
Metrics for Measuring the Quality
of Modularization of

Large-Scale Object-Oriented Software
Santonu Sarkar, Member, IEEE, Avinash C. Kak, and Girish Maskeri Rama

Abstract—The metrics formulated to date for characterizing the modularization quality of object-oriented software have considered
module and class to be synonymous concepts. But, a typical class in object-oriented programming exists at too low a level of
granularity in large object-oriented software consisting of millions of lines of code. A typical module (sometimes referred to as a
superpackage) in a large object-oriented software system will typically consist of a large number of classes. Even when the access
discipline encoded in each class makes for “clean” class-level partitioning of the code, the intermodule dependencies created by
associational, inheritance-based, and method invocations may still make it difficult to maintain and extend the software. The goal of this
paper is to provide a set of metrics that characterizes large object-oriented software systems with regard to such dependencies. Our
metrics characterize the quality of modularization with respect to the APIs of the modules, on the one hand, and, on the other, with
respect to such object-oriented intermodule dependencies as caused by inheritance, associational relationships, state access
violations, fragile base-class design, etc. Using a two-pronged approach, we validate the metrics by applying them to popular open-
source software systems.

Index Terms—Superpackage, modularization, software metrics/measurement, module, interface, object-oriented software, large-
scale software, maintenance and enhancement, maintainability, coupling.

˙

1 INTRODUCTION

OBJECT-ORIENTED software is of more recent vintage than
the old-style procedural code. Nonetheless, there now

exist many commercial object-oriented applications that
show the same signs of aging as the legacy procedural code.
So what may have started out as a well-modularized
architecture may have decayed into a system of interde-
pendent modules that are difficult to maintain and extend
on an individual basis.

As is well known in the literature, whereas the main
factor responsible for the disorganization of the procedural
legacy code is the unregulated function-call traffic between
what might have started out as well-partitioned modules,
for object-oriented legacy code, there exist multiple avenues
that can lead to a high state of software disorganization.
These include a module extending a class defined in
another module, a class in one module using an instance
of a class in another module as an attribute or as a
parameter in a method definition, the implementation code
for a method in a class in one module calling on a method

defined for a class in another module, etc. The metrics we
propose in this paper seek to characterize the quality of a
given modularization with respect to each such mechanism
for code degradation.

To be sure, there does exist a significant body of
literature dealing with the metrics for object-oriented
software. But, as we point out in the next section, much of
this previous work considers a module and a class as
synonymous concepts. Even when the contributors have not
explicitly stated their metrics on a per-class basis, many of
the core metrics can often be reformulated straightfor-
wardly on a per-class basis.

With an eye to the future, our goal in this paper is to go
beyond the OO metrics formulations of the past. Our vision
of the future is dictated by the fact that software for many
commercial applications now runs into millions of lines of
code. When such code is object-oriented, as is increasingly
the case, the granularity of a class is often at much too low a
level to serve as a unit for software modularization. A
module in large object-oriented software may contain
hundreds of classes. As in the software of the past, the
purpose of a module is still to provide some focused
functionality to the rest of the world. Nonetheless, due to its
complexity, it may take a large number of classes to
implement that functionality.

Since many of the classes in the sort of modules we have
mentioned above are intended solely for the internal
functioning of a module, it makes no sense to simply
declare all of the public methods for all of the classes as the
API of a module. It makes a lot more sense to construct
module-level APIs with only those public methods that are

700 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 5, SEPTEMBER/OCTOBER 2008

. S. Sarkar is with Accenture Technology Labs, IBC Knowledge Park, 4/1
Banerghatta Road, Bangalore, India, Pin-560029.
E-mail: santonu.sarkar@accenture.com.

. A.C. Kak is with Purdue University, 1285 EE Building, West Lafayette, IN
47907-1285. E-mail: kak@ecn.purdue.edu.

. G.M. Rama is with SETLabs, Building 19FF, Infosys Technologies Ltd.,
Electronic City, Hosur Road, Bangalore, India, Pin-560100.
E-mail: girish_rama@infosys.com.

Manuscript received 6 Sept. 2007; revised 22 Feb. 2008; accepted 20 May
2008; published online 5 June 2008.
Recommended for acceptance by K. Inoue.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-2007-09-0261.
Digital Object Identifier no. 10.1109/TSE.2008.43.

0098-5589/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: Purdue University. Downloaded on October 30, 2008 at 16:38 from IEEE Xplore. Restrictions apply.

intended to be used by the outside world.1 The metrics we
propose in this paper are for such large object-oriented
software. Our metrics measure the quality of the modular-
ization of the software by measuring the extent to which all
intermodule method call traffic is directed through the APIs
of the modules, the extent to which the module are free of
the linkages created by inheritance and associations, etc.
Our metrics also measure the quality of the APIs from the
standpoint of the cohesiveness of the services provided, etc.

Since the metrics we propose in this contribution are API-
centric, we must bring to the reader’s attention our previous
contribution [4], which also has API-based metrics as its
primary focus. But note that the API-based metric suite
proposed in [4] is for non-object-oriented systems only. The
intermodule couplings created by inheritance, containment,
access control, polymorphism, encapsulation, etc., are strictly
outside the purview of the metrics proposed in [4].

In what follows, Section 2 presents a review of the
previous work in metrics for object-oriented software. In
order to accommodate the increasingly popular notion of
plugins, Section 3 provides a brief overview of two different
types of APIs, one a Service API and the other an Extension
API. A Service API is the traditional API for software
modules. An Extension API describes the services that must
be provided by an external plugin module. To get ready for
the presentation of our metrics, Section 4 presents the
notation we have used in the rest of this paper. Our metrics
are presented in Sections 5 through 13. As a convenience for
the reader, Section 14 tabulates all of the metrics and states
succinctly the main rationale for each metric. Section 15
presents an exhaustive experimental validation of the new
metrics. Finally, we conclude in Section 16.

2 PREVIOUS WORK ON OO SOFTWARE METRICS
RELEVANT TO OUR CONTRIBUTION

Object-oriented software is based on the notions of class,
encapsulation, inheritance, and polymorphism. These no-
tions make it more challenging to design metrics for the
characterization of OO-based software vis-a-vis what it
takes to do the same for the purely procedural code [5], [6].

An early work by Coppick and Cheatham [7] attempted
to extend the then popular program-complexity metrics,
such as the Halstead [8] and the McCabe and Watson
complexity measures [9], to OO software. Subsequently,
other works on OO software metrics focused mostly on the
issue of how to characterize a single class with regard to its
own complexity and its linkages with other classes. This
“one class at a time” focus can be considered to apply even
when we take into account interclass couplings induced by
the methods of one class calling the methods of other
classes. Major exemplars of this early work are the
contributions by Brito e Abreu and Carapuca [10], Chen
and Lum [11], Lee et al. [12], Chidamber and Kemerer (CK)
[5], Lorenz and Kidd [13], Li and Henry [14], [15],
Henderson-Sellers [16], and Briand et al. [17]. These

researchers proposed that OO software be characterized
by per-class criteria such as the average number of attributes,
average number of methods, average number of ancestor
classes, average number of abstract attributes, coupling
between objects (CBO) as measured by the average number
of other-class methods called by all the methods of a given
class and by the average number of other-class attributes
used by all of the code in a given class, and so on. Other
metrics proposed during the same period—metrics that are
straightforwardly reformulated on a per-class basis—in-
clude the MOOD metrics of Brito e Abreu et al. [18], [19]
and Harrison et al. [20]. In particular, we should mention
the following MOOD metrics: the Attribute Hiding Factor
(AHF) and the Method Hiding Factor (MHF) metrics for
measuring the extent of encapsulation, both defined as the
ratio of the attributes and methods that are visible in a class
vis-a-vis the total number of the same; the Method
Inheritance Factor (MIF) metric, which is a ratio of the total
number of inherited methods to the total number of the
same; and the Coupling Factor (CF) metric that measures
the frequency with which a class references an attribute or a
method in another class. Recently, Counsell et al. [21] have
carried out a rigorous mathematical analysis of two
previously known cohesion metrics, cohesion among methods
in a class (CAMC) [22] and normalized Hamming distance
(NHD) [23], to understand their behaviors and evaluate
their usefulness in measuring class cohesion. The prior
work that we have cited also includes some non-per-class
metrics. These include the depth of the inheritance tree in a
software system, the inheritance fan-out, number of
ancestor classes, etc. Another previously proposed non-
per-class metric is the system-level coupling factor (COF)
proposed by Ghassemi and Mourant [24].

There has been significant debate in the literature about
the merits of the aforementioned metrics, especially with
regard to the extent to which they capture the subtleties
introduced by features that are peculiar to OO software.
Consider, for example, when, in a purely count-based
approach to software characterization, the number of
attributes and methods defined for a class is supposed to
tell us something about the complexity of that class. In OO
software, even when a class is explicitly devoid of its own
attributes and methods, it may nonetheless possess a rich
set of the same through inheritance. By the same token,
when the code in a class makes polymorphic method calls,
it becomes very difficult to figure out through static analysis
as to which piece of code is actually being called for
execution. This has caused some researchers [25], [26], [27],
[28], [29], [30] to argue that the quality measures produced
by the previously mentioned metrics may be open to
interpretation.

There is also a body of work in the literature that has
focused on OO metrics from the standpoint of their ability
to predict software maintainability [31], [27], [32] and
design flaws [33], [34], [35]. Much of the work on using
metrics to predict design flaws has focused on the CK
metrics. Researchers have also analyzed whether the fault
tolerance of software can be predicted by the same or
similar metrics [36], [37], [38], [39]. Recently, Olague et al.
[40] have carried out an empirical analysis of the CK and

SARKAR ET AL.: METRICS FOR MEASURING THE QUALITY OF MODULARIZATION OF LARGE-SCALE OBJECT-ORIENTED SOFTWARE 701

1. This vision of large object-oriented software of the future is also the
subject of a proposal currently under review in the Java Community Process
(JCP) [1], [2]. The Java Specification Request JSR-294 [2] and Strnisa et al. [3]
propose the notion of a superpackage that coincides with how we talk about
modules in this paper.

Authorized licensed use limited to: Purdue University. Downloaded on October 30, 2008 at 16:38 from IEEE Xplore. Restrictions apply.

the MOOD metric suites on six versions of an open source
software to evaluate their ability to predict fault proneness.
Similarly, researchers have reported an empirical study of
previously known cohesion metrics on a large corpus of
software [41] that revealed a bimodal behavior by most of
these metrics.

There has also been work [42] on using metrics to
determine a need for code refactoring (such as moving a
method or an attribute from one class to another, derivation
of a new class, and so on). We should also note the work of
Alshayeb and Li [43] who, through an empirical study on
the Java Development Kit (JDK), showed that the same
metrics can reasonably predict the needed refactoring and
error correction efforts, especially toward the end of the
software development cycle (and specifically when the
design cycle is short). Recently, Carey and Gannod [44]
have used existing OO metrics [5], [16] and machine
learning techniques to identify domain concepts from
source code.

This brings us to the subject of frameworks for analyzing
the metrics for their theoretical validity. Theoretical valida-
tion of a set of metrics means that the metrics conform to a
set of agreed-upon principles. It is the principles that then
constitute a framework. Briand et al. [29] have proposed a
framework that formalizes how one can exercise different
options when applying coupling, cohesion, and complexity
metrics to object-oriented software. This framework was
used by Arisholm et al. [45] to propose metrics to measure
coupling among classes based on runtime analysis for
object-oriented systems.

3 TWO TYPES OF INTERFACES FOR A MODULE

The work we present in this paper assumes that the
relationship of a module to the rest of the world can be
characterized with two different kinds of APIs.

Service API: This is a module interface as it is most
commonly used and understood. A Service API (S-API)
declares the services that the module provides to the rest of
the software system. An S-API exposes a set of methods that
can be called by other modules.

Extension API: An Extension API (E-API) is a declaration
of what functionality needs to be provided by an external
plugin for the module. Over the years, plugins have become
an important approach to adding versatility to the workings
of a module without changing the source code in the
module itself. With a properly declared E-API for a module,
a third-party developer would not need access to the source
code of the module in order to create a plugin for it. A
module that a plugin is intended for is sometimes referred
to as the host application vis-a-vis the plugin. For object-
oriented host applications and plugins, an E-API commonly
consists of the declaration of an abstract class and its
abstract methods, with the expectation that the plugin will
provide the implementation code for the abstract methods.
Such software systems are based on a design principle
commonly referred to as the inversion of control [46]. With
inversion of control, the main body of the code calls the
plugin but the plugin never calls the main body of the code.
In other words, control is inverted and the main body of the
code is responsible for control flow.

It is important to note that a module may possess
multiple APIs of both types mentioned above. If a module
possesses multiple S-APIs, each S-API may be intended for
a specific usage of that module. As a case in point, an
interest-calculation module in a financial software system
may contain multiple user-directed S-APIs. For example,
there could be an S-API designed specifically for regular
banking applications, another for co-op banking applica-
tions, yet another for banking-like financial services
provided by mutual-fund operators, and so on. While the
basics of interest calculations for all of these related
applications are likely to be the same, each different usage
of the software may entail using a function name
vocabulary that is peculiar to that application. Obviously,
in addition to vocabulary differences, the different S-APIs
for the same module may also differ with regard to the
functionality offered.

As the reader will recall, we are talking about very large-
scale software where there can be hundreds of classes in
each module. In such a case, it is not necessary for all of the
public methods of the classes in the module to belong to an
S-API. A published S-API for a module would ordinarily
consist of a small subset of all of the public classes and a
small subset of the public methods of those classes. The role
of the non-API classes and/or non-API methods would be
to support the intramodule development of the software.

4 NOTATION

We will use the following notation in the rest of this paper.
Our notation is similar to that used by Briand et al. [29] in
their framework for the measurement of coupling metrics in
object-oriented software.

4.1 System, Classes, Methods, Modules, and API
We represent an OO software system by S …< Ent; Rel > ,
where Ent is a set of entities and Rel � Ent�Ent is a set of
pairwise relationships among the entities. An entity can be a
class, an attribute of a class, a method defined in a class, a
module, and so on. Formally, Ent … C [A [M [I [P,
where C is the set of all classes, A the set of all attributes, M
the set of all methods, P the set of all modules, and I the set
of all APIs in the system.

Classes and methods. A class c 2 C possesses a set MðcÞ �
M of methods and a set AðcÞ � A of attributes. A method
m 2 MðcÞ may constitute either a new method definition for
the class c or may be an override definition for a method of
an ancestor class or an implementation of an abstract
method in a parent class. Similarly, a 2 AðcÞ is either a
newly defined attribute for class c or hides the definition of
the same attribute in an ancestor class.

Regarding the access discipline that applies to the
methods in a class, we assume that any given method of a
class is either public or private. A public method of a class c,
denoted mpub, is assumed to be accessible to the rest of the
software system. The set of all public methods in a class c is
denoted MpubðcÞ. Taking liberties with the MpubðcÞ notation,
we use MpubðpÞ to denote the set of all public methods in
module p.

An abstract method of a class c is denoted by mabs. In
order to keep the notation simple, we assume without loss

702 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 5, SEPTEMBER/OCTOBER 2008

Authorized licensed use limited to: Purdue University. Downloaded on October 30, 2008 at 16:38 from IEEE Xplore. Restrictions apply.

of generality that the access discipline for an abstract
method is public. When needed, we use the notation mconc
to indicate a concrete method, that is, a method that is not
abstract.

Modules and API. We assume that the system S can be
partitioned into a set P of modules. For a module p 2 P, we
use CðpÞ to denote the set of classes in module p. Extending
further the notation MðcÞ, we use MðpÞ to denote the set of
methods in module p. An API { 2 I is a set of selected
methods. We will take liberties with whatMðcÞ stands for and
use the notation Mð{Þ to denote the set of methods that
constitutes an API {. Further, we use the notation IðpÞ to
denote the set of APIs for a module p. Obviously, for a module
API { 2 IðpÞ, Mð{Þ � MðpÞ. For a module p, we use ISðpÞ to
denote the set of S-APIs and IEðpÞ the set of E-APIs. We define
ModuleðcÞ to be the module to which class c belongs,
ModuleðmÞ to be the module to which the methodm belongs,
and Moduleð{Þ be the module to which the API { belongs.

4.2 Relations
Having defined the entities, we now define various types of
relationships among them. For our purpose, we define
Rel … fPar [Ovride [Imp [Call [Usesg. These rela-
tionships are as follows:

Class relations. The main inheritance relationship among
classes is the predicateParðc; dÞ that is true if classd is a parent
of class c. For convenience, we define additional predicates,
Ancðc; dÞ and Chldðc; dÞ, that can be inferred straightfor-
wardly from Parðc; dÞ. Ancðc; dÞ is true when class d is an
ancestor of class c and Chldðc; dÞ is true when d is a child of
class c. To economize on notation, we use the one-argument
version of Par, as in ParðcÞ, to denote the set of all parent
classes of c. We use one-argument versions of the other two
predicates,Anc andChld, in the same manner. That is,AncðcÞ
denotes the set of all ancestor classes of c andChldðcÞ denotes
the set of all child classes of c. We use DepthðcÞ to denote the
depth of a class c in the inheritance graph. That is,DepthðcÞ is
the number of ancestors of c along the shortest path from the
root class to class c.

Method relations. The relation Ovrideðm;moÞ is a predicate
that is true when a method mo, defined for some class c,
overrides methodm defined for a class inAncðcÞ. We use the
notation Callðmf;mtÞ as a predicate that is true when a
method mf calls another method mt. The predicate is
evaluated through static analysis of the code. For economy
of notation, we use the one-argument version of the predicate
Ovride, that is,OvrideðmÞ, to represent the set of all methods
that override a given methodm. With regard to the predicate
Callðmf;mtÞ, we extend it by defining two functions,
CalltoðmÞ and CallbyðmÞ, the former representing the set of
methods that call a given method m and the latter the set of
methods called by m.

Uses relation. The notation Usesðc; dÞ represents a pre-
dicate that is true when class c uses class d in the sense that
a method directly implemented in c either calls a directly
implemented method of d or refers to (reads/writes) an
attribute defined directly for d. The Uses predicate is
determined statically. Like other predicates, we extend the
Uses predicate to UsesðcÞ, which returns a set of classes that
c uses. For an attribute a of class c, the predicate Usesða; dÞ

is true if class d uses the attribute a. Similarly, UsesðaÞ
denotes a set of all classes that use the attribute a.

5 COUPLING-BASED STRUCTURAL METRICS

Starting with this section, we will now present a new set of
metrics for large object-oriented software. We will begin
with coupling-based structural metrics that provide differ-
ent measures of the method-call traffic through the S-APIs
of the modules in relation to the overall method call traffic.

5.1 Module Interaction Index
This metric calculates how frequently the methods listed in
a module’s APIs (both S-APIs and E-APIs) are used by the
other modules in the system. As stated in Section 4, IðpÞ
denotes all of the APIs for a module p. For an API { 2 IðpÞ,
let ExtCallRelð{Þ be the set of calls made to any of the
methods of { from methods outside p. That is,

ExtCallRelð{Þ … f< mf;mt > jCallðmf;mtÞ ^mt 2 Mð{Þ
^mf 62 MðpÞg:

Now, let ExtCallRelðpÞ denote the set of all external calls
made to all of the methods of all classes in module p. Thus,

ExtCallRelðpÞ … f< mf;mt > jCallðmf;mtÞ
^mt 2 MðpÞ ^mf 62 MðpÞg:

We express the Module Interaction Index by

MIIðpÞ …

S
{2IðpÞ ExtCallRelð{Þ

���
���

ExtCallRelðpÞj j
;

MIIðSÞ …
1
P

X

p2P
MIIðpÞ:

ð1Þ

In an ideal state, all of the external calls to a module p should
take place only through its officially designated S-API
methods. The MIIðSÞ value ranges from 0 to 1. A max
MIIðSÞ value of 1 indicates an ideal system where all
intermodule interaction is only through the officially desig-
nated S-API methods. A minMIIðSÞ value of 0 is indicative of
a system with very bad intermodule interaction.

5.2 Non-API Method Closedness Index
We now analyze the function calls from the point of view of
the methods other than those listed in the APIs of the
modules. In our earlier paper [4], we had argued that,
ideally, such functions of a module should not expose
themselves to the external world. In reality, however, a
module may exist in a semimodularized state where there
remain some residual intermodule function calls outside the
APIs. (This is especially true of large systems that have been
only partially modularized.) In this intermediate state, there
may exist non-API public methods that participate in both
intermodule and intramodule call traffic.

As stated in Section 4, let IðpÞ be the current officially
designated APIs of a module p. Let MnaðpÞ refer to the
actual non-API public methods in a module that are
definitely not being called by other modules. Ideally, of
course, these two sets would be mutually exclusive and
their union would be the set of all public methods MpubðpÞ

SARKAR ET AL.: METRICS FOR MEASURING THE QUALITY OF MODULARIZATION OF LARGE-SCALE OBJECT-ORIENTED SOFTWARE 703

Authorized licensed use limited to: Purdue University. Downloaded on October 30, 2008 at 16:38 from IEEE Xplore. Restrictions apply.

in a module p. But, in practice, the set of actual non-API
methods would be smaller than the set difference
fMpubðpÞ�Declared API methods of pg. We use the follow-
ing metric to measure this disparity between the declared
API methods for a module and the methods that are
actually participating in intermodule call traffic. We call this
metric the “Non-API Method Closedness Index” and
represent it by NC:

NCðpÞ …
MnaðpÞj j

MpubðpÞ �
S
{2IðpÞ Mð{Þ

n o���
���
;

NCðSÞ …
1
P

X

p2P
NCðpÞ:

ð2Þ

Note that this metric calls for a zero-by-zero division when
all of the public methods in a module are declared to be the
API methods for the module. This is a common occurrence
for a certain class of software systems, such as the Java
platform. If we think of each package of the platform as
constituting a module, then, in general, all of the public
methods for all of the classes in the package would be
considered to constitute the module’s API. What the value
of NCðpÞ should be under this condition depends entirely
on the nature of the software system. If it was the intent of
the software designers that all of the public methods for all
the classes in a module constitute that module’s API, then
NCðpÞ must be set to 1 when both the numerator and the
denominator go to 0. On the other hand, if we are talking
about a very large business application in which each
module may consist of hundreds of classes (that interact
with one another to provide the functionality of the
module) and for which only a subset of all of the public
methods is meant to constitute the module’s API, then we
set NCðpÞ to 0 when the denominator goes to 0. In the
absence of division by zero, NC for a module p becomes 1
(best case) when all of the public methods of a module p
that are not “Declared API methods of p” are actual non-API
methods, i.e., they never participate in intermodule call
traffic.

6 METRICS TO MEASURE INHERITANCE-BASED
COUPLING BETWEEN MODULES

It is not uncommon for a client of vendor-supplied software
to customize a class by deriving from it and embedding
client-specific functionality in the extended class. If the
software created by the client resides in a separate module,
this would naturally create dependencies between the
vendor-supplied modules and the client-created modules.
In the rest of this section, we will first elaborate on some
specific forms of these dependencies that make it more
difficult to maintain the code and to extend it further.
Subsequently, we will provide metrics to measure these
different types of inheritance-induced dependencies be-
tween the modules.

6.1 Inheritance-Induced “Fragile Base-Class”
Problem

When a class in module B extends a class in module A, that
naturally introduces a dependency between the two

modules. But, one would expect that as long as the subclass
in module B used only the information made public in the
relevant section of module A’s API, it would be possible to
change module A without affecting B and vice versa. But, as
is now well known, a phenomenon known as the fragile
base-class problem may nevertheless introduce dependencies
between the two modules that may cause module B to break
when A is modified [47], [48]. The following two cases,
depicted pictorially in Figs. 1a and 1b, illustrate the fragile
base-class problem.

Case 1. The base class, Base, contains two methods, fooðÞ
and barðÞ, that stand on their own. The derived class,
Derived, inherits both but is provided with an override
definition for barðÞ that does NOT use Base’s fooðÞ. At
some future time, Base’s vendor modifies fooðÞ so that it
directly calls on barðÞ for some of its functionality and this is
done without changing the base class’s public interface. But,
due to polymorphism, for a client of the derived class, the
inherited fooðÞ will behave differently from what the base
class’s vendor had in mind. When the inherited fooðÞ is
invoked on an instance of Derived, it will call on
Derived’s barðÞ as opposed to Base’s barðÞ.

Case 2. The second case is the opposite of the previous case.
Now, the designer of the base class writes a method, fooðÞ,
that explicitly calls another of base’s methods, barðÞ. The
derived class inherits both but provides an override defini-
tion for barðÞ. So, when the client of the derived class invokes

704 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 5, SEPTEMBER/OCTOBER 2008

Fig. 1. Two cases of the fragile base-class problem. (a) Case 1. (b) Case 2.

Authorized licensed use limited to: Purdue University. Downloaded on October 30, 2008 at 16:38 from IEEE Xplore. Restrictions apply.

fooðÞ on an instance of Derived, its base-class definition will
use the Derived’s barðÞ due to polymorphism. This is the
class behavior that Derived’s clients get accustomed to.
Now, assume that, at some later date, the base class’s
vendor rewrites fooðÞ and barðÞ in such a way that they
become standalone functions. This the vendor does without
changing the base class’s public interface. Subsequently,
however, Base’s fooðÞ as experienced by a client of
Derived will behave differently because it would no
longer call Derived’s barðÞ.

In both of these cases, the base-class fragility was
introduced by one method of the base class directly calling
another method of the same class either before or after code
revision and the called method being overridden in the
subclass. Both of these cases reflect the normal semantics of
polymorphism. To the extent that polymorphism is a
cornerstone of the object-oriented paradigm, we do want
a call to fooðÞ of the base class to use barðÞ of the derived
class if the former needs the latter for a part of its
functionality and if fooðÞ is invoked on an instance of the
derived class. This situation arises all the time in object-
oriented application programs. For example, you may write
a software package for GUI programming in which a high-
level method of a widget class needs to make calls to low-
level methods of the same class that interact directly with
the operating system for the purpose of determining the
various attributes of the display on which the GUI is to be
drawn. Now, someone else may try to adapt your software
package to a different operating system by extending your
widget class and providing override definitions for the low-
level methods that interact directly with the operating
system. Your inherited high-level methods should work for
the new operating system because any calls to them would
use the subclass override definitions designed specifically
for the new operating system.

However, as demonstrated by the two cases shown
above, this polymorphic behavior of a class hierarchy will
elicit a price when a class and its subclass exist in two
separate modules—it can make the module containing the
subclass dependent on the implementation details of the
module containing the base class even when the subclass is
honoring the public interface of the base class.

So, whereas, on the one hand, polymorphism allows us
to write compact code that can easily be extended to adapt
to new application circumstances, on the other hand, it can
make modularization more challenging. That naturally
leads to the question of whether it is possible to detect
polymorphic invocations of methods that do and that do
not create modularization difficulties. When a method fooðÞ
of a base class calls barðÞ of the same class and when barðÞ is
overridden in a derived class, under what conditions
should we construe that as an acceptable recourse to
polymorphism and under what conditions as a situation
that may create a modularization headache?

We take the position that all such base-class/derived-class
relationships constitute acceptable usages of polymorphism when
both classes reside in the same module. However, when such
relationships cross module boundaries, we consider them harmful
in the sense of their limiting the independent further development
of the two modules involved. Our position is based on the

assumption that it is usually the same team of programmers
that would be in charge of any single module. We can
expect the programmers to be intimately familiar with the
intent underlying each method of a base class and whether
or not it would be safe to extend it in a derived class.
Obviously, the same cannot be said of two different
modules. The module containing the base class may belong
to a vendor-supplied library and the module containing the
subclass may belong to a client who is trying to adapt the
vendor-supplied library to a different application context.
Now it would be much more difficult for the base-class
programmer’s intent to come through when the subclass
client examines the base class’s public interface.2 For
example, if the base-class programmer wrote up a method
fooðÞ to call the base’s barðÞ without expecting this call to
translate into an invocation of a derived class’s barðÞ, that
fact would not normally be in the base class’s public
interface. But, when both the base class and the subclass are
within the same module, there is a greater likelihood that
this information concerning the base class would be
apparent to whoever is writing the derived class. The same
cannot be hoped for when the two classes are in two
different modules.

We therefore need a metric that can measure the extent
of such base-class/derived-class relationships when the two
classes are in different modules. Such a metric is presented
in the next section.

6.2 Metric to Measure the Extent of the Fragile
Base-Class Problem

Based on the above observations, we now propose a metric
to quantitatively measure the extent to which the fragile
base-class problem may exist in a software system. We
assume that the code was initially written by programmers
cognizant of the fragile base problem and that, therefore, at
the beginning, the code did not exhibit instances of
polymorphism mentioned in our Cases 1 and 2 when a
base class and a subclass derived from it reside in different
modules. The fragile base-class problem ceases to exist if no
methods of a class call any of the other methods of the same
class or the ancestor classes. We may refer to this as the
ideal state of the software since it ensures the absence of the
fragile base-class problem. Any departures from this ideal
may indicate the presence of the fragile base-class problem.
So, it is worthwhile to measure the extent of the departure
from the ideal as an indication of the possibility of the
existence of the fragile base-class problem. If a software
system exhibits a high value for the departure from the
ideal or if a software system suddenly shows a jump for this
value after the system is extended with subclasses, it means
that the users of the software need to more carefully test the
extensions for potential instances of the fragile base-class
problem. The extent to which a given software system
conforms to the ideal with regard to base-class fragility will
be measured by a metric we call the Base-Class Fragility
Index ðBCFIÞ.

As defined in Section 4, let AncðcÞ be the set of all
ancestor classes of a class c. We define MancðcÞ to be the set

SARKAR ET AL.: METRICS FOR MEASURING THE QUALITY OF MODULARIZATION OF LARGE-SCALE OBJECT-ORIENTED SOFTWARE 705

2. Unless, of course, one extends the programming language as
advocated by Aldrich and Donnelly [48].

Authorized licensed use limited to: Purdue University. Downloaded on October 30, 2008 at 16:38 from IEEE Xplore. Restrictions apply.

of concrete methods inherited from the ancestor classes of c
that are not overridden in class c. Thus,

MancðcÞ … m0
conc 2 Mðc0Þjc0 2 AncðcÞ

�

^ð8m2MðcÞ:Ovride m0
conc;mÞ

� ��
:

For a method m of class c, let UpCallbyðmÞ be the set of
concrete methods called by m that are either defined in a
class c or inherited from its ancestor classes but not
overridden. That is,

UpCallbyðmÞ … m0
concjCall m;m

0
conc

� ��

^ m0
conc 2 MðcÞ _m0

conc 2 MancðcÞ
� ��

:

In order to define BCFI, we first define the notion of base-
class violation BCV ioðmÞ for a method m that measures the
extent to which the methods that have overridden m exist in
other modules:

BCV ioðm0Þ

…
m0
o 2 Ovrideðm0ÞjModuleðm0Þ 6… Module m0

o
� �� ��� ��

Ovrideðm0Þj j
… 0 when Ovrideðm0Þ … ;:

BCV ioðm0Þ is proportional to the number of times m0 is
overridden outside of the module in which m0 resides. The
idea of this violation is illustrated in Fig. 2. In this figure, the
method bar() in module p is overridden 3 times outside p.
Therefore, BCV ioðbarÞ … 3

4 .
Having definedBCV io, we now compute the maximum of

BCV io values of all of the concrete methods in UpCallbyðmÞ,
for a method m. We denote this as BCVMax as follows:

BCVMaxðmÞ … maxm02UpCallbyðmÞ BCV ioðm0Þf g
… 0 when UpCallbyðmÞ … ;:

At the class level, BCVMaxðcÞ for a class c is the maximum
of the BCVMaxðmÞ of all of the methods in class c, i.e.,
BCVMaxðcÞ … maxm2MðcÞ BCVMaxðmÞ.

To measure the violation at the module level, we first
need to determine the set of classes in the module for which
BCVMax is applicable. This set, denoted by BCV SetðpÞ for

a given module p, is the set of classes that contains at least
one method with nonempty UpCalledby set.

Thus, BCV SetðpÞ … fc 2 Cpj9m2MðcÞðUpCallbyðmÞ 6… ;Þg.
We will now define BCFI as follows:

BCFIðpÞ … 1 �
1

BCV SetðpÞj j

X

c2Cp

BCVMaxðcÞ;

BCFIðSÞ …
1

jP0j

X

p2P0

BCFIðpÞ;

where P0 … p0 2 PjBCV SetðpÞ 6… ;f g
… 1 when P0 … ;:

ð3Þ

Observe that, for classes not in the set BCV SetðpÞ,
BCVMaxðcÞ will always be 0. Hence, the value for
BCFIðpÞ will range between 0 and 1, with the worst case
being 0 and the best case (no base-class violation) being 1.

Finally, the base-class violation for the entire system
BCFIðSÞ is the average of the BCFIðpÞ for all of the
modules in the system for which the violation is applicable.
The value for BCFIðSÞ ranges from 0 to 1, with 0 indicating
a system that has the worst base-class violation and 1
indicating a system that is completely free of base-class
violation.

6.3 Inheritance-Based Intermodule Coupling
Metrics

These dependencies may be measured either at the module
level or at the class level or at both. With P representing the
set of modules and CðpÞ denoting the set of all classes in the
module p, the following metric measures such dependen-
cies at the module level:

IC1ðpÞ … 1 �
p0 2 Pj9d2Cðp0Þ9c2CðpÞ Chldðc; dÞ ^ p 6… p0ð Þ

� ��� ��

jPj � 1
… 1 when jPj … 1:

For a given module p, the numerator of the fraction is the
number of other modules such that at least one of their
classes is derived from at least one class of module p.

If the modules vary widely in the number of classes they
contain and in the extent to which the classes in one module
extend classes in other modules, the above metric may not
tell the entire story about the inheritance-based intermodule
dependencies. With C representing the set of all classes in
the software system, the following metric measures such
dependencies at the class level.

IC2ðpÞ … 1 �
d 2 Cj9c2CðpÞ Chldðc; dÞ ^ModuleðdÞ 6… pð Þ

� ��� ��

C � CðpÞj j
… 1 when jPj … 1:

Here, the numerator of the fraction indicates the number of
classes in other modules that extend any of classes in p. The
above two metrics measure inheritance-based dependencies
of the other modules on a given module p. The following
metric measures such dependencies in the opposite direc-
tion. If all of the classes in a given module are derived from
classes in other modules, the value of this metric would be
zero for that module.

706 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 5, SEPTEMBER/OCTOBER 2008

Fig. 2. The figure illustrates the idea of base-class violation. Module p
contains the two classes named Base and Derived, module p1 just the
class Derived1, module p2 just the class Derived2, and, finally,
module p3 just the class Derived3. The arrows from fooðÞ to barðÞ and
bar1ðÞ mean that fooðÞ calls on these two methods for a part of its
functionality.

Authorized licensed use limited to: Purdue University. Downloaded on October 30, 2008 at 16:38 from IEEE Xplore. Restrictions apply.

IC3ðpÞ … 1 �
c 2 CðpÞj9d2ParðcÞ ModuleðdÞ 6… pð Þ

� ��� ��

CðpÞj j
:

Here, the numerator indicates the number of classes in
module p that are derived from any of the classes in any of
the other modules. Given the three different ways to
measure inheritance-based couplings between the modules,
we now combine all of them in the form of a composite
IC metric, first at the module level and then at the system
level, as follows:

ICðpÞ … minðIC1; IC2; IC3Þ; ð4Þ

ICðSÞ …
1

jPj

X

p2P
ICðpÞ: ð5Þ

The maximum and minimum ICðSÞ values are 1 and 0,
respectively. An ICðSÞ value of 1 is indicative of a system
that does not have any inheritance-based couplings.
Conversely, an ICðSÞ value of 0 is indicative of a system
that has maximum inheritance-based couplings.

7 A METRIC FOR NOT PROGRAMMING TO
INTERFACES

It is now accepted wisdom in object-oriented programming
that a client of a class should only program to the interfaces
that are at the roots of the class hierarchies and not to the
concrete classes that implement those interfaces. This
allows the implementation code to be altered without
affecting the clients of a class hierarchy.

Our use of the word “interface” in this section is not to be
confused with “interface” in a module’s API. The interface
as used in this section reflects the fact that each module will,
in general, contain class hierarchies and each hierarchy will
have a root interface. A recommended OO practice is to
program to the interfaces at the roots of the class hierarchies
as opposed to their implementations in the child classes.

In our context, what that means is that, when a module
needs to act as a client of another module, the former
should access the latter’s functionality only through the root
interfaces of the class hierarchies in that module. Obviously,
in well-engineered code, module p1 will access the
functionality of module p2 only through p2’s APIs and the
methods listed in p2’s APIs will be a subset of the methods
in the root interfaces of all of the class hierarchies in p2. But,
as the code ages, it is not unlikely that some of the methods
in p1 may call on some of the methods in p2 that are only
defined for the concrete classes of p2 and that are NOT
included in any of the APIs of p2.

Our goal is to capture this aspect of code degradation
through a metric we call Not-Programming-to-Interfaces Index
(NPII) that we now present. With CallbyðmÞ denoting the
set of methods called by m, let AbsCallbyðmÞ … fmabsjmabs 2
CallbyðmÞg be the set of abstract methods called by m.
Now, we consider calls made to those concrete methods
whose defining classes belong to some inheritance
hierarchy. We ignore calls to those methods which belong
to isolated classes (that is, classes that do not belong to
any inheritance hierarchies) from the NPII perspective.

Let InhConcCallbyðmÞ be those concrete methods called by
m. It is defined by

InhConcCallbyðmÞ … mconcjmconc 2 CallbyðmÞf
^9c02C mconc 2 Mðc0Þ ^Ancðc0ð Þ 6… ;g:

Next, we introduce the notion of a bad call made to a
concrete method from the NPII perspective. Leaving aside
the called methods that are defined/declared in the root
interfaces, a call is considered to be bad when the called
concrete method (defined in a class that belongs to some
inheritance hierarchy) has overridden or implemented
another method. This is defined by

BadConcCallbyðmÞ … fm0jm0 2 InhConcCallbyðmÞ
^ DoesOvrideðm0Þ _DoesImplðm0Þð Þg;

where DoesOvrideðm0Þ is a predicate that is true when m0

overrides a method and DoesImplðm0Þ is a predicate that is
true when m0 is an implementation of some abstract
method. Now, we define NPII as

AbsCallbyðpÞ …
[

m2MðpÞ
AbsCallbyðmÞ;

InhConcCallbyðpÞ …
[

m2MðpÞ
InhConcCallbyðmÞ;

BadConcCallbyðpÞ …
[

m2MðpÞ
BadConcCallbyðmÞ;

NPIIðpÞ …
jAbsCallbyðpÞj

jAbsCallbyðpÞj þ jInhConcCallbyðpÞj
þ

 jInhConcCallbyðpÞ �BadConcCallbyðpÞj
jAbsCallbyðpÞj þ jInhConcCallbyðpÞj

where 0 � � 1

…? when AbsCallbyðpÞ [InhConcCallbyðpÞ … ;;

where ? means undefined.
Let P0 … fp 2 PjAbsCallbyðpÞ [InhConcCallbyðpÞ 6… ;g.
We can now write

NPIIðSÞ …
1

jP0j

X

p2P0

NPIIðpÞ

… 1 if P0 … ;:
ð6Þ

The value of NPII ranges between 0 and 1. The value of
NPII of a module is 1 when only the abstract methods in
the root interfaces of class hierarchies in a given module are
called by the implementation code in other modules.

8 ASSOCIATION-INDUCED COUPLING METRICS

These measure the extent to which a class in a module uses
another class in some other module either as an attribute or
as a parameter in a method definition. As with the
inheritance-based coupling, first we measure how the
modules are coupled through association. This we accom-
plish with the help of the three metrics, AC1ðpÞ, AC2ðpÞ, and
AC3ðpÞ, described here. We define

AC1ðpÞ … 1 �
p0 2 Pj9c2Cðp0Þ9d2CðpÞ Usesðc; dÞ ^ p 6… p0ð Þ

� ��� ��

jPj � 1
… 1 when jPj … 1:

Here, the numerator denotes the total number of other
modules that contain at least one class that uses at least one

SARKAR ET AL.: METRICS FOR MEASURING THE QUALITY OF MODULARIZATION OF LARGE-SCALE OBJECT-ORIENTED SOFTWARE 707

Authorized licensed use limited to: Purdue University. Downloaded on October 30, 2008 at 16:38 from IEEE Xplore. Restrictions apply.

class of module p as an attribute or as a parameter in a
method definition. AC1ðpÞ measures as to what extent other
modules use p through associational dependencies. Next,
we define

AC2ðpÞ … 1 �
c 2 Cj9d2CðpÞ Usesðc; dÞ ^ModuleðcÞ 6… pð Þ

� ��� ��

jC � CðpÞj
… 1 when jPj … 1:

Here, the numerator indicates the total number of classes in
other modules that use at least one class of module p as an
attribute or as a parameter in a method definition. Finally,
we define

AC3ðpÞ … 1 �
c 2 CðpÞj9d2UsesðcÞ ModuleðdÞ 6… pð Þ

� ��� ��

jCðpÞj
:

Here, the numerator indicates the total number of classes in
module p that use at least one class from any of the other
modules either as an attribute or as a parameter in a method
definition. Given the three different forms of this metric, we
can now combine them all into a composite AC metric, first
at the module level and then at the system level, by

ACðpÞ … minðAC1; AC2; AC3Þ;

ACðSÞ …
1

jPj

X

p2P
ACðpÞ: ð7Þ

Like other metrics, the min value of ACðSÞ is 0 and the max
value is 1.

9 COUPLING INDUCED BY DIRECTLY ACCESSING
THE STATE

The commonly stated dictum that the state of an instance
constructed from a class should only be accessed through
appropriate accessor/mutator methods is honored more in
the breach than the observance. That the effects of accessing
the state directly can seriously compromise the integrity of
the code is made clear by the following example by
Mikhajlov and Sekerinski [47]. Let us say that a Base/
Derived class pair started out as shown in Fig. 3 left, with
Derived directly accessing the state variable x as shown.
As shown in this figure, the state variable x is modified by
both foo() and bar() methods. Assume that the writer of
the original Base class decides to enlarge its functionality
by providing it with another data member y. Also assume
that the same programmer decides to reimplement foo()
and bar() as shown. Further assume that this programmer
does not alter the API description of fooðÞ and barðÞ made
available to the clients of this class since, in the base class

itself, the behavior of fooðÞ and barðÞ vis-a-vis the variable x
has not changed. Unfortunately, for a client of Derived,
this change in Base’s implementation code will alter the
behavior of Derived. In the “Application Program” of
Fig. 3 right, the value of x will be 3 before the base-class
change and 1 afterward.

The problems created by directly accessing the state are
perhaps more manageable when such accesses take place in
the same module (for reasons that we stated earlier in
Section 6.2). However, such accesses crossing module
boundaries could be a source of serious code deterioration.
The metric we present below measures to what extent the
state of a given class has been accessed by classes in other
modules.

In accordance with Section 4, suppose that AðcÞ is the set
of attributes of class c. AðcÞ defines the state of the instances
constructed from c. Some of these attributes will be private
to c and the rest will be accessible to other classes. Also
recall that UsesðaÞ denotes the set of other classes that
directly access the attribute a 2 AðcÞ. In an ideal state, we
obviously want that 8a2AðcÞUsesðaÞ … ;.

Now, we measure the extent of intermodule and
intramodule access of the state by first defining the
following four sets. The first two sets, prefixed with “Inter,”
are for measuring the extent of intermodule access of state.
The second two sets, prefixed with “Intra,” are for
measuring the extent of intramodule access of state:

InterStAcc1ðcÞ … a 2 AðcÞj9d2UsesðaÞModuleðcÞ 6…
�

ModuleðdÞg;
InterStAcc2ðcÞ … p0 2 Pj9a2AðcÞ9d2Cðp0ÞðModuleðcÞ 6…

�

p0 ^ usedða; dÞÞg;
IntraStAcc1ðcÞ … a 2 AðcÞj9d2usedðaÞModuleðcÞ …

�

ModuleðdÞg;
IntraStAcc2ðcÞ … d 2 CðpÞj9a2AðcÞðModuleðcÞ …

�

ModuleðdÞ ^ usedða; dÞÞg:

Of the first two sets, InterStAcc1ðcÞ is the set of attributes of
c that are accessed by classes residing in other modules,
whereas InterStAcc2ðcÞ is the set of modules that directly
access attributes of c. Similarly, IntraStAcc1ðcÞ is the set of
attributes of c that are accessed by classes in the same
module where c belongs. Finally, IntraStAcc2ðcÞ is the set
of classes residing in the same module as c that directly
access the attributes of c.

In terms of the above four sets, we now define a State
Access Violation Index (SAVI) as follows: We first define it
for a class, then for a module, and, finally, for the software
system:

SAV IðcÞ … 1 � !1
jInterStAcc1ðcÞj

jAðcÞj
þ !2

jInterStAcc2ðcÞj
jPj

�

þ !3
jIntraStAcc1ðcÞj

jAðcÞj
þ !4

jIntraStAcc2ðcÞj
jCðpÞj

�
;

SAV IðpÞ …
1

jCpj

X

c2Cp

SAV IðcÞ;

SAV IðSÞ …
1

jPj

X

p2P
SAV IðpÞ:

ð8Þ

708 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 5, SEPTEMBER/OCTOBER 2008

Fig. 3. Illustration of the problem that arises when the state of an
instance is accessed directly.

Authorized licensed use limited to: Purdue University. Downloaded on October 30, 2008 at 16:38 from IEEE Xplore. Restrictions apply.

Observe that SAV IðcÞ is a weighted average of the four
different state access cases with the user-defined weights
obeying the condition

P4
i…1 !i … 1. Also note that the value

of SAV IðSÞ is always between 0 and 1.

10 SIZE UNIFORMITY METRICS

During the course of software development, as code evolves
one class at a time and one module at a time, from an
overall architectural standpoint it is useful to keep track of
the size variations among the classes within the individual
modules and the variations in the sizes of the modules
themselves. Supervisory individuals in charge of the overall
application development effort need access to these size-
based characterizations of the software especially when the
classes and the modules are developed by different teams of
programmers.

Note that we are not advocating that all modules be
roughly the same size and that this also be true of all of the
classes. All we are saying is that it be possible to measure
the variations in sizes of the modules and the classes. In
some cases, if a class is disproportionately large in
comparison with the other classes in the same module, it
may indicate that the large class is not sufficiently focused
in terms of the functionality it offers and that a superior
software design would result if the large class were
decomposed into smaller classes. Along the same lines, if
a module is found to be disproportionately large in relation
to the other modules, the module’s design may call for
reexamination to see if it should be decomposed into
smaller modules.

Having provided a rationale for size-based metrics, the
next question is: How does one measure the size of a class
or of a module? Whereas the number-of-lines-of-code is a
reasonable size metric for non-object-oriented software, it
may not be as meaningful (or, for that matter, insightful) for
object-oriented software. For object-oriented software, the
size of a class may be measured in terms of the lines of code
in a class and/or by the number of nontrivial (nonaccessor)
methods defined for the class. By the same token, the size of
a module may be defined either by the number of lines of
code and/or by the number of classes in the module.

We propose three size-based metrics: 1) an index to
measure the variability in the number of classes in the
modules, MU ; 2) an index to measure the class-size
variability by counting the number of methods in the
classes, CUm; and 3) an index to measure the class-size
variability by counting the number of lines of code in the
classes, CUl. These metrics are measured by the following
formulas:

MUðSÞ …
�p

�p þ �p
; ð9Þ

CUmðSÞ …
1

jPj

X

p2P

�mðpÞ
�mðpÞ þ �mðpÞ

; ð10Þ

CUlðSÞ …
1

jPj

X

p2P

�lðpÞ
�lðpÞ þ �lðpÞ

; ð11Þ

where �p denotes the average size of a module in terms of
the number of classes in each module and �p denotes the
standard deviation of this quantity. Similarly, �mðpÞ denotes
the average size of a class in a module p in terms of the
number of the number of methods in the class and �m
denotes the standard deviation of this quantity. Finally,
�lðpÞ denotes the average size of a class in a module p in
terms of the number of lines of code in the class and �l
denotes the standard deviation of this quantity. The values
of all three size metrics are always between 0 and 1.

11 A METRIC RELATED TO SYSTEM EXTENSIBILITY

As mentioned in Section 3 when we talked about the notion of
“Extension API,” it is not uncommon for software designers
to create extensible systems whose functionality can be
enhanced or modified by adding a new piece of code in the
form of a plugin that does not impact the rest of the software.

As an example of the need for specialized features that
one may wish to add to the software via a plugin module
after the main body of code has already been programmed,
consider a financial application that must support various
types of withdrawal mechanisms for different types of
customers. In general, it may not be possible (or even
desirable) to initially conceive of all possible modes of cash
withdrawal and how a given withdrawal should be
recorded in the bookkeeping procedures of a bank.
Depending on the nature of an account, a withdrawal
may affect just the cash balance in the account or it may
have to trigger certain other reporting actions (in case of
very large withdrawals). A plugin-based approach would
allow for different withdrawal modes to be incorporated as
needed when the software is customized.

The key idea of the plugin-based approach is to define a
set of extension APIs (E-APIs) for a module, as discussed in
Section 3, and then have the plugin modules implement
these E-APIs. Such plugin-based design has been incorpo-
rated in a number of commercially available “frameworks,”
examples being the Spring framework, the EJB container
framework, the Eclipse plugin framework, and so on. In all
of these cases, the interaction between the module and its
plugins happens through what is usually referred to as the
“inversion of control.” We have inversion of control since
the behavior of the plugin is invoked by the module instead
of the plugin calling on the API methods of the module.

We believe that, since a plugin is meant for extending a
specific functionality of a module, the plugin should be
precise in the sense that all of its classes and methods
should be there for extending the functionality of the
module. However, it is not uncommon to see old plugin
modules that have grown in an ad hoc manner with time.
This ad hoc “code bloat” may result in what is now
superfluous or extraneous code that is no longer needed by
the latest operation of the plugin. Our next metric aims to
measure this phenomenon in the code.

Let p be a plugin module that implements one or more
E-APIs of a framework module p1. Let IEðp1Þ be the set of
E-APIs that the plugin module p implements vis-a-vis the
host module p1. Let AbstractðmÞ be the abstract method of
module p1 that is implemented by m of the plugin
module p. With MðpÞ denoting all the methods of the
plugin module p, let

ImplExtnðpÞ … m 2 MðpÞj9{2IEðp1ÞAbstractðpÞ 2 {
� �

SARKAR ET AL.: METRICS FOR MEASURING THE QUALITY OF MODULARIZATION OF LARGE-SCALE OBJECT-ORIENTED SOFTWARE 709

Authorized licensed use limited to: Purdue University. Downloaded on October 30, 2008 at 16:38 from IEEE Xplore. Restrictions apply.

be the set of all methods in p that implement one or more
E-API of p1. We argue that all of the calls made by such
methods m to other methods in the plugin module p and the
transitive closure of such method calls with respect to the
module p should be almost equal to the number of methods
of p. When that happens, we can say that all the methods in
p are playing some role in implementing the functionality
assigned to the plugin. As defined in Section 4, let
CallbyðmÞ be the set of methods that m calls and let
CallbyþðmÞ be the transitive closure of the method calls.
Finally, let ModuleClosureðm; pÞ … fCallbyþðmÞ [fmgg \
MðpÞ be the set of methods that are in the module p that are
in transitive closure of method calls from m. We now define
a Plugin Pollution Index (PPI) for the plugin module p as
follows:

PPIðpÞ …
j
S
m2ImplExtnðpÞfModuleClosureðm; pÞgj

jMðpÞj
;

PPIðSÞ …
1

jPj

X

p2P
PPIðpÞ:

ð12Þ

Observe that the value of PPI is always between 0 and 1,
where 0 is the worst case.

12 MEASUREMENT OF API COHESIVENESS AND
SEGREGATION

As mentioned earlier, the work we report here is based on the
assumption that a module provides its functionality to the
rest of the world through one or more S-APIs, as defined in
Section 3. We would want each S-API to be well focused,
serving a particular need vis-a-vis what is generally expected
of the module. Even more particularly, for a clean and easy-
to-understand relationship between a module and the rest of
the world, it is best if the usages of the different S-APIs of the
module are mutually exclusive to the maximum extent
possible. In other words, we would want the S-APIs to
possess the following characteristics: 1) Each S-API should be
cohesive from a Similarity of Purpose perspective; and 2) each
S-API should be maximally segregated from the other S-APIs
from the standpoint of usage.

To illustrate the cohesiveness and segregation notions,
consider the scenario where a module p possesses two
S-APIs, {1 … ffoo1; foo2; foo3g and {2 … fbar1; bar2; bar3g.
Further assume that there are four client modules, p1, p2, p3,
and p4, that access these APIs. Suppose that p1 calls foo1
and foo3, p2 calls foo1, foo2, and foo3, p3 calls bar1, bar2,
and bar3, and p4 calls bar2 and bar3. Here, {1 would be
considered cohesive from a usage standpoint since each of
its client modules, p1 and p2, makes use of most of the
methods of the S-API. The API {2 would also be considered
cohesive for the same reason. Besides being cohesive, {1 and
{2 are also well segregated since the clients of each interface
are mutually exclusive. Now consider the case when p1
calls foo1, p2 calls foo3 and bar1, p3 calls bar2 and foo2, and
p4 calls bar3. Now the APIs may not be considered to reflect
a good design since none of the clients uses most of the
methods of either API and due to the overlap between the
clients of {1 and {2.

We now provide a metric called API Usage Index APIU
that measures the extent to which the properties of

cohesiveness and mutual exclusiveness (or segregation)
are obeyed by all of the S-APIs of a module. With ISðpÞ
representing the set of all S-APIs of a module (as explained
in Section 4), let Mð{Þ be the set of methods of an S-API
{ 2 ISðpÞ. Let

CallingModð{Þ … fp 2 Pj9mf2MðpÞ9mt2Mð{Þ

Callðmf;mtÞ ^ p 6… p0g

be the set of other modules that call one or more methods of
this API. Finally, let

Mð{; p0Þ … fm 2 Mð{Þjp0 2 CallingModð{Þ
^ 9mf2Mðp0ÞCallðmf;mÞg

be the subset of methods in Mð{Þ that are called by the
module p0 2 CallingModð{Þ. Usage cohesiveness of an S-API
is given by

APIUCð{Þ …
P

p02CallingModð{Þ jMð{; p0Þj
jCallingModð{Þj � jMð{Þj

:

In reality, the number of methods in an API can vary
widely. Since the cohesiveness of an API as defined here is a
property of an aggregate, the APIUC values for different
APIs of a module should be appropriately weighted to
reflect their sizes. In other words, the APIUC for an API
with, say, 100 methods should carry more weight than that
of an API with just one or two methods. For a module p
with ISðpÞ S-APIs, we define a simple weighing scheme as

�ð{Þ …
Mð{Þj j

S
{j2ISðpÞ Mð{jÞ

���
���

and use these weights to compute the overall cohesiveness
of all S-APIs of a module p by

APIUCðpÞ …
P

{2ISðpÞð�ð{Þ �APIUCð{ÞÞ
jISðpÞj

:

To measure the segregation of all of the S-APIs for a given
module p, we want to consider only the cohesive interfaces. If
an S-API is not cohesive with respect to its usage in the first
place, it may not be meaningful to analyze whether the
interface also possesses the property that the clients of the
module are mutually exclusive vis-a-vis this API. So that we
can just focus on the cohesive APIs, we define APIUCSetðpÞ
to be the set of cohesive interfaces of p. This set is defined as

APIUCSetðpÞ … { 2 ISðpÞjAPIUCð{Þ � �
� �

;

where � is a user-defined threshold for determining
whether an S-API is cohesive. The segregation of the clients
with respect to a cohesive S-API is given by

APIUSðpÞ … 1�
S
{1;{22APIUCSetðpÞ CallingModð{1Þ \ CallingModð{2Þ

���
���

S
{2APIUCSetðpÞ CallingModð{Þ

���
���

0

B@

1

CA

… 0 if APIUCSetðpÞ … ;:

Combining the cohesiveness and segregation metrics, we
can define an overall metric of these two related attributes by

710 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 5, SEPTEMBER/OCTOBER 2008

Authorized licensed use limited to: Purdue University. Downloaded on October 30, 2008 at 16:38 from IEEE Xplore. Restrictions apply.

APIUðpÞ …
APIUSðpÞ þAPIUCðpÞ

2
;

APIUðSÞ …
1

jPj

X

p2P
APIUðpÞ:

ð13Þ

The system level APIU value is always between 0 and 1,
where 0 is the worst case.

13 MEASUREMENT OF COMMON USE OF MODULE
CLASSES

It is not infrequently the case when the classes that get used
together need to be packaged together [49]. If most of the
classes in a module are used together, the impact of changing
one or more classes in the module is likely to be localized with
respect to the rest of the software. On the other hand, when a
module contains classes that are not used together, even an
innocuous change to one of the classes may require an impact
analysis vis-a-vis all of the dependent modules, even when
the dependent modules are not directly impacted by the
change.3 To what extent the classes that are packaged
together in a module also get used together can be
measured by using the notion of mutual information
content between a set of classes grouped into a module
and their usage co-occurrence.

Let C be the set of all classes in a software system and let
PðCÞ be the power set that represents all potential usage co-
occurrences of the classes. Thus, s 2 PðCÞ represents a set of
classes that may possibly be used together. Now, let %ðsÞ be
the probability of a set of classes s being used together in a
module. Further, let S be a discrete random variable that
takes a value from the power set PðCÞ. Next, let %ðpÞ be the
probability with which a particular module is selected from
the set of modules P. Further, let P be the discrete random
variable that takes any value from the set of modules P.

Now, let us try to answer the question as to what a given
set S chosen randomly from the power set PðCÞ can tell us
about the class composition of a module P? Said another
way, to what extent can S predict the module P? In a
probabilistic framework, the answer to this question is
provided by the conditional probability

%ðPjSÞ …
%ðP \ SÞ
%ðSÞ

:

What this definition implies is that, if all of the classes in
a randomly chosen S are contained in the module P, then
S completely “predicts” the module P. For another
example, consider a hypothetical scenario where a specific
element s from the power set PðCÞ consists of the
10 classes S … fc1 � � � c10g which have been used together.
Assume that, out of these classes used together, c1, c2
belong to module p1, c3 � � � c5 belong to p2, and c6 � � � c10

belong to p3. In this case, the above definition tells us
directly that %ðP … p1jS … sÞ … 2

10 , %ðP … p2jS … sÞ … 3
10 ,

and %ðP … p3jS … sÞ … 5
10 .

The mutual information content between the sets of
classes used together vis-a-vis modules can now be
expressed as

IðP; SÞ … HðPÞ �HðPjSÞ; ð14Þ

whereHðPÞ is the entropy associated with all of the modules
in the system andHðPjSÞ denotes the conditional entropy of
the modules vis-a-vis the different sets of classes that can be
used together. The entropyHðPÞ can be expressed asHðPÞ …
�

P
p2P %ðpÞ log %ðpÞ and the conditional entropy is given by

HðPjSÞ … �
P

s2PðEÞ %ðsÞ
P

p2P %ðpjsÞ log %ðpjsÞ.
If the idea that the classes that are used together should

be packaged together is a valid software design strategy,
then the mutual information content between the set of
classes used together and the modules should be as large as
possible. This mutual information takes on a maximum
value when one can predict with certainty a module based
on the set of classes that are used together. When that
happens, we have HðPjSÞ … 0.

The above discussion translates into the following
metric, which measures the extent to which the classes
used together can be the predictors of modules:

CReuMðSÞ …
IðP; SÞ
HðPÞ

: ð15Þ

For this metric, the worst-case scenario ðCReuMðSÞ … 0Þ
corresponds to the case when all of the classes are put in
one monolithic module, i.e., when jPj … 1. For such a case,
we have

IðP; SÞ …HðPÞ �HðPjSÞ

… �
X

p2P
%ðpÞ log %ðpÞ

þ
X

s2PðEÞ

%ðsÞ
X

p2P
%ðpjsÞ logð%ðpjsÞÞ

… 0 ðsince %ðpÞ … 1 and %ðpjsÞ … 1Þ:

14 SUMMARY OF ALL OO METRICS

Table 1 summarizes the metrics presented in Sections 5
through 13 and their underlying rationale. To present the
rationale succinctly for each metric, we have stated it in the
form of a central question that the metric provides an
answer to.

15 EXPERIMENTS FOR METRICS VALIDATION

This section presents a two-pronged approach for experi-
mentally validating the new metrics. In the first approach,
described in Section 15.4, we evaluate the metrics for some
well-respected software systems and then justify the values
thus obtained on the basis of manual examination of the
software. In the second approach, presented in Sections 15.5
and 15.6, we first describe how we carry out code detuning
to simulate how novice programmers may extend/modify a
complex software system to meet changing requirements

SARKAR ET AL.: METRICS FOR MEASURING THE QUALITY OF MODULARIZATION OF LARGE-SCALE OBJECT-ORIENTED SOFTWARE 711

3. We certainly do not wish to convey the impression that the classes that
are used together must always be packaged together. This property, while
desirable in some application domains, cannot be elevated to the status of a
universal requirement. Therefore, the usefulness of the metric we formulate
in this section depends entirely on the design intent incorporated in a
software system. If the software architect intended for the classes that were
used together to also be packaged together in the form of modules, then our
metric can measure the deviation from this ideal. On the other hand, if such
a design principle was irrelevant to an application, then the metric of this
section ought not to be applied to the software.

Authorized licensed use limited to: Purdue University. Downloaded on October 30, 2008 at 16:38 from IEEE Xplore. Restrictions apply.

under the pressure of deadlines. Section 15.6 then presents
the metric values as the code is made to deteriorate with the
help of the detuners.

This experimental validation process was applied to a
mix of open source systems and proprietary business
applications. These software systems are medium to large
sized. In order to keep our experiments focused and to
minimize language-specific nuances, we restricted our-
selves to only the Java programming language. The open
source software systems we chose are

1. Java Development Tool (JDT), which is a plugin to
the Eclipse development framework,

2. Compiere, an open-source system for customer
relationship management (CRM) and enterprise
resource planning,

3. a proprietary CRM system,
4. a proprietary financial application,
5. Petstore, a best-practices reference application for

J2EE technologies by Sun Microsystems, and
6. a popular open-source UML modeling tool,

ArgoUML.
To these six software systems, we added the PLiBS tool
from INRIA and the Merlin plugin (an open source code
generator tool) for a reason that will be made clear in
Section 15.4.

The code for both PLiBS, which stands for Product Line
Behavioral Synthesis, and Merlin includes a significant
portion created by automatic code generators based on
Model Driven Design (MDD). Such generators can be
trusted to produce code that does not violate the basic
tenets of good OO design. More specifically, the auto-
generated code in PLiBS and Merlin was produced by the
Eclipse Modeling Framework (EMF). Table 2 shows the
various statistics related to these software systems.

It is important to realize that the software systems listed
in Table 2 do not come with the sort of module-level APIs
that our metrics need for the characterization of software.
The large object-oriented software systems of today often
do group classes together into large modules, but the
published APIs are still only at the class level in all of the
cases we know of. The concept of information hiding at the

package level (or at the superpackage level) cannot yet be
found in the production code. But, obviously, that is bound
to change as the need for more efficient organization of
large software becomes an imperative.

Therefore, in the rest of this section, we first describe a
module discovery step for systems listed in Table 2. We will
show how, by manually analyzing the roles played by
different classes and/or packages, we can bundle them
together to form the modules in the sense in which we use
that term in this paper. We will then describe an API
discovery procedure for such modules in Section 3. We will
finally present our two-pronged approach to metrics
validation in the rest of this section.

15.1 Modules Formed for the Experimental
Validation Study

The manual modularization was carried out on the basis of
the functionality of the Java packages. In modern software,
it is not uncommon that a given functionality would be
provided by a group of packages working together, as
opposed to by a single package. Even for a single
functionality, the developers may choose a particular
package-based organization for a variety of reasons: 1) As
the development effort is divided among different teams
around the globe, it may make sense for each team to create
its own package; 2) security considerations may dictate that
the vulnerable portion of the code needed for a given
functionality be placed in a separate package; 3) the
requirements of the communications back-end may dictate
that, within a given functionality, the code related to the
interaction with remote machines be placed in a separate
package, and so on.

To create modules in the sense in which we have used that
concept in this paper, it therefore makes sense to manually
examine the different packages and to cluster them together

712 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 5, SEPTEMBER/OCTOBER 2008

TABLE 1
Summary Presentation of the Metrics

TABLE 2
Software Systems Used for Metrics Validation

Authorized licensed use limited to: Purdue University. Downloaded on October 30, 2008 at 16:38 from IEEE Xplore. Restrictions apply.

