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arge strides recently have been made in the model-based

approach to vision-guided mobile robot navigation in indoor
environments. Although the model-based method: does indeed
result in very robust reasoning and control architectures, the fact
remains that this approach requires precise geometrical modeling
of those elements of the environment that are considered visually
significant — a requirement that can be difficult to fulfill in some
cases. The need for geometrical modeling of the environment
also makes such systems “non-human-like.” We have, therefore,
recently developed a new kind of reasoning and control architec-
ture for vision-guided navigation that makes a robot more “hu-
man-like.” This system, called NEURO-NAV, discards the more
traditional geometrical representation of the environment, and
instead uses a semantically richer nonmetrical representation in
which a hallway is modeled by the order of appearance of various
landmarks and by adjacency relationships. With such a repre-
sentation, it becomes possible for the robot to respond to human-
supplied commands such as, “Follow the corridor and turn right
at the second T junction.” This capability is achieved by an
ensemble of neural networks whose activation and deactivation
are controlled by a supervisory controller that is rule-based. The
individual neural networks in the ensemble are trained to inter-
pret visual information and perform primitive navigational tasks
such as hallway following and landmark detection.

Imitating Human Navigation

Ithas now been convincingly demonstrated that by combining
model-based reasoning with Kalman filtering, it is possible to
design very robust reasoning and control architectures for vision-
guided mobile robot navigation in indoor environments. For
example, the robot described in [1], [2] is capable of autono-
mously navigating in hallways, at speeds around 8 m/min, using
vision for self-location and ultrasound for collision avoidance.
The performance of this robot is not impaired by the presence of
furniture and other stationary or moving objects in the hallways.
The robot simply treats everything that is not in its geometrical
model base as visual clutter. By maintaining models of uncertain-
ties and their growth during navigation, the robot is able to place
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bounds on where it should look for important landmarks; this
gives the robot immunity against visual clutter. Other contribu-
tions along similar lines that preceded the work reported in [1],
[2] are the work of Ayache and Faugeras [3], Kriegman et al. [4],
and Fennema et al. [5].

Model-based approaches of the kind reported in [1], [2]
require that geometrically precise models of the 3D environment
be available. While it is true that not every feature of the envi-
ronment need be represented in the model, for obvious reasons
a sufficient number of visually significant features, called land-
marks, must be represented. We believe that the need for geomet-
rical models of the environment sets these model-based
approaches apart from the manner in which humans navigate.

Inspired by how easily humans navigate, we have developed
a new system; we call it NEURO-NAV. The key ideas in
NEURO-NAYV were formulated through observations of human
navigational behavior. First, human navigators do not need to
calculate the exact coordinates of their position while navigating
over roads or through hallways. The road-following or the hall-
way-following behavior exhibited by humans is a reactive be-
havior that is learned through experience. Second, given a goal,
human navigators can focus attention on particular stimuli in
their visual input and extract meaningful information very
quickly. Third, extra information may be extracted from the scene
during reactive behavior; this information (e.g., approaching an
intersection) will usually be stored away and may be retrieved
subsequently for higher level reasoning.

These observations have dictated the design of NEURO-NAV.
Besides containing a rule-based supervisory controller, NEURO-
NAV consists mainly of a collection of neural networks that
mimic the human reactive navigational behaviors. NEURO-NAV
does not require geometrically precise 3-D models of the envi-
ronment. Instead, a geometrically much simpler yet semantically
richer hallway model, similar to human navigational maps and
consisting of corridors, junctions, dead ends, and landmarks
(e.g., doors, bulletin boards), aids the high level reasoning and
path planning process during navigation. Using this simple
model, the supervisory controller can issue commands to the
robot, such as, “go down the corridor A and turn right at next
junction.” Given these commands, the robot travels on a planned
path using its ability to perform primitive navigational tasks such
as hallway following, i.e., navigating down the hallway without
running into walls, and landmark detection.
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Before closing this section, we
would like to mention an earlier
contribution in the area of mobile
robot navigation using neural net-
works. We are referring to the work
of Pomerleau [6] in which reduced-
resolution raw images and range
data for road scenes are fed into a
two-layer feed-forward neural net-
work to produce steering com-
mands. While clearly a pioneering
effort, Pomerleau’s work suffers
from the shortcoming that a mono-
lithic neural network is used to gen-
erate the final decisions for the
vehicle. Monolithic neural net-
works are not amenable to interac-
tion with higher-level supervisory
control in an autonomous system.
In contrast, as in our work, when a
control architecture uses an ensem-
ble of neural networks, each dedi-
cated to some primitive task,
control becomes much more flex-
ible and more receptive to the in-
corporation of heuristic knowledge
supplied by a human expert.

Here, we will very briefly pre-
sent the overall architecture of
NEURO-NAV, leaving some of the details to [7]. We will focus
on one specific module of this architecture, the corridor follower.
This article is an extended version of [8].

Architecture of NEURO-NAV
As depicted in Fig. 1, the reasoning and control architecture
of our vision-guided mobile robot navigation system includes a
non-metrical model of the hallway, a path planner, a human
supervisor, a hallway follower, a landmark detector, an obstacle-
avoidance module, and a rule-based supervisory controller. Here
we will not say much about the ultrasonic obstacle-avoidance
module, save that it utilizes a semi-ring of Polaroid transducers
and calculates the directions and the distances to obstacles on the
basis of time taken by the echoes to return to the transducers. The
computed distance to an obstacle is used for local and immediate
modififications to the path traversed by the robot.

Hallway Modeler

Clearly, given the missions of NEURO-NAYV, the geometric
modeling of the environment used in, say, [1], [2] is not what is
needed here. As mentioned before, NEURO-NAYV views a task,
such as hallway following, as a reactive behavior, which means
the motions of the robot will be triggered by visual cues such as
the orientation of the hallway floor edges with respect to the
direction of the robot. A task such as hallway following, there-
fore, has no need for the usual metrical details of a geometry-
based modeler. For these reasons, in the modeling needed for
NEURO-NAV, we have eschewed geometry in favor of a more
non-metrical approach. The components of a hallway model in
NEURO-NAV are determined more by their semantic and func-
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tional significance than by geome-
try. What we mean by this statement
is made clear by the following.

For the purpose of illustrating
our modeler, consider the hallway
segment shown in Fig. 2(a) and its
corresponding model, represented
as an attributed graph, in Fig. 2(b).
As shown there, the nodes of this
graph consist of corridors, junc-
tions, and dead ends. The links of
the graph, also attributed, contain
information regarding the physical
distance between the landmarks
represented by the nodes at the two
ends of the link. A node is repre-
sented by a list of attribute names
and pointers. For example, a corri-
dor node contains the attributes
name, primary direction, left land-
marks, right landmarks, behind
node, and beyond node. The point-
ers that are the values of attributes
like left landmarks, etc., point to a
list of landmarks such as doors,
junctions, alcoves, etc. An example
of a corridor node, corridor C2 in
Fig. 2(b) in the hallway model, is
shown in Fig. 3. In a sense, each
extended node, such as corridor C2, is assumed to be centered at
its middle point, making the distance between C2 and J1 equal
to half the length of the corridor. This is done merely to facilitate
path planning. NEURO-NAV itself is fully aware of the fact that
C2 is an extended physical entity. As the reader has surely
surmised from our.description, a hallway model is defined with
respect to a particular direction of travel for each of its corridors;
this points to an interesting difference between the traditional
geometrical models and the non-metrical models such as in
NEURO-NAV. Of course, as further elaborated in [7], the robot
is free to travel in any direction in a hallway. In other words, if
so dictated by the initial position of the robot and the desired
destination location, the path planner is free to send the robot
through a segment of a hallway in a direction opposite to the one
encoded for the segment in the representation.

Hallway Path Human
Modeler Planner Supervisor|

| |

—| Rule-Based Supervisory Controller [+—

| | |

Obstacle Hallway Landmark
Avoidance Follower Detector
Module Module Module

Fig. 1. Architecture of NEURO-NAV.
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Fig. 2. (a) A hallway section where di’s are doors, ai’s are alcoves.
(b) Representation of the hallway section in (a). Ci’s are corridors,
Ji's junctions, and Dy’s dead ends in a non-metrical attributed-graph
representation.

name: C2
primary direction: = north
left landmarks: door, d176
) door, d175
door, d174
door, d173
door, d172
right landmarks: power_panel, p3

alcove, al79
power_panel, p2
alcove, al80
bulletin_board, b2
- junction, J1
junction, J2

behind node:
beyond node:

Fig. 3. The data structure used for the node that represents the
corridor C2 in Fig. 2(b).

Path Planner

There are basically two approaches to path planning. In the
mobile robotics context, the first approach, called the configura-
tion space based approach, may be implemented by first con-
structing a binary array whose nonzero elements correspond to
the floor of the hallways and then modifying the binary array in
such a manner that, from the standpoint of collision avoidance,
the motion of the mobile robot on the floor is equivalent to the
motion of a point object in the hallways. This approach was
pioneered by the work of Lozano-Perez and Wesley [9] in the
context of path planning for arm robots and, most recently, used
in the FINALE architecture [1]. A major disadvantage of the
configuration space based approach is the need for path replan-
ning whenever the robot deviates from its originally computed
path, as is wont to happen during collision avoidance exercises.

The need for replanning is eliminated in a second approach
to path planning; in this approach each object is considered to
give rise to a potential field and a path to the goal is calculated
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by searching through the valleys of the overall potential field.
Although in recent years this approach, pioneered originally by
Khatib [10], has proved popular in a number of different do-
mains, especially the domain of assembly motion planning [11],
nonetheless it is not suitable for our purposes since, like the
configuration space based approaches, it is highly demanding of
the detailed geometrical knowledge of the navigational environ-
ment.

Our path planner differs fundamentally from both the configu-
ration space based approach and the potential field based ap-
proaches. The new path planner, reported here only very briefly,
simulates human cognition in the sense that the paths produced
are less geometrical and more descriptive and yet useful enough
for a mobile robot to use to get to its destination. For example,
for the hallway shown in Fig. 2, if the robot is placed initially
facing north in corridor C2 and its destination is in front of the
dead-end D2, the path planner will output the following string of
symbols: “follow corridor, turn right at next T-junction, stop at
next dead-end.” It is important to realize that this path to the
destination is semantically rich and is essentially devoid of
explicit geometry, at least in the sense geometry is used in, say,
the FINALE system in [1]. It would not be far fetched to say that
the output of the path planner in NEURO-NAV shares many
similarities with how a human navigator might communicate
with the driver of a vehicle.

In our approach to path planning, the initial and the destination
positions of the robot, given by a human supervisor, are specified
relative to landmarks in the hallway model. If the robot is going
to navigate in the hallway shown in Fig. 2, the position of the
robot can be described using symbol streams like: (landmark:
X ;node: Y; direction: Z) or just (node: ¥; direction: Z). The first
choice is evidently more specific than the second for describing
the initial position or the desired destination position of the robot.
As an example, when the robot is in the vicinity of door d176 in
Fig. 2(a) facing north, the position would be described by the list
(landmark: d176; node: C2; direction: north). On the other hand,
if the human did not wish to be specific about the precise location
of the robot, the path planner in NEURO-NAV would not com-
plain if the position of the robot is described by the list (node:
C32; direction: north). The reader should note that, as with some
other aspects of NEURO-NAV, this manner of supplying the
robot position to the path planner makes for a more human-like
interface with the robot.

Given the initial and the destination locations specified as
above, the path planner then examines the adjacency matrix data
structure for the hallways. Dijkstra’s algorithm [12] is used to
traverse the adjacency matrix using the distances between nodes
as cost functions to produce a sequence of nodes as a solution.
This sequence of nodes where the first node is the initial node
and the last node the destination node represents the path between
the initial and the destination positions. The path planner sub-
sequently translates this sequence of path nodes into a sequence
of descriptive commands. For example, when the initial and the
destination positions are given by (landmark: d176; node: C2;
direction: northy and (node: D2; direction: east), respectively,
the command sequence output by the path planner is (follow
corridor, turn right at next T junction, and stop in front of the
dead end). Associated with each command in this sequence are
lists of landmarks on the left and right faces, and on the behind
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and the beyond junctions. These landmarks are listed in the order
of appearance to be seen by the robot.

Before closing the subject of path planning, we want to
mention that when the calculated paths are described using
semantically rich descriptors, path replanning becomes unneces-
sary. Since the description of the path along which the robot is
moving is not burdened by geometrical precision, the robot now
has latitude in locating itself with respect to its environment. To
elaborate, as long as the robot can see a particular set of land-
marks, each possibly recognized by a special neural network, the
robot knows where it is with respect to the final goal. In the
manner of a human, the robot would not compute its exact
location, but would still know how to get to its destination.

Human Supervisor

The human supervisor in NEURO-NAYV has two roles. When
the robot is in autonomous mode, the human supervisor specifies
the initial and destination positions of the robot and this informa-
tion is passed on to the path planner. On the other hand, when the
robot is in human-supervised mode, the human supervisor di-
rectly gives out the commands, often in the form of a sequence
that is similar to what is produced by the path planner when the
robot is in the autonomous mode. The menu of commands that
is available to a human supervisor is shown in Table I. The first
four commands are explicit directions for the robot to follow. The
remaining eighteen commands are implicit and the robot exe-
cutes them with the help of the hallway follower module, the
landmark detector module, and the rule-based supervisory con-
troller.

Hallway Follower and Landmark Detector
The hallway follower module and the landmark detector
module in Fig. 1 are composéd of collections of neural networks,
each network trained to perform a specific task. The hallway
follower module consists of three submodules, the corridor fol-
lower, the junction_left follower, and the junction_right follower,
each consisting of two neural networks. (The reason two neural

networks are necessary in each submodule will be explained
shortly.) The function of the corridor follower is to keep the robot
going straight down a hallway and to do so even when the robot
isforced by obstacles to deviate from a straight path. The function
of the junction_left follower is to ensure that the robot is able to
turn left through a junction. The function of the junction_right
follower is the same, except that now the robot has to turn right
through the junction. :

The landmark detector module consists of a neural network
that is capable of detecting both junctions and dead ends, and, at
the same time, of making a qualitative assessment of the distance
between the robot and the junction or dead end. The distance
estimate is qualitative in the sense that the output nodes of this
neural network correspond to “far,” “at,” and “near,” and the
estimation is in terms of these semantic labels.

Supervisory Controller
During navigation, appropriate networks are activated and
deactivated by the rule-based supervisory controller. Further
discussion on this orchestration of all the neural networks in the
system by the supervisory controller is presented in [7]. We only
wish to mention here that when obstacles are detected by ultra-
sonic sensors, the supervisory controller temporarily suspends
vision-based servoing. All the maneuvering required for collision
avoidance is governed by the collision avoidance module in Fig.
1. The supervisory controller resumes vision-based navigation

after the possibility of collision is eliminated.

Corridor Follower

We will now explain in greater detail the structure of the
corridor follower, which, as was mentioned previously, is con-
tained in the hallway follower module in Fig. 1. The design of
the corridor follower is based on the following rationale: i) in
order for a robot to go straight down a hallway, the perspective
projection in the camera image of either the left or the right
hallway edge must be within a certain angular range; and ii) if
the robot is not headed straight down the hallway — a condition

Table I
Command Menu Available to a Human Supervisor
Commands
name argument name argument
1 turn left (degrees) 12 stop T junction
2 turn right (degrees) 13 turn left left_T junction
3 g0 straight (meters) 14 20 straight left_T junction
4 stop 15 stop left_T junction
5 follow corridor 16 turn right right_T junction
6 stop dead-end 17 go straight right_T junction
7 turn left junction 18 stop right_T junction
8 turn right junction 19 turn left intersection
9 stop junction 20 turn right intersection
10 turn left T junction 21 go straight intersection
11 turn right T junction 22 stop intersection
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Fig. 4. The structure of the corridor follower is shown here. As
shown, the disjoint regions of a Hough map are fed into two different
neural networks for corridor following.

Fig. 5. A typical image seen by the mobile robot during hallway
navigation.

that could be caused by an attempt at collision avoidance — there
exists a correlation between the turn the robot must make back
towards the straight-down-the-hallway direction and the extent
to which the perspective projection of the hallway edge is outside
the previously stated angular range. This rationale evidently
dictates that it be possible to extract line features from images
and, since the robot has to servo with respect to the line features,
it be possible to carry out a fast extraction of these line features.
These considerations have led to the corridor follower shown in
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Fig. 6. The Hough space representation spans the parameters 0 and
d that characterize a line feature in an image.

Fig. 4. The input to the two neural networks shown there consists
of the left and the right regions of the Hough map derived from
a single camera image, such as the one shown in Fig. 5. For
readers conversant with vision algorithms, a robust method for
detecting edges that may be continuous or broken consists of first
applying an edge detector to an image and then mapping all the
edge points into what is called a Hough space, whose each cell
is indexed by the slope of an edge and by the perpendicular
distance of a line through that edge from the image center (Fig.
6). To speed up this process, in NEURO-NAYV the camera image
is downsampled from a 512x480 matrix to a 64x60 matrix with
no noticeable effect on the abilities of the corridor follower. A
more modularized schematic of the corridor follower module is
shown in Fig. 7. Actually, that processing chain serves all the
functions of the hallway follower, which include corridor and
junction following, and of the landmark detector. The distance
estimates mentioned in that figure are for the landmark detector.

To understand why different regions of the Hough map are
fed into different neural networks in Fig. 4, we must first explain
the purpose of the corridor left and the corridor_right neural
networks shown there. Note that the goal of corridor following

steering commands and distance estimates

NNV

i Different regions of Hough Map
. go to different neural networkSJ

Nt/

Hough Mapping

!

Edge Detection

!

Downsampling

T

input image

Fig. 7. The flow of processing that takes a camera image for input
and produces steering commands for the robot at the output. Also
produced at the output are qualitative estimates of the distance
between the robot and any junctions/dead ends in front of the robot.
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is to navigate down the corridor without running into the walls
on the left or the right of the robot. In Fig. 4, one neural network,
corridor_left, is trained to be sensitive to the left hallway floor
edge; while the other neural network, corridor_right, is sensitive
to the right hallway floor edge. Each of these two networks
produces six output commands representing steering angles at
10° increments. The output of the two neural networks compete
to contribute to the final decision using the principle of “maxi-
mum takes all.” If neither network can produce a decisive output
(i.e., values of all output nodes are below some threshold), a “no
decision” output is rendered.

Now back to the explanation regarding the segmentation of
the Hough map, it can be shown that the Hough map can be
structured in such a manner that even for significant deviations
in the orientation of the robot from its ideal direction, all the edge
features corresponding to the left wall will be in the left half of
the Hough space and all the edge features corresponding to the
right wall in the right half of the Hough space. For illustration,
we have shown in Fig. § the different regions of a Hough map
for a typical camera image; this segmentation of the Hough map
depends on how the camera is mounted on the robot and the
figure shown applies to our robot. Therefore, it is sufficient to
feed into the corridor_left only those Hough cells that are in the
left half plane but not the extreme left columns, and into the
corridor_right only those that are in the right half plane, but again
not too close to the extreme right edge of the Hough space. Fig.
9(a) shows a typical downsampled hallway image. The detected
edges are shown in Fig. 9(b), the extracted floor edges in Fig.
9(c), and finally the Hough space representation of the floor
edges used as input to the neural networks is shown in Fig. 9(d).
Note that the discrimination between the floor edges and the
nonfloor edges is made with the help of the Hough map.

The neural networks that perform corridor following, like all
the other neural networks employed in NEURO-NAYV for primi-
tive navigational tasks, are three-layer feed-forward neural net-
works trained by the backpropagation learning algorithm. The
network structures are determined empirically by initially assign-
ing an arbitrarily large number of nodes to the hidden layers,
studying the convergence of the system during the learning
process, and reducing the number of the nodes in the hidden
layers to see whether or not the network still converged with the
reduced number of nodes. In this manner, one ends up with a
network with a small number of nodes for the hidden layers while
the network is guaranteed to converge. This approach is particu-
larly effective if a small learning rate is used in the backpropa-
gation algorithm. The network structure of the neural network
corridor_left is shown in Fig. 10. It is composed of 117 input
units which cover a designated region of the Hough map, two
hidden layers consisting of 12 and 6 hidden units, respectively,
and 6 output units. In addition, three bias units are included in
the network to represent the internal thresholds of the units in the
hidden and the output layers.

The backpropagation learning algorithm is a gradient descent
error-correction algorithm that minimizes the errors between the
desired outputs and the actual computed outputs by modifying
the connection strengths, or weights, between the units in the
network [13]-[16]. The learning algorithm consists of two
phases. In the feed forward phase, the input pattern is presented
to the input units, fed forward through the hidden layers, and the
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Fig. 8. Segmentation of the Hough map.

actual output is calculated at the output layer. At each layer, the
output of a unit j is calculated as

k

0j=f|Y, Owij + 9;

i=1
where O; and Oj are the outputs of nodes i and j, w; the connection
strength from node i to node j, and g the internal threshold of node
J. For the network of Fig. 10, for a given node j the summation
shown will span the nodes that are in the layer below. The
function f{) is the sigmoid function

1
1+ "

fo)=

that transforms the input values into continuous values between
0 and 1.

In the backpropagation phase, the weights and the internal
thresholds are modified using the errors between the desired and
the actual outputs. More specifically, they are adjusted by the

“following equations:

Awij (1) =n0id; + o Awi(1)
ABj (t+1)=m0;+ o AB)(2)
where 1 is a small positive constant called the learning rate, J; is
the error signal at node j, and o is the momentum coefficient that
determines the effect of past learning on the current weight

changes. If node j is in the output layer, the error signal §; is
calculated as

8=0;(1-0;)(0f-0))

where 0,"1 is the desired output for node j. If node j is in any of
the hidden layers, the error signal is calculated as

8 =0; (1-0; )25,‘ wji .

1

For a given node j, the summation here spans all the nodes in
the layer above. In this manner, the error signals are propagated
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Fig. 10. The structure for the corridor_left network (not all links are
shown).
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Fig. 9. Shown here are the edges, the extracted floor edges, and the Hough map representation for a reduced-resolution camera image
shown in (a). (a) Resampled image. (b) Detected edges. (c) Extracted floor edges. (d} Corresponding Hough space.

backwards from the output nodes to the input nodes. During the
training phase, the feedforward and the backpropagation phases
are repeated, cycling through many inputs and desired outputs,
until the errors are below some threshold.

We now describe briefly how junction/dead-end detection,
contained in the Landmark Detection Module in Fig. 1, works in
NEURO-NAV. To present the main point of the junction/dead-
end detection, as the robot is approaching a hallway junction, say
junction J2 in Fig. 2(a), the numerous horizontal edges that define
what the robot sees straight ahead will exhibit a downward
motion in the camera image. This fact is exploited for the
qualitative estimation of the distance between the robot and a
junction/dead-end by first applying a difference operator to
Hough space representation of successive images; the difference
operator is applied to only those regions of the Hough space that
are populated by the horizontal lines in the image. (For the
configuration of the camera on our robot, the first few columns
and the last few columns in the Hough map correspond to the
horizontal edges.) The output nodes of this network, as was
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mentioned before, stand for the labels “far,” “at,” and “near,”
these labels being qualitative estimates of the distance of the
robot from the far wall of the junction.

The neural networks for junction following, contained in the
hallway follower module, share similarities with the corridor
follower, also contained in the same module. To elaborate, a
junction_left follower, used for turning left through a junction,
consists of two neural networks, one tracking the right edge of
the floor and the other the left edge. In actual execution, the latter
network is initially ineffective as it either sees nothing or what-
- ever it sees is in the wrong cells of the Hough map. However, as
the robot comes close to finishing up a left turn, this network
keeps the robot from turning too far. In a similar fashion, junc-
tion_right follower consists of two neural networks also.

Experimental Results

The neural networks described above were trained to assist
our robot in navigating the hallways around our laboratory.
Training data can be selected from snapshots of the hallway, but
for convenience, synthesized images rendered by an existing
three-dimensional modeler of the hallway were used. As de-
scribed earlier, the structures of the neural networks were deter-
mined empirically. The networks corridor left and
corridor_right are each composed of 117 input units, two hidden
layers consisting of 12 and 6 hidden units, respectively, and 6
output units. We used 72 patterns, with twelve patterns corre-
sponding to each of the six steering directions, for training the
neural networks of the corridor follower. For each of the two
networks, each training cycle consisted of feeding a pattern three
times into the feedforward network, backpropagating the errors,
and adjusting the weights. One training loop consisted of proc-
essing all 72 patterns in this manner. We used 1000 such loops.
Therefore, each neural network in the corridor follower of Fig.
4 was subject to 216 000 forward propagations and backpropa-
gations before the connection weights were accepted. We chose
to use 1000 training loops because the average output error
magnitudes after that many training loops were below 0.01. The
average errors during the 1000 training loops for networks cor-
ridor_leftand corridor_right are shown in Fig. 11(a) and (b). The
learning rate and the momentum coefficient were both setto 0.05.

The networks junction_left and junction_right mentioned in
the previous section are each composed of 117 input units, 12
and 4 hidden units in the hidden layers, and 2 output units
indicating two different degrees of steering angles. For example,
the two output units of the junction_left network issue left
steering commands of 30° and 60°. (Note that for turning, say,
left, the two neural networks that are used in a competitive mode,
in the same manner as in corridor following, consist of the the
corridor_left part of Fig. 4 and the just-mentioned junction_left
network. While the latter network causes the robot to turn left by
either 30° or 60°, the former keeps the robot from turning left too
far.) A total of 60 training patterns was used to train these
networks, with the learning rate and the momentum coefficient
both set to 0.1. The network junction/dead-end detector, again
mentioned in the previous section, consists of 21 input units that
cover a designated region of the Hough map, 6 and 4 units in the
two hidden layers, and 3 output units standing for “far,” “near,”
and “at.” This network was trained with 47 training patterns while
the learning rate and the momentum coefficient were both set to
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Fig. 11. Average error rates for training the various neural networks
in NEURO-NAYV by the backpropagation algorithm.

0.05. The average error rates during the training processes for
these networks are shown in Fig. 11(c) and (d).

The trained neural networks were then incorporated into
NEURO-NAV. Using 448 test patterns not used for training,
NEURO-NAV generated 387, or 86%, correct steering angles
and 43, or 10%, incorrect angles. The remaining outputs (4%)
indicated “no decision” which includes the situations where no
hallway floor edges were seen by the robot. In the 10% of the
cases when an incorrect steering angle was output, the steering
command was off by one “notch”, meaning 10°. When a “no
decision” was rendered, the robot was instructed to turn slightly
so that a new viewing angle may produce a more decisive output.
Shown in Fig. 12 are the trajectories of our robot in two experi-
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mental runs. The run shown in Fig. 12(a) is for the case of no
obstacles in the hallway; therefore, vision is the only sensing used
and the ultrasonic obstacle avoidance module plays no role here.
For the run in Fig. 12(b), a human obstacle is in the middle of the
hallway; now the ultrasonic collision avoidance module and
vision-based processing must work in concert. For both runs in
Fig. 12, although at times incorrect outputs were generated, the
robot was able to detect the error in its subsequent moves and
correct its course.

At this point, one might ask why not train one large neural
network that would cover all regions of the Hough map and
produce a final command directly. Our decision to train individ-

" ual small networks to perform primitive tasks is based mainly on
three reasons. First, we would like to create generic behaviors.
In the case of corridor following, by training the two networks
individually, we are not forcing the two networks to agree with
each other. Consequently, the corridor follower will not be lim-
ited to hallways of the same width. Second, a large neural
network is often viewed as a large black box which produces
output that cannot be influenced by other intelligent agents.
Using smaller networks that produce intermediate results allows
ahigher level knowledge based system, in our case the rule-based
supervisory controller, to participate in the decision making
process. Third, smaller neural networks with less complicated
decision space are easier to train.

NEURO-NAV is implemented on a Cybermotion platform
with a turret of our own design containing a VME bus-based
MC68030 processor. A picture of the robot is shown in Fig. 13(a),
with Fig. 13(b) a schematic of the various features of the robot.
Using ordinary laboratory computing hardware of 16 MIPS
power, NEURO-NAYV can process a camera image and produce
a navigational output within approximately 2 s.

More Human-Like Behavior

We believe we have succeeded in developing a vision-guided
navigation system for indoor robots that endows the robot with
primitive behaviors not too different from those used by humans.
The behaviors, such as corridor following, junction following,
and junction/dead-end detection, are “programmed” into neural
networks that are fed from different and pre-designated regions
of the Hough space representation of camera images.

The NEURO-NAYV approach is radically different from the
deliberative approach to vision-guided mobile robot navigation
presented in [1] that uses model-based reasoning and Kalman
filtering. An advantage of the deliberative approach, especially
of the type presented in [1], is that the performance of the robot
carries certain statistical guarantees, at least as long as the geo-
metrical models of the environment and the models of uncer-
tainty remain valid. On the other hand, the advantage of the more
behavior-based approach in NEURO-NAYV is that the robot is
more human-like in the manner in which it solves navigation
problems; in its use of environment representations that are akin
to human cognitive maps; in the fact that the robot does not care
about the geometrical precision of either the representation of the
environment or of its own location; and finally, in the nature of
the commands that NEURO-NAV generates for robot’s motion,
these commands being similar in structure to the commands a
human navigator would issue to a driver.
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Fig. 12.(a) An actual experimental run of the robot under the control
of NEURO-NAV. There were no obstacles in the hallway for this run.
(b) An actual experimental run of the robot under the control of
NEURO-NAV. In this case, a human obstacle is at the location
shown. The obstacle is not constrained to be stationary.
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