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Abstract— One of the most difficult aspects of dealing
with illumination effects in computer vision is accounting for
specularity in the images of real objects. The specular regions
in an image are often saturated - which creates problem for
all image processing algorithms that use decision thresholds.
Such algorithms include those for edge detection, region
segmentation, etc. Detecting specularity and whenever possible
compensating for it are obviously advantageous. Along these
lines, this paper represents a new specularity detection and
compensation method which is based on the notion of truncated
least-squares approximation to the function that maps the color
distribution between two images of an object under different
illumination conditions. We also present a protocol for the
evaluation of the current method for specularity detection. Our
protocol as currently formulated uses human subjects to grade
the specularity detection method.

I. INTRODUCTION

The color values in the image of an object surface can
vary dramatically as the illumination condition changes.
Depending on the location of the illumination sources
with respect to the locations of the camera and the
object, highly saturated highlights produced by mirror-like
reflections from glossy surfaces can appear in an image.
Since camera saturation caused by specularity interferes
with the image processing algorithms that use decision
thresholds, vision researchers from the early days have
sought methods for the detection and compensation of
specularity[1], [2].

Researchers have proposed a number of specularity
detection algorithms[3], [4], [5] that are based on the no-
tion of “well-definedness” of mappings between the chro-
maticity spaces corresponding to the images taken under
different illumination conditions. Using the Dichromatic
Reflection Model, Shafer and Klinker[4], [6] have shown
that the two components of this model, the diffuse (body)
and the specular (surface), form a dog-legged (a skewed
“⊥” shape) distribution in the dichromatic plane in the
RGB color space. Their algorithm fits a convex polygon
to the distribution in the dichromatic plane to separate
the specular component from the diffuse component. In
early 1990, Lee and Bajcsy[5], [7] proposed a specularity
detection algorithm called “spectral differencing”. Using
two color images from different viewing directions, the

spectral differencing approach finds the pixels in one im-
age whose RGB color values do not exist (within a specific
tolerance) in the other image; these pixels are declared
to be specular. This is done by calculating the Euclidean
distance from the RGB coordinates of each pixel in one
image to all pixels in the other image. The authors use
the notion of Lambertian Constancy and the assumption
that, under Lambertian reflection, the color coordinates at
non-specular pixels are independent of the camera view-
point. As another closely related work, Drew[8] defines
specularities as pixels that disobey the linearity of the
Lambertian Model and treats specularities as outliers in
the Least-Median-of-Squares (LMedS) regression.

Most of these previous works have been tested either
with synthetic images or with a very small number of
real images for their ability to detect specularities. In
addition, a common constraint in these previous works
is that a scene only include Lambertian surfaces. How-
ever, many applications in real life environments include
shiny surfaces that are not Lambertian; such surfaces
cause pixels to become saturated in a camera image.
One commonly occurring example of this phenomenon
is in the tracking of vehicles in automobile assembly
lines where smooth and shiny car surfaces can cause a
significant portion of a camera image to saturate and to
thus get clipped. As the extent of specularity increases
– because a scene has too many surfaces with mirror-
like finish – the previously mentioned approaches degrade
rapidly. We believe that our proposed method described
here overcomes this problem. This method, which we have
named as the Truncated Least-Squares Method, constructs
a least-squares regression between two images taken under
two different illumination conditions, one of these being
the image in which the detection of specularities is sought
and the other being a reference image substantially free
of specularities. The basic idea is to choose candidate
thresholds for the detection of specularity, clip the target
image using these thresholds, construct a least-squares
map from the pixel distribution of the reference image
to the retained pixels in the target image, and, finally, use
a measure of the quality of this mapping for accepting or
rejecting the candidate thresholds.
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On the basis of the experimentation we have carried
out on a database of 300 images containing both Lam-
bertian and non-Lambertian surfaces, we believe that our
proposed approach is sound. No prior information about
the illumination condition need be known. Instead, our
proposed method requires that the target image has at least
some parts that are unsaturated in all camera channels
whereas the reference image needs to be substantially
specularity-free. Reference images are allowed to contain
some specular pixels, as evidenced by the references
images in Figure 1 (m) and (p). Our results show that
acceptable specularity detection thresholds can be com-
puted by our method as long as the number of specular
pixels in the reference image is less than 5% of the total.

II. EXPERIMENTAL SETUP

To perform our experiments, we employ a Linux sys-
tem operating on a 850MHz Pentium III and a Matrox
Meteor image grabber. All images were taken with a
CCD Camera (Jai CV-950) without any gamma correction.
As mentioned already, our image database consists of
300 images. These are of 100 widely varying objects,
ranging from very dull to very glossy; single colored to
multi-colored; with background ranging from simple to
complex; etc. Each of these 100 objects was photographed
three time under three different illumination conditions:
diffuse, ambient, and directed.1 Figure 1 shows examples
of images from the image database.

III. PROPOSED METHOD

Our proposed Truncated Least Squares (TLS) Method is
based on discarding the saturated (which is the same thing
as clipped) specular pixels from the target image so that
a high-quality least-squares mapping can be established
between the corresponding pixels in a reference image
and what remains of the target image. Eventually, this
mapping function also helps us discover the unsaturated
specular pixels in the target image. For an image to
serve as a reference image, it has to be recorded under
special illumination conditions, obviously. Additionally,
only those pixels in the target image that are free of
clipping participate in the mapping function.

The mapping function is derived assuming the dichro-
matic model for reflectance. Under this model, as sug-
gested by Klinker and Shafer[4], the pixels in an image
can be classified into three linear clusters: 1) non-specular
(matte) pixels, 2) unsaturated (unclipped) specular pixels,
and 3) saturated (clipped) specular pixels. Whereas the
first two groups of pixels, referred to as good pixels,
are co-planar and define the dichromatic plane, the sat-
urated pixels are not. Since the dichromatic plane does

1This paper and the entire image database of 300 images are avail-
able from the Purdue University Robot Vision Laboratory’s web site
(http://rvl1.ecn.purdue.edu/RVL/specularity database).
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Fig. 1. Example images taken under three different illumination
conditions.

not include these saturated specular pixels, obviously the
presence of the saturated specular pixels leads to a poor
LS (Least-Squares) mapping from one image to another.
By discarding the clipped pixels of the target image in
this manner, our TLS method gives good mappings even
when the target image contains a large number of them.

The TLS method consists of the following three steps:

• Discard the saturated specular pixels in the target
image. These are pixels in very bright and saturated
areas where the dynamic range of the camera may
be exceeded in at least one of the three channels.
Since these clipped specular pixels do not generally
obey the characteristics of the Dichromatic Reflection
Model [4], it is desirable and important to filter these
pixels out.

• Calculate a linear regression between the remaining



corresponding pixels in the two images. This will
serve as a least-squares mapping from the color
values at the good pixels in the reference image to the
color values at the good pixels in the target image.

• Detect unsaturated specularities by applying the in-
verse mapping function to all good pixels of the target
image and by comparing the domain values obtained
with the distribution of the reference image. If a
domain value thus obtained is outside 1.125 times
of the standard deviation from the mean of RGB for
the reference image, we know that the corresponding
pixel in the target image is specular.
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Fig. 2. Three Clusters of pixels distribution in the RGB cube

The following subsections will elaborate on the three steps
listed above.

A. Selection of Optimal Thresholds for Removing Satu-
rated Specular Pixels

As mentioned earlier, the Dichromatic Reflection Model
[4] describes the color of every pixel in a color image as
a mixture of a diffuse (body) reflection and a specular
(surface) reflection component. In addition to these two
clusters in the dichromatic plane, there are pixels cor-
responding to saturated specular reflections that do not
follow the characteristics of the Dichromatic Reflection
Model. These saturated specular pixels do not lie in the
dichromatic plane (see Figure 2).

We will now show how a threshold for detecting the
saturated specular pixels can be obtained from a Principal
Components Analysis (PCA) of the covariance matrix of
the color values of a portions of the pixels in a target
image. The main idea here is that for each target image
we gradually remove saturated pixels by starting from the
white point where R, G and B values are all equal to 255 in
descending brightness in the RGB cube until all remaining
pixels are in the dichromatic plane. Obviously, when all
the pixels can be assumed to lie on the dichromatic plane,
the color values of the pixels will have only two degrees of
freedom, implying that a Principal Components Analysis
(PCA) of the color values will yield only two significant

eigenvalues. Additionally, the presence of saturated pixels
will cause a significant increase in the “energy” along one
of the principal axes of the color values, resulting in a large
eigenvalue corresponding to that axis. This implies that if
we carry out a PCA of the color values of the pixels of a
target image containing specularities, we should expect to
see all three eigenvalues, with the largest eigenvalue being
of notable size.

Our above observations imply that a search for the opti-
mum threshold for the detection of saturated specularities
can be conducted by stepping along each of R, G, and B
axes, trying each value as a candidate decision threshold,
discarding all the target image pixels whose color values
exceed the threshold, and remapping the reference image
to the remaining target image pixels. In practice, if the
illumination can be assumed to be approximately white,
this search can be simplified by stepping along only the
gray axis. Our experiments show that this approach to
search suffices, at least for the very diverse images of our
database. To summarize this search strategy, here are the
steps:

• Set the initial value of the threshold for the detection
of saturated specularities to the white point in the
RGB space.

• Discard all pixels in the target image that have RGB
values larger or equal to the current threshold and
then apply the PCA to the remaining pixels.

• Reduce the current thresholding values in descending
brightness direction along the gray axis in the RGB
space.

• Repeat the above steps until the largest eigenvalue
decreases sharply.

We have found empirically that these optimal thresholds
for removing saturated specular pixels almost always
range from the point where R, G, and B values are between
240 and the value of 255 for the white point. Therefore
only a few iterations of the steps described above provide
the optimal thresholds if any clipping effects are presents.
Figure 3 illustrates the changes in the three eigenvalues
for the target image shown in Figure 1(e) as the thresholds
are reduced one step at a time in descending brightness
direction along the gray axis. The second larest eigenvalue
(λ2) and the third largest eigenvalue (λ3) are relatively
smaller compared to the first (largest) eigenvalue (λ1).
The largest eigenvalue is proportional to the distortion
introduced in the placement of the dichromatic plane
by the presence of saturated pixels. The second and the
third eigenvalues correspond to those pixels that form
the two linear clusters, marked A and B in Figure 2, in
the dichromatic plane. Removing saturated specular pixels
significantly decreases the largest eigenvalue.
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Fig. 3. Changes in eigenvalues as we step through the clipping points
along the gray axis. λ1, λ2, and λ3 are the three eigenvalues in decreasing
order of magnitude. These are obtained by applying PCA to the pixel
distribution.

B. Computing TLS Regression

Suppose that after the removal of the saturated pixels in
the target image, we are left with only k pixels. We denote
the RGB triple for a pixel in the reference image by ωi=
[Ri , Gi, Bi]T where Ri , Gi and Bi are the red, green and
blue values of the pixel i respectively. In the same manner,
we denote the RGB triple for the same pixel in the target
image by ω ′

i . These k non-discarded pixels in the target
image and the corresponding pixels in the reference image
are used for the following least-squares minimization:

min
k

∑
i=1

(ri)
2 (1)

where ri is the residual that can be defined by the
Euclidean distance between the ith pixel in one image and
the corresponding pixel in the other image.

In an ideal physics-based reflection model such as the
Dichromatic Reflection Model, the tristimulus coordinates
(i.e., RGB color coordinates) of the light emanating from
the surface patch with surface spectral reflectance function
ρ(λ ) can be found by the following integrals (assuming
that the illumination is aimed perpendicularly on the
surface):

Rre f lected ≡
∫

ν(R)

P(λ )ρ(λ )qR(λ )dλ (2)

Gre f lected ≡
∫

ν(G)

P(λ )ρ(λ )qG(λ )dλ (3)

Bre f lected ≡
∫

ν(B)

P(λ )ρ(λ )qB(λ )dλ (4)

where P(λ ) is the spectral power distribution (SPD) of
the illuminant and qR(λ ), qG(λ ), and qB(λ ) are the the
three camera sensor response functions for the R, G, and
B channels, respectively. Note also that ν(R), ν(G), and ν(B)

are the intervals corresponding to the visible spectrums of
R, G, and B respectively[9].

According to the “factor model” proposed by
Borges[10], the RGB color values in the reflected light
can be approximated by the product of the RGB color
components of the illumination e and the RGB compo-
nents of the surface color s as follows:

Rre f lected '
eRsR

σR
(5)

Gre f lected '
eGsG

σG
(6)

Bre f lected '
eBsB

σB
(7)

where eR is the R color value of the light source, that
is eR =

∫

ν(R)
PR(λ )qR(λ )dλ , (eB and eG can be defined

accordingly); sR is the R color value of surface under
spectrally white illumination of unit intensity, that is
sR =

∫

ν(R)
ρ(λ )qR(λ )dλ , (sG and sB can also be defined

accordingly); and σR is the camera scaling term for R
channel that is σR =

∫

ν(R)
qR(λ )dλ , (σB and σG can

be defined accordingly). Indeed, a similar approximation
was presented by Cowan and Ware[11] and was shown
that this approximation works quite well in practice. The
expressions above again assume that the illumination is
aimed perpendicularly on the surface.

To develop more general versions of the above simpli-
fied formulas for the case of slant illumination angles and
multiple illumination sources, we can first write the more
general version of Eqs. 2 through 4 as follows:

Ri =
L

∑
l=1

(

∫

ν(R)

Pl(λ )ρ(λ )qR(λ )dλ (aT
l ni)

)

(8)

Gi =
L

∑
l=1

(

∫

ν(G)

Pl(λ )ρ(λ )qG(λ )dλ (aT
l ni)

)

(9)

Bi =
L

∑
l=1

(

∫

ν(B)

Pl(λ )ρ(λ )qB(λ )dλ (aT
l ni)

)

(10)

where L is the number of illumination sources, at angles
given by the unit normal vectors al , l = 1, ....,L and where
ni is the surface normal at a point in the scene that
corresponds to the ith pixel in the image.

By replacing the integral parts by the approximations
given in Eq. 2, 3, and 4 above, we have

Ri '
L

∑
l=1

(el
RsR/σR)(aT

l ni) (11)

Gi '
L

∑
l=1

(el
GsG/σG)(aT

l ni) (12)



Bi '
L

∑
l=1

(el
BsB/σB)(aT

l ni) (13)

To develop a more compact representation for these
formulas, we now introduce two diagonal matrices, Si and
Ei :

Si =





sR 0 0
0 sG 0
0 0 sB



 Ei =





ER 0 0
0 EG 0
0 0 EB





where Si is a diagonal matrix composed of the surface
color components sR, sG, and sB at a point in the scene
that corresponds to the pixel i, and Ei (called the light
matrix), again a diagonal matrix, consists of the following
diagonal entries:

ER =
L

∑
l=1

(el
RaT

l ni/σR) (14)

EG =
L

∑
l=1

(el
GaT

l ni/σG) (15)

EB =
L

∑
l=1

(el
BaT

l ni/σB). (16)

Note that each of Ec is a scalar (here the subscript c stands
for R, G, or B) and is the same for all pixels under the
same illumination condition.

With the help of the matrix notation introduced as
above, the three equations (Eq. 11, 12, and 13) can be
expressed in the following compact form:

ωi = SiEi (17)

by denoting ωi= [Ri , Gi, Bi]T where Ri , Gi and Bi are
red, green and blue values of the pixel i respectively.

Since our main goal is to develop a mapping function
that tells how the color values in an image taken under
non-specular conditions map into the color values taken
under specular conditions, we will now examine the above
equation assuming that the illumination has changed from
E to E ′. If the new RGB values at pixel i are denoted as
ω ′

i , we can write

ω ′
i = SiE

′
i = Si

(

(E ′
i E

−1
i )Ei

)

(18)

Substituting Eq. 17, we get

ω ′
i = Si

(

(E ′
i E

−1
i )
)

S−1
i ωi = Si ·Mi ·S

−1
i ·ωi (19)

where the 3×3 matrix Mi is given by

Mi = E ′
i E

−1
i .

Here notice that matrix Ei is a diagonal matrix, therefore
it is invertible except when one or more diagonal entries
is 0. And any of these diagonal entries (given in Eqs.

14 through 16) becomes 0 only when the following case
becomes true: For all L number of light sources, all e1

c ,
e2

c , .... , eL
c are simultaneously 0 (where c = R, G, or B).

Matrix Si is also a diagonal matrix, therefore it is always
invertible except when one or more diagonal entries (that
are RGB color values of surface) becomes 0. That will
happen when a scene point consists of an object surface
whose color is deeply saturated. For example, when the
color of an object surface is pure red, we can expect sG

and sB to be zero. The matrix Si will become poorly
conditioned when an object surface is deeply black so
as to absorb most of the incident illumination. For such
surfaces, all three values on the diagonal of S will be close
to zero.

Despite these caveats regarding the invertability of Ei

and Si, we will press ahead under the assumption that
both these matrices can be inverted. In other words, we
will assume that the scene does not contain colors that are
deeply saturated or deeply black.

Matrix Mi being diagonal implies that it approximately
commutes with Si so that Si and S−1

i can be canceled
out. Thus the linear equation for modeling illumination
changes becomes even simpler:

ω ′
χ 'Mi ·ωχ . (20)

The development so far has considered each pixel
individually. The mapping function Mi is to be applied to
each pixel separately. We will now generalize this notion
and develop the notion of a mapping function that can
be applied to all non-saturated pixels in an image. While
the individual pixel mapping function was denoted Mi,
the mapping to be applied to all the “legal” pixels will be
denoted M. The mapping M will be made to be optimal in
the least-squares sense for all legal pixels, meaning pixels
that are not saturated in the target image.

To derive this more global mapping, we will define an
auto-correlation matrix:

C ≡
k

∑
i=1

ωi ·ωT
i (21)

where i ranges from 1 to k, with k being the total number
of pixels remaining in the target image after the saturated
pixels are removed. Here we only considered k number of
pixels from the image whereas all pixels from the entire
image were used in Drew’s approach[8].

If we put all k pixels into a 3× k matrix, denoted Ω,
where each column now represents the R, G, and B values
at a pixels, then Eq. 21 becomes

C ≡Ω ·ΩT (22)

where Ω can be written as



Ω =



 ω1 ω2 · · · ωk



=





R1 R2 · · · Rk

G1 G2 · · · Gk

B1 B2 · · · Bk





.
(23)

From Eq. 20 and Eq. 22, we can easily retrieve the
equation for transformation of the auto-correlation

C′ = M ·C ·MT (24)

The only unknown we have now is the 3× 3 matrix M
that is the best truncated least-squares solution calculated
from min‖Ω′−M ·Ω‖2. Now we can derive M from the
normal equation with the pseudo-inverse

M = (Ω′ ·ΩT )(Ω ·ΩT )−1 (25)

Remaining is just to apply M in Eq. 25 to the two
images, Ω and Ω′ :

Ω′ 'M ·Ω (26)

As long as M is non-singular, M−1 can be obtained. Thus
we can also approximately transform the color values in
the reference image to the color values in the target image
by multiplication with M−1:

Ω'M−1 · Ω′ (27)

C. Choose Threshold for Detecting Non-saturated Specu-
larities

The basic idea that we use for establishing a threshold
for the detection of non-saturated specularities is based
on the notion that when a color value is inverse mapped
from the target image to the reference image (using the
mapping function of the previous subsection), the co-
domain point for a specular pixel will fall outside the
normal range. That is because the mapping function M
applies only to non-specular pixels. In other words, M
specifically excludes all specularities – both saturated and
non-saturated. (But, of course, we have already eliminated
the saturated specularities by the very first step of the
processing outlined at the beginning of Section III.) It
should therefore be possible to detect the non-saturated
specular pixels in the target image on the basis of inverse
mapping of their color values. This is the main idea behind
the expression we present below for the threshold.

For each RGB channel, we calculate the mean vector
µ(Ω) and a vector representing the standard deviation
σ(Ω) for those pixels of the reference image that form the
co-domain of the retained pixels in the target image. In
terms of the mean and the standard deviation thus derived,
we use the following expression for establishing a decision
threshold for detecting non-saturated specular pixels in the
target image:

Uk = µk(Ω)+ασk(Ω) (28)

where k indicates one of R, G, and B and α is a constant
factor. A target pixel whose inverse-mapped color values
exceed this threshold is declared to be a non-saturated
specular pixel. Currently, we set α = 1.125 in Eq. 28,
which makes the threshold 1.125 times of the standard
deviation from the mean. However, we would obviously
want this decision threshold to correspond to the human
perception of specularity. Toward that end, a further study
needs to be carried out to understand how to select
superior thresholds using Eq. 28.

IV. EXPERIMENTAL RESULTS

We selected 100 pairs of images from our database,
with one image in a pair serving as a reference image and
the other image as a target image. The reference image
was taken under diffuse illumination and the target image
under either directed or under ambient illumination. Since
the goal of the research reported here is the detection
of specular pixels in an image, it is necessary to have
ground-truth information for evaluating our method. The
ground truth was obtained by employing an unbiased
human examiner and providing him with a graphical tool
for delineating the specularities in our database images.
The human-entered information was stored as a binary
template for each image that contained specularities. A
template stored 1’s where the human perceived a specu-
larity and 0’s elsewhere. The middle column in Figure 4
depicts these templates for the target images in the left
column. The right column shows those regions in each
image that were declared to be specular by our method.
For the images on which we tested our method, 64.5%
of the human-delineated specular pixels were detected by
our method. Our method also declared 14.6% of the non-
specular pixels as specular.

V. DISCUSSION

In this paper we have presented a method for establish-
ing thresholds for the detection of specularities in images.
The method first eliminates the saturated specularities
and then finds a least-squares mapping from the color
values in a reference image to those in the target image.
The reference image is expected to be substantially free
of specularities, a condition that can be satisfied when
images are specially recorded under diffuse illumination.
The decision threshold for the saturated specular pixels is
obtained by an iterative process that involves eliminating
the target image pixels whose color values exceed a
candidate threshold and carrying out a Principal Com-
ponent Analysis of the remaining pixels. The decision
threshold for the non-saturated specular pixels is obtained
on the basis of inverse mapping of the target image color
values to the reference image color values. A comparative
study involving this present method and the previously
proposed specularity detection methods is underway in our
laboratory.
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Fig. 4. Example images, templates and results
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