points must be compared across larger
images.

• The run-time memory requirements of modern stereo
matching algorithms, such as those based on semi-global

matching (SGM), can become much too onerous for full
sized satellite images.

Based on our experience with WV3 images, we divide the
geographic area into overlapping tiles where each tile consists
of a central 1 km2 main area and a 300 m overlap with each
of the four adjoining tiles. This makes for a total area of 2.56
km2 for each tile.2 The image patches that cover tiles of this
size are typically of size 5300× 5300 in pixels.

Note that the notion of a tile is used only for aligning the
images and for constructing a DSM. This DSM is needed
to orthorectify the satellite images in order to bring them
into correspondence with OSM and with one another. For
the CNN-based machine-learning part of the system, we work
directly with the whole images and with the OSM for the
entire geographic area of interest.

B. Image-to-Image Alignment

Aligning the satellite images that cover a geographic area
means that if we were to project a hypothetical ground point
into each of the images, the pixels thus obtained would
correspond to their actually recorded positions with sub-pixel
precision. If this exercise were to be carried out for WV3
images without first aligning them, the projections in each of
the satellite images could be off by as much as 7 pixels from
their true locations.

One needs a camera model for the images in order to
construct such projections and, for the case of WV3 images,
the camera model comes in the form of rational polynomial
coefficients (RPCs).

It was shown by Grodecki and Dial [75] that the residual
errors in the RPCs, on account of small uncertainties in the
measurements related to the position and the attitude of a
satellite, can be corrected by adding a constant bias to the

2A more accurate way to refer to a tile would be that it exists on a flat plane
that is tangential to the WGS ellipsoid model of the earth. This definition does
not depend on whether the underlying terrain is flat or hilly.
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(a) Ortho View (b) Predicted Labels

(c) Ortho View (d) Predicted Labels

Fig. 8. Examples of orthorectified images and semantic labels output by our pipeline. Buildings are marked in blue and roads are marked in magenta.

projected pixel coordinates of the ground points, provided the
area of interest on the ground is not too large. We refer to this
as the constant bias assumption for satellite image alignment.
We have tested the constant bias assumption mentioned above
and verified its validity for image patches of size 5300×5300
(in pixels) for the WV3 images. Fig. 10 presents evidence
that the constant bias assumption fails for a full-sized satellite
image.

C. Tile-Based Alignment of Large-Area Satellite Images

In order to operate on a large-area basis, we had to extend
the standard approach of bundle adjustment that is used to
align images. The standard approach consists of: (1) extract-
ing the key points using an operator like SIFT/SURF; (2)
establishing correspondences between the key points in pairs
of images on the basis of the similarity of their descriptor

vectors; (3) using RANSAC to reject the outliers in the set of
correspondences (we refer to the surviving correspondences as
the pairwise tie points); and (4) estimating the optimum bias
corrections for each of the images by the minimization of a
reprojection-error based cost function.

We have extended the standard approach by: (1) augmenting
the pairwise tie points with multi-image tie points; and (2)
adding an L2 regularizer to the reprojection-error based cost
function. In what follows, we start with the need for multi-
image tie points.

Our experience has shown that doing bundle adjustment
with the usual pairwise tie points does not yield satisfactory
results when the sun angle is just above the horizon or
when there is significant snow-cover on the ground. Under
these conditions, the decision thresholds one normally uses
for extracting the key points from the images often yield an
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(a) Ortho View (b) Predicted Labels

(c) Ortho View (d) Predicted Labels

Fig. 9. Examples of orthorectified images and semantic labels output by our pipeline. Buildings are marked in blue and roads are marked in magenta.

inadequate number of key points. And if one were to lower
the decision thresholds, while that does increase the number of
key points, it also significantly increases the number of false
correspondences between them.

In such images, one gets better results overall by extracting
what we refer to as multi-image tie points. The main idea
in multi-image tie-point extraction is to construct a graph of
the key points detected with lower decision thresholds and
subsequently identify the key points that correspond to the
same putative world point across multiple images, as opposed
to just two images.3 Unfortunately, multi-image tie points are
computationally more expensive than pairwise tie points —
roughly three times more expensive. Therefore, they must be
used only when needed.

We have developed a “detector” that automatically identifies
the tiles that need the extra robustness provided by the multi-
image tie points. The detector is based on the rationale that
the larger the extent to which each image shares key-point
correspondences with all the other images, the more accurate
the alignment is likely to be. This rationale is implemented by
constructing an attributed graph in which each vertex stands
for an image and each edge for the number of key-point
correspondences between a pair of images. If we denote the
largest connected component in this graph by C, the extent to
which each node in C is connected with all the other nodes in
the same component can then be measured by the following

3The multi-image tie-point extraction module was developed by Dr. Tanmay
Prakash.

“density”:

D(C) =
2|Ec|

|C|(|C| − 1)
(7)

where |Ec| is the total number of edges and |C| is the total
number of vertices in C respectively. The detection for the
need for multi-image tie points is carried out by first applying
a threshold to |C| and then to D(C). This detection algorithm
is described in detail in Fig. 11. The algorithm is motivated by
the observation that a dense tie point graph based on pairwise
tie points is indicative of good alignment.

After the tie points — pairwise or multi-image — have
been identified in all the image patches for a given tile,
we apply sparse bundle adjustment (SBA) to them to align
the image patches. The implementation of SBA includes
an L2-regularization term that is added to the reprojection-
error based cost function because it significantly increases the
overall global accuracy of the alignment. The only remaining
issue with regard to the alignment of the images is inter-tile
alignment which we discuss in Appendix II-C.

APPENDIX II
CREATING A TILE-LEVEL DSM

A. Stereo Matching

As a first step towards constructing a DSM, stereo matching
is carried out in a pairwise manner. Similar to the study
reported in [64], pairs of images are selected based on
heuristics such as the difference in view angles, difference
in sun angles, time of acquisition, absolute view angle, etc.
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(a)

(b)

Fig. 10. An example to show why one cannot use a constant bias correction for a full-sized image. At top is the ortho view of a portion of a pairwise point
cloud for the constant bias assumption. At bottom is the same for tile-based bias corrections. The points have been colored using the color from the images

In addition, images are selected to cover as wide an azimuth-
angle distribution as possible. We err on the side of caution
and select a minimum of 40 and a maximum of 80 pairs per
tile. For each selected pair, the images are rectified using the
approach described by the study in [76].

For stereo matching, we use the hierarchical tSGM al-
gorithm [70] with some enhancements to improve matching
accuracy and speed. Specifically, we modify the penalty pa-
rameters in the matching cost function as described by the
work in [77]. We noticed that this improves accuracy near
the edges of elevated structures. The second improvement is
to use the SRTM (Shuttle Radar Topography Mission) DEM
(Digital Elevation Model) [78] that provides coarse terrain
elevation information at a low resolution (30 m). This DEM
does not contain the heights of buildings. We use the DEM
to better initialize the disparity search range for every point

in the disparity volume through a novel procedure that we
refer to as “DEM-Sculpting”. Additional details regarding
“DEM-Sculpting” can be found in our work described in [65].
This improves accuracy and speeds up stereo matching. Ad-
ditionally we use a guided bilateral filter for post-processing.
With these additions, the matching algorithm is able to handle
varying landscapes across a large area.

B. Pairwise Point-Cloud Creation and Fusion

The disparity maps and corrected RPCs are then used to
construct pairwise point clouds. Since the images have already
been aligned, the corresponding point clouds are also aligned
and can be fused without any further 3D alignment. At each
grid point in a tile, the median of the top Y values is retained
as the height at that point, where Y is an empirically chosen
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An Algorithm to Detect the Need for Multi-Image Tie Points

S – Total number of image patches to be aligned
Step 1: Run alignment using pairwise tie points
Tp – Tie-point graph returned by alignment using pairwise tie points
V – Set of all image patches {vi}. Each image patch is a vertex of Tp
E – Set of all edges {eij}. eij is an edge between the vertices vi and vj with a weight equal to the number of tie
points between vi and vj
k, Dmin – User-specified thresholds
AQ – Flag set to True if alignment is of satisfactory quality. Otherwise set to False.
Evaluate alignment quality

1) Find the largest connected component C of Tp.
|C| is the number of image patches in C. |Ec| is the number of edges in C.

2) Check how many image patches have been aligned.
If |C| < k · S, where 0 < k < 1, AQ← False. Return AQ

3) Check if C is a tree, i.e., if |Ec| == |C| − 1, AQ← False. Return AQ
Explanation – The pushbroom camera model can be closely approximated by an affine camera model, i.e., the
camera rays are almost parallel. Therefore, if C is a tree, then for each pair of image patches, the two image
patches might be well aligned with each other. However, distinct pairs might not be aligned with one another.

4) Check the sparsity of C. D(C) is the density of C. D(C) = 2|Ec|
|C|(|C|−1)

If D(C) < Dmin, AQ← False. Return AQ

Step 2: If AQ == False, rerun alignment using multi-image tie points

Fig. 11. An algorithm to detect the need for multi-image tie points

parameter. Subsequently, median filtering and morphological
and boundary based hole-filling techniques are applied.4

C. Merging Tile-Level DSMs

On account of the high absolute alignment precision
achieved by using the L2 regularization term in the bundle
adjustment logic, our experience shows that nothing further
needs to be done for merging the tile-level DSMs into a
larger DSM. To elaborate, the statistics of the differences in
the elevations at the tile boundaries are shown in Table VI
in Appendix V-B. We see that the median absolute elevation
difference at the tile boundaries is less than 0.5 m – an
error that is much too small to introduce noticeable errors
in orthorectification. We crop out the center 1 km2 region
from each DSM tile and place it in the coordinate frame of
the larger DSM. This sidesteps the need to resolve any noise-
induced variations in the overlapping regions.

APPENDIX III
GENERATING TRAINING DATA USING PANSHARPENED

IMAGES AND OSM

A. Pansharpening and Orthorectification

Using the fused DSM as the elevation map, the system is
now ready for orthorectifying the satellite images that cover

4The point-cloud generation and fusion modules as used in our framework
were developed by John Papadakis from Applied Research Associates (ARA).

the geographic area. Orthorectification means that you map the
pixel values in the images to their corresponding ground-based
points in the geographic area of interest. What the system
actually orthorectifies are the pansharpened versions of the
images — these being the highest resolution panchromatic
images (meaning grayscale images) that are assigned multi-
spectral values from the lower resolution multispectral data.

Orthorectification of an off-nadir image can lead to “nodata”
regions on the ground if the pixels corresponding to those
regions are occluded in the image by tall structures. Our
system automatically delineates such regions with a mask that
is subsequently used during training of the CNN to prevent
gradients at those points from being backpropagated. Each
orthorectified image is resampled at a resolution of 0.5 m.
More details on orthorectification can be found in Appendix
IV.

B. Aligning OSM with Orthorectified Images

This module addresses the noise arising from any misalign-
ments between the OSM and the orthorectified images. Our
framework incorporates the following two strategies to align
the OSM with the orthorectified images:

1) Using Buildings: First, the system subtracts the DEM
from the constructed DSM to extract coarse building
footprints. Subsequently, these building footprints are
used to align the orthorectified images with the OSM
using Normalized Cross Correlation (NCC). This strategy
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has proved useful in areas with inadequate OSM road
labels.

2) Using Roads: First, the system uses the “Red Edge” and
“Coastal” bands to calculate the Non-Homogeneous Fea-
ture Difference (NHFD) [79], [80] for each point in the
orthorectified image and subsequently applies thresholds
to the NHFD values to detect coarse road footprints. The
NHFD is calculated using the formula:

NHFD =
(Red Edge - Coastal)
(Red Edge + Coastal)

(8)

Subsequently, the roads (noisy obviously) are aligned
with the OSM roads using NCC. The system uses this
strategy in rural areas that may not contain the buildings
needed for the previous approach to work.

After alignment, the OSM vectors are converted to raster
format with the same resolution as in the orthorectified im-
ages. Thus there is a label for each geographic point in the
orthorectified images. The OSM roads are thickened to have
a constant width of 8 m.

Fig. 12 shows misaligned and aligned OSM vectors. It
should be noted that some residual alignment error does
persist. We plan to improve this module by aligning each
building/road separately.

APPENDIX IV
TRUE ORTHORECTIFICATION USING GWARP++

We can orthorectify the pansharpened images using the
fused DSM as the elevation map. Orthorectification is the
process of mapping the pixel values in the images to their cor-
responding points in the geographic area of interest. There is
an important distinction to be made between orthorectification
and true orthorectification. If a LiDAR point cloud or DSM is
not available, the common practice is to orthorectify images
by using a DEM as the source of elevation information. Since
a DEM does not contain the heights of elevated structures
(buildings, trees, etc.), such an orthorectified view will not
represent a true nadir view of the ground. For instance, the
vertical walls of buildings will be visible in such a view. To
create a true ortho view, we need to take the heights of the
elevated structures into account. While doing so, we need
to detect those portions of the scene that are occluded by
taller structures. Obviously these occluded portions will vary
depending upon the satellite view angle.

To the best of our knowledge, there are no open-source
utilities to create true ortho images using RPCs and DSMs at
this time. Therefore, we have developed a utility, which we
have named “gwarp++”, to create full-sized true ortho images
quickly and efficiently. Interested researchers can download
the “gwarp++” software from the link at [2]. We will now
provide a brief overview of “gwarp++”.

We will first discuss the case of orthorectifying an image
patch (that belongs to a single tile) with the help of a DSM.
Consider two points W1 = (φ1, λ1, h1) and W2 = (φ2, λ2, h2)
that both project to the same pixel coordinates in the image
patch. φ, λ and h denote the latitude, longitude and height
coordinates respectively. If h2 > h1, it means that W1 is

occluded by W2. This is the core idea that “gwarp++” uses to
detect the occluded “nodata” points.

Now, consider a single world point W = (φ, λ, h), where
h is the height value from the DSM. Let hground be the
corresponding height value in the DEM. The DEM gives us
a rough estimate of the height of the ground. It is possible to
use more sophisticated techniques, such as the one described
by the study in [81], to directly estimate the elevation of
the ground from the DSM. The DEM is sufficient for our
application. Instead of just projecting W into the image patch,
“gwarp++” projects a set of points

W ′ =
{
(φ, λ, h′)

}
∀ h′ ε [ h, h− hstep, h− 2 · hstep, ..., hground ]

where hstep is a user-defined step size.W ′ is therefore a set of
points sampled along the vertical line from W to the ground.
To understand the motivation for doing this, it might help
to consider the case when W is the corner of the roof of
a building. In that case, W ′ is the set of points along the
corresponding vertical building edge from W to the ground.
If we apply this procedure to all the points on the roof of a
building, we will end up projecting the entire building into the
image patch.

We now describe the implementation of “gwarp++” below.
The algorithm is summarized in Fig. 13.

1) “gwarp++” starts out by dividing the tile into a 2D grid
of world points. The grid is 2D in the sense that only the
longitude and the latitude coordinates are considered. The
extents of this grid can be determined in an iterative fash-
ion by using the RPC equations and the pixel coordinates
of the corners of the image patch. The distance between
the points of this grid is a user-defined parameter.

2) Using the height values from the DSM, for each point in
the grid, “gwarp++” projects a set of points into the image
patch as explained above. For each pixel in the image
patch, a lookup table “LT ” stores the maximum height,
with the maximum being computed across all the points
that project into this pixel. This procedure is repeated for
all the points in the 2D grid.

3) At this stage, for each point J in the 2D grid, we know
three things:
• hJ – The DSM height value at J
• (s, l) – The pixel into which J projects after assigning

J an elevation value of hJ
• LT (s, l) – The maximum height of a world point that

projects into (s, l)

If LT (s, l) > hJ , we can conclude that J is occluded
by some other world point that has a height value of
LT (s, l).

4) Therefore, using a second pass over all the points of the
2D grid, “gwarp++” marks the occluded points with a
“NODATA” value. In practice, to account for quantization
errors and the noise in the DSM, “gwarp++” checks if
LT (s, l) > hJ + γ where γ is chosen appropriately.

To orthorectify the full-sized image, we orthorectify each
image patch using its corrected RPCs and the large-area DSM.
The orthorectified image patches are then mosaiced into a
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(a) (b)

Fig. 12. This figure shows typical results obtained by aligning the orthorectified images with OSM. What is shown in red at left are the unaligned OSM
vectors, and what is in blue at right are the aligned versions of the same.

full-sized orthorectified image during which the overlapping
portions between the image patches are discarded.

“gwarp++” is written in C++. It has the nice property of
being massively parallel since the projection for each point
can be carried out independently and since each tile can
be processed independently. This parallelism is exploited at
both stages. For each image patch, OpenMP [82] is used to
process the points in parallel. And the different image patches
are themselves orthorectified in parallel by different virtual
machines running on a cloud-based framework.

For our application, each full-sized orthorectified image is
resampled at a resolution of 0.5 m. Furthermore, the occluded
points are delineated with a mask that is subsequently used
during training of the CNN to prevent gradients at those points
from being backpropagated.

A. Accuracy of “gwarp++”

We conclude our discussion on true orthorectification with
a few remarks on the accuracy of the orthorectified images
produced by “gwarp++”.

3D vs 2.5D: For each point W, “gwarp++” considers points
along the vertical line from W to the ground. This is not a
good strategy for buildings that possess more exotic shapes
such as spherical water towers or buildings with walls that
slope inwards. In these cases “gwarp++” can incorrectly mark
some points as occluded points. The only way to handle such
cases is by using a 3D point cloud instead of a 2.5D DSM,
which is beyond the scope of our discussion.

Error Propagation: Errors in the RPCs and errors in the
DSM will translate into errors in the orthorectified images.
However, in our application, these errors are largely drowned
out by the errors in the OSM labels. Nevertheless, it might be
useful to study how these errors propagate, which we leave
for future work.

APPENDIX V
QUANTITATIVE EVALUATION OF ALIGNMENT

A. Image-to-Image Alignment

We use multiple metrics to evaluate the quality of alignment.
Table IV shows the average reprojection error across tiles (and

images) for both regions, before and after alignment. Average
reprojection error goes down from 5-7 pixels to 0.3 pixels for
both regions.

TABLE IV
AVERAGE REPROJECTION ERROR IN PIXELS ACROSS TILES AND IMAGES IN

OHIO AND CALIFORNIA

Region Mean Variance

Ohio
Unaligned 6.70 0.180

Aligned 0.30 0.003

California
Unaligned 5.71 0.280

Aligned 0.32 0.001

Since pushbroom sensors can be closely approximated by
affine cameras with parallel rays, reprojection error alone does
not give the complete picture. For our second metric, we
manually annotate tie points in 31 out of 32 images over a
1 km2 region in Ohio and in all 32 images over a 2 km2

region in California. Within these regions, we measure the
pairwise alignment errors for all possible pairs of images and
report them in Table V. One can observe that most of the
pairs are aligned with subpixel error. This is a much harder
metric than the mean reprojection error. It is important to use
this metric especially since stereo matching requires subpixel
alignment accuracy. The good quality of alignment across the
large region is also reflected in the high quality of the DSM
and the semantic labeling metrics.

TABLE V
PAIRWISE ALIGNMENT ERROR STATISTICS USING MANUALLY ANNOTATED

GROUNDTRUTH FOR OHIO AND CALIFORNIA

Region No. of pairs with
error < 1 pixel

No. of pairs with
error < 2 pixels

Total No. of
pairs

Ohio 417 455 465

California 484 496 496

B. Inter-Tile Alignment
Due to the high absolute alignment precision achieved by

using the L2 regularization term in the bundle-adjustment
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An Algorithmic Description of “gwarp++” for True Orthorectification

φ – Latitude, λ – Longitude, h – height
φstep – Latitude step size, λstep – Longitude step size, hstep – Height step size
ImagePatch – Off-Nadir image patch
L – Length of ImagePatch in pixels, W – Width of ImagePatch in pixels
LT ← Zeros(W,L) {// Initialize lookup table to zeros}
OutArray – Output array for the orthorectified grid
Step 1: Find the extents of the tile spanned by the image patch
(φmin, λmax) – Top-left corner of the tile
(φmax, λmin) – Bottom-right corner of the tile
Step 2: Project points into ImagePatch and update LT
for φ = φmin ; φ ≤ φmax ; φ = φ+ φstep do

for λ = λmax ; λ ≥ λmin ; λ = λ− λstep do
h← DSM(φ, λ)

hground ← DEM(φ, λ)

for h′ = h ; h′ ≥ hground ; h′ = h′ − hstep do
(s, l)← ProjRPC(φ, λ, h

′) {// ProjRPC denotes the RPC equations used to project the 3D point into the image}
if LT (s, l) < h′ then
LT (s, l)← h′

end if
end for

end for
end for
Step 3: Create OutArray with a second pass over the grid
for φ = φmin ; φ ≤ φmax ; φ = φ+ φstep do

for λ = λmax ; λ ≥ λmin ; λ = λ− λstep do
h← DSM(φ, λ)

(s, l)← ProjRPC(φ, λ, h)

if LT (s, l) > h+ γ then
OutArray(φ, λ)← NODATA

else
OutArray(φ, λ)← ImagePatch(s, l) {// Can also interpolate values}

end if
end for

end for
Fig. 13. An algorithmic description of “gwarp++” for true orthorectification
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logic, it turns out that the tile-level DSMs are well aligned with
one another. Table VI shows the statistics of the differences
in the elevations at the tile boundaries. It can be seen that the
median absolute elevation difference at the tile boundaries is
less than 0.5 m – an error that is much too small to introduce
noticeable errors in orthorectification.

TABLE VI
MEDIAN OF THE ABSOLUTE DIFFERENCES IN ELEVATION, AND MEDIAN

OF THE RMS VALUE OF THE DIFFERENCES IN ELEVATION AT THE TILE
BOUNDARIES

Region Median absolute Z diff Median RMS of Z diff

Ohio 0.42 m 0.72 m

California 0.47 m 0.79 m

APPENDIX VI
A DISTRIBUTED WORKFLOW FOR STEREO MATCHING AND

DSM CREATION

Creating DSMs for a 100 km2 region is the most
computationally-intensive and the slowest module in the
framework shown in Fig. 3. It is also the module that is most
likely to cause “out-of-memory” errors. Therefore, we need
to carefully choose some specific design attributes for this
module, which we will highlight in this section.

We can leverage the inherent parallelism in stereo matching
and in DSM creation by intelligently distributing the tasks
across a cloud computing system. The steps for distributed
stereo matching and DSM creation are enumerated below and
shown in Fig. 14.

1) A captain virtual machine (VM) prepares a list of the
selected stereo pairs of image patches for each tile. This
is done for all the tiles at the beginning. All the tiles are
added to a queue. All the lists are stored on a shared
Network Attached Storage (NAS).

2) The captain sends a message to all the worker VMs to
start. The captain also assumes the role of a worker at
this step.

3) For the first tile in the queue, the workers pull/request a
pair of image patches to process. Safeguards are imposed
to ensure that each worker gets a unique pair.

4) Each worker attempts to create a pairwise point cloud and
subsequently reports the status of its task. Each worker
then pull/requests the next unprocessed stereo pair for
the current tile. Successfully processed stereo pairs are
marked as done.

5) If there are no more unprocessed stereo pairs for this tile
then:

(i) The current tile is removed from the queue. All the
idle workers except for the captain and the large VMs
move on to the next tile in the queue, i.e., to step 3.
By a large VM, we mean a VM with more memory
and a larger number of CPUs.

(ii) All the stereo pairs for which point-cloud creation
failed are processed for a second time by the remaining
workers. Even if processing fails again, these stereo
pairs are marked as done.

6) At this stage, all the selected stereo pairs for the current
tile are marked as done. The large VMs join their smaller
counterparts on the next tile, i.e., at step 3. The captain
alone starts the process of fusing the multiple pairwise
point clouds into a single fused DSM for the current tile.
After this, the captain also proceeds to join the other VMs
in step 3.

A graphic illustration of the above workflow is shown in
Fig. 14. For the sake of clarity, in this illustration, we assume
that there are only 2 tiles and that there are only 3 selected
stereo pairs for each tile. We also assume that there are only
3 VMs, a captain, a small VM and a large VM.

A. Advantages of this Distributed Workflow

• No VM remains idle except during the last processing
stage of the very last tile.

• Failed pairs are processed twice to handle “out-of-
memory” errors.

• The intensive process of creating a fused DSM is carried
out on the most powerful captain VM.

• Note that we could have opted to use a simpler workflow
where all the VMs wait for a fused DSM to be created
before proceeding to the next tile. However, our workflow
reduces the processing time by a number of days.
For an example, assume that there are 10 VMs and 100
tiles. Also assume that each stereo pair takes 20 minutes
to process, that we process 80 pairs per tile and that the
point-cloud fusion takes 60 minutes. If all the workers
waited for a tile-level DSM to be created before moving
on to the next tile, then it would take ( 80×20

10 +60)

60 ≈ 3
hours and 40 minutes to finish processing a single tile.
For 100 tiles it would take ≈ 15 days and 6 hours.
Our workflow takes ( 80×20

10 )

60 ≈ 2 hours and 40 minutes
for a single tile. This is because while the captain is
fusing the point clouds for a tile, the other VMs will be
processing the next tile. For 100 tiles it would take ≈ 11
days and 2 hours, roughly saving us 4 days of processing
time.
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