
A Parallel Implementation of the Color-Based Particle Filter for
Object Tracking

Henry Medeiros
hmedeiro@purdue.edu

Purdue University
West Lafayette, IN

Xinting Gao
xinting.gao@nxp.com

NXP Semiconductors
Eindhoven, The Netherlands

Johnny Park
jpark@purdue.edu

Purdue University
West Lafayette, IN

Richard Kleihorst
richard.kleihorst@nxp.com

NXP Semiconductors
Eindhoven, The Netherlands

Avinash Kak
kak@purdue.edu

Purdue University
West Lafayette, IN

Abstract
In this paper, we present an implementation on an SIMD par-

allel processor of an object tracker based on a color-based particle
filter. The main focus of our work is on the parallel computation of
the particle weights, which is the major bottleneck in standard im-
plementations of the color-based particle filter since it requires the
knowledge of the histograms of the regions surrounding each hy-
pothesized target position. In addition to that, we also show that the
remaining steps of the particle filter can be efficiently implemented
on an SIMD processor. We have implemented the algorithm in a
low-power SIMD-based smart camera, and the experiments show
that it performs robust tracking at 30 fps.

Categories and Subject Descriptors
I.4.8 [Image Processing and Computer Vision]: Scene Anal-

ysis—Color, Tracking

General Terms
Algorithms

Keywords
Particle Filter, Smart Cameras, SIMD Processors, Tracking

1 Introduction
As the demand for low-power, portable, networked, and mo-

bile computing devices continues to increase, it is natural that the
services provided by such devices grow in number and in complex-
ity. However, due to power consumption constraints, the operat-
ing speed of these devices is bound to be much lower than that of
standard desktop computers. To support these new, more complex
applications, running in lower clock speed processors, alternative
processing architectures are being employed. Since these architec-
tures are fundamentally different from that of the general purpose
processors, it is often the case that existing algorithms need to be
redesigned in order to be implemented in these systems.

In the specific case of vision systems, object tracking is a
building block for a number of applications. As a consequence,
many successful approaches have been devised for visual track-
ing. One such successful approach is the color-based particle fil-
ter, which has been employed over the past decade by many re-
search groups to track non-rigid objects based on their color his-
tograms [4, 15, 16, 17]. In this approach, a reference histogram of
the target is initially provided to the tracker which then searches
each subsequent frame for the most likely new location of the tar-
get using Bayesian estimation. The results obtained so far by these
researchers show that the method is suitable for tracking non-rigid
objects since the color histogram is relatively independent of the
target deformation and is robust to occlusion and to variations in
the color of the background [15, 17].

However, the particle filter is computationally expensive and,
therefore, is not suitable for the current generation of wireless smart
cameras based on low-power general purpose microcontrollers (e.g.
the Cyclops camera [19]). On the other hand, the algorithm lends
itself to effective parallel implementation. Therefore, by devising a
parallel implementation of the color-based particle filter, it is possi-
ble to achieve robust real-time object tracking on low-power smart
cameras based on an SIMD processor such as the WiCa camera [8].

This paper is an extension of our previous work [14] where
we proposed a method for the parallel computation of the parti-
cle weights in the color-based particle filter in an SIMD processor.
Here we show that not only is it possible to compute the particle
weights in parallel, but it is also possible to achieve an efficient im-
plementation of the remaining steps of the algorithm that are not im-
mediately parallelizable. These steps include weight normalization,
estimation of the target position, and resampling. Furthermore, we
have successfully implemented the algorithm in the WiCa SIMD-
based smart camera, and the experimental results show that the al-
gorithm is capable of performing robust real-time tracking. In this
paper, we assume the reader is familiar with the basic concepts of
the particle filter as well as its usual color-based implementation for
object tracking. For introductions to the particle filter, we refer the
reader to [1, 14]. The color-based particle filter for object tracking
is described in [14, 15, 17].

This paper is organized as follows. In section 2, we present
some of the works on color-based particle filters and on methods to
implement the general particle filter in parallel. Section 3 presents
our proposed parallel implementation of the algorithm. In section
4, we present experimental results obtained using an SIMD-based
smart camera. Finally, section 5 concludes the paper.
2 Related Work

The particle filter was introduced to the computer vision com-
munity by Isard and Blake in their seminal work [6] in which they
presented the CONDENSATION algorithm, which tracks objects
based on their contours. The idea of tracking objects based on
their color histograms using the particle filter was suggested by
Nummiaro et al. [15] and by Pérez et al. [17] around the same
time. In spite of a few minor differences, both works present essen-
tially the same algorithm wherein the measurement likelihood is
based on the Bhattacharyya distance between the current color his-
tograms and the reference color histogram, and the target dynamics
are represented by a constant velocity model perturbed by Gaussian
noise. Both works present different strategies for initializing the fil-
ter. Pérez et al. also presents some extensions such as tracking
objects using multiple histograms and introducing a model of the
background into the tracker. The general form of the color-based
particle filter presented by these works is widely accepted today.



Currently, the use of the color-based particle filter is widespread
and a comprehensive survey is beyond the scope of this work.
Nonetheless, it is important to mention that an embedded imple-
mentation of the color-based particle filter has already been pre-
sented in [5], but their work does not consider parallel implementa-
tion issues.

Regarding parallel computation of the particle filter, many
works have shown that the particle filter is immediately paralleliz-
able since there are no data dependencies among particles. That is
the case indeed for most steps of the particle filter except for resam-
pling. Therefore, most of the works on parallel particle filters focus
on designing a resampling step suitable for parallel implementation.

In [12], for example, the authors showed how each of the build-
ing blocks of a particle filter, including many known resampling
techniques, can be implemented in a fine-grained parallel architec-
ture in which each processing element is responsible for processing
one particle.

Bolic et al. [2, 3] presented techniques to improve the resam-
pling step. After showing that a particle filter with K particles
can be computed in an SIMD machine with M processing units in
K/M + L steps, where L is the latency for the first particle to be
available, they presented different parallel resampling methods and
proposed architectures for effective implementation of these meth-
ods.

Sutharsan et al. [20] proposed an SIMD particle filter for
multi-target tracking. Their system uses a distributed resampling
method which requires exchange of fewer particles among proces-
sors. Considering the communication overhead of transmitting par-
ticles among processors, they devised an algorithm that minimizes
the computation time by balancing the load (i.e., the number of par-
ticles) processed by each processing element.

The main objective of most of the aforementioned works is to
parallelize the resampling step. However, for a moderate number
of particles, resampling itself is not computationally expensive [2].
The main focus of our work is, therefore, on the computation of the
particle weights for the specific case of color-based particle filters.
This step is the major bottleneck in the implementation of the filter
since it requires the computation of the histograms of the regions
surrounding each hypothesized target position.
3 Parallel Implementation of the Particle Fil-

ter
It has been reported that the bottleneck in the implementation

of the color-based particle filter is the computation of the M color
distributions at each step of the algorithm [17]. This bottleneck
is due to the fact that, in a general purpose processor, each of the
M histograms has to be computed sequentially. In this paper, we
show that, as long as the processor architecture allows for efficient
access to external memory, it is possible to compute the histograms
in parallel.
3.1 Hardware Architecture

We propose an algorithm for an SIMD linear processor array
such as the Xetal family of SIMD processors [7]. The architec-
ture is composed of a linear processor array (LPA) of P processing
elements, each consisting of an arithmetic logic unit and a small
amount of memory. Each processing element has direct read and
write access to the memory of its two nearest neighbors. The line
memory, that is the overall memory of the PEs, can be directly ac-
cessed by a digital input processor and by a digital output processor.
The digital input processor is responsible for parallelizing the data
received from the image sensor or from the external memory and for
storing them in the buffer. The digital output processor reads data
from the line memory and serializes them to be stored in the exter-
nal memory. The digital I/O processors can operate independently
of the processing elements so that, while the processing elements
are performing computations on the data, the digital I/O processors

PE PE PE PE PE PE PE PE

Digital
Video
Input

External
Memory

Digital Input
 Processor

LPA

Line Memory

Digital Output
Processor

GCP

External
Memory

Digital
Video
Output

Figure 1. Hardware architecture.

External Memory Line Memory

Figure 2. Organization of the particle regions in the line mem-
ory.

may store previously processed data or fetch new data from the im-
age sensor or from the external memory. A global control processor
(GCP) is responsible for controlling the operation of the LPA and
is also able to carry out global DSP operations. This architecture is
illustrated in Figure 1.

3.2 Parallel Histogram Computation
Suppose we want to compute the histogram of a rectangular im-

age region R(x) of dimensions rx× ry, that is:

R(x) = R(x,y) = {(u,v) : x ≤ u ≤ x + rx,y ≤ v ≤ y + ry} (1)
One straightforward approach to compute the histogram of region
R(x) would be to employ integral histograms [18]. The main draw-
back of this approach, however, is that we need to store one his-
togram per pixel. Since each histogram consists of a relatively large
data structure, the memory requirements of integral histograms are
generally too high for embedded systems.

In our approach, we compute the histograms of M image regions
in parallel. To do so, we first store the image in the external mem-
ory so that its pixels can be randomly accessed by the digital I/O
processors and, consequently, by the PEs. Once the PEs have ran-
dom access to the image pixels, it is possible to read them back into
the line memory of the LPA reorganized side-by-side, as illustrated
in Figure 2, so that they can be later processed in parallel. To read
the pixels from the external memory, each processing element has
to know the initial coordinates, xi and yi, and the dimensions, rx and
ry, of the region Ri.

In practice, not all the pixel information has to be stored in the
external memory. Since the pixels are used only for the compu-
tation of the histograms of each region, we only need to store the
bin number corresponding to the given pixel in the external mem-
ory. Using that approach, only log2 m bits are required to store each
pixel, where m is the number of histogram bins.

As the image regions are read, line-by-line, into the line mem-
ory, they can be processed in parallel using an approach somewhat
similar to that used in [9, 10], which is illustrated in Figure 3. Dur-
ing the first ry iterations, the histograms for each column of the
regions are computed. After the column histograms are computed,
we need rx steps to compute the total histograms of each image re-
gion. This is done by sequentially adding the histogram of a given
column to that of its immediate neighbor.

The procedure to compute the histograms in parallel is illus-
trated in Algorithm 1. The algorithm runs in parallel in each pro-
cessing element i. Using this procedure, it is possible to compute
the histograms of all the image regions in O(rx + ry) steps. The



Line Memory

ry steps

rx steps

Final Histograms

Figure 3. Parallel computation of the histograms.

Algorithm 1 Computing the histograms in parallel.
For j = 0 To ry

read position (xi + i mod rx,yi + j) from the external memory
into the line memory

update the column histogram and store it in the line memory
End For

For k = 0 To rx
If (i mod rx) = k

add the current column histogram to the histogram of the
right neighbor

End If
End For

main bottleneck in this procedure is reading the data from the ex-
ternal memory. Since the external memory has to be read sequen-
tially, we need O(nx) operations to read each line of data, where nx
is the number of elements in one row of the line memory (which is
the same as the number of processing elements since the line mem-
ory is basically the memory within the processing elements). This
problem can be mitigated if the external memory can be accessed in
a pipelined manner. That is, if we allow the digital I/O processors
responsible for reading the external memory to read an entire line
and store it in a temporary buffer while the linear processor array
processes the previous line.

Depending on the size of each line of the line memory and the
number of regions to be stored, it may be the case that the line mem-
ory cannot store all the image regions side-by-side, i.e., nx < M×rx.
In that case, it is possible to store the elements in an array as sug-
gested in [14]. Using this arrangement, M×rx

nx
extra steps are neces-

sary to compute the histograms of all the regions. However, when
the total width of the tracked regions M× rx is much larger than
the number of processing elements nx, the number of extra steps re-
quired to compute the histograms may not be negligible. If the total
time required for computing the histograms of the image regions
in parallel exceeds the time required to compute the histogram of
each region, that is, if M×rx

nx
(rx + ry) > rxry, or M >

nxry
(rx+ry)

, then
it is more efficient to organize the regions as columns in the line
memory. In that case, each PE is responsible for computing the
histogram of one region so that up to nx histograms can be com-
puted in parallel. This approach is illustrated in Figure 4. In that
case, the algorithm for computing the region histograms is given by
Algorithm 2.
3.3 Parallel Weight Computation

Since there are no data dependencies among the particles during
the computation of the likelihoods, after the histogram distributions
are computed, each likelihood can be computed in parallel as long
as the processing elements have access to the common reference
histogram. After the likelihoods are computed, the (unnormalized)
weights can also be computed in parallel. Since each PE has access
to its immediate neighbors, weight normalization can be carried out
by left (or right) shifting the weights and accumulating the total
weight over all elements. The total weight can then be used by

External Memory Line Memory

...

Figure 4. Organization of the particle regions into columns in
the line memory.

Algorithm 2 Computing the histograms in parallel for a large num-
ber of particles.
For j = 0 To ry

For k = 0 To rx
read position (xi + k,yi + j) from the external memory into
the line memory

update the histogram and store it in the line memory
End For

End For

the GCP to compute a global scale factor which is then multiplied
by all the weights in parallel. Regardless of the approach used to
compute the histograms, weight normalization can be accomplished
in at most O(nx) steps.

3.4 Resampling
As we already mentioned, resampling cannot, in general, be im-

plemented in parallel due to data dependencies among the particles
during this step of the algorithm. However, for a moderate number
of particles, resampling is not computationally expensive. In par-
ticular, given the normalized weights, the replication factors ri can
be computed over a single iteration over the particles in most re-
sampling algorithms such as Systematic Resampling and Residual
Resampling [11]. Given the replication factors, the particles can be
sequentially replicated in O(nx) steps by using the direct memory
access among neighboring PEs.

3.5 Pipelined Implementation
In a straightforward implementation, two frame intervals would

be necessary to estimate the target position since the pixel infor-
mation of an entire frame must be stored in the external memory
before it can be reorganized in the line memory. That is, during the
first frame interval, the pixel information needs to be stored in the
external memory. Then, during the second frame interval, the pixel
information of the regions surrounding each particle is loaded into
the line memory of the LPA as described in Section 3.2 in order to
allow the parallel computation of the particle weights.

In our system, we use only half of the image resolution (i.e.,
only the odd video lines of an image) so that two half images can
be processed in a single frame interval. To do so, during the odd
video line intervals, we store the corresponding pixel information
in an external memory space allocated for the current frame. Then,
during the even video line intervals, we read the pixel information
of the regions surrounding each particle from a different external
memory space corresponding to the previous frame. As the pixel
information of the previous frame is read into the line memory, it is
reorganized as described in Section 3.2 so that the particle weights
can be computed in parallel and the target position can be estimated.
As a result, after one frame of latency, the filter provides one esti-
mate of the target position at every frame, achieving a frame rate of
30 fps.

4 Experimental Results
We implemented our algorithm on the WiCa smart camera [8].

The WiCa basically consists of four main components, one VGA



color image sensor, one IC3D/Xetal SIMD processor, one gen-
eral purpose processor, and a Dual Port RAM (DPRAM) which is
shared between the SIMD processor and the general purpose pro-
cessor. The IC3D/Xetal SIMD processor consists of a linear pro-
cessor array (LPA) with 320 RISC processors, one digital input pro-
cessor, one digital output processor, and one global control proces-
sor (GCP). Each processor in the LPA is endowed with 64 words
(10 bits wide) of memory and can directly access the memory of
its immediate neighbors. Data is streamed into the LPA memory by
the digital input processor and out of the LPA memory by the digital
output processor. The GCP, in addition to controlling the operation
of the LPA, is also capable of performing global DSP operations.
All the steps of the particle filter were implemented in the SIMD
processor, and the general purpose processor was not used except
for debug purposes.

In our current implementation, the target is tracked on images
of resolution of 256×240 pixels, which are obtained by downsam-
pling the VGA frames provided by the image sensor. The measure-
ments are based on the hue histogram of the target. Due to memory
constraints, 40-bin histograms were used. Each tracked region con-
sists of a rectangular area of 15× 15 pixels. The distribution of
the target state is approximated by 240 particles. Since we are em-
ploying a large number of particles, the histograms are organized
into columns in the memory (as described in Section 3.2), so that
each PE is responsible for one particle. To efficiently use the I/O
capabilities of the platform, only the rightmost 240 PEs are used
in the computations. The remaining 80 PEs could be used (e.g.,
to keep track of more particles) at the cost of a more complex I/O
management strategy.

The WiCa architecture provides access to up to 640 elements
to/from the external memory at each video line interval. However,
for simplicity of implementation, we only read 240 elements (one
pixel per particle) from the external memory at each video line in-
terval. Since the image sensor provides VGA frames, we have 480
video line intervals to access the external memory. However, half
of these line intervals are used for storing the hue values of the pix-
els of the current frame into the external memory, hence, we have
240 remaining line intervals for reading the reorganized tracked re-
gions into the line memory. Therefore, in our current implementa-
tion, one iteration of histogram computation is carried out at each
even video line interval. It is possible to increase this by a factor
of 640/240 = 2.67 at the cost of a more complex I/O management
strategy.

As the pixels are loaded into the line memory, the histograms
of each particle region are computed in parallel. After the his-
tograms are computed, the Bhattacharyya distances between each
of the 240 histograms and the reference histogram are computed
in parallel. The observation likelihoods and unnormalized particle
weights are also computed in parallel based on the Bhattacharyya
distances. Since each PE in the LPA has single-cycle read and write
access to the memory of its immediate neighbors, weight normal-
ization as described in Section 3.3 can be carried out efficiently.

The target state xt = [xt ,yt ]T consists of the current pixel coor-
dinates of the target, and its dynamic behavior is modeled by a first
order autoregressive process, that is:

xt+1 = Axt +Bxt−1 +n (2)
where xt is the target state at time t, A and B are the process pa-
rameter matrices and n ∼ N(0,σ) is the process noise. The esti-
mated target position is given by the weighted average of the parti-
cles. This step can be implemented efficiently using two additional
shift/accumulate steps similar to that used to normalize the particle
weights, one for the x coordinate and another one for the y coordi-
nate of the target.

At every iteration of the filter, we perform a simplified resid-
ual resampling step. The replication factors are given by ri =

Conversion to HSV 256×12.4µs
Histogram computation 225×2.4µs

Particle prediction 7.2µs
Bhattacharyya distances 79.6µs

Likelihoods 3.6µs
Weight normalization 31.9µs/5.2µs

Weighted average of the particles 2×40.9µs/4.9µs
Resampling 102µs

Total 4ms
Table 1. Processing times.

Target state (current and previous) 4
Particle weights 1

Histograms 40
Video line buffers 3

Temporary variables 14
Total 62

Table 2. Line memory usage.

bM×wic+ ni, where ni = M−∑
i
bM×wic if wi = max(wi) and 0

otherwise. Given the normalized weights, the replication factors
can be computed in parallel. Then the particles are replicated se-
quentially by shifting each particle i ri times into its neighbors using
the direct access to the immediate neighbors.

Table 1 shows the time required for each processing step of the
algorithm. As we already mentioned, only the first step of the al-
gorithm, i.e., conversion to HSV color space, is carried out during
the odd video line intervals. As we can see in the table, this step
takes 12.4µs per image line. Since one image line period is approx-
imately 69.5µs, during the odd video line intervals, the LPA is busy
approximately 17% of the time.

Since we choose to organize the particle regions as columns in
the line memory, during the even video lines, every step of the algo-
rithm is computed in parallel for all the particles. Histogram com-
putation, the first step of the algorithm executed during the even
video lines, requires nx× ny iterations of 2.4µs. In our implemen-
tation, nx = ny = 15, and, since one element per PE is read into the
line memory at each video line interval, 225 video lines are required
for computing the histograms. The total processing time required
for histogram computation is 225×2.4µs = 540µs.

Particle prediction using Eq. (2), which requires the generation
of two Gaussian random numbers, takes 7.2µs for both the x and y
coordinates of all of the 240 particles. Since weight normalization
as described in Section 3.3 requires the use of iterative routines for
integer division, the computation time is data-dependent. Table 1
shows the average computation time and the standard deviation over
20 iterations of the algorithm while tracking a target. The same
thing happens with the computation of the weighted average of the
particles. Since the resampling factors are computed during weight
normalization, the resampling time shown in the table corresponds
to the time to copy the replicated particles to their corresponding
PEs. The total computation time during one frame is approximately
4ms, or 12% of one frame interval.

Table 2 shows the line memory usage of the algorithm. As we
can see, more than 64% of the line memory is used to store the
histograms. Excluding the 3 line memories used for storing the
RGB digital video from the image sensor and the 40 line memories
used by the histograms, the entire algorithm requires only 19 line
memories for storing the target state and temporary variables. Re-
garding program memory usage, the current implementation of the
algorithm consists of 1362 instructions out the 2048 instructions of
program memory available in the IC3D/Xetal processor.

Figure 5 shows snapshots of the tracking results of our imple-
mentation of the parallel color-based particle filter in the WiCa cam-



frame 1 frame 300

frame 1700 frame 2400

frame 2700 frame 3000

Figure 5. Tracking results.

era. In the images, it is possible to see that the algorithm is capable
of keeping track of a human face over a large number of frames
even in the presence of objects of similar colors and under large
variations on the appearance of the target.

5 Conclusions and Future Directions
The color-based particle filter is an effective algorithm for track-

ing non-rigid objects, however, at the cost of high computational
expense. In this paper, we have shown that not only is it possible to
implement the major bottleneck of the algorithm – the computation
of the color histograms and, consequently, the particle weights – in
a parallel manner suitable for an SIMD architecture, but also that
the non-parallelizable steps can be implemented efficiently. Our
results show that it is possible to achieve real-time tracking even
operating at relatively low clock frequencies.

The algorithm can be immediately extended to include spatial
information in the tracked histograms. For example, as in [17, 15],
pixels within a tracked region may be weighted so that pixels near
the borders of the regions are less relevant in the histogram com-
putation, or, as in [17], a coarse spatial layout of the tracked region
can be incorporated into the tracker. In addition to that, since the
processing elements have non-linear access to the external memory,
it is straightforward to keep track of regions of different shapes such
as ellipses or rectangles.

One of the major limitations of our current approach is the ne-
cessity to store all the histogram bins in the line memory. However,
since the histograms are only needed to compute the Bhattacharyya
distances, it should be possible to overcome this limitation by re-
cursively computing the Bhattacharyya distance. That would not
only allow us to employ histograms with more bins, increasing the
overall robustness of the system, but also release most of the line
memory for different uses. It should be possible, for example, to
keep track of more complex target states or even track multiple ob-
jects.

We are also currently investigating possible ways to allow mul-
tiple cameras tracking the same target using a color-based particle
filter to collaborate in order to increase the robustness and accuracy
of the algorithm. It should be possible, for example, to employ a

cluster-based architecture [13] in which the cluster head is respon-
sible for robustly estimating the 3D coordinates of the target and
automatically detecting and reinitializing cameras that lose track of
the target. Since our ultimate goal is to port this method to wireless
cameras, we are trying to achieve such collaboration while keeping
the interaction among cameras to the minimum necessary.
6 References
[1] ARULAMPALAM, M., MASKELL, S., GORDON, N., AND CLAPP, T. A tutorial

on particle filters for online nonlinear/non-gaussian bayesian tracking. Signal
Processing, IEEE Transactions on 50, 2 (Feb. 2002), 174–188.

[2] BOLIC, M. Architectures for Efficient Implementation of Particle Filters. PhD
thesis, Stony Brook University, Aug. 2004.

[3] BOLIC, M., DJURIC, P., AND HONG, S. Resampling algorithms and architec-
tures for distributed particle filters. IEEE Transactions on Signal Processing 53
(2005), 2442–2450.

[4] CZYZ, J., RISTIC, B., AND MACQ, B. A color-based particle filter for joint
detection and tracking of multiple objects. In Proceedings of the IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Processing, 2005. (ICASSP
’05) (Mar. 2005), vol. 2, pp. 217–220.

[5] FLECK, S., AND STRASSER, W. Adaptive probabilistic tracking embedded in a
smart camera. Computer Vision and Pattern Recognition, 2005 IEEE Computer
Society Conference on 3 (2005), 134–134.

[6] ISARD, M., AND BLAKE, A. Condensation – conditional density propagation
for visual tracking. International Journal of Computer Vision 29, 1 (1998), 5–28.

[7] KLEIHORST, R., ABBO, A., VAN DER AVOIRD, A., OP DE BEECK, M., SEVAT,
L., WIELAGE, P., VAN VEEN, R., AND VAN HERTEN, H. Xetal: a low-power
high-performance smart camera processor. In The 2001 IEEE International Sym-
posium on Circuits and Systems, ISCAS 2001. (2001), vol. 5, pp. 215–218.

[8] KLEIHORST, R., SCHUELER, B., DANILIN, A., AND HEIJLIGERS, M. Smart
Camera Mote With High Performance Vision System. In Proceedings of the In-
ternational Workshop on Distributed Smart Cameras (DSC-06) (31 Oct. 2006).

[9] KYO, S., OKAZAKI, S., AND ARAI, T. An integrated memory array processor
for embedded image recognition systems. IEEE Transactions on Computers 56,
5 (2007), 622–634.

[10] KYO, S., AND SATO, S. Efficient Implementation of Image Processing Al-
gorithms on Linear Processor Arrays using the Data Parallel Language 1DC.
In Proc. of IAPR Workshop on Machine Vision Applications (MVA’96) (1996),
pp. 160–165.

[11] LIU, J. S., AND CHEN, R. Sequential monte carlo methods for dynamic systems.
Journal of the American Statistical Association 93 (1998), 1032–1044.

[12] MASKELL, S., ALUN-JONES, B., AND MACLEOD, M. A Single Instruction
Multiple Data Particle Filter. In Proceedings of Nonlinear Statistical Signal Pro-
cessing Workshop (2006).

[13] MEDEIROS, H., PARK, J., AND KAK, A. A Light-Weight Event-Driven Pro-
tocol for Sensor Clustering in Wireless Camera Networks. In First IEEE/ACM
International Conference on Distributed Smart Cameras (Sept. 2007).

[14] MEDEIROS, H., PARK, J., AND KAK, A. A parallel color-based particle filter
for object tracking. In IEEE Computer Society Conference on Computer Vision
and Pattern Recognition Workshops, 2008. CVPR Workshops 2008. (June 2008),
pp. 1–8.

[15] NUMMIARO, K., KOLLER-MEIER, E., AND GOOL, L. V. A Color-Based Par-
ticle Filter. In First International Workshop on Generative-Model-Based Vision
(2002).

[16] OKUMA, K., TALEGHANI, A., DE FREITAS, N., LITTLE, J., AND LOWE, D.
A boosted particle filter: Multitarget detection and tracking. In Proc. ECCV,
volume 3021 of LNCS, (2004), Springer, pp. 28–39.

[17] PÉREZ, P., HUE, C., VERMAAK, J., AND GANGNET, M. Color-based proba-
bilistic tracking. In ECCV ’02: Proceedings of the 7th European Conference on
Computer Vision-Part I (London, UK, 2002), Springer-Verlag, pp. 661–675.

[18] PORIKLI, F. Integral histogram: A fast way to extract histograms in cartesian
spaces. IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’05) 1 (2005), 829–836.

[19] RAHIMI, M., BAER, R., IROEZI, O. I., GARCIA, J. C., WARRIOR, J., ESTRIN,
D., AND SRIVASTAVA, M. Cyclops: in situ image sensing and interpretation in
wireless sensor networks. In Proceedings of the 3rd international conference on
Embedded networked sensor systems (2005).

[20] SUTHARSAN, S., SINHA, A., KIRUBARAJAN, T., AND FAROOQ, M. An opti-
mization based parallel particle filter for multitarget tracking. In Proceedings of
the Spie, (Jan. 2005), vol. 5913, pp. 87–98.


