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Generic shape recognition is the problem of determining the
pose and dimensions of objects for which only shape models are
available and the object’s size is unknown. One application do-
main for generic object recognition is the handling and sorting of
postal objects. Because metrical information relating object fea-
tures to one another is not available, the more common feature-
based approaches are inadequate. Our system, INGEN (INference
engine for GENeric object recognition), uses a data-driven ap-
proach to determine the pose and size of objects with generic
shapes such as parallelepipeds and cylinders. This system success-
fully recognizes occluded objects in heaps. It also handles scenes
which have irregularities in surfaces and edges—such irregulari-
ties are common to postal objects—as well as shadows and irregu-
larities in the range data itself. The three most important parts of
INGEN are (1) the procedures for constructing object hypotheses,
computing their attributes, and evaluating how well they fit the
data, (2) the geometric reasoning process which determines the
size of object hypotheses by finding points of contact with other
object hypotheses and also detects geometric inconsistencies in the
scene interpretation, and (3) the recognition process which allows
backtracking when object hypotheses are rejected due to insuffi-
cient support or geometric conflict with other object hypotheses.
INGEN has been used successfully to guide a robot in removing
postal objects from a pile. We show the results of these experi-
ments.  © 1991 Academic Press, Inc.
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1. INTRODUCTION

Over the years it has become clear to us that there
cannot exist universally applicable strategies for the rec-
ognition of 3D objects from range maps—or, for that
matter, from sensory data of any type. The reason for
this is that the types of distinctions that a system must
make between different objects depend on the uses for
which object recognition is carried out. For example,
the types of distinctions needed for identifying ob-
Jects in a robotic assembly cell are different from the
types of distinctions necessary for sorting parcels in a
postal mail stream. For the former, it will usually be nec-
essary to take into account the precise geometric attrib-
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utes of the various features of objects, since such attrib-
utes are important for making distinctions between
industrial objects. For the latter, on the other hand, it will
usually be sufficient to classify an object as, say, a “‘box’’
despite large variations in the dimensions of the object. If
one of the dimensions becomes too small, the object
might then be called a ‘‘flat,”” again over large variations
in the other two dimensions.

The two different types of problems outlined above
require fundamentally different approaches to object rec-
ognition. Where industrial objects are involved, a recog-
nition system must make precise measurements of the
various geometric attributes of the object surfaces. On
the other hand, for other kinds of objects, such as postal
objects, a recognition system must be able to ignore the
finest level of detail, which in most cases would corre-
spond to irrelevant details such as “‘crumpliness’” of the
surfaces, and instead concentrate on the overall object
shape.

As also discussed by Bajcsy and Solina [2], these two
types of problems lie at opposite ends of the spectrum of
3-D object recognition. At one end of the spectrum we
have feature-based object recognition such as recognition
of industrial objects where we have complete 3-D models
for all objects that might appear in a scene. The goal is to
match scene features with features in the object database,

“thus finding the identity and the pose of objects in the
scene. Most efforts in object recognition have focused on
this domain. At the other end of the spectrum we have
generic object recognition such as classification of postal
objects. In this case we have incomplete information
about objects that might appear in the scene, in the sense
that objects are assumed to belong to generic categories
based on gross shape where each category allows for
large variation in object dimensions. This domain is rela-
tively new and the traditional feature-based approaches
are not easily adapted to it.

In feature-based recognition the most important issues
are the data representation and the search procedure. For
example, the 3D-POLY system [5, 6], which we believe
is the fastest implemented system for 3D object recogni-
tion and pose estimation, makes use of a highly optimized
data structure and a hypothesize-and-verify search pro-
cess to recognize industrial objects in low-order polyno-
mial time. In this paper we discuss the INGEN (INfer-
ence engine for GENeric object recognition) system
which uses a hypothesize-and-refine approach to deter-
mine the pose and size of generic shaped objects from
their range maps. The hypothesize-and-refine approach,
in contrast to the hypothesize-and-verify approach, does
not emphasize the importance of object representation,
since only a few generic shapes need to be dealt with—
parallelepipeds, cylinders, and irregulars. In INGEN, the
task is to assign each surface segment to the appropriate

object and to compute the dimensions and pose of each
object.

Since INGEN is designed to do shape categorization of
postal objects from their range maps, especially the par-
cels in a mail stream, and since such objects are often
characterized by nonsmooth surfaces, one of the main
challenges of INGEN is coping with the resulting over-
segmentation of object surfaces. It therefore becomes im-
perative to design control strategies capable of efficiently
pruning away large fractions of the search space whose
size exhibits an exponential dependence on the total
number of surface segments in the segmented range map.

INGEN begins the recognition process by creating an
object hypothesis for each surface segment in segmented
range data. Note that an object with multiple surfaces
visible in the scene will cduse multiple object hypotheses
to be formed; during the combination process these hy-
potheses will be combined into a single object hypothe-
sis. The same is true for cases where a single object face
has been segmented into multiple parts due to noise or
occlusion. The hypothesis corresponding to the largest
segment is used as a seed and the lower ranked hypothe-
ses are subsequently considered as candidates for combi-
nation with the seed hypothesis. To be considered for
combination the surfaces of the two object hypotheses
must meet certain criteria such as coplanarity or adja-
cency. If the criteria are met then the two hypotheses are
combined to form a single object hypothesis and its valid-
ity is evaluated. Backtracking is initiated when the data
fail to support the newly combined hypothesis. This re-
quires that the combination be undone so that the search
for other combinations can continue. After all possible
combinations involving the first object hypothesis have
been considered the next largest object hypothesis be-
comes the seed and the search begins again.

The principal mechanisms for hypothesis combination

" are merging and aggregation. Merging is used when two

hypotheses are thought to contain segments that belong
to the same surface of the same object. On the other
hand, aggregation is used when two hypotheses are
thought to contain segments that belong to two separate
surfaces of the same object. At the very outset, the differ-
ent surface segments are marked with regard to whether
or not, on a pairwise basis, they can be merged or aggre-
gated—mergability being determined on the basis of con-
siderations such as coplanarity, cocylindricity, etc., and
aggregability on the basis of perpendicularity of the asso-
ciated surface normals. This mergability and aggregabil-
ity information is stored in a graph data structure called
the combinability graph. The use of combinability graphs
prunes large sections of what would otherwise be an ex-
tremely large search space. In addition to merging and
aggregation, a weaker criterion, adjacency, is also used
for combining hypotheses on the basis of the proximity of
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their constituent surfaces and certain continuity proper-
ties across their common boundaries.

INGEN uses the Dempster—Shafer theory of evidence
for associating belief values with each object hypothesis.
This approach allows the assignment of belief to an object
hypothesis, to its negation, or to neither. Belief that can-
not be assigned to the hypothesis or its negation repre-
sents the uncertainty inherent in the evaluation process.
Two individual hypotheses H, and H, are combined into
a single hypothesis H only if the belief associated with H
is larger than the beliefs associated with H, and H, and if
the belief in H is greater than the belief in the negation of
H. Of course, if these conditions are not met then back-
tracking is initiated. '

Another consideration that can trigger backtracking is
the overall consistency of the scene interpretation. By
consistency we mean that different object hypotheses
must not occupy the same space. Consistency determina-
tion, facilitated by a geometric reasoning process that can
determine the contact points between objects without re-
quiring such points to be visible in the scene, allows us to
first determine whether or not a given set of object hy-
potheses is valid and then permits the computation of the
various dimensions of the objects corresponding to a
valid interpretation. The approach is to extend each ob-
Jject along one of its axes, roughly in the direction away
from the sensor, until it physically contacts another ob-
Ject in the scene. The hypothesized objects are extended
one at a time; the order in which the object hypotheses

~ are processed does not appear to matter unless it is possi-
ble to give multiple geometrically consistent interpreta-
tions to the data. When the geometric reasoning process
finds an object hypothesis to be inconsistent with the rest
of the scene interpretation, the system backtracks in its
search by undoing the most recent hypothesis combina-
tion.

The INGEN system has been used to successfully
guide robot manipulation experiments involving postal
objects. Figure la shows a pile of postal objects. Each
object in the pile has an overall generic shape, despite the
irregularities of the surfaces, that belongs to one of a
small number of categories. Figure 1b shows range data
derived from a structured light scan of the scene and Fig.
1c shows the segmented range map. Range data are col-
lected by a structured light scanner mounted above the
robot work area. In Fig. 2, the photo in (a) shows the
robot picking the first object from the pile. The photo in
(b) shows the results after the first three objects have
been stacked. The photo in (¢) shows the final result
where the objects have been moved to two stacks, one to
the left of the original pile and the other to the right.
Because of the depth of the original pile most of the ob-
jects are totally occluded in the initial scene. Data must
be collected and interpreted several times as the robot

removes the topmost objects and more objects under-
neath are uncovered. In this example INGEN automati-
cally collected the data and carried out its interpretation
process four times. Three objects were found on the first
occasion, and two each on the second and the third. On
the fourth occasion, INGEN determined that the scene
was empty.

The task of postal object recognition has also been ad-
dressed by several other research groups. The work of
Cowan, Mulgaonkar, DeCurtins, and de St. Vincent [7,
8, 24, 25] is the most closely related to ours, especially
with regard to the geometric reasoning used for establish-
ing the consistency of the overall scene interpretation by
disallowing the interpretations in which hypothesized ob-
jects intersect. They also eliminate candidate hypotheses
for scene objects on the basis of the gravitational stability
of the pile of objects. Furthermore, in their work exten-
sive use is made of range sensor geometry for the inter-
pretation of shadows in the range data. McClain and
Kenig [23] use a similar approach for low and mid level
processing but do not consider geometric constraints in
high level processing. Bajcsy and Solina [2, 31, 32] recog-
nize generic shapes with an iterative procedure for fitting
superquadric surfaces to range data. The single object
model used is a superquadric surface which has 11 pa-
rameters (three for size, three for position, three for ori-
entation, and two for shape). This model can be used to
represent parallelepipeds, cylinders, ellipsoids, and other
shapes that are deformations of these. The superquadric
representation is particularly useful for modeling highly
symmetric objects. The recognition process involves
finding the best estimate of the parameters by solving
an overdetermined optimization problem. An analytic
solution to this problem is not practical so an iterative
fitting procedure is used. They assume that the objects
can be segmented from each other by finding concave
and jump edges in the range data. Thus, they actually
only address the issue of characterization of generic
objects.

In what follows, in Section 2 we present the overall
flow of control in INGEN. Section 3 discusses the com-
putation of the position, orientation, and dimensions of
object hypotheses. In Section 4 the hypothesis merging
and aggregation criteria that are used in the construction
of the combinability graph are presented. Subsequently,
we discuss the object hypothesis evaluation techniques in
Section 5. The geometric reasoning process which com-
putes maximal object dimensions and detects intersec-
tions between objects is discussed in Section 6. In Ap-
pendix A we give an overview of our range data
processing techniques from the acquisition of the range
data through the construction of the hierarchical sym-
bolic scene description. In Appendix B we provide an
introduction to the Dempster—Shafer theory and describe
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Height Map

FIG. 1.

a simplification of this theory which is applicable to our
hypothesis evaluation problem.

Prior partial accounts of INGEN have appeared in [20,
16, 18, 19, 33]. INGEN has continually evolved as our
own insights into the subject of generic object recognition
have sharpened over time. The description in this paper
represents the current reasoning architecture of INGEN
and has not been discussed in any of the prior publica-
tions.

(a) A pile of postal objects, (b) range data for the scene, and (c) the segmented range map for the scene.

2. FLOW OF CONTROL

A diagram of the flow of control within INGEN is
shown in Fig. 3. The modules in the figure have been
numbered to facilitate the discussion throughout this sec-
tion. We will first give an overview of the flow of control
in INGEN and will then illustrate it further with the help
of an example. Details regarding the operation of each of
the modules in Fig. 3 will be provided in the remaining
sections of the paper.
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FIG. 2. Seven postal objects in a pile are picked up and stacked by a robot using INGEN,

2.1. Overview

The processing carried out by the system can be di-
vided into four stages. The acquisition of the range data
(module 1) constitutes the first stage. The output from
this stage is the raw range data. The remaining three
stages operate on these range data at progressively higher
levels of abstraction. Low level processing (module 2)
involves the computation of local properties of the range
data points, such as surface normals and surface curva-

ture, and the segmentation of the overall range map into
surface segments on the basis of curvature and surface
information. Based on these properties, the range data
are segmented into surface segments. Mid level process-
ing (module 3) involves the characterization of each sur-
face segment, as well as the characterization of the edges
and vertices which bound the surface segments and the
relations between adjacent segments. A hierarchical
symbolic scene description which contains all of this in-
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FIG. 3.

formation is produced. High level processing (modules
4-10) involves the combination of surface segments into
objects and the computation of the properties of these
objects.

The range data acquisition stage and the low and mid
level processing stages (modules 1-3) are implemented in
the C programming language. As the aim of this paper is
more to discuss the high level reasoning part of INGEN,
we provide only an overview, in Appendix A, of the
range data acquisition and the low and mid level process-
ing modules; the low and mid level aspects are discussed
in greater detail in [17]. The high level processing stage,
the heart of INGEN (modules 4-10), is implemented in
Quintus Prolog. Details of this implementation and the
source code can be found in [34]. The robot control soft-
ware is implemented in Lisp, with the communication
between the computer and the robot implemented in C.

An overview of the flow of control, without concern
about the actual processing in the modules, can be pre-
sented as follows:

» The actions of modules 1, 2, and 3 are carried out in
series.

Flow of control in INGEN,

* The actions of modules 4 (which calls module 10) and
5 can be carried out essentially in parallel because they
do not depend on each other.

* Module 6 forms the heart of the recognition process.

+ Control cycles between modules 6 (which calls mod-
ule 10), 7, and 8 in the Hypothesis Evaluation Loop until
a scene interpretation is found in which each individual
object is plausible.

* Then control shifts to module 9 in the Geometric
Reasoning Loop, which evaluates the consistency of the
entire scene interpretation and computes maximal dimen-
sions for the object hypotheses.

» If an inconsistency is found then control shifts
through module 8 back to modules 6, 7, and 8 where
another scene interpretation is produced.

* The system alternates between these two processes
until a consistent scene interpretation is found.

2.2. The Recognition Process

The recognition process begins with the acquisition of
the range data (module 1 in Fig. 3). The output of the low
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level processing (module 2) is a segmentation of the scene
into surfaces. From these surfaces, the mid level process-
ing (module 3) produces the hierarchical symbolic scene
description. This description describes the surfaces,
edges, vertices, and surface adjacency relations in the
scene. The high level processing (modules 4-10) uses this
scene description exclusively and does not have access
to the original data.

The goal of high level processing (modules 4-10 in Fig.
3) is to partition the set of surface segments into objects
in order to produce a consistent scene interpretation.
This scene interpretation is constrained by two factors.
First, the surfaces for each object must fit the object hy-
pothesis sufficiently well. Second, the object hypotheses
should not intersect each other in three dimensional
space. A search process is used to find and test possible
scene interpretations. Clearly, an exhaustive search
through all possible scene interpretations is impossible
for any scene of interesting complexity. So INGEN uses
several techniques to reduce the size of the search space.

High level processing begins with the creation of an
object hypothesis for each surface in the segmented
range data (module 4 in Fig. 3). These single-surface hy-
potheses are then ranked according to a set of criteria for
the purpose of controlling the search process. Currently
the ranking is from the largest to the smallest surface
based on the number of range data points because larger
surfaces typically lead to more reliable object hypothe-
ses. The first hypothesis is used as a seed and the lower
ranked hypotheses are then considered, in an order based
on their ranking, as candidates for combination with the
seed hypothesis. If a combination is unsuccessful then
the search continues with the unchanged original hypoth-
esis as the seed. On the other hand, if a combination is
successful, the search continues with the new combined
hypothesis as the new seed; also, the candidate hypothe-
sis which was combined with the seed hypothesis is re-
moved from the scene interpretation. When no more
combinations are possible with the current seed hypothe-
sis, a new seed hypothesis is selected from the remaining
hypotheses. This process is repeated until all hypotheses
have been combined or considered as seeds.

Concurrently with the generation of the single-surface
object hypotheses, the relations between surfaces are ex-
amined to determine which pairs of surfaces are potential
candidates for combination (module 5 in Fig. 3). This
makes it possible to reject totally inappropriate surface
combinations based only on surface characteristics. Note
that relations are tested for all pairs of surfaces, not just
those that are adjacent in the range data. This results in
the creation of a graph known as the combinability
graph. Each node in the graph represents a surface seg-
ment. Each arc in the graph represents an allowable com-
bination between the two surfaces that it connects. Com-
binations are allowed when surfaces meet criteria such as

coplanarity, cocylindricity, perpendicularity, or adja-
cency. For a graph with n nodes (surfaces) there are

(3) = 2D

possible arcs (combinations). However, the criteria for
allowable combinations significantly reduces the number
of arcs in the graph. The problem, then, is to determine
which of the allowable combinations should be made and
which should not. One could say that given a combinabil-
ity graph, the task of modules 6-10 in Fig. 3 is to partition
the combinability graph into subgraphs, each subgraph
representing a distinct object.

The combinability criteria are derived from the two
types of hypothesis combination operations: merging and
aggregation. Merging is the combination of hypotheses
that are separate because a single object surface was seg-
mented into multiple parts due to noise or occlusion. Ag-
gregation, on the other hand, is the combination of hy-
potheses that are separate because distinct object faces
are present in the scene. The merging criteria require that
the surfaces be coplanar, cocylindrical, or coirregular.
The aggregation criteria require that the surfaces be per-
pendicular for the case of parallelepipeds and irregulars,
and that the surfaces be coaxial for the case of cylinders
(the latter definition is presented more precisely in Sec-
tion 4). If the surfaces are adjacent in the scene then there
will also be an adjacency relation which describes the
boundary between them; if this relation exists then fur-
ther criteria can be used when considering combinability.
Note that the merging criteria depend only on the types
of surfaces expected to be in the scene but the aggrega-
tion criteria depend on the types of objects expected to be
in the scene.

The focus of attention module (module 6 in Fig. 3)
determines the order in which the combinability graph is
searched. Currently, the hypotheses are ordered based
on the number of range points contained in their surfaces.
This orders the search so that the strongest hypotheses
are considered first.! Considering stronger hypotheses
first should result in less backtracking and a smaller
search to find the first geometrically plausible scene inter-
pretation. Also, considering stronger hypotheses first
should result in the first geometrically plausible scene

! Other criteria that we have considered include ordering from the
topmost hypothesis in the pile to the lowest, considering merging opera-
tions before aggregation operations, and ordering based on the belief in
the hypotheses. Theoretically, if the system were to look for all possible
solutions (interpretations), the order in which the hypotheses are com-
bined would not matter, since, after all, repeated backtracking would
eventually discover every solution. However, in keeping with what we
will have to say shortly about the combinatorics involved, a full search
would be prohibitively expensive, making it necessary that hypotheses
be ordered in some manner.
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interpretation also being the strongest scene interpreta-
tion. For this reason, INGEN stops with the first scene
interpretation that is geometrically plausible. A database
containing information about the current scene interpre-
tation is maintained by the focus of attention module and
updated as the search process proceeds. Information
about prior scene interpretations is saved to prevent re-
dundant computations.

Note that the combinability graph contains information
about allowable combinations of surfaces; it does not
contain information about objects. This is necessary be-
cause the information about surfaces does not change
throughout the recognition process. However, the ob-
jects that contain particular surfaces change as the recog-
nition process progresses. Thus, in order to consider the
combination of the seed hypothesis with a candidate hy-
pothesis, we must first find the surfaces of the hypotheses
and then must determine if there is an allowable combina-
tion between a seed hypothesis surface and a candidate
hypothesis surface.

The consideration of a combination takes place in two
steps (module 7 in Fig. 3). First, the combined object
hypothesis must be created and its belief computed.
Then, the belief in the combined hypothesis must be com-
pared with the beliefs in the constituent hypotheses. The
belief in an object hypothesis is a function of how well the
data support the hypothesized object. Prior to belief com-
putation, the pose and dimensions of the object hypothe-
sis must be computed (module 10 in 3) and the correspon-
dences between the data surfaces and edges and the
model surfaces and edges must be determined. INGEN
uses the Dempster—Shafer theory of evidence for associ-
ating belief values with object hypotheses. The belief in a
hypothesis is based on two factors: how well the data
surfaces fit the model surfaces with respect to orientation
and surface type, and how well the data edges fit the
model edges with respect to position and orientation. In
Appendix B we provide an introduction to the Dempster—
Shafer theory and then discuss the simplifications which
are made possible by INGEN’s use of dichotomous
frames of discernment.

For belief computations, that is when control is in the
Hypothesis Evaluation Loop in Fig. 3, each object hy-
pothesis is evaluated individually without concern about
other hypotheses in the scene. Hypothesis evaluation is
carried out by accumulating the beliefs in two dichoto-
mous propositions, O and -0, where O stands for ‘‘the
data support the object hypothesis,” and —O for “‘the
data do not support the object hypothesis.”” Thus a
source of evidence, such as an edge or a surface segment
in the data, may assign some probability mass to O, some
to =0. However, as the reader will see in Section 5, not
all the available probability mass need be assigned to
these two dichotomous propositions; some may be with-
held as a measure of ignorance if there is any chance that

the source of evidence may not be relevant to either O or
-0. Let Bel(O) and Bel(-0) represent, respectively, the
total beliefs, as pooled from all available sources of evi-
dence in the data, in O and -O.

On the basis of the information generated by module S
(Fig. 3), the focus of attention module may propose that
two previously established hypotheses O, and O, be com-
bined into a single hypothesis O. Subsequently, module 7
will compute Bel(O) and compare this quantity with
Bel(O,) and Bel(0,). This comparison may cause O to be
either accepted or rejected as a combined hypothesis.

After a complete scene interpretation has been con-
structed, meaning the processing in the Hypothesis Eval-
uation Loop has come to a halt, the geometric reasoning
process begins (module 9 in Fig. 3). This process serves
two purposes. First, it allows us to place constraints on
the dimensions of objects based on contacts with other
objects in the same heap and thus determine better esti-
mates for the sizes of objects. Second, it allows us to
detect geometrically inconsistent scene interpretations.
Inconsistencies are detected by finding objects which oc-
cupy the same space (whose volumes intersect). The ac-
tual method of detecting inconsistencies involves com-
parison of dimensions computed by geometric reasoning
with those extracted directly from the data as described
in Section 6. An inconsistency is indicated when the geo-
metric reasoning process declares that a particular di-
mension must be smaller than the value computed di-
rectly from the data. When the geometric reasoning
process finds an object hypothesis to be geometrically
inconsistent with the rest of the scene interpretation the
system backtracks in the search process.

Control in the search process alternates between two
phases. The hypothesis evaluation phase, executed by
modules 6, 7, and 8, which form the Hypothesis Evalua-
tion Loop, produces a scene interpretation. Then, the
geometric reasoning phase, executed by modules 6, 9,
and 8, which form the Geometric Reasoning Loop, tests
the scene interpretation for consistency. When inconsis-
tencies are found the hypothesis evaluation phase is re-
started and a new interpretation is produced. This pro-
cess repeats until a scene interpretation with no
geometric inconsistencies is produced.

Backtracking is triggered under two circumstances:
when a combined hypothesis is rejected during the evalu-
ation phase (by module 7 in Fig. 3), or when a scene
interpretation is rejected during the geometric reasoning
phase (by module 9). In the first case it is obvious how the
system should backtrack. The newly combined hypothe-
sis is undone (by module 8) and the previous seed hy-
pothesis becomes the seed again. How the backtracking
should be carried out is not quite as obvious in the second
case. If the geometric reasoning process detects an inter-
section between two objects then either of them could be
wrong. We take the approach of backtracking on the



A ROBOT VISION SYSTEM FOR RECOGNITION OF GENERIC SHAPED OBJECTS 9

larger object of the conflicting pair, meaning we undo that
combination (of hypotheses) which led to the formation
of the larger object. Clearly, such “‘undoing’’ is impos-
sible if the larger object is still a single-surface object
hypothesis, meaning the larger object hypothesis con-
tains only one surface. In that case, we have no choice
but to use the other object for backtracking, the back-
tracking again being accomplished by undoing the combi-
nation that led to the other object hypothesis. There is
also the issue of the order in which object hypotheses are
considered for intersection detection. We start from the
bottom of the pile of objects and work toward the top.?
Thus, objects higher up in the pile will be tested after
objects lower in the pile. This results in the objects higher
up being tested for intersection with objects that have
already been tested.

Because INGEN recognizes generic objects, the na-
ture of the search process in INGEN differs significantly
from those used in more traditional approaches. In the
more traditional feature-based recognition [5, 6, 9, 11-13,
21], each object in the model library is complete with
regard to geometric information and, therefore, when an
object hypothesis is formed, it remains essentially fixed
during subsequent verification.? Furthermore, during ver-
ification the test for adding a feature to a hypothesis is
simply a test to verify that the feature fits the model. On
the other hand, for generic object recognition it is impos-
sible to fix permanently the pose and the dimensions of
an hypothesized object at the instant of hypothesis for-
mation due to the fact that the dimensions of the object in
the scene are unknown. At any given moment in the
search, one may construct the best possible pose and
dimensions on the basis of, say, the surface segments
included, but as new surface segments are considered for
merging or aggregation, we may have to alter the pose
and the dimensions associated with the hypothesized ob-
ject. For this reason, for generic object recognition, it is
not possible to neatly divide the overall search into hy-
pothesis formation and verification stages; what we have
now is more of a case of hypothesis formation followed
by its continuous refinement as additional features are
combined with the hypothesis. Therefore, whenever the
compatibility of a new surface segment with a surface of
the current hypothesis leads to the creation of a new
hypothesis, the pose and the dimensions of the new hy-

2 As will be clear later, the geometric reasoning module also grows
each object hypothesis to its maximum allowable dimensions along di-
rections away from the sensor. This implies growing objects from their
visible surfaces toward the work table. The directionality of this grow-
ing process dictates that for intersection detection the objects near the
bottom of a pile be considered first.

3 In some cases, the pose transform may be adjusted incrementally as
additional features extracted from the data are verified as belonging to
the hypothesized object.

PROCEDURE search()
SearchHistory « []

SurfaceQueue « all data surfaces sorted by number of data points
search1()
END PROCEDURE

FIG. 4. Algorithm to start the search process.

pothesis must be recomputed from scratch and can be
quite different from those of the constituent hypotheses.

Another point of distinction between traditional fea-
ture-based recognition and generic object recognition is
the difference in computational costs. In the former, after
a model object has been hypothesized, the verification of
the absence or presence of a new data feature in the
model space has relatively low computational cost. How-
ever, in the latter, this cost can be relatively high since
pose and dimension information must be recomputed
every time a new entity from the data is added to a hy-
pothesis. Therefore, in systems such as INGEN it be-
comes imperative that the production of new hypotheses
be kept to a minimum; this we have accomplished by
conducting search over what we call a combinability
graph rather than over all possible objects.

2.3. The Search Algorithm*

Having presented a general description of the recogni-
tion process we can now present the algorithm which
carries out the search process. The search algorithm can
be described in pseudocode by four primary procedures:
search, searchl, search2, and search3. The search pro-
cess begins with the procedure search( ) as shown in
Fig. 4. It initializes the global variable SearchHistory
to an empty list and initializes the global variable
SurfaceQueue to a list of all of the data surfaces in the
scene sorted by the number of data points in each. It then
calls the procedure searchl( ).

The procedure searchl( ) recursively picks surfaces
from the surface queue to determine the order in which
objects are considered for combination, as shown in Fig.
5. It begins by examining the list SurfaceQueue. If it is
not empty then it takes FirstSurface, the first surface
from the queue, and finds Object, the object hypothesis
that currently contains it. Then, search2(Object) is called
to attempt combinations based on this object; as ex-
plained later, the process of hypothesis combination is
actually carried out by search3 which also computes the
beliefs associated with the combined hypotheses. After
search2(Object) returns, searchl( ) is called recursively.
If SurfaceQueue is empty then we have a scene interpre-
tation that must be checked for geometric consistency.

* Some readers might prefer first to go through the example we have
discussed in Section 2.4 before reading this section.
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PROCEDURE search1()
IF SurfaceQueue # [] THEN
FirstSurface « first element of SurfaceQueue
Object < object containing FirstSurface
search2(Object)
search1()
ELSE
ConflictObjects « geometric_reasoning()
IF ConflictObjects  [] THEN
uncombine(ConflictObjects)
SurfaceQueue « all data surfaces sorted by number of data points
search1()
ELSE
exit
END IF
END IF
END PROCEDURE

FIG. 5. Algorithm to control the search process for the entire scene.

The procedure geometric_reasoning( ), which is dis-
cussed in Section 6 and defined in Figs. 39 and 40, returns
ConflictObjects, a list of objects that are in geometric
conflict and must be uncombined. If this list is empty then
there are no conflicts and a geometrically consistent
scene interpretation has been found. If there are conflicts
then these objects are uncombined, SurfaceQueue is
reinitialized, and searchl( ) is called recursively.

The procedure search2(Object) starts the search for
combinations based on a single Object as shown in Fig. 6.
First, it finds Surfaces, all of the surfaces that are adja-
cent to the surfaces of Object in the combinability graph.
Then these surfaces are used in the call to the procedure
search3(Object, Surfaces).

The procedure search3(Object, Surfaces) recursively
steps through the list of Surfaces until a successful com-
bination is made as shown in Fig. 7. When the list Sur-
faces is empty control reverts back to search1( ) through
search2(Object). When the list Surfaces is not empty Sur-
face, the largest surface based on the number of data
points, is selected and the object OtherObject which con-
tains it is found. Object and OtherObject are combined
into NewObject. If NewObject has already been consid-
ered then it is uncombined, Surface is removed from Sur-
faces, and a recursive call to search3(Object, Surfaces) is
made. If NewObject has not already been considered
then it is added to the SearchHistory list and is evaluated.
If the evaluation is successful then the surfaces of New-
Object are removed from SurfaceQueue and the search

PROCEDURE search2(Object)
Surfaces « surfaces adjacent to surfaces of Object in combinability graph
search3(Object, Surfaces)

END PROCEDURE

FIG. 6. Algorithm to control the search process for a single object.

PROCEDURE search3(Object, Surfaces)
IF Surfaces =[] THEN
SurfaceQueue « SurfaceQueue ~ surfaces of Object
ELSE
Surface « largest surface in Surfaces
OtherObject « object containing Surface
NewObject « combine_objects(Object, OtherObject)
IF NewObject is in SearchHistory THEN
uncombine(NewObject)
Surfaces ¢ Surfaces — Surface
search3(Object, Surfaces)
ELSE
SearchHistory « SearchHistory + NewObject
IF evaluate_object(NewObject) THEN
SurfaceQueue « SurfaceQueue — surfaces of NewObject
search2(NewObject)
ELSE
uncombine(NewObject)
Surfaces ¢ Surfaces — Surface
search3(Object, Surfaces)
END IF
END IF
END IF
END PROCEDURE

FIG. 7. Algorithm to search through a list of surfaces and make
combinations.

continues with a call to search2(NewObject). If the eval-
uation is not successful then NewObject is uncombined,
Surface is removed from Surfaces, and a recursive call to
search3(Object, Surfaces) is made.

2.4. Example of Flow of Control

The flow of control for modules 1 through 6 in Fig. 3 is
linear and therefore straightforward. On the other hand,
the search process embodied in modules 6 through 9 in-
volves two interacting loops (the Hypothesis Evaluation
Loop and the Geometric Reasoning Loop) and, we be-
lieve, needs to be further exemplified. This we will do
with the help of an example scene consisting of the three
objects shown in Fig. 8. Let us assume that for this scene
the surface segments produced by processing the range
data are as shown in Fig. 9, where we have also ranked
the surfaces by size and numbered them from largest to

FIG. 8. Example scene.
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FIG. 9. Segmented range data for the example scene.

smallest, starting at 1. Even though INGEN treats any
surface belonging to the background just like any other
surface, for this example we disregard the background so
that the explanation is simplified. Surfaces 1, 2, 6, 8, and
9 belong to a box, surfaces 5 and 7 to a cylinder, and
surfaces 3 and 4 to another box. The first box is resting on
top of the cylinder. Surfaces 1 and 9 correspond to the
same surface of the same box and are coplanar. Surfaces
2 and 8 correspond to another surface of the same box
and are also coplanar. Surface 5 of the cylinder is as-
sumed to be coplanar with surface 6 of the box. Surfaces
1 and 3 of the two different boxes are also assumed to be
coplanar.

Figure 10 shows the combinability graph for the seg-
mented scene as would be computed by the combinability
graph construction module (module 5 in Fig. 3) using the
methods discussed in Section 4. To facilitate its visual
assimilation, the nodes of the graph in Fig. 10 are posi-
tioned in such a manner that their locations correspond
roughly to the respective surfaces in Fig. 9. The arcs
(allowable combinations) in the graph are labeled to show
the types of relationships between the nodes (surfaces).
A represents adjacency, P represents coplanarity, X rep-
resents coaxiality in the sense that the cylindrical axis of
a cylindrical surface is coaxial with the surface normal of
its planar end surface, and N represents perpendicular-
ity. Note that a graph with 9 nodes can have at most (g) =
36 arcs, but for this scene only 13 arcs have been deter-
mined to correspond to allowable combinations. Figure

FIG. 10. Combinability graph for the example scene.

FIG. 11. Partition of the combinability graph corresponding to the
correct interpretation for the example scene.

11 shows the final partition of the combinability graph
showing the correct scene interpretation. The goal of
INGEN is to discover this partition.

To help with the explanation and understanding of the
flow of control, we make certain simplifying assumptions
regarding the workings of the evaluation module (module
7 in Fig. 3) and the geometric reasoning module (module
9 in Fig. 3). We assume that the evaluation module will
reject combined hypotheses which are obviously incor-
rect but will accept the nonobvious incorrect hypotheses
which we have intentionally included in the example. To
wit, we have intentionally made surfaces 5 and 6 coplanar
and therefore combinable via merging. The hypothesis
obtained by combining the surfaces 5 and 6 will appear
reasonable to the evaluation module, since after all these
two coplanar surface segments could have arisen from
the same planar face of the same object. The incorrect-
ness of such combined hypotheses will be detected by the
geometric reasoning module on the basis of the overall
inconsistency of all the hypotheses in the scene. Along
similar lines, we assume that the geometric reasoning
module will produce the obvious results concerning
which hypotheses intersect and which hypotheses should
be undone in the case of an intersection.

After the generation of initial object hypotheses by the
object hypothesis generation module (module 4 in Fig. 3)
the scene interpretation is specified by the following set
of object hypotheses: {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8},
{9}}.> We identify each object hypothesis by the set of
surfaces that it contains, and the scene interpretation by
a set of object hypotheses where each surface appears in
exactly one hypothesis. The nine single-surface object
hypotheses are shown in Fig. 12. These hypotheses are
passed on to the focus of attention module (module 6 in

3 In actuality, as discussed in Section 3, each hypothesis is repre-
sented by a list of attribute—value pairs, one of these attributes is the list
of surface segments assigned to that hypothesis. However, for this
section it suffices to think of each hypothesis as the set of surfaces
assigned to it. We need not be concerned with other atiributes such as
the pose transformation and the dimensions of the object hypothesis.
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Fig. 3) which controls the search for a scene interpreta-
tion.

The search process begins with the initialization of the
surface queue to a list of surfaces sorted by size: {1, 2, 3,
4,5,6, 7, 8, 9]. The first surface, 1, is removed from the
queue and the object containing it, {1}, becomes the first
seed. A depth-first search through the combinability
graph is performed as surfaces from the queue, and thus
the objects that contain them, are considered for combi-
nation with the seed hypothesis. If an arc is present in the
combinability graph between a surface of the seed hy-
pothesis and a surface in the queue, then the seed hy-
pothesis is combined with the hypothesis containing that
surface. If the belief in the combined hypothesis, as com-
puted by the evaluation module (module 7 in Fig. 3), is
greater than the belief in the constituent hypotheses then
it is accepted and it becomes the new seed and all of the
surfaces of the new seed are removed from the surface
queue. Otherwise, the hypothesis is uncombined by the
accept/reject module (module 8 in Fig. 3) and the search
continues with the same seed and the next surface in the
surface queue. Thus, when we refer to an object hypothe-
sis being accepted or rejected we are referring to the
actions of the evaluation module. Accepted hypotheses
are returned to the focus of attention module for the
search to continue. Rejected hypotheses are sent to the
accept/reject module to be undone and then control is
returned to the focus of attention module.

The first stage of the search process is shown in Fig.
13. The search starts with the seed {1} which has been
hypothesized to be a parallelepiped. {1, 2} is accepted as
a combined hypothesis and becomes the new seed; in
accordance with the discussion in Section 3, the object
corresponding to {I, 2} will be a parallelepiped. Subse-
quently, the hypothesis {1, 2, 3} is not accepted because
surface 3 is far from surfaces 1 and 2 and its edges are not
aligned with the edges of the object hypothesis. So, as
shown in Fig. 13, the search backtracks to the hypothesis
{1, 2} and, then, accepts the hypothesis {1, 2, 6}. Next,
the hypothesis {1, 2, 3, 6} is not accepted, again because
surface 3 is far from surfaces 1, 2, and 6 and its edges are
not aligned with the edges of surface 1. However, {1, 2, 5,
6} is accepted, again as a parallelepiped object. But the
hypothesis {1, 2, 3, 5, 6} is not accepted for the same
reasons that related to surface 3 before. {1, 2, 5, 6, 7} also
is not accepted, but this time the reason is that the inclu-
sion of surface 7 changes the object type for the hypothe-
sis from parallelepiped to cylinder and the planar sur-
faces do not fit the cylindrical object model. Speaking in a

Initial hypotheses.

more abbreviated fashion about the rest of the search:
{1,2,5,6, 8 is accepted. {1, 2, 3, 5, 6, 8} is not accepted.
{1, 2, 5, 6, 7, 8 is not accepted. {1, 2, 5, 6, 8, 9} is
accepted. At this point no further combinations are possi-
ble with the seed hypothesis {1, 2, 5, 6, 8, 9} so the sur-
faces assigned to this seed are removed from the surface
queue. The new surface queue contains [3, 4, 7]; so {3},
hypothesized to be parallelepiped, is the new seed hy-
pothesis. {3, 4}, also a parallelepiped, is accepted. At this
point no further combinations are possible with the seed
hypothesis {3, 4}. Surfaces 3 and 4 are now removed from
the surface queue and the new surface queue contains
[7]. So {7} is the new seed hypothesis but no combina-
tions are possible so surface 7 is removed from the sur-
face queue. The surface queue is now empty and there-
fore a complete scene interpretation has been found: {{1,
2,5,6,8, 9}, {3, 4}, {7}}. This interpretation consists of
three object hypotheses, the first two being parallele-
pipeds and the third a cylinder.

The focus of attention module sends this scene inter-
pretation to the geometric reasoning module (module 9 in
Fig. 3) where it is checked for geometric consistency;
that is, the control now shifts to the Geometric Reasoning
Loop. It determines that the parallelepiped hypothesis {1,
2,5, 6, 8, 9} intersects the cylinder hypothesis {7}, so the
search backtracks once again. To backtrack, module 8 in
Fig. 3 undoes the latest combination that resulted in the
composite hypothesis {1, 2, 5, 6, 8, 9}; in other words, {1,
2,5, 6, 8, 9} is uncombined into {1, 2, 5, 6, 8} and {9}.

Now the flow of control is handed back to the Hypoth-
esis Evaluation Loop. The surface queue is re-initialized:

FIG. 13.

First scene interpretation.
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FIG. 14. Second scene interpretation.

[1,2,3,4,5,6,7, 8, 9], while the scene interpretation is
{1,2,5,6,8},{3, 4}, {7}, {9}}. The hypothesis {1, 2, 5, 6, 8}
becomes the new seed because it contains the first mem-
ber of the surface queue. No combinations are possible
so {1, 2, 5, 6, 8} is unchanged and the new surface queue
i1s [3,4,7,9]. The next seed is {3, 4}. No combinations are
possible so {3, 4} is unchanged and the new surface queue
is [7, 9]. The next seed is {7}. No combinations are possi-
ble so {7} is unchanged and the new surface queue is [9].
The next seed is {9}. No combinations are possible so {9}
is unchanged and the new surface queue is empty. Thus,
as shown in Fig. 14, a second complete scene interpreta-
tion has been found: {1, 2, 5, 6, 8}, {3, 4}, {7}, {9}}. This
interpretation consists of four object hypotheses, the first
two being parallelepipeds, the third a cylinder, and the
fourth a parallelepiped.

The focus of attention module sends this scene inter-
pretation to the geometric reasoning module where it is

FIG. 15.

checked for geometric consistency. In other words, the
control shifts back to the Geometric Reasoning Loop.
Module 9 discovers that the hypothesis {1, 2, 5, 6, 8}
intersects the hypotheses {7} and {9}; this initiates back-
tracking which results in the undoing, by module 8, of the
latest combination that resulted in the composite hypoth-
esis {1, 2, 5, 6, 8}. The result of this uncombination is the
two hypotheses {1, 2, 5, 6} and {8}.

Now the control shifts back to the Hypothesis Evalua-
tion Loop. The surface queue is therefore re-initialized to
(1, 2, 3, 4, 5, 6, 7, 8, 9]. The hypothesis {1, 2, 5, 6}
becomes the new seed because it contains the first sur-
face in the queue. The combination of the seed with {9} is
accepted resulting in the composite hypothesis {1, 2, 5, 6,
9}, as shown in Fig. 15. This combined hypothesis cannot
be further combined with any other hypotheses, so the
new surface queue is [3, 4, 7, 8]. The next seed, {3, 4},
cannot be combined with any other hypotheses, so is left

Third scene interpretation.
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FIG. 16. Fourth scene interpretation,

unchanged, resulting in the new surface queue [7, 8].
Along similar lines, the resulting members of the surface
queue are considered in turn as seeds, but neither can be
further combined. Therefore, as shown in Fig. 15, a third
complete scene interpretation has been found: {{1, 2, 5, 6,
91, {3, 4}, {7}, {8}}. This interpretation consists of four
object hypotheses, the first two being parallelepipeds, the
third a cylinder, and the fourth a parallelepiped. The flow
of control is now handed back for intersection detection
to the Geometric Reasoning Loop, where it is determined
that the hypothesis {1, 2, 5, 6, 9} intersects the hypothe-
ses {7} and {8}, causing backtracking to be initiated. The
backtracking undoes the latest combination that resulted
in{l, 2, 5,6, 9}, resulting in two constituent hypotheses,
{1, 2, 5, 6} and {9}.

The flow of control is now handed back to the Hypoth-
esis Evaluation Loop. Therefore, the surface queue is re-
initialized to [1, 2, 3, 4, 5, 6, 7, 8, 91. The hypothesis {1, 2,
5, 6} becomes the new seed because it contains the first
surface in the queue. No combinations are possible for
this seed, so the hypothesis {1, 2, 5, 6} is left unchanged.
The new surface queue becomes [3, 4, 7, 8, 9] and the
new interpretation is {{1, 2, S, 6}, {3, 4}, {7}, {8}, {9}}.
Subsequently, the hypotheses {3, 4}, {7}, {8}, and {9} are
each considered as seeds in turn, but none can be com-
bined with any other hypotheses. Therefore, as shown in
Fig. 16, a fourth complete scene interpretation has been
found: {{1, 2, 5, 6}, {3, 4}, {7}, {8}, {9}}. This interpretation
consists of five object hypotheses, the first two being
parallelepipeds, the third a cylinder, and the last two also
parallelepipeds. The flow of control now shifts back to
the Geometric Reasoning Loop, where it is determined
that the hypothesis {1, 2, 5, 6} intersects the hypotheses
{7}, {8}, and {9}. This initiates backtracking, resulting in
the undoing of the latest combination which led to the
hypothesis {1, 2, 5, 6}. The uncombining process recov-
ers {1, 2, 6} and {5}.

The flow of control now shifts back to the Hypothesis
Evaluation Loop. The surface queue is re-initialized to
(1, 2, 3,4,5,6, 7,8, 9] and the hypothesis {1, 2, 6}
becomes the new seed because it contains the first sur-
face in the queue. The combination hypothesis {1, 2, 6, 7}
is not accepted because the object type for this hypothe-
sis is cylindrical owing to the presence of surface 7 and
because the other surfaces, 1, 2, and 6, which are planar,
do not support the cylindrical object hypothesis. Subse-
quently, as shown in Fig. 17, hypothesis {1, 2, 6, 8} is
accepted. But, {1, 2, 3, 6, 8} is not accepted, because
surface 3 is too far away. The next combination hypothe-
sis, {1, 2, 5, 6, 8}, is not even evaluated because it was
considered previously and found unacceptable. The next
combination, {1, 2, 6, 7, 8}, is also not accepted for rea-
sons that should be readily apparent by this time. Then,
the hypothesis {1, 2, 6, 8, 9} is accepted, and no other
combinations are possible. So the new surface queue is
[3, 4,5, 7] and the next seed is {3, 4}. No combinations

FIG. 17.

Fifth (and final) scene interpretation.
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FIG. 18c. Combinability graph for the example scene.
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FIG. 18a. Example scene.

FIG. 18b. Assume that the segmentation of the range image of the
scene in Fig. 18a is as shown here; in other words, the segmentation is
free of artifacts.

are possible for the new seed, so the hypothesis {3, 4} is
left unchanged, and the new surface queue is [5, 7]. The
next seed is {5}, which leads to the acceptable combina-
tion hypothesis {5, 7}. Again, no other combinations are
possible, leading this time to an empty surface queue. A
fifth complete scene interpretation has therefore been
found: {{1, 2, 6, 8, 9}, {3, 4}, {5, 7}}. This interpretation
consists of three object hypotheses, the first two being
parallelepipeds and the third a cylinder. The focus of
attention module sends this scene interpretation to the
geometric reasoning module where it is found to be free
of any intersections, and, therefore, geometrically con-
sistent. Thus, the fifth scene interpretation is the final
scene interpretation.

To illustrate an aspect of the Geometric Reasoning
module not made clear by the above example, assume
that the scene being analyzed looks as shown in Fig. 18a
and the range sensor is looking straight down. We will
further assume that there are no segmentation artifacts,
since the presence of these artifacts is not germane here.
Therefore, we may assume that the segmentation map of
this scene looks as shown in Fig. 18b. The initial hypoth-
eses for this case would consist of two very thin parallele-

=
/Bv

FIG. 18d.

Hypothesized objects for the example scene.

L=

FIG. 18e. The thin-parallelepiped object hypotheses in Fig. 18d are
grown in the direction away from the sensor to their maximum allow-
able dimensions by module 9.

pipeds, shown in Fig. 18d, and the combinability graph
would consist of two unconnected nodes A and B, as
shown in Fig. 18c. For obvious reasons, the Hypothesis
Evaluation Loop would leave these two hypotheses un-
changed. Therefore, the hypotheses would be sent to the
Geometric Reasoning Loop.

To augment our explanation of the Geometric Reason-
ing Loop in the previous example, module 9 for intersec-
tion detection does not merely do intersection detection;
this module also grows the object hypotheses to their
maximal allowable dimensions in directions not visible to
the sensor. The object hypotheses are considered from
bottom to top; so the object hypothesis B would be grown
first until it contacted the table, and the object hypothesis
A would be grown until it contacted either the table or
object B. This growing process, discussed in Section 6,
would lead to the two hypotheses shown in Fig. 18¢. As
these two hypotheses will be found not to intersect, they
will be declared to be a valid scene interpretation.

The point being made here is that, in addition to inter-
section detection, the Geometric Reasoning Loop is also
capable of modifying object hypotheses. As our example
here has shown, the Hypothesis Evaluation Loop pro-
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FIG. 19. Coordinate frames and the pose transformatijon.

duced a scene interpretation with the hypotheses as
shown in Fig. 18d, and the Geometric Reasoning Loop
altered the hypotheses to those shown in Fig. 18e as part
of testing them for intersection detection. Note that mod-
ifications of object hypotheses by themselves are incapa-
ble of initiating backtracking.

3. COMPUTING THE POSITION, ORIENTATION, AND
SCALE ASSOCIATED WITH AN OBJECT HYPOTHESIS

An object hypothesis is represented by a set of attri-
bute—value pairs. The most important attributes are

+ List of surface segments—these are the symbolic
names of the surface segments participating in the hy-
pothesis. »

* Object type—rectangular parallelepiped, right ellipti-
cal cylinder, or irregular.

» Postal classification—Iletter, flat, box, cylinder, or ir-
regular.

» Belief—measure of how well the data fit the model.

+ Pose (position, orientation, and scale) transforma-
tion—specifies the coordinate transformation from the
model coordinate frame to the world coordinate frame.

As discussed in Appendix A, the preprocessing section
of INGEN (modules 1 through 3 of Fig. 3) generates a
hierarchical symbolic description of the scene in which
each extracted surface segment, represented by a sym-
bolic record with fields for surface types, average loca-
tion, average surface normal, etc., contains pointers to
the edges that form the boundaries of the segment, with
the edges themselves represented symbolically via ap-

propriate records. The first hypothesis attribute men-
tioned above—list of surface segments—is simply a list
of the symbolic names of the surface segments in that
hypothesis.

For the second attribute for a hypothesis, object types
are declared on the basis of the following criteria: An
object with one or more cylindrical surface segments is
classified as a cylinder; an object with one or more irregu-
lar surface segments and no cylindrical surface segments
is classified as an irregular; and an object with all planar
surface segments is classified as a parallelepiped.

Owing to space limitations, we will not go into issues
dealing with postal classification, the determination of
which is relatively straightforward and based primarily
on the different dimensions associated with a hypothesis
and, of course, the object type; however, further infor-
mation on this subject is available in [16].

The fourth attribute associated with an object hypothe-
sis, meaning the belief value, is discussed in detail in
Section §.

We would now like to explain how pose transforma-
tions are calculated in INGEN and to point out the differ-
ences from such calculations for the more traditional fea-
ture-based recognition systems, such as those discussed
in [5, 6,9, 11-13, 21].° For generic object recognition, in
addition to the computation_of the translation vector and
the rotation matrix, it is also necessary to calculate the

¢ As soon as a new object hypothesis is created, the values of its
attributes, including its pose transform, must be calculated. Since both
modules 4 and 6 are capable of forming new hypotheses, the former
from the segmented range map and the latter by combining hypotheses
into “larger’” hypotheses, the pose transform calculation is invoked by
both these modules, as shown in Fig. 3.
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FIG. 20. Model coordinate frames.

scaling parameters since all the models are defined with
unit dimensions, the purpose of the models being only to
capture the shapes involved. The scaling parameters give
us the actual dimensions of an object in the scene vis a vis
its unit dimensions in the model space.

For computational purposes, the space in which all the
models are defined may be considered to be coincident
with the coordinate frame defining the world in which the
scene resides. Figure 19 shows the relationship between
the various coordinate frames. The axes (X,,, ¥, Z,,) de-
fine the world frame. When a model is defined, it initially
is positioned in some standard pose at the origin of the
world frame, with its various dimensions set to unity.
When the same object is found in the world, as shown in
Fig. 19 by the object on the right, the coordinate transfor-
mation that takes us from the unit-dimension model ob-
ject to the object as it occurs in the world is the pose
transformation. By ‘‘takes us’” we mean that if we apply
the pose transformation to, say, the point p,, in the modetl
space, we get the world-frame coordinates of the corre-
sponding point p,,. Note that the pose transformation can
be thought of as specifying an object-centered coordinate
frame for an object hypothesis in the world coordinate
frame. In other words, if we associate a coordinate frame
with a model object—as for example depicted by the (x,,,
VY, Zm) frame in Fig. 19—the pose transform then takes
this frame into the corresponding object-centered coordi-
nate frame (x,, y,, z,) in the world. The lengths of the
axes of the (x,, ¥,, Z,) frame represent the dimensional
scaling of the object in the world with respect to its di-
mensions in the model space.

Figure 20 shows how each generic model object is de-
fined in the model space. For a unit parallelepiped, which
is the same thing as a cube, the top surface contains the
origin at its center point, whereas the axes of the cube are
parallel to the coordinate axes. For a cylinder, the origin
is assumed to lie on the cylindrical surface and its axis
parallel to the x,, axis. The irregular object is defined in
essentially the same manner as the cube, except that the
origin is now contained in a plane that is tangential to the
top surface of the object. The choice of the placement of
the origin, as shown in the figure, simplifies pose trans-
form calculations and eliminates the extra computations
that would otherwise be required when a suction gripper

is used for manipulating the objects found in the world.
As mentioned before, all the model objects have unit di-
mensions. For the irregular object, that means that the
spacing between the planar surfaces tangential to the out-
side of the object is unity.

The pose transformation can be decomposed into three
parts representing the rotation, translation, and scaling
necessary to transform points in the model coordinate
frame into the world coordinate frame. The fact that a
point p,, in the model coordinate frame is related to the
corresponding point p,, in the world coordinate frame by
the pose transformation can be mathematically expressed
by

R'S'pm+t:pw (1)

where R is a 3 X 3 rotation matrix, S is a 3 X 3 scaling
matrix, and tis a translation vector. Additionally, a direc-
tional vector v,, in the model coordinate frame is related
to the corresponding directional vector v,, in the world
coordinate frame by the transformation

R v,=v,. 2

The translation vector t = [¢,, t,, t,] specifies the posi-
tion of the origin of the object-centered coordinate frame
in the world with respect to the model coordinate frame.
The rotation matrix R is given by

Xy Yx Zx
R=(x, » z 3)

Xz Yz %
and specifies the orientation of the axes of the object-
centered coordinate frame in the world with respect to

the model coordinate frame. The scaling matrix S is given
by

s 0 0
S=10 s 0 @
0 0 s,

and specifies the scaling along the axes of the object-
centered coordinate frame with respect to the model co-
ordinate frame. The pose transformation has nine de-
grees of freedom. Although the rotation matrix has nine
nonzero elements, these are not independent, since only
three parameters—roli, pitch, and yaw, for example—
are necessary to specify a rotation transformation. The
scaling matrix has three nonzero elements which are in-
dependent parameters. The translation vector also con-
tributes three parameters.
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3.1. Computation of the Rotation Matrix

In INGEN, first the rotation matrix is computed from
the correspondences of the directional vectors derived
from the world. For example, Fig. 21 shows three direc-
tional vectors in the world, v., vZ, v}, and the three
corresponding directional vectors in the model, v.,, v2,,
vs,. The problem of the computation of R may be stated
as follows: Given a set of directional vectors, v, v,

., v¥. associated with, say, the different surfaces of
a scene object, their model correspondents, v}, v,
..., vl and the set of relationships between each pair
of correspondences

R vl =v, Q)

we want to estimate the rotation matrix R which mini-
mizes

N
DR v, — v 6)
i=1

On account of dependencies between the elements of R,
the minimization of this criterion is not amenable to the
traditional methods found in matrix algebra, such as by
the method of pseudo-inverse (for a discussion of this
point, see, for example, [21]), and recourse must be made
to a quaternion-based approach first advanced by
Faugeras and Hebert [9] and used subsequently in [S]. In
. the quaternion-based approach, the object rotation is ex-
pressed by means of a four dimensional vector, called a
quaternion,

Correspondences used in the computation of the pose transformation.

_ 6 .- 0 )
Q—(cosz,smza, 7
where a is a unit vector along the axis of rotation and 8 is

the angle of rotation. It can be shown that the optimum Q
is an eigenvector of the matrix

N
A => BB/, ®)
i=]
where
0 —ci —ci —ci
¢k 0 bi  —bi
B =| o o
¢y —by 0 b
¢t bl bl 0
and
bi = vi, + vi,
(10)

ci = vjn - vlw-

The eigenvector to be used must correspond to the mini-
mum eigenvalue. A tutorial rederivation of this result of
Faugeras and Hebert [9] can be found in [5].

The direction vectors used in the computation of the
rotation matrix include the average surface normals for
planar, irregular, and cylindrical surfaces as well as the
cylindrical axis for cylindrical surfaces. The use of the
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average surface normal for a cylindrical surface might
come as a surprise to the reader because, if one could see
the entire cylindrical surface, the average surface normal
would be zero. However, in actual scenes, only a portion
of a cylindrical surface will be visible; the average surface
normal associated with this part serves to define the z,
axis in the scene, which will be a transformed version of
the z,, axis shown in (b) in Fig. 20. (A z, axis is shown in
Fig. 19 for the parallelepiped case. A similar axis may be
defined for the cylindrical surface in the scene; the z, axis
now would be perpendicular to the visible portion of the
cylindrical surface.)

For the above mentioned computations to yield results
for the optimum orientation matrix, it is necessary that
we have at least two nonparallel directional vectors for
two different entities in the scene. However, the initial
hypotheses are based on individual surface segments; in
other words, initially we associate a separate object hy-
pothesis with each separate surface segment extracted
from the scene. Clearly, for the very first hypotheses it
will not be possible to extract two nonparallel direction
vectors if these vectors are to be normal to surfaces. The
same problem can arise when composite object hypothe-
ses are formed from multiple surface segments in the
scene if all these surface segments are coplanar. Two
approaches are used to resolve this problem.

First, the system looks for object edges of either oc-
cluding or convex type that have directions different
from the other available directional vectors. Using only
these edge types ensures that the system is not fooled by
shadows or occlusion effects. If the longest of these
edges has a length that is a significant fraction (currently
we use 50%) of the estimated length of the object, then
the edge is matched with its corresponding model edge
and used as a direction vector. If no appropriate edges
are found then the major axes of the surfaces of the ob-
ject are searched until one is found which has a direction
different from the other available direction vectors. This
axis is matched with a model edge along the major axis of
the object and so it can be used as a direction vector.

3.2. Computation of the Scaling Parameters

The scaling parameters, represented by the matrix S in
Eq. (1), are computed next. Suppose we know the coor-
dinates of a pair of object points p}, and p in the model
space and further suppose we also have found the scene
correspondents of these object points, with the scene
points labeled pfv and p}zv. Using Eq. (1), it is easy to show
that these four points are related by

RS (pn—pr) = (i~ pi). (11)
This equation says that the scaling matrix may be derived
from

S=R"(y—ph) Pn—P)h (12)
Of course, if it is possible to extract more than one pair of
points from the scene object and their correspondents
from the model space, an optimum S may be computed
by constructing a pseudo-inverse solution. Note that un-
like the case of R it is possible to construct a pseudo-
inverse solution here since the three elements that define
S are all independent.

For this approach to yield results for S, it is necessary
that the pair of points selected not lie in a plane that is
perpendicular to any of the axes in the respective object
centered coordinate frame. For example, the vector p}n -
pZ should not be perpendicular to any of the axes of the
(X1 s Yms Zm) Space. Similarly, the vector pL - p,zv should
not be perpendicular to any of the axes of the (x,, ¥,, Z,)
space.

At this juncture, the reader is probably wondering how
we might identify points like p), and p?% in a scene, espe-
cially in the presence of occlusions. In INGEN, these
two points in the scene correspond to the ‘‘max’’ point
and the “‘min”’ point of the minimum bounding box that
contains the object and whose sides are parallel to the
axes of model coordinate frame rotated through R. The
“‘max’’ point is that vertex whose three coordinate val-
ues are the maximum of all the vertices available and the
“‘min’’ point that vertex whose coordinates are the mini-
mum. Note that a rotation of the model frame through R
gives us a coordinate frame that is parallel to the still-
unknown object-centered coordinate frame [the (x,, ¥,,
Z,) frame shown in Fig. 19] and whose origin is at the
world origin. For example, in Fig. 22 the rotated model
coordinate frame is designated by the (Rx,,, Ry.., Rz,,)
axes. This approach is guaranteed to yield two points that
meet the necessary conditions for the calculation of the
scaling parameters. For example, for the scene object
shown in Fig. 21, the points selected would be p), and p?
as shown there.

The calculation of the ““max’’ and the ‘‘min’’ points is
carried out by computing the distances of the data verti-
ces from the three perpendicular planes defining the
model coordinate frame rotated through R. By retaining
the maximum and minimum values of such distances, we
obtain the minimum bounding box and the points p}, and
pr. It is important to note that p/, and p% may not corre-
spond to any actual vertex in the data. In that sense, p,’v
and p;, may be referred to as virtual points. The x, y, and
z coordinates of such a virtual point could be defined by
the x-coordinate of one data vertex, y-coordinate of an-
other, and z-coordinate of yet another vertex.

To illustrate, let us consider a two-dimensional exam-
ple shown in Fig. 23, where we have shown three vertices
marked A, B, and C. To fit a minimum bounding rectan-
gle, whose sides are parallel to the coordinate axes, we
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FIG. 22. Coordinate frames computed as steps in the computation of the pose transformation.

take the maximum of the x-coordinates of the vertices
and make this maximum the x-coordinate of the max
point of the minimum bounding rectangle. We then take
the maximum of the y-coordinates of the vertices and
make this maximum the y-coordinate of the max point of
the minimum bounding rectangle. The max point thus
obtained is marked P; clearly, this point does not corre-
spond to any point in the data. To get the min point of the
minimum bounding rectangle, we take the minima of the
coordinates, and obtain the point Q.

This approach to finding suitable pl, and p? is necessi-
tated by the fact that, especially in generic shape recogni-
tion where data can be very noisy, it frequently is not
possible to extract points from the data that can be correl-
ated accurately with their counterparts on the shape
models.

A special case of the above procedure arises when the
range sensor is directly above a planar surface of an ob-
ject whose other sides are occluded to the sensor, as was
the case in the hypothetical example shown in Fig. 18a.
In this case, the object hypotheses would have to be
formed from a single planar surface and, for the case of
perfect data, the points p,, and p,,, would not lic on the
two opposite corners of a parallelepiped, but on the two
opposite corners of a parallelogram. To handle such
cases, we associate a default minimum thickness with
parallelepiped object hypotheses, this thickness being
equal to the depth resolution of the range sensor. If 4 is
this thickness, then the p,, obtained by the above proce-
dure is modified by decreasing its rotated z-coordinate
value by A.

3.3. Computation of the Translation Vector

After the rotation and scale matrices have been com-
puted it is possible to compute the translation vector.
Using the rotation and scale matrices, we can construct,
at the origin of the world frame, a coordinate frame
whose axis directions are parallel to the still-unknown
object-centered coordinate frame and whose axis magni-
tudes are governed by the scale parameters. For exam-
ple, in Fig. 22 the rotated and scaled model coordinate
frame is designated by the (RSx,,, RSy,., RSz,) axes.
What remains now is the computation of the translation
vector t that would be able to displace this rotated and
scaled coordinate frame to its proper location on the ob-
ject.

To specify the translation vector we need to specify at

IQA _____________ ‘?P
| oC
B

FIG. 23. Two-dimensional example showing how the virtual points
P and Q that define the minimum bounding rectangle, with sides parallel
to the axes, are obtained from the data points A, B, and C.
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least one single point in the data and its model correspon-
dent. Given such a point, we compute the translation
vector by

t=p,— R S"p,. (13)
For reasons similar to those mentioned in our discussion
on the computation of the scaling parameters, it is usually
not possible to identify a unique point in the scene for this
purpose. So our strategy is to again derive a unique vir-
tual point from the two virtual points extracted for the
computation of scaling parameters. This virtual point is
selected in a manner analogous to the definition of the
origin of a model shape (see Fig. 20): The point is located
at the center of the topmost face of the minimal bounding
box for the object in the (RSx,,, RSy,,, RSz,,) coordinate
frame. For example, for the scene object shown in Fig.
21, the point selected would be p,,. Thus, in Fig. 22 the
final object-centered coordinate frame is designated by
the (RSx,, + t, RSy,, + t, RSz,, + t) axes which corre-
spond to the (x,, ¥,, Z,) axes in Fig. 19. This virtual point
may not be an actual object point, particularly for the
cases of cylinders and irregular object hypotheses, but
can always be computed readily and is relatively insensi-
tive to occlusion. Additionally, this point also is very
useful as a pickup point for a robot with a suction gripper.

4. COMBINABILITY OF SURFACE SEGMENTS

The primary task of INGEN is to partition the set of
surface segments into object hypotheses that form a con-
sistent scene interpretation. The naive approach would
be to search through all possible partitions until a satis-
factory interpretation is found. However, the number of
partitions is enormous even for scenes with only a few
surface segments, so a different approach is required.
INGEN uses a constructive approach in which objects
are incrementally constructed from pairwise combina-
tions of surfaces. The primary advantage of this approach
is that many potential surface combinations can be ruled
out during a preprocessing stage which resuits in a con-
siderable reduction in the size of the search space.

There are two types of combination operations: merg-
ing and aggregation. Merging is carried out when two
surface segments belong potentially to the same face of
the same object. On the other hand, aggregation is car-
ried out when two surface segments belong potentially to
two separate faces of the same object. Thus, merging
involves combining surface segments that are separate
because a single object surface was segmented into multi-
ple parts due to noise or occlusion. Aggregation involves
combining surface segments that are separate because
distinct object faces are present in the scene. While the
criteria for merging depend only on the types of surfaces

expected to be in the scene, the criteria for aggregation
depend on the types of objects expected.

When examining a pair of surfaces under consideration
for combination we need only consider whether the sur-
faces are related in such a way that merging or aggrega-
tion is possible. Knowledge about object hypotheses is
not necessary in making this determination. Thus, the
determination of the possible combinations of surfaces
can be done prior to the beginning of the search process.
For the purpose of this determination, each pair of sur-
faces needs only to be considered once. The information
is then used to guide the search process.

The information regarding the allowable combinations
of surfaces is contained in a data structure known as the
combinability graph. In the combinability graph each
node represents a surface segment and each arc repre-
sents an allowable combination between the two surfaces
that it connects. Any pair of surfaces connected in the
combinability graph can potentially belong to the same
object. The search for objects takes place over this graph.

Initially, to each node of the combinability graph corre-
sponds a separate object hypothesis. The combination of
two object hypothesis is carried out by creating a new
object hypothesis which has all of the surfaces, edges,
and vertices of the two constituent object hypotheses.
The attributes for the new hypothesis are computed as
described in the previous section.

4.1. Combinability Graph Generation

The combinability graph is generated from information
in the hierarchical scene description at the same time as
when the initial single-surface object hypotheses are gen-
erated. These two processes do not depend on each other
so the order in which they are performed is not signifi-
cant. The combinability graph is generated by enumerat-
ing and testing all possible pairs of surfaces. The tests
evaluate the suitability of a pair of surfaces for merging or
aggregation. If the tests determine that the two surface
segments could potentially belong to the same object then
an appropriate arc is added to the combinability graph.

4.1.1. Merging Criteria

The criteria for merging are based on the types of sur-
faces expected in the scene. Since INGEN handles
scenes with three types of surfaces, planar, cylindrical,
and irregular, we need criteria for coplanar, cocylindri-
cal, and coirregular surfaces.

Two surfaces are coplanar and therefore candidates for
merging if all of the following criteria are satisfied:

» both surfaces are planar

» the angle between the surface normals of the two
planes defined by the surfaces is less than 2.5°
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» for at least one of the surfaces, the distance from the
centroid of one surface to the plane defined by the other
surface is less than 0.2 in.

The second criterion ensures that the surfaces define par-
allel planes. The third criterion ensures that the planes
are not only parallel but actually the same plane.

Two surfaces are cocylindrical and therefore candi-
dates for merging if all of the following criteria are satis-
fied:

* both surfaces are cylindrical

* the angle between the cylindrical axes of the two
cylindrical surfaces, modulo 180°, is less than 15°

+ for both surfaces, the angle between the cylindrical
axis and the line formed by connecting the centroids of
the two surfaces, modulo 180°, is less than 15°

The second criterion ensures that the cylinders are paral-
lel. The third criterion ensures that the cylinders are not
only parallel but actually aligned.

Irregular surfaces are roughly planar but have surface
irregularities that require that they be treated differently
from planar surfaces. These irregularities have two
forms. Irregular surfaces can be wrinkled or they can
have global irregularities such as bulges or bending at the
edges. Thus, coirregularity is similar to coplanarity but
with the criteria relaxed to compensate for the irregular-
ity of the surfaces involved.

Two surfaces are coirregular and therefore candidates
for merging if all of the following criteria are satisfied:

* one surface is irregular and the other is either irregu-
lar or planar

+ the angle between the surface normals of the two
surfaces is less than 5.0°

« for at least one of the surfaces, the distance from the
centroid of one surface to the average plane passing
through the other surface is less than 0.4 in.

The second criterion ensures that the surfaces define
roughly parallel planes. The third criterion ensures that
the planes are not only parallel but actually the same
plane.

4.1.2. Aggregation Criteria

The criteria for aggregation are based on the types of
objects expected in the scene. Since INGEN handles
scenes with three types of objects, parallelepiped, cylin-
der, and irregular, we need criteria for perpendicularity
of planar and irregular surfaces and coaxiality of a cylin-
drical surface with a planar surface corresponding to an
end of the cylinder. Irregular objects have essentially the
same shape as parallelepipeds but have irregular surfaces
instead of planar surfaces. The only relations between

parallelepiped surfaces are perpendicularity relations.
We disregard the case of parallel surfaces with surface
normals pointing in opposite directions because of the
nature of the sensors used by INGEN; it is unlikely that
any single range sensor would produce data for two sur-
faces on opposite sides of a parallelepiped. However, if
data from multiple sensors with different viewpoints are
available then this case must be considered. For cylindri-
cal objects we have a relation which we refer to as the
coaxial relation. In this case we have a planar or irregular
surface with a surface normal that is roughly coaxial with
the cylindrical axis of a cylindrical surface.

Two surfaces are perpendicular if all of the following
criteria are satisfied:

+ the surfaces are either planar or irregular

+ the angle between the surface normals of the two
surfaces is between 70 and 100°

+ the surface normals diverge; this is computed by
comparing the angle between each surface normal and
the vector connecting the centroids of the two surfaces

The third criterion ensures that the surfaces are convexly
related.

A cylindrical surface is coaxial with a planar or an
irregular surface if the following criterion is satisfied:

+ the angle between the surface normal of the planar or
irregular surface and the cylindrical axis of the cylindrical
surface, modulo 180°, is less than 15°

4.1.3. Adjacency Criteria

Surfaces which are adjacent in the data but do not meet
the merging or aggregation criteria can be considered for
combination based on adjacency criteria. These criteria
exist primarily to handle the case where a small surface is
adjacent to a larger surface but either is too small to be
characterized to a high degree of accuracy or has been
segmented from the adjacent surface because of surface
irregularities.

Two adjacent surfaces can be combined if the following
criterion is satisfied:

+ the jump discontinuity, if it exists, at the common
boundary is less than 0.5 in.

This criterion ensures that there is not a large jump dis-
continuity between the two surfaces.

4.2. Combinatorics

In order to understand the utility of the combinability
graph approach we must examine the combinatorics of
the scene interpretation problem. The primary feature
used by INGEN is the surface segment, so we will use it
as the basis for discussing the complexity of the problem.
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The basic task of INGEN is to partition the set of surface
segments into objects which form a consistent scene in-
terpretation.

A set with n elements has 2” subsets; therefore the
number of objects that can be hypothesized in a scene
containing n surface segments is 2 — 1 because the
empty set does not specify an object. Of course, at most
n of these objects can exist at the same time in a scene
interpretation and each object must contain a distinct set
of surfaces. These constraints are reflected in the notion
of partitioning the set of surfaces into objects. The num-
ber of unique partitions of a set with n elements [10] is
given by

Po=-3 -0 (%) D,

’1! i=0 (14)
which represents the number of unique scene interpreta-
tions which can be formed from » surface segments. The
binomial coefficients are defined by

() = mioe )

and give the number of combinations possible for # items
taken m at a time. D, is the derangement number,

=

i!

Do=nt> (16)
i=0

which represents the number of derangements (permuta-
tions with no fixed points) of a set of size n.
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FIG. 24. Combinatorics of the scene interpretation problem.

TABLE 1
Combinatorics of the Scene Interpretation Problem
Surface
segments  Combinations Objects Interpretations
1 0 1 1
2 1 3 2
3 3 7 5
4 6 15 15
5 10 31 52
6 15 63 203
7 21 127 877
8 28 255 4,140
9 36 511 21,147
10 45 1,023 115,975
11 55 2,047 678,570
12 66 4,095 4,213,597
13 78 8,191 27,644,437
14 91 16,383 190,899,322
15 105 32,767 1,382,958,545
16 120 65,535 10,480,142,147
17 136 131,071 82,864,869,804
18 153 262,143 682,076,806,159
19 171 524,287 5,832,742,205,057
20 190 1,048,575 51,724,158,235,372
21 210 2,097,151 474,869,816,156,751
22 231 4,194,303 4,506,715,738,447,323
23 253 8,388,607 44,152,005,855,084,346
24 276 16,777,215 445,958,869,294,805,289
25 300 33,554,431  4,638,590,332,229,999,353

The combinability graph is constructed by examining
every possible pair of surfaces and determining whether
or not the pair could correspond to the same object. For a
scene with n surfaces there are

@ N n(nz_ .

possible combinations involving pairs of surfaces.

For our domain we typically have n < 25. However,
the exponential nature of the problem makes enumera-
tive solutions impractical for scenes with 10 or more sur-
faces. Figure 24 shows the combinatorics of our problem.
The number of surfaces (n) increases along the horizontal
axis and the corresponding numbers of surface segments
(n), combinations (n(n — 1)/2), objects (2 — 1), and
scene interpretations (P,) are plotted using a logarithmic
scale on the vertical axis. Table 1 contains the exact val-
ues used to construct the plots in Fig. 24. Note that the
number of combinations is O(n?), the number of objects
is O(27), and the number of interpretations is O(n").

These combinatorics assume a search through all pos-
sible scene interpretations. This is equivalent to a search
over all of the partitions of a complete graph (every node
is connected by an arc to every other node) with » nodes.
A search over all possible partitions of the combinability

a7
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graph instead of the complete graph offers a significant
reduction in the size of the search space. In the worst
case the combinability graph could be complete but this
case is very unlikely because of the physical constraints
on the definition of the combinability graph.

The reduction in the size of the search space is based
on two factors. First, the combinability graph frequently
is made of several disjoint subgraphs. Each of these sub-
graphs can be handled independently of the others for the
purposes of hypothesis combinations. However, they do
affect each other during the geometric reasoning process.
For example, if a scene has 10 surfaces then there are
115,975 possible scene interpretations when the combin-
ability graph is complete. However, if the combinability
graph is partitioned into two complete subgraphs with 5
surfaces each then there are only 52 possible interpreta-
tions for each subgraph giving a total of 52 - 52 = 2704
possible scene interpretations. The second factor is based
on the connectivity of the combinability graph. Partition-
ing a set is equivalent to partitioning a complete graph.
However, if the graph is not complete then a smaller
number of partitions is possible. The exact size of the
reduction is difficult to characterize because it depends
on the particularities of the combinations in the graph.
However, we have found a large reduction in our experi-
ments. The effects of these factors are shown as we dis-
cuss three example scenes.

4.3. Example Scenes

We can see how merging and aggregation are useful by
examining three example scenes. The data and range im-
age segmentations for scenes 705, 707, and 711 are shown
in Figs. 25, 29, and 33.7 Each figure contains the regis-
tered reflectance image to show what the scene actually
looks like, the segmentation of the scene into numbered
surface segments, and a 3-D plot of the range data for the
scene.

Figs. 26, 30, and 34 show the initial object hypotheses
for the scenes. These figures show four views of each
scene with the objects represented by wireframe bound-
ing boxes. Included are orthographic projections for the
top (x—y plane), front (y-z plane), and side (x~z plane)
views and an axonometric projection. Figures 27, 31, and
35 show the final scene interpretations. Although it is a
bit early to be presenting final results in our exposition
here, we have included these figures in this section so
that the final results can be compared to the initial hy-
potheses and related to the scene data.

The combinability graphs for these scenes are shown in

7 The names of the scenes correspond to those used in the data sets
generated by U.S. Postal Service range data acquisition contractors.
These scenes were provided by GE/RCA Advanced Technology Labs
[27].

Figs. 28, 32, and 36. To help the reader visually correlate
the nodes with their corresponding surface segments, we
have placed the nodes of the combinability graph in the
same relative positions as the segments in the data. The
arcs are labeled with the types of combinations possible
for the surfaces: A represents adjacency, P represents
coplanarity, I represents coirregularity, C represents co-
cylindricity, X represents coaxiality, and N represents
perpendicularity.

Scene 705 (Figs. 25-28) contains four objects plus the
background. The topmost object is a flat which lies across
a box and divides it into two segments. The other two
objects are a bundle of letters and a package of business
reply cards. The scene has been segmented into 15 sur-
faces. As shown in Fig. 28, 23 of the 105 possible arcs are
present in the combinability graph. The combinability
graph consists of 4 disjoint subgraphs with 7, 6, 1, and 1
nodes. Thus, the upper bound on the search space is
reduced from 1,382,958,545 scene interpretations to 877 -
203 - 1 - 1 = 178,031 possible scene interpretations. Since
the subgraphs are not complete the actual number of po-
tential scene interpretations is much smaller. Note that
the combinability graph contains only 4 combinations (2—
4, 3-6, 1-10, 7-10) which do not belong in the correct
interpretation.

This scene contains two situations where merging was
essential to finding the correct interpretation. The large
box was divided into two widely separated segments be-
cause it was occluded by the flat. It also has two more
small segments which are due to the rounded edges of the
box. The two large surfaces, 2 and 6, were combined
based on merging criteria and the two small surfaces, 8
and 9, were combined with surface 6 based on adjacency
criteria. Also note that the flat was segmented into two
segments, 3 and 4, because of dropouts in the range data
caused by the black outline of the mailing label. These
two surfaces were combined based on merging criteria.
There is no adjacency information in this case because of
the dropouts in the range data.

The geometric reasoning process correctly determines
that the flat is very thin because it is constrained by the
box that supports it and that the box is relatively thick
because it is only constrained by the background surface.

Scene 707 (Figs. 29-32) contains three objects plus the
background. There are two boxes stacked obliquely and a
bundle of letters. The scene has been segmented into 7
surfaces. As shown in Fig. 32, 4 of the 21 possible arcs
are present in the combinability graph. The combinability
graph consists of 3 disjoint subgraphs with 4, 2, and 1
nodes. Thus, the upper bound on the search space is
reduced from 877 scene interpretations to 15-2 -1 = 30
possible scene interpretations. Since the subgraphs are
not complete the actual number of potential scene inter-
pretations is § - 2 - 1 = 16. Note that the combinability
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Reflectance Image

FIG. 25.

graph contains only 1 combination (4-6) which does not
belong in the correct interpretation.

This scene contains two situations where aggregation
was essential to finding the correct interpretation. The
two boxes each have two perpendicular surfaces visible
in the scene. These surfaces are combined based on ag-
gregation criteria.

The geometric reasoning process correctly determines
the dimensions of all three objects based on contacts with
each other and with the background surface.

Segmentation of Range Image

Range Plot

Range data plot and segmentation for scene 705.

Scene 711 (Figs. 33-36) contains four cylinders over-
lapping each other plus the background. The scene has
been segmented into 12 surfaces. As shown in Fig. 36, 12
of the 66 possible arcs are present in the combinability
graph. The combinability graph consists of 4 disjoint sub-
graphs with 4, 3, 3, and 2 nodes. Thus, the upper bound
on the search space is reduced from 4,213,597 to 15 - 5 -
5+ 2 = 750 possible scene interpretations. Since the sub-
graphs are not complete the actual number of potential
scene interpretations is smaller. Note that the combin-
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FIG. 26. Hypothesized objects for scene 703.

ability graph contains only 1 combination (3-5) which
does not belong in the correct interpretation.

This scene contains three situations where merging
was essential to finding the correct interpretation. Three
of the cylinders have been segmented into several parts
due to occlusion by other cylinders and one was also
oversegmented due to noise in the data.

The geometric reasoning process correctly determines
that the cylinder on the bottom of the pile must be a
relatively flat elliptical cylinder because it is constrained
by the background surface. The other cylinders are circu-
lar.

e

Top Side

Front

Axonometric

FIG. 27. Final results for scene 705.

5. EVALUATION OF OBJECT HYPOTHESES

As mentioned in Section 3, there are two mechanisms
for an object hypothesis to get rejected; one resides in the
loop formed by the modules 6, 7, and 8 in Fig. 3 and the
other in the loop formed by the modules 6, 9, and 8. In
this section we will discuss how the beliefs associated
with object hypotheses are computed in the former loop,
since a hypothesis with insufficient belief would be re-
jected. Subsequently, in the next section, we will discuss
the second mechanism that is based on the detection of
volumetric intersections.

The evidence accumulation formulas presented here
allow us to compute the belief with which the data sup-
port a given hypothesis, taking into account the pose
transform, which includes the scale factors. The belief
values should be sensitive to how much of the surface
area of the hypothesized object is really supported by
what is present in the data. For example, if the surface
segments shown in Fig. 37a lead to a parallelepiped hy-
pothesis as shown there, the belief in that hypothesis
should be less than that for the case in Fig. 37b where a
much larger area of the hypothesis is covered by surface
segments. Similar examples could be stated for cylinders
and irregulars.

5.1. Basis of Belief

The computation of belief in an object hypothesis de-
pends on how well the data support the object hypothesis
on the basis of the following attributes of the object hy-
pothesis:

* type

*» position

* orientation

+ dimensions

FIG. 28.

Combinability graph for scene 705.
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Segmentation of Range Image

Reflectance Image

Range Plot

FIG. 29. Range data plot and segmentation for scene 707.

Clearly the correct determination of the type, position,
and orientation of an object is critical to the usefulness of
any object recognition system. However, in contrast to
the more traditional 3D vision systems, INGEN must
also determine the dimensions of the object. So it is im-
portant that the evaluation process examine the accuracy
of the computed dimensions as well as, of course, the
accuracy of the type, position, and orientation.

5.2. Evidence Sources Available for Evaluation

The evidence sources available for the evaluation of an
object hypothesis are

+ surfaces
« edges
* vertices

From a surface we use the surface type which relates
to the object type, and the surface normal and/or cylin-
drical axis which relate to the object orientation. From an
edge we use the orientation which relates to the object
orientation. From a vertex we use the vertex position
which relates to the object position and dimensions. The
evaluation of the position and the dimensions of an object
depends on the positions of data edges (as defined by
their endpoint vertices) relative to the model edges.
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FIG. 30. Hypothesized objects for scene 707.

Experience has shown that it is necessary to weight the
evidence provided by an evidence source by the relative
“‘significance’’ of the source. For example, large surfaces
or long edges should contribute more to the belief in a
hypothesis than small surfaces or short edges. However,
since object hypotheses can have different sizes we must
scale these contributions by the dimensions of the object
hypothesis. In the formalism we will present, this relative
“*significance’’ information is incorporated into a mea-
sure of the credibility of the evidence source.

5.3. Evidential Reasoning

The Dempster—-Shafer theory of evidence provides a
flexible mechanism for reasoning about evidence in prob-

Top Side
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FIG. 31. Final results for scene 707.
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FIG. 32. Combinability graph for scene 707.

lems such as this. For an earlier application of this theory
in a related context, the reader is referred to [1]. In
INGEN, each data surface and edge in an object hypoth-
esis acts as a source of evidence for the hypothesis. This
evidence is represented in the form of confidence func-
tions. The confidence functions are constructed by com-
paring surface, edge, and vertex attributes for the data
and the model. These confidence functions are then used
to construct a basic probability assignment (BPA) which
satisfies the conditions for use in the Dempster—Shafer
theory of evidence. Dempster’s rule is used for the com-
bination of evidence.? An introduction to the Dempster—
Shafer theory of evidence and a discussion of the special
case (dichotomous frames of discernment) that we use
for hypothesis evaluation are given in Appendix B.

Object hypotheses are evaluated individually. The data
for an object hypothesis consist of a set of surfaces with
their constituent edges and vertices. The hypothesis also
has an object model instance which is a copy of the object
model which has been transformed and scaled into the
scene coordinate frame based on the pose transform as-
sociated with the hypothesis. The object model instance
has surface, edges, and vertices which can be matched
with the data surfaces, edges, and vertices. The evalua-
tion of the object hypothesis.produces a measure of the
quality of this match. Given the data and the model in-
stance for an object hypothesis, we must determine the
degree to which the data fit the model instance. The
frame of discernment (FOD) for the object hypothesis is
binary and dichotomous: either the data for object O; fit
the model or they do not fit the model. Thus the FOD (®)
is defined by ® = {0;, -0;}. All of the BPAs for an object
have the same FOD. For a different object we have a
different FOD.

8 For example, one of the conditions that must be satisfied before
Dempster’s rule can be used is that the evidence sources be indepen-
dent. That the independence condition is satisfied in our system is
discussed in Section 5.11.
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Reflectance Image

Segmentation of Range Image

Range Plot

FIG. 33.

It is important to note that the comparison between the
data and the model takes place in the scene coordinate
frame. It is not equivalent to carry out the comparison in
the model coordinate frame because the objects have dif-
ferent scale factors along the three axes. In the scene
coordinate frame, distance measurements correspond to
real distances and are isotropic. In the model coordinate
frame, distance measurements will, in general, not corre-
spond to real distances and will be anisotropic if the scale
factors are unequal along the three axes. For recognition
systems where there is no scaling or only global scaling,

Range data plot and segmentation for scene 711.

the comparisons between the data and the model can be
made in either coordinate frame.

Prior to the computation of the belief in an object it is
necessary to determine correspondences between data
surfaces and edges and model surfaces and edges. (We do
not attempt to determine vertex correspondences be-
cause there will usually be many data vertices which do
not correspond to any model vertex.) These correspon-
dences are determined by matching each data surface or
edge with the model surface or edge that is the closest in
terms of position and orientation. The correspondences



30 VAYDA AND KAK

Side

Front Axonometric

FIG. 34. Hypothesized objects for scene 711.

from data to model entities are typically many-to-one due
to oversegmentation of the data entities.

5.4. From Evidence to Confidence Functions

Confidence functions serve as the link between evi-
dence sources and BPAs. They are necessary because
sources of evidence rarely supply numbers which satisfy
the requirements for a BPA. Formally, an evidence
source is a function which takes values in the range [—,
o], although typically, an evidence source will actually
produce values over a more limited range. Each source

Top Side

Front | Axonometric

FIG. 35. Final results for scene 711.

FIG. 36. Combinability graph for scene 711.

has its own range. The significance placed on the num-
bers provided by an evidence source also depends on the
particular source.

On the other hand, a confidence function, Conf, is a
function which takes values in the range [0, 1]. The do-
main of Conf is unspecified because the function can
have any form as long as the constraints on the range are
satisfied. Conf(X) = 0 implies that the evidence source
has no evidence that the proposition X is true and
Conf(X) = 1 implies that the evidence source has conclu-
sive evidence that the proposition X is true. Confidence
functions may be combined through multiplication. The
result will always be a valid confidence function.

How the output of an evidence source is transformed
into a confidence function depends on the nature of the
evidence source. While in all cases an evidence source is
performing a comparison between an attribute of a data
entity and the corresponding attribute of a model entity
(each comparison producing a number which character-
izes how well the attributes compare), different types of
comparisons will provide numbers in different ranges. In
creating a confidence function we must map these num-
bers into the range [0, 1] and ensure that the 0 end of the
range represents the lowest level of similarity and the 1
end of the range represents the highest level of similarity.

The easiest case to consider occurs when the attributes
have scalar values such as surface area or edge length.
Assume we have the value A, from a data attribute and
the value A,, from a model attribute. If we can assume

I LN\
N

(a) (b)

FIG. 37. Object hypotheses with low (a) and high (b) support.
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that the model attribute value will always be larger than
the data attribute then we can use the quotient as a confi-
dence function

COﬂfA = g‘d‘ .

(18)
If, however, we cannot be sure which is larger we can
still use the quotient to define a confidence function

- min (44, 4]
Conf, = min (Am,Ad

(19)
Of course, many other approaches are possible such as
the (possibly normalized) difference between the two val-
ues. Eqs. (18) and (19) are appropriate when the relative
values of the attributes are important as well as the differ-
ence in the values.

In some cases the actual values of the attributes are not
important and we need only be concerned with the differ-
ence between them such as the distance between two
points. Assuming that the difference B is always positive,
we can use an exponential mapping to define a confidence
function

Confp = e FE, (20)
where 8 is a weighting factor chosen empirically. Note
that when the difference is 0 the confidence function
takes the value 1 and as the difference approaches « the
confidence function approaches 0. This was one of the
mappings used in [14].

Another common case involves the comparison of two
vectors. The dot product of the data vector Dy and the
model vector D, provides a good measure of how close
the two vectors are to pointing in the same direction.
However, the dot product of two vectors takes values in
the range [—1, 1] and we require values in the range [0,
1]. There are two situations to consider. First, in many
cases the vectors may be allowed to point in the same
direction or in opposite directions such as in the compari-
son of edge directions. In this case the absolute value of
the dot product suffices,

COi’lfD = ‘Dd : Dm'a (21)
to define the confidence function. In other cases, such as
when comparing surface normals, it is required that the
vectors point in the same direction; the confidence func-
tion is now defined by

- (Dd’Dm) + 1

Confp = 5 22)

5.5. From Confidence Functions to Basic Probability

Assignments

If we represent by O the proposition that a given data
entity supports a particular object hypothesis, we may
then use the provided confidence function to compute
Conf(0) and Conf(—0). If we use Cgyppon to denote the
number Conf(0), then we may set

COI’lf(—:O) =1~ Csupport- (22)
Given Conf(O) and Conf(-0O) defined in this manner, a

simple way to obtain a BPA satisfying all the required
properties would be via

m(O) = Csupport
m(-0) =1 — Csupport

m(®) = 0. (23)
These expressions, although constituting a valid BPA,
unfortunately do not suffice when practical consider-
ations are taken account, because they do not take into
account the fact that different evidence sources have dif-
ferent credibility. In line with what was said earlier, short
edges and small surface segments can be a result of noise
and other random phenomena. Due to their very random-
ness, there can be accidental alignments between such
data entities and the corresponding entities in an object
hypothesis. For this reason, if an evidence source in-
volves, say, a small surface segment, it must be given a
lower credibility compared to a source involving a large
surface segment. (How the credibility factor of an evi-
dence source should be computed will be discussed
later.) But, given the credibility factor associated with a
source, how should the BPA, such as the one shown
above, be modified? If Credibility represents the credibil-
ity of an evidence source—the value of this factor will
always be between 0 and 1—we factor in the source cred-
ibility into the above BPA in the following manner:

m(O) = Csupport : Credlblllfy
m(=0) = (1 = Cyypponr) * Credibility

m(®) = 1 — Credibility. (24)

Note that for this to be a valid BPA we must have m(O)
+ m(=0) + m(®) = 1. This is always true with the above
formulas for any values for the confidence function and
the credibility factor. For example, if we have Conf(O) =
0.75 = Csupporc and Credibility = 0.8 we have

m(0) = 0.75- 0.8 =0.6
m(=0) = (1 —10.75) - 0.8 = 0.2
m(®) = (1 — 0.8) = 0.2.
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This approach to factoring in the credibility of a source is
based on the method of discounting discussed by Shafer
[30] (pp. 251-255), where the benefit of reducing the dele-
terious effects of combining conflicting evidence is men-
tioned. The use of credibility to limit the contribution of
each source of evidence also has the effect of ensuring
that the belief computation does not become saturated
before all of the evidence has been considered. The sig-
nificance of saturation effects when combining evidence
using the Dempster—Shafer theory has been discussed by
Safranek, Gottschlich, and Kak [29].

5.6. Determining Feature Correspondences

Given a list of data surfaces and a list of model surfaces
for an object hypothesis, we must first determine the
proper correspondence between each data surface and a
model surface. It is possible for multiple data surfaces to
correspond to a single model surface. This is to be ex-
pected and does not cause any problems. Each data sur-
face is considered individually. To determine the corre-
spondence we compute the confidence that the data
surface corresponds to each of the model surfaces for the
object hypothesis. Thus, for a parallelepiped or an irregu-
lar there are six model surfaces to consider, and, for a
cylinder, there are three. For each data surface, the cor-
respondence with the highest confidence is accepted.

After we determine the correspondence for a data sur-
face we compute the correspondences for the edges
which bound the surface. Given a list of data edges and a
list of model edges for each data surface and its corre-
sponding model surface, we must determine the proper
correspondence between each data edge and a model
edge. It is possible for multiple data edges to correspond
to a single model edge. This again is to be expected and
does not cause any problems. As with surfaces, each data
edge is considered individually. To determine the corre-
spondence we compute the confidence that the data edge
corresponds to each of the model edges for the model
surface. For a rectangular surface there are four edges to
consider. For a cylindrical surface there also are four
edges to consider. Two of these edges arise from the
Jjunction of the cylindrical surface with the two planar end
surfaces; the other two edges are virtual edges which
arise from the cylindrical surface itself due to self-occlu-
sion, the virtual edges being parallel to the axis of the
cylinder. For each data edge, the correspondence with
the highest confidence is accepted.

In the following sections we describe how these confi-
dence functions are defined and how basic probability
assignments are made.

5.7. Edges

We begin our belief computation with the construction
of a BPA representing the belief from the edges for each
surface of the object.

The confidence function representing the confidence
that data edge Dy corresponds to model edge M, is given
by

Confeyge (D, M)

= Conf 2" Dy, M,)Conf3i" Dy, M,), (25)

where Conf gg;,z"’ represents the confidence that the edge
orientations correspond and Conf25."" represents the
confidence that the edge positions correspond. The confi-

dence based on the edge orientation is given by

Confggi’eem(Dka Mv) = |Ak . AV" (26)
which measures the difference in the directions of the
data and model edges. A is the vector representing the

orientation of the edge. The confidence based on the edge
position is given by

Confgg;::tion (Dk , Mv) — e~5 distedge edge(Dy ,M,,), (27)

which measures the distance between the data and model
edges. & is a weighting factor chosen empirically. The
function dist,uge eqge (D, M,) computes the distance be-
tween the data edge and the model edge using the formula

disredge,edge (Dk ’ MV) = %(diStpoim,line (Vkl s Line,,)

+ dl.s[point,line(vkz; Line,,)), (28)
where V, and V,, are the endpoint vertices of edge D, and
Line, is the line equation for the model edge M,. The
function dist,pim ine(V, Line) computes the perpendicular
distance between a vertex V and a line Line Note that 0 <
diSteqge edge(Dr, M,) = o, so an exponential function is
used to map this function into the range [0, 1].

The credibility that we place in the data edge D, as a
source of evidence is given by

- . (Ly LNL,
Credibility 45, (Dy, M,) = min (Z—y’ L—k> I’ 29)

where L, is the length of the data edge Dy, L, is the length
of the corresponding model edge M, , and L, is the sum of
the lengths of all of the edges of the model object. Eq.
(29) provides a measure of how much of the hypothesized
edge is visible in the data and how much of total length of
the object’s edges the hypothesized edge represents. The
measure is normalized so that the effect is the same
whether the hypothesized edge is too long or too short.

Now, in accordance with Eq. (24), we can compute the
BPA m.qg, as follows:
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medgek(oi) = Confedge(Dka MV)Credibilityedge(Dk; MV)
medgek("“Oi) = (1 - Con,ﬁedge(Dk’ Mv))
Credibility.qpe(Dy, M,)

Medee,(O) = 1 ~ Credibility gDy, M,). 30)

Once the BPAs for the individual edges have been
computed, we can combine them into a single BPA. The
BPA representing the belief that the K; data edges of the
Jth surface correspond to the ith object’s model is

medgeSj = @ Medgey, (31)

1sksK;
where, as explained in Appendix B, the symbol @ de-
notes the invocation of Dempster’s rule. That the as-

sumption of independence required by Dempster’s rule is
not violated will be discussed in Section 5.11.

5.8. Surfaces

The BPA based on the edges for a surface are com-
bined with the BPA derived directly from the surface
attributes so that all of the information for a particular
surface is contained in a single BPA.

The confidence function associated with matching a
data surface D; with a model surface M, is given by
Conf:rmf(Dja Mu) = Confg,:,i-je’m(Djy Mu)co”fj,/,zgfpe(Dj> Mu);

(32)

where Conf°“" represents the confidence that the sur-

surf
face orientations correspond and Conf jl’f,‘,}’” represents the
confidence that the surface shapes (types) correspond.
" For planar and irregular surfaces the confidence based on

orientation is given by

N - NJ + 1

> (33)

Conffﬁf’”(Dj, M) =

which measures the difference in the directions of the
surface normals. N is the vector representing the orienta-
tion of the surface normal. For cylindrical surfaces the
confidence based on orientation is given by

Conforiem(Djy Mu) = |XJ : Xul

surf (3 4)

which measures the difference in the directions of the
cylindrical axes. X is the vector representing the orienta-
tion of the cylindrical axis. For all types of surfaces the
confidence based on shape is given by

Conf"«(D;, M,) = shape(T}, T,) (35)

which is based on the confidence function shape(T;, T)
which the mid level processing system provides for each
data surface D; and each possible surface shape T € {pla-
nar, irregular, cylindrical}. The mid level processing sys-
tem defines shape(T;, T) such that

shape(T;, planar) + shape(T;, irregular)
+ shape(T;, cylindrical) = 1 (36)

and

0 = shape(T;, T) = 1. 37
The credibility factor when the evidence source is the
data surface D;, the model surface being M, is given by
Credibility s (D;, M,) = min (:2-1, fl_j) %—‘:, (38)
where A; is the area of the data surface, A, is the area of
the corresponding model surface, and A; is the total sur-
face area of the model object. This provides a measure of
how much of the hypothesized surface is visible and how
much of the total area of the object the hypothesized
surface represents. The measure is normalized so that the
effect is the same whether the hypothesized surface is too
large or too small.
As with edges, and in accordance with Eq. (24), the
confidence and credibility factor are combined into a
BPA Mg

mm,fj(O,-) = Confyur(D;, M ,)Credibility.(D;, M,)
’nsurfj(“oi) = (1 - Conf:mrf(Dj’ Mu))
Credibility s, (D;, M,)

M) = 1 = Credibilitys,r (D, M.). (39

Once the BPA based on the surface attributes is com-
puted, it is combined with the BPA derived from the
edges. The combined BPA representing the belief that the
Jth data surface corresponds to the ith object’s model is

Msurface; = Msurf; @ Medges; (40)
where m,r depends on surface attributes only and 7,445
on edge attributes only. Here again we postpone until
Section 5.11 the discussion on the requirement that the
sources of evidence be independent.

5.9. Objects

Once the BPAs for all of the object surfaces have been
computed, we can combine them into a single BPA for
the object. The BPA representing the belief that an object
hypothesis O;, which has J; data surfaces, corresponds to
its model is
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mobject,' = @ msmfacej: (41)

1=j=J;
which simply states that the belief in an object hypothesis
is the combination of the belief in each of its surfaces.
The discussion of the independence assumption is again
deferred to Section 5.11.

5.10. Evaluation of Combined Hypotheses

To evaluate a combination hypothesis, we compare the
beliefs in the two original object hypotheses O; and O,
with the belief in the combined hypothesis O. The com-
bined hypothesis is accepted based on the following eval-
uation:

IF [{Bel(0) > Bel(~0)} AND {Bel(0) > Bel(O))}
AND {Bel(O) > Bel(0,)}] THEN :
accept hypothesis O

ELSE IF {Bel(O) > 1.5 Bel(-0)}

AND [{Bel(O) > Bel(O))}
OR {Bel(0) > Bel(0,)}] THEN
accept hypothesis O

ELSE
reject hypothesis O

END IF

The first case handles the situation where the new hy-
pothesis is stronger than both of the constituent hypothe-
ses. The second case handles the situation where the new
hypothesis is very strong but is only stronger then one of
the constituent hypotheses. This sometimes happens
when one of the constituent hypotheses is also very
strong. If the new hypothesis is accepted then it becomes
the new seed hypothesis and the search for further com-
binations continues. If the new hypothesis is not ac-
cepted then the combination is undone (module 8 in Fig.
3) and the system backtracks and continues the search
through the combinability graph for other combinations.

5.11.  Are The Independence Assumptions for Use of

Dempster’s Rule Satisfied?

One important issue that must be addressed when dis-
cussing evidential reasoning is the issue of independence.
Dempster’s rule for combining evidence sources can only
be applied provided the sources of evidence are indepen-
dent. We will now provide arguments that establish that
in each of the three situations in which Dempster’s rule is
invoked, the independence assumption is not violated.

Let us first consider the case of combining evidence
generated by the data edges. Metaphorically speaking,
we may imagine that sitting on each data edge is an ex-
pert to whom is available the candidate model object,
which corresponds to the object hypothesis under evalu-
ation, together with its associated pose transform, includ-
ing the scaling factors. This expert examines that model

edge which is closest to the data edge in position and
orientation. Then the expert issues forth a BPA on the
basis of similarity of the positions and the orientations of
the data edge, to which the expert is assigned, and the
closest model edge, taking into account the credibility
factor. Now the question is, can one such expert predict
the BPA that will be issued by another expert sitting on
some other edge? It is, of course, true that the model
knowledge available to all the experts engaged in the
evaluation of all the edges in a given object hypothesis is
the same. However, it is also true that, in the presence of
sensor noise and artifacts generated by the peculiarities
of a segmentation algorithm, the position and the orienta-
tion of one data edge will not be predictable from the
position and the orientation of another data edge, even
when the two data edges are adjacent and thus sharing a
vertex. Therefore, the judgments made by one expert,
regarding the similarity of its data edge to the closest
model edge, are independent of the judgments made by
any of the other experts.

We must hasten to add that it would be only too easy to
come up with a scheme for specifying edge BPAs where
the assumption of independence would be violated. Note
that in our case our expert’s ‘‘vision’’ is limited to the
local data edge to which that expert is assigned; in other
words the expert cannot see any of the other data edges.
Now consider what would happen if we had an expert
who looked at all the data edges in an object hypothesis
and who then assigned BPAs to each edge. Such BPAs
would not be independent because now the expert’s judg-
ment regarding what BPA to issue would be influenced by
the relations between the data edges, on the one hand,
and the relations between the model edges on the other.

The second use of Dempster’s rule is to combine evi-
dence from the edges of a surface with evidence from the
orientation and shape of the surface. Consider the case of
surface orientation, such as the orientation of a cylindri-
cal surface. What edges of a cylindrical surface might be
visible would depend on what other objects are occluding
the cylinder—something that is entirely unpredictable.
Therefore, the edges we extract may or may not be paral-
lel or perpendicular to the axis of the cylinder. (Of
course, not to be forgotten is the randomness in edge
orientations introduced by noise and other artifacts.)
Therefore, in general, it would not be possible to predict
the orientation of a surface from the edges associated
with that surface. Similarly, the shape information for a
surface is completely unrelated to the edge information
because it depends entirely on local properties of the
surface points. For example, the decision that a surface is
cylindrical is based on the surface normal distribution
computed from the interior points of a segmented sur-
face; in fact such an estimate is made from only those
interior points that are within a predefined neighborhood
and not in the vicinity of any of the edges. Therefore, in
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FIG. 38.

Data edges for the scene in Fig. 33.

general, a surface BPA will not be predictable from the
edge BPAs.

The third use of Dempster’s rule is to combine evi-
dence from a set of surfaces into a belief function for the
entire object. The reader is probably thinking that since
the adjacent surfaces must share common edges, it sim-
ply is not possible for the BPAs on the right hand side of
Eq. (41) to be independent. Our defense is that, due to
the manner in which the range maps of postal objects are
segmented, it is more often than not the case that the
adjacent surfaces do not share any edges. The important
thing to remember is that postal objects often have
rounded and crumply edges, as opposed to crisp surface
normal discontinuities on industrial objects. When the
range maps of these scenes are segmented, we do not
enforce the constraint that adjacent surfaces share edges
[17]. For example, shown in Fig. 38 are the edges result-
ing from the segmentation of the scene of Fig. 33.% As
shown in Fig. 38, the surface segments do not share any
edges. Also, the nearby edges from adjacent surfaces do
not in all cases possess identical orientations. The point
we are trying to make is that in the presence of sensor
noise, object surface irregularities, segmentation arti-
facts, etc., we can assume that the BPAs corresponding
to different surfaces would be independent.

Therefore, we can state that we are not violating the
requirement that the BPAs be independent before they
are combined via Dempster’s rule.

6. GEOMETRIC REASONING

As was mentioned in Section 2.4, the task of the Geo-
metric Reasoning Loop in Fig. 3 is twofold: (1) to expand

® The segmentation shown in Fig. 33 is drawn in the parameter space;
the parameters correspond to the scanning employed for the construc-
tion of the range map. On the other hand, the segmentation shown in
Fig. 38 is in the xy plane and is obtained by projecting the segmentation
boundaries onto the xy plane. This also explains the overlapping edges
in Fig. 38.

the object hypotheses to their maximum allowable di-
mensions along directions away from the sensor and to-
ward the work table; and (2) to detect intersections be-
tween object hypotheses thus modified. In actuality, both
these tasks are accomplished simultaneously, as will be
explained in this section. As mentioned earlier, when the
Geometric Reasoning Loop finds an object hypothesis to
be geometrically inconsistent with the rest of the scene
interpretation, in the sense that even in its minimal di-
mensions the object intersects other object hypotheses,
the system backtracks in the search process by undoing
previous hypothesis combinations.

When we computed the scale parameters associated
with an object hypothesis in Section 3, we calculated the
minimum bounding parallelepiped for the data corre-
sponding to the hypothesis. Now, in the Geometric Rea-
soning module, the system tries to expand this minimum
bounding parallelepiped to its maximum possible dimen-
sion along a direction away from the sensor. The paral-
lelepiped is expanded (grown) until it contacts some
other object hypothesis. After such an expansion, the
size of the object hypothesis (meaning its scale parame-
ters) is modified to reflect its enlarged size.

The geometric reasoning algorithm used in INGEN is
based on a single operation: finding the maximal extent of
an object hypothesis in a particular direction. The deter-
mination of the geometric consistency of a scene requires
the execution of this algorithm once for each object in the
scene. Each object is “‘grown’’ along the object-centered
axis that points away from the sensor and is most nearly
parallel to the sensor viewing direction. This is the direc-
tion where the uncertainty about the size of an object
hypothesis is the largest. The algorithm could actually be
applied in all six directions for each object hypothesis
but, we believe, the benefits from the extra computation
are small compared to the additional computation cost.

The order in which the object hypotheses are grown is
significant only if more than one geometrically consistent
scene interpretation is possible. (This occurs in situations
where the data are ambiguous; that is, where there is not
sufficient information available to completely determine
the dimensions of the objects.) The ordering heuristic
used by INGEN is to start from the bottom of the pile of
objects and work towards the top. Thus, objects higher
up in the pile are tested after objects lower in the pile.
Although the objects near the bottom of the pile are sub-
ject to more severe occlusion than objects near the top of
the pile, the former objects are less likely to intersect
other objects as they are grown toward the table. Also,
the objects higher up in the pile will be grown towards the
previously grown objects lower down and thus will bene-
fit from the results of previous object growth.

The algorithm for the overall control of the geometric
reasoning process for an entire scene, geometric_reason-
ing, is shown in Figs. 39 and 40. This procedure is called
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PROCEDURE geometric_reasoning()
SortedHypotheses « list of all object hypotheses sorted from lowest to highest
Conflicts « []
FOR EACH Hypothesis IN SortedHypotheses DO
ExtentMin « minimum extent attribute for Hypothesis
transform SortedHypotheses into model coordinate frame of Hypothesis
grow Hypothesis until first contact
Extent « the distance grown to the first contact
First < the first object contacted
ExtentMax ¢« Extent transformed into scene coordinate frame
IF ExtentMax > ExtentMin THEN
Extent < ExtentMax
recompute pose and scale factors for Hypothesis
ELSE
add [Hypothesis, First] to Conflicts
END IF
END FOR
IF Conflicts = {] THEN
RETURN []
ELSE
ConflictObjects « resolve_conflicts(Conflicts)
RETURN ConflictObjects
END IF
END PROCEDURE

FIG. 39. Algorithm which controls the geometric reasoning process
for a scene.

by the procedure searchl which was discussed in Section
2.3 and defined in Fig. 5. Essentially, the system loops
through all of the object hypotheses, performing the
growing process for each object in turn. As each object is
grown, either new maximum dimensions are calculated
or an intersection with another object is noted. After all
of the intersections (conflicts) are found, the procedure
resolve _conflicts (Fig. 40) is called to decide which hy-
potheses should be uncombined. The rationale for the
uncombination decisions are (1) if the growing process
did not result in mutual intersections then the object that
actually grew into the other should be the first choice for
uncombination, or (2) the largest hypothesis in a mutual
conflict situation should be the first choice for uncom-
bination, and (3) if the first choice is a single-surface hy-
pothesis then the other hypothesis should be uncom-
bined. If both of the hypotheses are single-surface
hypotheses then an unresolvable conflict has been de-
tected. The geometric-reasoning procedure either returns
an empty list specifying the fact that the scene interpreta-
tion is geometrically consistent or it returns a list of hy-
potheses which should be uncombined.

The most important aspect of the geometric reasoning
process is the intersection detection algorithm which also
determines the maximum extent for object hypotheses
based on contacts with other objects. Although we refer
to this algorithm as a growing process, it is not imple-
mented in that manner. In the remainder of this section
we discuss this algorithm.

Before we describe our algorithm we must introduce

some terminology that will help to clarify the discussion.
The object is the minimum bounding parallelepiped for
the object hypothesis for which we wish to determine the
maximum value of a particular size parameter. The ob-
stacles are the minimum bounding parallelepipeds for all
of the other object hypotheses in the scene which poten-
tially constrain the object physically. We use this termi-
nology because it is convenient to think of the computa-
tion of the maximal extent of an object as the “‘growing’’
of the object until it comes in contact with an obstacle.
The algorithm consists of four steps.

1. Find the model transformation for the object; this
transform takes the object in the scene into its unit-sized
model in the model coordinate frame. (Note that this
transform is the inverse of the pose transform discussed
1n Section 3.)

2. Use the model transformation to transform all ob-
stacles into the model coordinate frame of the object.

3. Find the maximum extent of the object along the
positive z axis such that the object is in contact with at
least one obstacle in the scene and its volume does not
intersect the volume of any obstacle in the scene.

4. Use the model-to-scene transformation to trans-
form the extent measurement back into the scene coordi-
nate frame and thus find its actual value.

As we discuss the geometric reasoning process we will
refer to postal scene 711 shown in Fig. 42. As shown in
Fig. 42, the scene contains three objects plus the back-

PROCEDURE resolve_conflicts(Conflicts)
ConflictObjects « [}
FOR EACH [Hypothesis, First] IN Conflicts DO
IF {First, Hypothesis] is not in Conflicts THEN
IF Hypothesis is not a single surface hypothesis THEN
add Hypothesis to ConflictObjects
ELSE IF First is not a single surface hypothesis THEN
add First to ConflictObjects
ELSE
report unresolvable conflict between Hypothesis and First
ENDIF
ELSE
Largest « larger of Hypothesis and First
Smallest « smaller of Hypothesis and First
IF Largest is not a single surface hypothesis THEN
add Largest to ConflictObjects
ELSE IF Smallest is not a single surface hypothesis THEN
add Smallest to ConflictObjects
ELSE
report unresolvable conflict between Hypothesis and First
END IF
END IF
END FOR
RETURN ConflictObjects
END PROCEDURE

FIG. 40. Algorithm for making uncombination decisions based on
the conflicts detected during geometric reasoning.
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FIG. 41. Model coordinates frame for geometric reasoning.

ground. The topmost object is a letter which is lying on
two boxes, one of which is lying on top of the other.

6.1. Step1

The determination of the pose transformation is made
when the attributes of the object hypothesis are com-
puted as discussed in Section 3. However, for the geo-
metric reasoning process it is useful to define a different
model coordinate frame. For geometric reasoning,
INGEN uses bounding boxes to model all objects but this
algorithm could also be applied to more complex object
models. The coordinate frame used for geometric reason-
ing is defined so that the model object is a unit cube
located in the positive octant with one vertex at the origin
as shown in Fig. 41. In the rest of this section all refer-
ences to the model coordinate frame refer to the object-
centered coordinate frame that we have just defined. As
the algorithm is discussed it will be seen how this coordi-
nate frame simplifies the computations. The transforma-
tion which relates the model coordinate frame used by
the pose transform calculations to the model coordinate
frame used for geometric reasoning is precomputed and
is a part of the object model.

Figure 43 shows the hypothesized objects for scene
706.

6.2. Step 2

In step two all of the objects and obstacles are trans-
formed into the model coordinate frame of the object of
interest. By this we mean that the bounding boxes for all
of the objects are transformed into the geometric reason-
ing model coordinate frame of the object of interest. In
the top view of the scene in Fig. 43 the origin of the model
coordinate frame for the letter is the top left vertex. The x
axis extends toward the right and the y axis toward the
bottom of the scene. Figure 44 shows the hypothesized
objects of scene 706 after they have been transformed
into the model coordinate frame of the letter. The letter is
transformed into a unit cube, which is upside down with
respect to Fig. 43, and the other objects are transformed

accordingly; i.e., the visible top surface of the letter be-
comes the bottom surface of the unit cube in the model
coordinate frame and the other objects appear above the
letter.

6.3. Step 3

Clearly, step three of this algorithm is the most difficult
one. However, the transformation of the obstacles into
the model coordinate frame of the object which was car-
ried out in step two simplifies the computations in step
three. Our approach borrows some computational tech-
niques from ray casting algorithms in the computer
graphics field and from path planning algorithms in the
robotics field. The ray casting technique that we borrow
is to transform our object and obstacles into a coordinate
frame where the object hypothesis is a simple primitive
object of fixed size and shape. The path planning tech-
nique that we borrow is the use of both parametric and
implicit representations of surfaces and edges to aid in
the computation of intersections. Roth [28] discusses ray
casting techniques and algorithms and Lozano-Pérez [22]
discusses the configuration space approach to robot mo-
tion planning.

Three types of contact are possible between polyhedral
objects and polyhedral obstacles. We use the convention
stated in [22] to name these interactions: Type A—an
object surface contacting an obstacle vertex, Type B—an
object vertex contacting an obstacle surface, and Type
C—an object edge contacting an obstacle edge.

The three types of contact are shown in Fig. 45. Note
that the objects and the obstacles are positioned in the
object’s model coordinate frame. Thus, the obstacles
which are below the object in the scene appear above the
object in the model coordinate frame.

For each object—obstacle interaction we need to check
for all three types of contact. The maximum object height
(in the model coordinate frame) is determined by the min-
imum height contact with the obstacle. This process is
carried out for each obstacle in the scene and the results
are then combined to find the maximum height for the
object which is determined by the minimum height con-
tact with any obstacle.

In the following sections we describe computational
techniques for dealing with the three types of contact. It
is important to note that all of the computations are car-
ried out in the model coordinate frame of the object of
interest. We will always be finding the maximum extent
of the object along the positive z axis, which we refer to
as the height of the object, in the model coordinate frame.
Thus, when we refer to the top surface of the object we
are referring to the surface which has a surface normal
that points in the positive z direction in the model coordi-
nate frame regardless of its acutal location and orienta-
tion in the scene.
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FIG. 42. Range data plot and segmentation for scene 706.

6.3.1. Type A—An Object Surface Contacting an
Obstacle Vertex

For type A contact we need to find the obstacle vertex
which will contact the top surface of the object at the
lowest point. The procedure is to find all obstacle verti-
ces that could potentially contact the top surface of the
object and then find the one with the smallest z compo-
nent. For parallelepiped obstacles the only vertex that

can contact the topmost surface of the object is the one.

with the smallest z component. For all of the other verti-
ces an edge will necessarily contact the object at a point
that is lower than the vertex so these vertices can be
ignored. Thus, only one of the eight vertices for each
parallelepiped obstacle is tested for constraining the
object. '

The bounding boxes are all parallelepipeds and their
transformation into model coordinates results in the ob-
ject bounding box becoming a unit cube in the positive
octant with a vertex at the origin. Therefore, only those
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FIG. 43. Hypothesized objects for scene 706.

obstacle vertices which satisfy 0 = x < land 0=y = 1
can potentially contact the top surface of the object
parallelepiped.

6.3.2. Type B—An Object Vertex Contacting an
Obstacle Surface

Given that object bounding boxes are parallelepipeds,
we need to find the obstacle surface which will contact
the object bounding box vertex at the lowest point. The
procedure is to find the contact points for all obstacle
surfaces that could potentially contact the top vertices of

Top

Axonometric

Front

FIG. 44. Objects transformed into the model coordinate frame of
the letter.

Type A

Type B Type C

FIG. 45. Type A, B, and C contacts.

the object bounding box and then find the one with the
smallest z component. Potential contact points are the
intersection points of the four lines defined by the vertical
edges (parallel to the z axis) of the object parallelepiped
and the obstacle surfaces. The four lines are defined by:
{x=0,y=0L{x=0,y=1}{x=1,y=0}, and {x = 1,
y = 1}. We only need consider obstacle surfaces that
have their average surface normal pointing in the nega-
tive z direction. For all of the other surfaces some other
part of the obstacle will necessarily contact the object at a
point that is lower than the surface so these surfaces can
be ignored. Thus, only three of the six surfaces of each
parallelepiped obstacle are tested for constraining the ob-
ject.

All of the planar obstacle faces belong to rectangular
parallelepipeds so the faces will be parallelograms when
transformed into the model frame of the object. By using
the parametric representation for these faces the inter-
section problem can be solved efficiently. We select one
vertex (xo, Yo, 20), of the face as its origin and use the two
adjacent vertices, (x;, y;, z1) and (x;, y,, z2), to define
oblique axes for the parameterization of the surface. Us-’
ing u and v as parameters, we can write the following
parametric equations for the parallelogram face of an ob-
stacle bounding box

X =xo+ uf; + vf,

Yy =Yoot ug: + vgs,
Z:ZO+ Llh[ + th,

where
Ji=x1— X0, &g =Y1— Y, hi =24~ 20
f2 = x3 = xo, g2=Y2 — Yo, M2 =22 — Zo.

By substituting the x and y values from the line equation
pairs into the x and y parametric equations for the plane
we can solve for the two surface parameters u and v:

u = g2lx — xo) — foly = yo)
fig2 — fr81 ’

y = —81x = x0) + A1y = o)
figx — fg '
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If0 =<y = 1and 0 =< v =< 1 then the intersection point lies
within the obstacle face. We then substitute « and v into
the z parametric equation to find the z coordinate of the
intersection point.

6.3.3. Type C—An Object Edge Contacting an
Obstacle Edge

For type C contact we need to find the obstacle bound-
ing box edge which will contact the top edge of the object
bounding box at the lowest point. The procedure is to find
all points at which obstacle edges intersect the vertical
surfaces of the object and then find the one with the
smallest z component. We can exclude some edges from
consideration because of the orientations of the surfaces
that they bound. All of the edges of the surface with a
surface normal that forms the most positive dot product
with the positive z axis are excluded. Also, the edge be-
tween the other two surfaces with surface normals that
form positive dot products with the positive z axis are
excluded. Thus, only seven of the twelve edges of each
parallelepiped obstacle need be tested for constraining
the object.

For object parallelepipeds the contact points are the
intersection points between obstacle edges and the four
vertical faces (parallel to the z axis) defined by the four
plane equations: x = 0, x = 1,y = 0, and y = 1. For
planes x = 0 and x = | we are interested in intersection
points such that 0 =y =< 1. For planesy = 0andy = 1 we
are interested in intersection points such that 0 < x = 1.

By using the parametric representation for obstacle
edges we can simplify the intersection computations.
Edges are defined by their endpoint vertices: (xq, Yo, Zq)
and (x,, y1, z1). Using ¢ as the parameter, the parametric
equations for the edge are

Top Side

Front Axonometric

FIG. 46. Final results for scene 706.

x=xo+1tf, y=yotitg, z=2z0+th,

where

f=xi—X0, &8=y1— Y, h=2z1— 2.
By substituting the x or y value from the plane equation
into the appropriate edge equation we can solve for the

edge parameter ¢:

_x—-xo

7

- zZ—-z
_Y )’o, = 0o

t 2 7

t

If 0 = ¢ = 1 then the intersection point lies within the
obstacle edge. We then substitute ¢ into the other para-
metric equations to find the other coordinates of the in-
tersection point.

6.4. Step 4

The result from step three is a value for the maximum
extent of the object along the positive z axis in the model
coordinte frame of the object. Note that this coordinate
frame depends on the dimensions of the object. A maxi-
mum extent value less than one indicates that the old
dimension was too large and than an intersection has
been found, and a value greater than one indicates that
the old dimension was too small and that the object may
be extended by an amount proportional to this value. The
new object dimension is obtained in step four by simply
multiplying the value found in step three by the previous
value for the object dimension.

Figure 46 shows the final results produced by INGEN
for scene 706. Note that the letter has been recognized
correctly. Also note that one of the boxes extends below
the other box and the latter appears to be floating in air.
There is no way for the system to know how far the box
extends under the other one without undertaking more
complex geometric reasoning or taking into account the
physical stability of the scene interpretation. One ap-
proach that would help to solve this problem would be to
extend the box under the other one until it contacts
known empty space. The same basic approach as dis-
cussed here could be used but the representation of
empty space would necessarily be more complex than the
parallelepipeds that we have used. Mulgaonkar, Cowan,
and DeCurtins [24] have investigated some of these pos-
sibilities.

7. CONCLUSION

We have discussed the INGEN system which ad-
dresses the problem of generic object recognition in the
postal domain. There are three important aspects of this
system which make it particularly useful for generic ob-
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ject recognition. (1) New approaches have been devel-
oped for constructing object hypotheses, computing their
attributes, and evaluating how well they fit the data. (2) A
geometric reasoning process determines constraints on
the size of object hypotheses by finding points of contact
with other object hypotheses and also detects geometric
inconsistencies in the scene interpretation. (3) The recog-
nition process integrates hypothesis evaluation with geo-
metric reasoning to allow backtracking when object hy-
potheses are rejected due to insufficient support or
geometric conflict with other object hypotheses.

8. APPENDIX A: RANGE DATA ACQUISITION AND
CHARACTERIZATION

8.1 Range Data Acquisition

Acquisition of range data (module 1 in Fig. 3) is the
starting point for the system. Range data are used by the
system in the form of three parameterized arrays x(i, j),
¥(i, j), and z(i, j) to represent points in three dimensional
space. These arrays are indexed by the scanning parame-
ters i and j. The size of these arrays.depends on the
sensor and the application. We have used sizes from 100
X 100 to 512 x 512. For the postal application these data
usually correspond to a 16 X 16 X 16 in. volume in the
world.

Figure 47 shows a schematic representation of how a
structured light range data sensor is used to acquire range
‘data. A projector projects a vertical plane of light onto
the scene. This plane appears as a stripe from the view-
point of the video camera which is used to produce digi-

Camera

tized images of the scene with the stripe. The known
geometric relationship between the projector and the
camera allows the computation of depth through the use
of triangulation formulas. To acquire the range data the
plane of light must be scanned across the scene and digi-
tized images collected for a number of stripes. The raw
form of the range data is the d(i, j) array. The array
parameter [ represents the row number in the digitized
image while the array parameter j represents the stripe
number in the projector, and the value of each d(i, j) is
the distance from the left edge of the digitized image
to a point where strip j intersects row i. A calibration
procedure is used to construct a transformation matrix
which is used to transform the d(i, j) data into x(i, j),
y(i, j), and z(i, j) data. The calibration procedure is de-
scribed in [4, 5]. A variety of triangulation formulas for
different types of structured light sensing are presented in
[36].

INGEN has been operated successfully on data from a
variety -of range data sensors:

* A gantry-mounted light stripe triangulation sensor
constructed at the Purdue Robot Vision Lab. It has a
stationary camera and uses rotational scanning of the
light stripe. The demonstration shown in Figs. 1 and 2
made use of this sensor.

+ A robot-carried light stripe triangulation sensor con-
structed at the Purdue Robot Vision Lab. It has the cam-
era and the light stripe projector in a fixed relationship
and uses the robot to move the scanner to scan the scene.

+ A space coded structured light triangulation sensor
constructed at the GE/RCA Advanced Technology Labs

Projector

FIG. 47. Structured light range data sensor.
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(now David Sarnoff Research Center, a subsidiary of SRI
International) [27]. It projects a sequence of 14 patterns
on the scene which can simulate the projection of 1024
stripes. The example scenes shown in Figs. 23, 29, 33,
and 42 were produced by this sensor.

+ A flying laser spot triangulation system constructed
at SRI Internationl [26]. It uses moving mirrors to scan a
laser spot over the scene and detectors to measure the
position of the spot to determine the range.

» Two laser radar sensors constructed at the Environ-
mental Research Institute of Michigan (ERIM) [15]. They
both scan an amplitude modulated laser beam over the
scene using moving mirrors and detect the phase shift
between the projected and the sensed beam. The range is
proportional to this phase shift. One sensor uses mirrors
for scanning a laser across the entire stationary scene.
The other sensor uses mirrors to scan a laser spot in one
direction while a conveyer belt moves the objects
through the view of the sensor.

8.2. Low Level Processing

Low level processing (module 2 in Fig. 3) begins with
the computation of local surface normals for each range
data point. The surface normals are then used to find
surface normal disparity edges where the deviation be-
tween adjacent surface normals is high. Two other edge
detectors are also used, one to detect range discontinuity
edges, where there is a large jump in position between a
range point and its neighbors, and the other to detect roof
and valley edges, where the local curvature of the surface
is high. A range pixel is labeled as an edge point if the
value computed by any of the three detection methods
for that point exceeds the pre-defined threshold for that
detection method. For INGEN the edge thresholds are
defined so that the system is biased towards over-seg-
mentation because it is much easier to combine segments
that have been erroneously separated than it is to sepa-
rate segments that have been erroneously labeled as a
single segment. After all of the edge pixels in the data
have been found a growing and shrinking procedure is
used to fill in any small gaps in the edges. These range
edges divide the scene into segments which correspond
to continuous surfaces. A connected component labeling
algorithm is used to label each range pixel with the name
of the surface segment that contains it.

8.3 Mid Level Processing

Mid level processing (module 3 in Fig. 3) takes the
segmented range data and produces a hierarchical sym-
bolic scene description as shown in Fig. 48. This descrip-
tion consists of surfaces, edges, vertices, and relations.
Surfaces are bounded by edges and edges are bounded by
vertices. The set of edges which bounds a surface is
called the border. These entities are related to each other

Object

i
oL
th

Surface

Vertex

FIG. 48. The hierarchical symbolic scene description.

in a hierarchical fashion. Note that objects can be consid-
ered the top of the hierarchy because they are bounded
by surfaces.

Surfaces have the following attributes:

1. viewpoint—the viewpoint from which the data
was acquired

2. edges—a list of edges that form the exterior
boundary of the surface

3. homog—a homogeneous transformation specify-
ing the position and orientation of the surface derived
from the major, minor, and normal axes and the position

4. position—the centroid of the data points for the
surface

5. orientation—the surface normal for the surface de-
rived from the plane equation

6. types—a list of the three surface types with the
confidence in each type

7. type—the surface type with highest confidence:
planar, cylindrical, or irregular

8. confidence—the confidence for the surface type

9. shape—the shape of the surface border: circular,
irregular, trapezoidal, parallelogram, rectangular, or
square

10. area—the area of the surface

[1. num_points—the number of datapoints in the sur-
face

12. major_axis—the major axis of the surface
13. minor_axis—the minor axis of the surface

14. cylindrical_axis—the cylindrical axis of the sur-
face
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15. length—the length of the surface along the major
axis

16. width—the length of the surface along the minor
axis

17. height—the length of the surface along the normal
axis '

18. angle_from_vertical—the angle between the sur-
face normal and the positive 7z axis

19. angle_major_axis—the angle between the projec-
tion of the major axis into the x—y plane and the positive x
axis

20. plane_equation—the equation of the best fitting
plane for the surface

21. plane_error—the error of the plane fit

22. borders—the borders defining the boundary of the
surface

23. xlow—the x, y, z coordinates of the surface point
with the smallest x coordinate

24. xhigh—the x, y, z coordinates of the surface point
with the largest x coordinate

25. ylow-—the x, y, z coordinates of the surface point
with the smallest y coordinate

26. yhigh—the x, y, z coordinates of the surface point
with the largest y coordinate

27. zlow—the x, y, z coordinates of the surface point
with the smallest z coordinate

28. zhigh—the x, y, z coordinates of the surface point
with the largest z coordinate

29. highest_point—the x, y, z coordinates of the sur-
face point which is the highest above the supporting sur-
face (same as zhigh for postal data)

The irregular surface type is used to characterize sur-
faces that are generally planar but have wide variations in
the local surface normals. We will not go into the algo-
rithms for classifying surface types, since much has been
published on that subject already. For general references,
the reader is referred to 3, 35].

Edges have the following attributes:

1. viewpoint—the viewpoint from which the data
was acquired

2. vertices—the vertices which form the endpoints of
the edge

3. type—the type of the edge as classified by the mid
level system: out_of view, occluded, occluding, con-
cave, convex, valid_to_invalid, or unknown

4. shape—the shape of an edge is always line because
the mid level system approximates curved edges by mul-
tiple straight line edges

5. length—the length of the edge in inches
6. num_points—the number of datapoints in the edge

7. equation—the equation for the edge in parametric
form [[x1, y1, z11, [x2, y2, z2]], where [x1, y1, z1] is the
position of one endpoint of the edge and [x2, y2, z2] is a
vector pointing from the first endpoint to the other end-
point

8. step—the size (in inches) of the step between the
range data on either side of the edge

9. angle—the angle (in degrees) between the range
data on either side of the edge

10. borders—the borders to which this edge belongs

Vertices have the following attributes:

1. viewpoint—the viewpoint from which the data was
acquired

2. edges—the edges which use this vertex as an end-
point

3. position—the position of the vertex

4. coordinates—the image coordinates of the vertex

Relations have the following attributes:

1. viewpoint—the viewpoint from which the data
was acquired

2. surfaces—the two surfaces which define this rela-
tion

3. type—the type of relation: convex, concave, oc-
cluding, occluded, or unknown

4. angle—the angle between the two surface normals

5. edges—the edges of the first surface which con-
tribute to the relation

6. edges2—the edges of the second surface which
contribute to the relation

7. compatibility—the compatibility measure between
the two surfaces

8. border_angle—the angle between the two surfaces
based only on data near the boundary

9. border_step-—the size of the step between the two
surfaces based only on data near the boundary

10. num_points—the number of datapoints in the rela-
tion ,

11. num_pts_border_angle—the number of data-
points in the relation that were used to compute the bor-
der_angle attribute

12. num_pts_border_step—the number of datapoints
in the relation that were used to compute the border_step
attribute

The viewpoint attribute for all of these data entities is
included to allow for data from multiple viewpoints or
multiple sensors. Also, if the viewpoint attribute has the
value ‘‘model” then the entity is part of the model data-
base rather than part of the scene data.
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9. APPENDIX B: DEMPSTER-SHAFER THEORY

In this appendex we provide an introduction to the
Dempster—Shafer theory for evidential reasoning and
then we describe a simplification of this theory that is
applicable to our hypothesis evaluation problem.

9.1 Introduction to Dempster~Shafer Theory

In the Dempster—Shafter (D-S) theory, the set of all
the elementary propositions likely to occur in a domain of
discourse is called the frame of discernment (FOD) and
frequently denoted by ©. The 2/ subsets of ® are called
propositions and the set of all the propositions is denoted
by 2°.

In the D-S theory, probability masses are assigned to
propositions which are subsets of ®. The interpretation
to be given to the probability mass assigned to any subset
of O is that the mass is free to move to any element of
that subset. Under this interpretation, the probability
mass assigned to ® represents ignorance, since this mass
may move to any element of the entire frame of discern-
ment. When a source of evidence assigns probability
masses to the propositions represented by the subsets of
®, the resulting function is called a basic probability as-
signment (BPA). Sometimes this function is also called a
probability mass function. A basic probability assign-
ment is a function m: 28 — [0, 1], where

> mX) =1

XCo

and m() = 0 with & being the null proposition. We think
of m(X) as the measure of the probability mass con-
strained to stay in X but free to move throughout X.

A belief function Bel: 2° — [0, 1] is defined by

Bel(X) = > m(Y)

Ycx

which says that to compute our total belief Bel(X) in a
proposition X we must add the probability masses for all
the propositions that imply X. Note that if ¥ C X then Y
implies X. As shown by Shafer, there corresponds to
each belief function one and only one basic probability
assignment and vice versa. We think of Bel(X) as the
measure of the total probability mass constrained to stay
somewhere in X.
A commonality function Q: 22 — [0, 1] is defined by

0X) = > m(Y).

XCy

We think of Q(X) as the measure of the total probability
mass that can move freely to any point in X. Commonal-
ity functions are related to belief functions by

Bel(X) = >, (—DQ(Y)

YC-X

oX) = >, (-1 Bel(-Y).

Ycx

A doubt function Dou: 2° — [0, 1] is related to a belief
function by

Dou(X) = Bel(=X).

We think of Dou(X) as the measure of the total probabil-
ity mass constrained to stay out of X.

A plausibility function PL: 29 — [0, 1] is related to belief
and doubt functions by

Pi(X) =1 — Dou(X) = 1 — Bel=X).

We think of PI(X) as the measure of the total probability
mass that can move into X though it is not necessary that
it can all move to a single point.

Given two independent belief functions, Bel, and Bel,,
to which correspond the BPAs m; and m,, respectively,
we may combine them by using Dempster’s rule to yield
the belief function Bel to which corresponds the BPA m.
This combination is usually denoted by Bel = Bel, & Bel,
or equivalently, m = m; @ m, and is defined by

mX) =K >, mX)myX))
XNX=X
Kl=1-= 3% mX)mX)).
XK=

K is a normalization constant that accounts for the fact
that in general there will be X; and X; such that X; N X; =
. Multiplying by K ensures that 2 yce m(X) = 1. This
combination may also be computed by the multiplication
of commonality functions:

Q) = KQ(X)2,(X)

K="= 2 (=10 (Y)QY).

Yce

The combination of n BPAs with identical FODs is
denoted by

mZEBm,».

I=si=n
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The commonality functions of the combined BPA are
defined by

ox) =K [] 0«0

1=i=n

K-t =2 (=D ] 0um).

YCco I=i=n

9.2. Dichotomous Frames of Discernment

We will now consider a special type of FOD which is
useful for the verification of hypotheses. We begin with
some definitions.

A frame of discernment @ is called a binary frame of
discernment (BFOD) if it contains two elements.

A binary frame of discernment O is called a dichoto-
mous frame of discernment (DFOD) if it contains two
elements, a proposition and its negation. For example:
® = {X, -X}. A BPA on this DFOD has three elements:
m(X), m(-X), and m(®).

Belief functions and BPAs defined on binary or dichot-
omous frames of discernment are referred to as binary or
dichotomous belief functions and BPAs, respectively.

The relationships between m, Bel, Dou, Q, and Pl are
well defined in a DFOD and can be computed in constant
time. Table 2 shows the values of all of these functions
for X, -X, ©, and < in terms of m(X) and m(-X). Note
that m(®) = 1 — m(X) — m(~X) by definition.

A special case of Dempster’s rule is used to combine
two dichotomous BPAs with the same DFOD. The result
is always a dichotomous BPA with the same DFOD. The
equations for each focal element of the combination m =
my; D m, are

m(X) = K[m(X)myX) + m(X)my(®) + m(®)my(X)]
m-X) = Kl X )ma-X) + my-X)ms(0)
+ m(@)my(-X)]
K[m(®)m,(0)]
I = mi(X)my(=X) — mi(=X)my(X).

m(®)
K-

To combine n dichotomous BPAs with identical
DFODs we multiply commonality functions. The com-

TABLE 2
Relationships between Quantities for a Dichotomous Frame of
Discernment
X -X ) 1]
m m(X) mE=X) 1 — m(X) - m(=X) 0
Bel m(X) m-=X) 1 0
Dou m=X) mX) 1
Q 1 - m=X) I - mX) I — mX) — m(=X) 1
Pl 1 - m(=X) I = mX) 1 0
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monality functions of the combination m = ®,.;, m; are

ox) =K [] 0x)

I1=i=n

=K J] (- mt=x))

1=isn

0-X) =K ]| 04-X)

I<i=n

=K ] (1 - mx))

I=i=n

0@ =K [] 0u«®)

I=izn

=K [] (1 = m(X) — mi=X))

1<i=n

®
3

IT oix»y + [1 0i=x) - [] 0u®)

I=i=n I=isn i=i=n

Il

[T a—-mEx)+ [T a-mx)

I=isn Isi=n

- JI 0 = mx) — mi-x)).

1=i=n

Therefore, for a DFOD the combined BPA is defined by

mX) =1 - 0-X)
=1-K IH (1 = mi(X))
m-X) = 1 - Q(X)
=1-K IH (1 — mi(=X))
m(®) = Q(0)

I

1-K [ - mdX) = m=X)).

I=<i=n

Note that these functions can be computed in time that is
linear in . '
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