224 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 13, NO. 3, MARCH 1991

3-D Object Recognition Using Bipartite
Matching Embedded in Discrete Relaxation

Whoi-Yul Kim and Avinash C. Kak, Member, IEEE

Abstract—In this paper we show how large efficiencies can be achieved
in model-based 3-D vision by combining the notions of discrete relax-
ation and bipartite matching. The computational approach we present
is empirically interesting and capable of pruning large segments of
search space—an indispensable step when the number of objects in the
model library is large and when recognition of complex objects with a
large number of surfaces is called for. We use bipartite matching for
quick wholesale rejection of inapplicable models. We also use bipartite
matching for implementing one of the key steps of discrete relaxation: the
determination of compatibility of a scene surface with a potential model
surface taking into account relational considerations. While we are able to
provide the time complexity function associated with those aspects of the
procedure that are implemented via bipartite matching, we are not able to
do so for the iterative elements of the discrete relaxation computations. In
defense of our claim regarding computational efficiencies of the method
presented here, all we can say is that our algorithms do not take more
than a couple of iterations even for objects with more than 30 surfaces.

Index Terms— Artificial intelligence, automatic scene interpretation,
bipartite graph matching, computer vision, discrete relaxation, machine
intelligence, robot vision, sensor-based robotics, structured-light vision,
3-D vision.

I. INTRODUCTION

DURING the past few years, much has been done in the
development of strategies for recognition of 3-D objects
from range maps, a problem that is fundamentally of exponential
complexity unless one discovers and exploits the geometric
and topological constraints available. As is true of many such
problems—problems which at first sight appear to be NP-
complete—the current wisdom for solving the recognition prob-
lem dictates the use of some sort of a hypothesize-and-verify
approach, with hypothesis formation exploiting the fact that the
pose of a rigid object can be estimated rather accurately using
a very small number of features, often just two or three, and
verification depending on establishing a correspondence between
the features actually present in the scene and those predicted
by the hypothesized identity and pose of the object. In a recent
contribution from our laboratory [5],36], one such scheme with
a computational. complexity of only O(n?) was presented, where
n is the average number of features on a model object. Although
this complexity measure is only applicable to the case of single-
object recognition, the formalism and the results presented in
[5] and [6] were for multiobject scenes containing occlusions.
Of course, the contribution that was made in [5] and [6] would
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not have been possible without some highly noteworthy efforts
that preceded it. These previous efforts [3], [10]-[12], [17], [23],
[25], [32], [33], [35], [42] uncovered many of the problems in
implementing a hypothesize-and-verify approach for 3-D object
recognition.

In this paper, our aim is to introduce the reader to a new
computational procedure for recognizing objects using range
maps. Basic to the computational procedure is the notion of
maximal matching in bipartite graphs, a problem for which a
low-order polynomial time solution is known [24]. A bipartite
graph consists of two sets of nodes and the problem of finding a
maximal matching consists of discovering a maximum cardinality
set of edges connecting the nodes in the two sets (when the
cardinality of a matching equals the cardinality of one of the
sets, it is called a complete matching). If we consider the two
sets of features, one computed from the given range map and the
other drawn from a model object, as corresponding to the two
sets of nodes in a bipartite graph, one might be able to perceive a
certain similarity between the problem of object recognition and
the problem of finding a complete matching in a bipartite graph.

Of course, except for objects with no symmetries whatsoever,
it is not possible to directly apply the algorithm of [24] for solving
the object recognition problem, because in general there will exist
many complete matchings between the nodes corresponding to
the scene object and those corresponding to a model object, and
because the problem of finding all the complete matchings is in it-
self NP-complete. It is therefore necessary to embed the bipartite
matching algorithm in a larger computational framework, such
as the one presented in this paper. We will use the polynomial
complexity algorithm for finding complete matchings in bipartite
graphs for quick rejection of inapplicable models—since such
models will not give rise to a single complete matching with
the range data features—and, when an applicable model object
is found, use a combination of bipartite matching and discrete
relaxation to severely prune the set of possible hypotheses for the
pose of the object. Our use of discrete relaxation, although novel
from the standpoint of its usage in conjunction with bipartite
matching, has a long history of application in various aspects of
computer vision [21], [39].

We believe that our scheme has the virtue of fast rejection
of models inapplicable to the range map of a given object,
the speed advantage owing to the low-order polynomial time
complexity of bipartite matching. Therefore, if an application
involves a very large number of model objects in the library,
and the goal is to recognize an object from its range map, our
computational approach would probably work faster than those
published hitherto. Of course, this is only a conjecture on our part,
not testable at this time because of the difficulty of comparing
directly the approaches published by various researchers. In any
case, regardless of its computational advantages, the procedure
presented in this paper is empirically interesting and therefore
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worthy of dissemination, if only from the standpoint of its being
a respectable alternative to other approaches.

Although, as demonstrated by our experimental results, our
computational approach is applicable to multiobject scenes con-
taining occlusions, much of our discussion in this paper will
assume, for the sake of simplicity, that only a single object exists
in the scene and the goal is to identify the object and compute
its pose. For multiobject scenes, our system works under the
constraint that interobject boundaries be characterizable as jump
edges in the range data. In other words, if objects are juxtaposed
in such a manner that surfaces from different objects come
together to form surface transitions that are C° continuous, then
our approach will fail to recognize such objects. For example,
in accordance with the results discussed in Section VI-B, for the
scene in Fig. 1(a) our approach will correctly identify objects G,
G and G, but will fail for object G, (the labels for the objects and
the surfaces are shown in the preprocessed range map in Fig. 1(c)
while Fig. 1(b) shows a light stripe image of the scene). As with
other such objects, successful recognition and pose estimation
for object G, results in the kind of manipulation shown by the
sequence of frames in Fig. 2, where we show a robot picking up
the object using an approach angle and gripper attitude that is
consistent with the computed pose transform for G,. The failure
to recognize object G, in Fig. 1(c) is caused by the fact that two
of its features, surfaces 1 and 28, are not separated by range
discontinuity edges from surfaces 5 and 26, respectively, of the
adjoining objects.! We also use CAD-generated images, like the
one shown in Fig. 1(d), to illustrate the recognition of objects
and calculation of their poses. The object images in Fig. 1(d)
were generated by invoking a solid modeling package with the
identities and the computed pose transforms for the objects G,
Gs, and G, in Fig. 1(a).

In Section II, we review past work relevant to the current
exposition. We then describe in Section III the object features that
are used in our scheme and their various attributes; this section
also contains discussion on why the technique of bipartite match-
ing is relevant to the problem of object recognition. Section IV
defines more formally the notions of scene and model graphs and
presents criteria for matching a feature from the scene, the feature
being a node in the scene graph, with a feature from a model,
this latter feature being a node from a model graph. Section IV
also presents criteria for matching relations from scene and
model graphs. We then discuss the overall flow of control in
Section V, where we present a serialized architecture consisting
of various modules that invoke different considerations to reject
inapplicable candidate models. The modules have been arranged
in such a manner that strategies that are computationally easy, but
yet powerful for eliminating inapplicable models on the basis of
more global properties, are first invoked. Finally, in Section VI
we show experimental results on single- and multiobject scenes.

II. PAasT WoORK

Choice of features, representation of objects on the basis of
features, and the organization of matchings between the scene
and the model features are the key issues in solving the problem
of object recognition and pose estimation. Evidently, the features

1 This shortcoming should not prove fatal if our system were to be employed
for bin picking in a manufacturing operation. After removing the recognized
objects, the bin could be mechanically disturbed, either by a robot or a shaker,
and the scene rescanned. It is rather unlikely that two surfaces from different
objects that, owing to the nature of their juxtaposition, originally formed a
single C° continuous surface would continue to do so after the objects are
mechanically disturbed.
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used should be such that they can be extracted reliably in the
presence of noise and other distortions common to range sensing;
features should also lend themselves to easy computation even
when the models are mathematically specified by the equations
of their surfaces. After features are specified, one must address
the related issues of how to represent objects using these features
and how to organize the search associated with matching scene
features with object features.

In the past, researchers have used some combinations of
surface, edge and point features, although in some cases only
a single type was used. For example, Oshima and Shirai [36]
and Fan ef al. [9] have used surfaces and their geometric and
topological relationships. In the case of Oshima and Shirai,
surface-based features were organized into graphs whose nodes
were the surfaces and whose links the relationships between the
surfaces, the type of relationships being adjacency, convexity or
concavity of common edges, dihedral angles, distance between
the centroids, etc. In the work of Fan efal, the links in a
graph representation whose nodes correspond to surfaces are
given weights depending upon the nature of edges between the
surfaces. Surface-based features have also been used by Bhanu
[2], although the notion of adjacency between surfaces here is
radically different from what is used in [9] and [36]; this is owing
to the fact that in [2] each curved surface is broken into its planar
approximations. As opposed to surfaces, Umeyama et al. [42]
have used edges for recognizing objects from 3-D data. Another
effort along similar lines is that of Hebert and Kanade [23]; they
also have used edges.

Amongst those who have used a combination of different
feature types, Bolles and Horaud [3], Faugeras and Herbert
[12], Grimson and Lozano-Perez [15]-[18], and Ikeuchi [26]
come to mind. Bolles and Horaud have used edges to generate
hypotheses about object identity and pose, and then used surfaces
for verification. The matching scheme of Bolles and Horaud
starts from a distinctive scene feature that is matched to its
corresponding model feature; a pose hypothesis is subsequently
generated by seeking matches for a small number of scene
features that are adjacent to the first extracted distinctive feature.
Verification consists of projecting into the scene a synthetically
generated range map of the object for the hypothesized pose and
comparing this range map with actual range data. As matches
are scored between the two, the pose hypothesis is upgraded
continually. Faugeras and Hebert [12] use prominent edges and
large surfaces for hypothesis formation; verification is carried out
by keeping track of a registration error computed initially during
the hypothesis formation stage and updated subsequently when
model to scene matches are attempted for those model features
that should be visible in the scene for the hypothesized pose.
Grimson and Lozano-Perez have used object points, surfaces,
and surface normals in an approach which consists of associating
with a given set of measurements only those objects and poses
that satisfy constraints with regard to the measurements. Of
course, since local constraints are not sufficient to fully specify
the pose of an object, especially when the identity of the object
is also unknown, they subsequently compute an average of all
the possible pose transforms obtained from the local constraints
and see if under this average transform a predicted model can
give rise to the measured points. More recently, the authors
have extended their technique to objects with “parameterizable
shapes,” as would, for example, be the case with scissors when
the angle between the blades, which is allowed to be variable, is
used to serve as a parameter of shape. In the scheme proposed
by Ikeuchi [26], all possible object poses are first grouped
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Fig. 1.

(b)
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(a) A pile of nonpolyhedral objects. (b) A light stripe image of the scene generated by a robot hand-held structured light scanner. (c) Preprocessed range

image obtained from the light stripe data. Preprocessing involves segmentation, surface classification and generation of a scene graph. (d) Recognition of some
of the objects and calculation of their poses is illustrated here by invoking a solid modeling package with the object identities and the computed pose transforms.

into “attitude groups,” each attitude grouping being a set of
aspects on the basis of commonality of prominent surfaces that
are visible; each aspect is a collection of those poses that are
topologically equivalent, in the sense that from a given viewpoint
the same object surfaces are visible. Tkeuchi then constructs an
interpretation tree in which each node corresponds to a presence
or an absence of prominent surface. As one discovers neighboring
surfaces in the scene, one can go down the interpretation tree and
try to categorize the pose of the object as belonging to one of
the attitude groups. Eventually, separate strategies are invoked to
calculate more precisely the object pose from its attitude group.
While attitude-grouping calculations use regions extracted from
depth maps constructed by photometric stereo, the more refined
pose calculations are carried out using edge maps, extended
Gaussian images, etc.

In Jain and Hoffman’s work [28), a range map is segmented
into three types of regions corresponding to convex, concave, and
planar surface types. This initial segmentation is followed by a

merging operation based on knowledge of the extent to which
different surfaces can be allowed to differ in their orientations
at their common boundaries. Various attributes of these merged
surface patches are then measured using a rule-based framework
for a statistical classification of the object. While some attributes
directly characterize a merged patch, for example, attributes
like area, surface type, etc., other attributes are more relational
and global in nature, examples of the latter type being the
angle between two surface normals, the perimeter of the object
silhouette, etc. For the rule-based implementation, the rules are
generated automatically from the interobject distances in the
multidimensional attribute space. Wong et al. [43]-[45] have
used a hierarchical graph representation scheme in which an
object is considered to be made of more primitive blocks,
each block possessing its own graph representation. The object-
level representation is called a hypergraph, which is basically a
grouping imposed on the vertices of a more detailed graph, each
vertex of the more detailed graph corresponding to a surface of
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Fig. 2. Sequence of frames showing a robot picking up one of the objects that was successfully recognized from the multiobject scene shown in Fig. 1(a).

the object and each group in the grouping corresponding to a
primitive block of the object. Such a hierarchical representation
leads to a reduction in the complexity of matching, since the
recognition of primitive blocks can be used to quickly eliminate
inapplicable model objects.

Another recent effort that used a combination of surface
and vertex features is from our laboratory [5], [6]. This work,
whose effectiveness was demonstrated experimentally on mul-
tiobject scenes containing occlusions, resulted in a scheme for
recognition and pose estimation whose time complexity is only
O(n?) for single-object scenes. In this scheme, each feature
type is arranged in a spherical data structure in a manner that
eliminates virtually all search needed for the verification of a
pose/identity hypothesis. In our opinion, this work constitutes
a demonstration of the fact that the complexity associated with
object recognition is greatly influenced by the representation used
for objects.

The organization of search in all the methods cited above may
be considered to be either model driven or data driven. Data-
driven searches tend to be more efficient because the number
of object features visible from any viewpoint will be less than
the total number of features on the object. Therefore, given an
object hypothesis, it is more efficient to match scene features
to model features than vice versa. Nonetheless, in some cases it
may be advantageous to use a model-driven approach, especially
when all the objects in a pile are identical, in which case
efficiencies in both hypothesis formation and verification can

be had by recognizing the fact that a scene feature must be
one of the small number of features on the model object. For
example, in the approach used by Faugeras and Herbert [12],
model features are first ranked according to some attribute; the
feature with the highest ranking is then sought in the scene. After
a match is scored with a model feature, a search is conducted in
the scene for another model feature under the constraint that
the geometrical relationship between the two model features
be identical to the two corresponding scene features. Clearly,
if this model-driven strategy were to be extended to scenes
containing objects of different types, it would be incfficient
due to the excessively large search spaces involved. Model-
driven approaches also appear to be superior for recognizing
objects that are occluded “in the middle.” In a model-driven
approach, one of the visible parts could be used for generating
a pose hypothesis. The model objects could then be transformed
into the scene using the pose transform corresponding to the
hypothesis and the correspondence registered with the visible
fragments of the scene object could be used as a measure of
verification.

[II. FEATURES, ATTRIBUTES, AND ORGANIZATION OF SEARCH

The problem of object recognition may be formally stated as
follows. Given a scene object S and a library of model objects
as represented by the set M, My, - -+, we wish our recognition
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system to tell us that?
Si = (M;,T)

meaning that the scene object S; is an instance of the model
object M; and that the pose transform 7 takes the scene object
into the model object. In Fig. 3(a) and (b), we have shown the
features associated with a scene object in a random pose and
the corresponding model object, the features being surfaces and
edges. In the computer memory, each feature is represented by
a frame data structure, meaning a list of attribute-value pairs.
For the objects shown in Fig. 3(a) and (b), the attribute frames
for the scene feature 4 and the model feature b are shown in
Fig. 3(c) and (d), respectively.

That the problem of object recognition is related to the problem
of bipartite matching may be seen with the help of Fig. 4(a)
where the left column displays the set of scene features, s,, s,, - - -
and the right column the set of model features My, My - - .
Considered by itself, a scene feature may bear similarities with
many model features, as illustrated by the arcs in Fig. 4(b).
However, for recognition to be correct, we want every scene
feature to be matched to a distinct model feature and no two
model features to be matched to the same scene feature. Fig. 4(c)
shows a possible matching that would be acceptable. The task
then becomes to extract from all the feature matchings shown in
Fig. 4(b) those that are injective, meaning that they satisfy the
properties of one—one and into.

A graph is called bipartite if all the nodes can be divided into
two disjoint groups, as, for example, in Fig. 4(a), and if each arc
in the graph connects two nodes belonging to the two separate
groups. By bipartite matching we mean assigning to each node
from one of the groupings a node from the other grouping. For
example, the problem of finding arcs from Fig. 4(c) such that
each scene node is connected to a model node would be an
exercise in matching. In general, it is not necessary that every
scene node be assigned a model node, but when that is the case,
we have a complete matching. In other words, the cardinality of
a complete matching is equal to the cardinality of one of the two
node groupings in a bipartite graph.

Evidently, our object recognition problem bears great similar-
ity to the problem of bipartite matching; however, there is one
caveat, namely, that while a complete matching is necessary for
a matching to constitute object recognition, it is not sufficient. In
other words, just because a matching between the scene nodes
and the model nodes is complete, meaning that we have found
a distinct model feature to match with every scene feature, that
is not sufficient reason to declare a match at the object level.
Bipartite matching by itself is incapable of imposing relational
constraints that must be satisfied by both the scene features
and the model features. Without these relational constraints, and
especially when the objects involved are symmetric, implying
that they contain features that have identical attributes, it would
only be too easy to assign model features to scene features
in a manner that may not correspond to the existence of any
rigid-body transform between the scene object and the model
object.?

ZIn accordance with what was said in the Introduction, this problem
statement assumes that only a single object is present in the scene. For the case
of scenes containing multiple objects, the problem statement applies when a
collection of surfaces, presumed to belong to a single object, is being analyzed
for object identification and pose estimation.

3 At this point, the reader is probably thinking that despite this connection
we have drawn between object recognition and bipartite matching, funda-
mentally we are still facing the problem of subgraph isomorphism. However,
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Fig. 3. Feature frames associated with a surface in a scene object and a
model object. (a) A scene object in a random pose. (b) The corresponding
model object in its standard pose. (c) Feature frame for feature 4 of the scene
object. (d) Feature frame for feature b of the model object.
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Fig. 4. (a) The left column displays a set of scene features and the right
column a set of model features. (b) If an arc joins a scene node with a model
node, that means the two nodes are similar in some sense. (c) As illustrated
here, an acceptable matching between scene nodes and model nodes must be
injective.

Therefore, we must extract from all possible complete match-
ings those that correspond to feasible transformations between the
scene and the model objects [27]. This is an ideal problem for
search and we have chosen to implement it via discrete relaxation.

There is a bit more to our implementation than a straightfor-
ward extraction of a complete matching via discrete relaxation.
As will be discussed in Section V, we use bipartite matching
in two separate phases. Initially, bipartite matching is used to
quickly establish the existence of at least one complete matching,
since the absence of one means that the model is not applicable.
Subsequently, bipartite matching is also used to fine-tune feature
correspondences by insisting that the set of features in the vicinity
of a given feature also possesses a complete match with a
corresponding neighboring set of features for the model feature
in question. For a given feature in the scene or the model, the
neighboring features for this purpose are selected on the basis of
relational attributes, such as adjacency.

We would now like to discuss some of the distinctions we
make with regard to various attributes. An attribute associated

the reader should note that invoking the notion of bipartite matching has a
major advantage, viz., the existence of a complete matching can be carried out
via a polynomial time algorithm whereas subgraph isomorphism still remains
exponentially bound. Later, we will have more to say about this efficient
algorithm and how we have used it in our system. The reader should also note
one previous effort at using the notion of bipartite matching in the context of
scene analysis [41].
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with a surface feature may be either intrinsic or extrinsic; the
attribute is intrinsic if its values are independent of the pose
and location of the object, otherwise the attribute is extrinsic.
This distinction is important because the attributes that are used
for hypothesizing the pose of an object should be independent
of the pose parameters. For example, we may use the attribute
area for matching a scene surface with a model surface during
hypothesis formation stage, but not the normals associated with
the two surfaces. We could not use the latter attribute even if we
wanted to because we do not yet have a pose transform for the
object and therefore we really know nothing about the direction
of the surface normal for the scene surface. In Table I, we have
listed the intrinsic and extrinsic attributes for different feature
types. While some of the attributes are clear from the names
used, a couple need further explanation. For the feature type
“cylindrical,” the attribute +radius is instantiated to the value of
the radius if the cylindrical surface is convex, like the outside of
a cup. On the other hand, if the cylindrical surface is concave,
like the inside of a cup, the attribute —radius is instantiated to
the value of the radius. Distinctions between convex and concave
cylindrical surfaces are obviously important to recognition. The
attributes +base_radius and —base_radius are to be interpreted
in a similar manner.

We have captured one more distinction between attributes
in Table I, namely between attributes that are viewpoint inde-
pendent and those that are viewpoint dependent. Consider, for
example, the attribute area. As shown by a perspective view
in Fig. 5, the feature s2 is fully visible and therefore its area
attribute can be computed accurately. On the other hand, the
computed area attribute of the feature s3 will be less than the true
area of that feature due to self-occlusion. Clearly, the attribute
area is viewpoint dependent. In comparison, the attribute radius
associated with a cylindrical surface is viewpoint independent.
Of course, for any viewpoint, we would need a large enough
patch of the cylindrical surface for estimating its radius, yet the
nature of this dependence is not the same and not as direct as the
dependence of the area of a planar surface as shown in Fig. 5.
In Table I, attributes that are viewpoint dependent are marked by
the suffix @. When we compare such an attribute measured in
a scene with its corresponding value from a model, we cannot
insist upon equalities; the most we can hope for is for the scene
value to be less than the model value.

As was mentioned before, in addition to surface features our
system also uses edge features. As will be clear from the next
section, surface features constitute the nodes of an attributed
graph representation for objects; the arcs of this graph correspond
to edge features. Just like surfaces, edge features have attributes,
too. However, in contrast with surfaces, edge features only have
intrinsic attributes, and these are shown in Table II. Each edge
can only have two attributes: edge_type and dihedral_angle. The
allowed edge-types are convex, concave, inflected, and cavex?
the last two types reserved for edges of the types in models 4 and
6 are shown in Fig. 6. Inflected edges are characterized by C?
discontinuity across them, as is the case with edge EF in model
4 in Fig. 6. An example of a cavex edge is shown in model 6 in
Fig. 6. Since part B of the edge is convex while part A is concave,
this edge is defined as cavex.’ As the reader might be able to tell

4The term “cavex” stands for a combination of convex and concave. These
edges between smooth surfaces are partly convex and partly concave. Most
often, such edges are created by joining two cylinders at an angle. For
example, the edge between the surfaces s8 and s9 in Fig. 5 is partly concave
and partly convex.

SEdges in 3-D scenes may be characterized by the nature of discontinuities.
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TABLE I
FEATURES TYPES AND THEIR ATTRIBUTES

Feature Type intrinsic attributes extrinsic attributes

planar area@ normal
adjacency_list@ centroid@

cylindrical +radius axis
—radius centroid@
height@
adjacency_list@

spherical +radius center
—radius
adjacency_list@

conical +base_radius axis

—base_radius
+top_radius

—top_radius peak_location
slant_anglef
height@
adjacency_list@

other quadric +eigenvalues eigenvectors
—eigenvalues center

adjacency_list@

adjacency_list consists of number and list of adjacent surfaces, i.e.,
(IP(@)[.T(x)).

Symbol "@" denotes viewpoint dependent attribute.

Symbol "—" denotes peak surface.

Symbol "+" denotes pit surface.

For cylinders of split height, the value of height is the maximum height.

NS

Fig. 5. To cope with occlusions, a distinction must be made between
attributes that are viewpoint independent and those that are not. For example,
the area attribute is viewpoint dependent, since its value is subject to
occlusion, as exemplified by the feature s3 of the object on the left. Other
attributes, such as the radius of the feature s8 for the object on the right, are
considered to be viewpoint independent.

from the table, we have taken some liberty with the conventional
usage of the term dihedral_angle. The term usually stands for
the angle between two planar surfaces at the edge where they
meet. Evidently, this angle must be defined for junctions between
surfaces where one or both of the surfaces are nonplanar. The
information below the table displays the definition of this angle
for each case. Note that in the table, entries like “(planar, planar)”
are not values themselves for the dihedral angle attribute; these

A jump edge is characterized by C° discontinuity, a roof edge (same thing
as a convex edge), and a crest edge (same thing as a concave edge) by a C!
discontinuity. Then we have edges with smooth transitions between relatively
flat surfaces, as exemplified by model 4 in Fig. 6. In addition, we can have
occluding and occluded edge_types in range maps; these are not used in our
system because they really are not physical features and are dependent on the
parameters of the sensor, in addition to, of course, the viewpoint.
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Fig. 6. A set of CAD models used in our experiments.

entries merely show which of the definitions presented below the
table must be used for the angle for each case.

IV. REPRESENTATION OF OBIECTS AND MATCHING CRITERIA

An object is represented by an attributed graph whose nodes
are surface features and whose arcs are the edges between the
surfaces. Fig. 7(c) and (d) shows examples of such represen-
tations for the scene and the model objects in Fig. 7(a) and
(b), respectively. The problem of object recognition is then to
start with a scene object representation, such as the one shown
in Fig. 7(c), compare this representatlon with all the objects
in the model library, and arrive at possible interpretations. We
will use M = (Ny, Apr) to represent a model graph; M will
be subscripted suitably when more than one model graph is
involved. We will use S = (Ns, As) to represent a scene graph.
Ny and Nj are the sets of nodes in the two graphs, and A,, and
Ag the sets of arcs. In terms of the surface features present, each
denoted by s;, the set of nodes Ns will be described by

Ns = {S,‘li = 1, vy, |N5|}
Similarly, the set of nodes in a model graph may be expressed as

- —

where each m; is a surface feature on the model.

Any recognition strategy must of necessity compare model and
scene features via their attributes and measure their consistency
with respect to one another in the sense defined below. One
advantage of categorizing attributes in the manner we did in the
preceding section is that different criteria can be used for different
types of attributes. We could insist on equalities, within of course
the limits imposed by measurement noise, when the system
compares attributes that are viewpoint independent; however, a

viewpoint-dependent scene attribute should be allowed to take

any value that is less, in a numerical or set-theoretic sense, than
that of its counterpart in the model.

More formally, we will define three types of consistencies as
follows.®

A. Node Consistency

Let f, be an operator that when applied to a feature returns
the value of the attribute a. First consider the case when a is
a numerical attribute. We consider a scene feature s; consistent

6The last type of consistency will actually be called compatibility in keeping
with the conventional usage in the discrete relaxation literature.
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Fig. 7. (a) A scene object in a random pose. (b) The corresponding model object. (c) Graph representation of the scene object. (d) Graph representation
of the model object.

TABLE II
ARC ATTRIBUTES

attribute value
edge_type convex
concave
inflected
cavex

dihedral_angle | 6 (planar, planar)

0, (planar, cylindrical)

[P (planar, conical)

83 (cylindrical, cylindrical)
63 (cylindrical, conical)

83 (conical, conical)

N/D (other combinations)

6,: angle between two surface normals
8,: angle between axis and surface normal
63: angle between two axes

N/D: Not Defined

with a model feature m; if
fa(s;) = fa(mi)
for a viewpoint-independent a, or if

fa(s;) £ falmi)

when a is viewpoint dependent; these relationships must hold
for all the numerical attributes defined for the model feature m;.
As mentioned before, for practical implementation the equality
condition would only be enforced within the limits set by
measurement noise. When an attribute is symbolic, a scene
feature s; is consistent with a model feature m; if

| fa(s;)1 < 1 fa(ma)]

where | - | represents the cardinality of its argument. Again, as
with numerical attributes, these relationships must hold for all
the symbolic attributes defined for m;. As the reader will note
from Table I, adjacency list is the only symbolic attribute and
it happens to be viewpoint dependent. The consistency criterion
shown above is appropriate for viewpoint-dependent symbolic
attributes.

When a node s; in a scene graph is node-consistent with a
node m; in a model graph, that fact will be denoted by s; — m,.

B. Arc Consistency

Let s, , and m;; represent, respectively, arcs in S and M. Arc
s;.& will be considered to be consistent with arc m;; if the scene
node s; is consistent with the model node m;, and s; with m;; in
addition, the following conditions must be satisfied:

fedge_type(si,k) = fedge_type(mj.l)

f (hhedml_nngle(sl,k) =f dthedml_anglc(m j‘l)'

In the first equation, when one of the edge types involved is
cavex in the sense discussed in the previous subsection and as
exemplified by edge AB of model 6 in Fig. 6, the equality must
be interpreted somewhat loosely. When the edge type of a model
edge is cavex, either convex, concave, or cavex scene edges are
allowed to match with that. When an arc s; ; in a scene graph
is arc-consistent with an are m;,; in a model graph, we denote
that fact by s; . — mj,.

C. Local Compatibility

Readers familiar with relaxation methods will recall that such
methods need a measure of compatibility between two different
class assignments. To elaborate, suppose we want to classify a
set of entities E,,---, E, into m classes Ci,---,C,, by using
relaxation. We need to define a compatibility measure (i, j; k, 1)
which is a measure of how compatible the assignment of object E;
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to class C; is with the assignment of object E, to class C,. Local
compatibility defined here is a generalization of ¢(s, 5; k,1), in
the sense that we now consider more than two class assignments
at a time.

More formally, a node s, in a scene graph will be considered
to be locally compatible with a node m, in a model graph if the
following condition is satisfied:

Vlgkgar(sp)|315151r(mq)|{3p = Mg, Sp,k =+ Mg, S — My}

where I'(z) is the set of nodes adjacent to node x. We require
that the mapping implied by s, . — m,;, be injective, meaning
there be a one—one and into mapping between the arcs incident
at node s, in the scene graph and the arcs incident at node m, in
the model graph, while we allow the degree of m, to be equal or
larger than the degree of s,. Note that when s, ;, — m,; leads to
an injective mapping between arcs in the neighborhoods around
5p in the scene graph and m, in the model graph, there will also be
an injective mapping between the nodes in these neighborhoods.

As is evident from our definition, a scene node is locally com-
patible with a model node provided there exists node consistency
between the two and, also, provided there exists node consistency
between the potentially corresponding nodes from the immediate
neighborhoods of the two; in addition, the respective arcs in
the immediate neighborhoods must also satisfy arc consistency.
That our definition of local compatibility could be considered a
generalization of the function c(z, j; k, 1) should be apparent if the
reader realizes that for our problem the compatibility ¢ could be
made proportional to the similarity of, say, the angle between the
surfaces i and k in the scene and the angle between the surfaces
Jj and [ in the model, assuming for the sake of argument that all
the surfaces are planar. In our definition of local compatibility,
relationships of this type are captured by the arcs s, ; and Mg .

V. Frow oF CoNTROL

A. Overview

Given a scene graph and a library of model graphs, the overall
control of the system, as illustrated in Fig. 8, is composed of three
modules, namely, the filtering module, the pruning module, and
the ambiguity resolution module. The filtering module, which
carries out a fast rejection of inapplicable models, consists of
three filters, arranged in the order of increasing computational
complexity. The candidate models at the output of the filtering
module are then processed by the pruning module, which invokes
a combination of bipartite matching and discrete relaxation to re-
duce the size of the search space for the formation of hypotheses
and their verification. As we will illustrate through experimental
results, the pruning process is severe and usually results in
comparing, for both hypothesis formation and verification, a
scene feature with a very small subset of the total number of
features on a model. Finally, the ambiguity resolution module
determines the object identity and the pose as well as the location
of the object. In the following subsections, we describe each
module in detail.

B. The Filtering Module

The fact that the three filters in this module are arranged in
order of increasing computational complexity, as shown in Fig. 8,
makes intuitive sense because we want the least amount of work
to be done to discard a potential candidate model if it is not
applicable.
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Fig. 8. The flow of control for object recognition and pose estimation. For
objects with high degrees of symmetry, the ambiguity resolution module is
replaced by the one shown in Fig. 16.

Filter 1: The first filter compares the scene graph with a

model graph on the basis of the following global properties:

1) The total number of nodes in each graph. The number of
nodes in the scene graph cannot be greater than the number
of nodes in a candidate model graph for the recognition of
a single isolated object.

2) The total number of arcs. As with the nodes, for the
recognition of a single isolated object the total number of
scene arcs cannot exceed the number in a candidate model
graph.

3) The maximum degree of a node. As before, the maximum
degree of a scene node cannot exceed the maximum degree
associated with any node in a candidate model graph.

4) The first filter also counts the total number of surfaces of
different types in each graph. For each type of surface, the
count in the scene graph cannot exceed that in a candidate
model graph.

The main virtue of the above criteria is that they can be
computed very quickly for each graph. However, the ease of
computing extracts a price: an inapplicable model graph would
not necessarily be rejected by this filter. Consider, for example,
the case when a model M, has four planar surfaces of areas equal
to 10, 10, 10, and 20, and a scene object S has two planar surfaces
of areas 15 and 15. In this case, while one of the scene surfaces
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Fig. 9. The range data segmentation procedure used in our system is capable of pulling out surfaces that are at almost the same level of connectivity
as the surfaces in the models. (a) A scene object with convex and concave surfaces. (b) A light stripe image of the object. (c) Segmentation of the range
map. (d) Graph representation built from the output of the segmentation program.

of area 15 could be matched with the model surface of area 20,
the other scene surface would then remain unmatchable, implying
the inapplicability of this model. However, the first filter would
not be able to reject the model using any of the criteria listed
above. Note particularly that the last criterion compares the two
graphs on the basis of only the number of surfaces involved and
not on the basis of what’s needed here—the area aitribute. In
fact, the first filter makes no discriminations on the basis of any
viewpoint-dependent attributes, the area attribute being one of
those.

The reader might say that despite the only O(|Ng|) time
complexity of the first filter, its power for rejecting a candidate
model graph is rather limited owing to the fact that when we
are trying to recognize an object from a single viewpoint the
scene graph will only be a “partial” graph in comparison with
the model graphs and not very rejectable by the above criteria.
That is not entirely correct, especially when the library of models
is large and varied. The filter will quickly reject “simple” models
for “complex” objects in a scene. The filter would become even
more effective were we to try object recognition from scene
graphs constructed by combining features obtained from multiple
viewpoints, since now the scene graph would be more akin to the
correct model graph and more different, in terms of the global
properties mentioned above, from other model graphs.

The criteria expressed above in terms of global properties of
graphs are predicated upon the expectation that the segmentor is
capable of pulling out, more or less intact, the visible surfaces
of an object. In other words, there is the expectation that the
segmenter is not breaking each analytically continuous surface
into too many subsurfaces. Given the range maps that can be
produced today, it is not too difficult to design such segmentors
[19). For example, Fig. 9(a) shows a fairly complex object,
Fig. 9(b) its range map using a composite of light stripes,
Fig. 9(c) its segmentation using an approach described more fully
in [6], and Fig. 9(d) its graph representation.

Filter 2: The purpose of the second filter is to check that
every node s, in the scene graph is in node consistency with
some node m, in the model graph. The reader might initially
construe the requirement of the second filter to imply that the
segmentation of a range map must be nearly perfect. However,
that is not the case. As was stated in our definition of node
consistency, when we compare an attribute of a scene node
with the same attribute of a model node, we do not always
insist that the two attribute values be equal. While allowing
for self-occlusion, this also makes the system accommodating
of some of the segmentation artifacts. So, if a surface was not
segmented out completely, and thus had a reduced area, its
node in the scene graph would still be found to be consistent
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Fig. 10. An entry of “1” in the assignment-consistency table implies that the
corresponding scene and model surfaces are in node consistency. An entry of
“0” means absence of node consistency.

with the corresponding node in the model graph. Of course,
any small surface fragments generated by the segmentor could
simply be discarded at the time the scene graph is made. This
elimination process would, of course, cause the system to be
unable to discriminate between objects that are alike except for
some “small” surface features, but then that is the price one has
to pay for dealing with the imperfections of a segmentor. We
believe that this tradeoff between sensitivity to small features
and tolerance of segmentation artifacts is common to all 3-D
vision systems.

The main purpose of the second filter is to discard any models
that do not have correspondents for all of the scene features.
This filter can be implemented by exhaustively comparing all
scene features against all model features, the complexity of
this comparison being O(|Ns| x |Nps|). The result of such a
comparison is stored in the form of a table, to be referred
to as the assignment-consistency table; this table is of size
|Ns| X |Ny|, where N5 and N, are, respectively, the number
of nodes in the scene object and the model. To illustrate, for the
scene and the model graphs shown in Fig. 7, the assignment-
consistency table is shown in Fig. 10. The row labels 1, 2,
3, and 4 correspond to the various visible surfaces in the
scene object, while the column labels a,b,---,e designate all
the surfaces in the model. The entries in the table are 1 and
0 depending upon whether or not the scene and the model
surfaces are found to be in node consistency. In this particular
example, the inconsistencies, corresponding to 0’s in the table,
are all due to the surface types being different. Note that for
the convenience of the reader the surface types have also been
shown, in the form of p and c labels, for planar and cylindrical,
in the table.

Filter 3: To all those models that survive the previous two
filters, we now apply a more computationally expensive filtering
operation: the bipartite matching operation. The purpose of
bipartite matching here is to tell us whether or not there exists
a one-one injective mapping between the scene object and a
candidate model object. We look for a one—one mapping because
we want to make sure that for every scene feature, there exists
at least one model feature, and the desired mapping should be
injective becaust not all the model features will be visible in the
scene. An important point to note here is that when the features
involved are not all distinct, there may exist more than a single
one-one injective mapping from the scene object to a candidate
model object; the third filter guarantees us that there will be at
least one.

In Appendix A, we have presented our implementation of
a polynomial time bipartite matching algoritim. The bipartite
graph is input to this algorithm in the form of the assignment-
consistency table produced by Filter 2. The filter reports either
yes or no about the existence of a one—one injective mapping.
All the candidate models for which such a mapping is not found
are rejected at this time.

——

C. The Pruning Module

In most cases, only a small number of model objects will
survive all three filters of the filtering module. Those models
that do survive constitute the remaining search space, which
is further pruned by the pruning module, shown in Fig. 8, on
the basis of relational constraints between the features in the
scene and the features in the models. We will now show how
discrete relaxation, in combination with another application of
bipartite matching, can be used to enforce relational constraints.
But, first, a few words about discrete relaxation are in or-
der.

In general, relaxation, as originally proposed by Rosenfeld
and Hummel [39] in the computer vision context, refers to a
manner of iterative processing over a cellular structure in which
decisions for each cell are made purely locally but subject to
contents of the neighboring cells. It has been shown that such
iterative computations converge, in most cases, to solutions that
correspond to a local minimum of some optimization criterion.
In probabilistic relaxation, also called continuous relaxation,
we seek to maximize the probability of a cell occupying a
value subject to the value being compatible with those in the
neighboring cells. On the other hand, in discrete relaxation,
at each iteration we adjust the value of a cell in order to
satisfy certain discrete constraints on the value with regard
to the values in the neighboring cells. The main attraction
for relaxation-based procedures lies in the fact that they are
well suited to parallel implementations, especially on cellular
array processing architectures, in light of the inherently local
computations involved, meaning that to update a value in a
cell the system need communicate with only the neighboring
cells.

Since fundamental to a graph is the connection of a node with
its neighboring nodes, relaxation-based processing extends very
naturally to computations over graphs, as has been demonstrated
by Haralick and Shapiro [22], [40], Haralick and Elliot [20],
and Kitchen and Rosenfeld [30]. In these extensions to graph-
theoretic computations, we first assign to each node in a graph,
which could correspond to our scene object graph, all possible
labels corresponding to the model features on the basis of some
similarity criteria. These label sets are then pruned by enforcing
the relational constraints, as observed in the scene, between
different pairs of nodes in the scene graph. If the iterative
application of this constraint enforcement leads to a unique label
for each node in the scene graph, we have accomplished scene
interpretation via discrete relaxation.

We will now demonstrate how we have set up the computations
in the pruning module. For the candidate model object under
consideration, the input to the pruning module consists of the
model graph, the scene graph, and the assignment-consistency
table produced by the filtering module.

The pruning module first extracts from both the scene and the
model graphs the subgraphs centered at each of the nodes and
composed of the immediately neighboring nodes; these subgraphs
will be called elementary trees (ET's). For illustration, for the
scene and the model graphs shown in Fig. 7(c) and (d). the
corresponding collections of ET’s are displayed in Fig. 11(a)
and (b), respectively. So, if the model graph has N surfaces
and, consequently, N nodes, there will be N ET's of the type
indicated.

There are two important things to note about decomposing
the model and scene graphs into ET's. One, cach ET captures
the local relations that exist at cach node of cither the model
graph or the scene object graph. And. two. as will be shown by
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Fig. 11. For the scene and the model graphs shown in Fig. 7(c) and (d), here in (a) and (b), respectively, are the collections of the elementary trees. Shown
on the left in (d) is the ET rooted at node 1 in the scene graph, and on the right the ET rooted at node d in the model graph. The dashed lines here correspond
to the node consistencies as given by the table in (c). Also, the + and — indicate convex and concave edges, respectively. When the pruning module is invoked
with the assignment-consistency table shown in (c) here, then after only one pass through discrete relaxation the output assignment-consistency table is as
shown in (e). The assignment-consistency table in (f) is obtained by enforcing the constraint that a model label not be assigned to more than one scene node.

us presently, subgraph isomorphism can be established between
two ET’s in polynomial time.’

We will exploit the polynomial time computability of subgraph
isomorphism between ET’s in a computational scheme which
causes significant pruning of the search space that remains after
the processing performed by the filtering module. Basic to this
computational scheme is the establishment of local compatibili-
ties, defined in Section IV, between the nodes of the scene graph
and those of the candidate model graphs. The reader should note
that a node from the scene graph is locally compatible with a
node from the model graph if and only if there exists a subgraph
isomorphism between the ET’s rooted at the two nodes. We will
now discuss the flow of control in this computational scheme.

The pruning module scans the assignment-consistency table,
element by element, and when it runs into a “1”, it checks
for local compatibility between the scene and the model nodes
involved. For example, suppose the assignment-consistency table
is as shown in Fig. 11(c). The pruning module will now examine
each element of this table, from left to right and top to bottom.
The first entry of 1 it sees in the table corresponds to node 1 from
the scene and to node a from the model. The entry of 1 at this
location in the table will be retained only if the pruning module
is able to establish local compatibility between the scene node 1
and the model node a; establishment of this local compatibility
corresponds to subgraph isomorphism between the ET rooted at
scene node 1 and the ET rooted at the model node a.

A polynomial time implementation of testing for local compat-
ibility can be carried out by applying, after a slight modification,
the bipartite matching algorithm described in Appendix A to the
two ET’s involved and checking for the existence of a complete
match. The modification consists of first augmenting the attribute
list at each of leaf nodes in the ET’s by the attributes of the arcs
connecting the leaf nodes with the root node, and then applying
the bipartite matching algorithm.

7 As intuition would suggest, establishing subgraph isomorphisms between
the scene ET’s and the model ET’s does not imply the existence of a subgraph
isomorphism between the scene graph and the model graph, this being the case
even when we have a distinct model ET for each scene ET.

For example, to check whether or not there exists local
compatibility between, say, the scene node 1 and the model node
d, we apply the bipartite matching algorithm to the node sets
given by T'(1) and T'(d), where, as the reader will infer from its
earlier definition, ['(x) designates the list of leaf nodes in the ET
rooted at node x. The ET’s rooted at 1 in the scene and d in the
model are shown in Fig. 1(d). We therefore apply the bipartite
matching algorithm to the node sets {3,4} and {c, b} after the
attribute “convex” has been included in the list of attributes for
node 3 and so on. We maintain that if, after such augmentation
of node attributes there exists a complete match, as discovered
by the bipartite matching algorithm, between I'(1) and I'(d), then
there must exist a subgraph isomorphism between the ET’s rooted
at the two nodes 1 and d. Of course, for the example being
discussed, there does not exist such a complete match, owing to
the “absorption” of arc attributes by the nodes; therefore, scene
node 1 is locally incompatible with the model node d. Hence,
the pruning module will remove the corresponding “1” from
the assignment-consistency table. It is important to note that for
subsequent scans through the assignment-consistency table, the
scene node 1 will not be considered to be in node consistency
with the model node d.

For the scene and the model objects shown in Fig. 7(a) and (b),
after the first pass through the assignment-consistency table by
the pruning module the table looks as shown in Fig. 11(e). In our
current implementation, during each pass through the table, the
pruning module is only aware of the table entries as they existed
at the end of the previous pass. Note that the table is used by the
bipartite matching algorithm to figure out the matching between
the nodes. The bipartite matching algorithm will assume that a
scene node matches a model node provided there is a “1” in the
corresponding position in the assignment-consistency table and
provided the “absorbed” arc attributes are identical.

Each pass through the assignment-consistency table constitutes
one iteration of discrete relaxation. For each scene node, corre-
sponding to a row of the table, the set of column headings for
the “1” entries constitutes the set of allowable labels from the
model. For example, in Fig. 11 for the scene node 1, the set of
labels before the invocation of the pruning module is {a, ¢, d, e}.
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Enforcement of local relational constraints by the application of a
single pass of the pruning module changes this set of permissible
labels to {c,e}.

The iterative application of discrete relaxation is stopped when
no further entries from the assignment-consistency table are
deleted. For simple objects, the number of iterations required
is very small. For example, when the pruning module is invoked
with the assignment-consistency table shown in Fig. 11(c) as
input, only one iteration of discrete relaxation is required to
converge to the final form of assignment-consistency table, which
is shown in Fig. 11(e).

The reader should note that if at any time during the process of
discrete relaxation all the entries in any row of the assignment-
consistency table become zero, the candidate model is rejected.
This condition is tantamount to there being no model features
available for matching with an observed scene feature.

In the final assignment-consistency table produced by the
iterative application of discrete relaxation, we now insist that
a model label not be assigned to more than one scene node,
meaning that no column of the table should contain more than
one entry of “1”. This constraint is easily enforced by visiting
each row of the table, locating rows containing a single entry of
“1”, and then eliminating any other “1”s in the same column.
For example, in scanning the table shown in Fig. 11(e), the first
row that contains a single entry of “1” corresponds to scene
node c. We now insist that the model label ¢ be reserved for
the scene node 3 and, therefore, delete the two other “1”s in
the third column. When we scan through the entire table in this
fashion, the final table output by the pruning module is as shown
in Fig. 11(f).

D. The Ambiguity Resolution Module

As one would expect, although the pruning module eliminates
large chunks of the search space, ambiguities still remain, both
with regard to the identity of the object and its pose. For each
candidate model object that survives all the processing until the
end of the pruning module, pose ambiguities manifest themselves
in the form of there being more than one entry of “1” in a row of
the table. Pose ambiguities are resolved in the following manner.®

We first estimate the pose of the object by using all those scene
features that have been matched uniquely with model features;
such matches correspond to single entries of “1” in the rows
of the table. The mathematics for such a pose estimation is
described in Appendix B and is based on the principles advanced
by Faugeras and Hebert [12]. To use this mathematics, we first
construct pairs of extrinsic attributes, such as outward normals for
planar surfaces, axis directions for cylindrical surfaces, centroids
of areas, etc., for the corresponding uniquely matched features
from the scene and the model. We then invoke the equations
presented in Appendix B for optimum estimation of the rotational
and translational components of the pose transform associated
with the scene object.

For example, for the scene object shown in Fig. 9, the
assignment-consistency table, after the pruning module is done
with it, is shown in Fig. 12. The pose estimation algorithm
recognizes that the scene features {1,2,4,5,7,8} are uniquely
matched with the model features {a,b,c,d,e, f} as labeled in
model 11 in Fig. 6. The algorithm now pairs up the extrinsic

8A most important point to note is that even when the pruning module
ends up matching a unique model feature with every scene feature, the model
object may still be untenable on account of geometrical inconsistencies. We
will address this point later in the paper.

wloo|wju| a|w|n]~
—
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Fig. 12. This assignment-consistency table is produced by the pruning
module for the scene graph shown in Fig. 9(d). This table corresponds to
model #1 shown in Fig. 6. For the scene object shown, all other models would
be rejected by the filtering module.

attributes of 1 and a, of 2 and b, etc., and computes from
these pairs of attribute values the rotational and the translational
components of the pose.

- Pose Estimation and Validation: As discussed in Appendix B,
the pose estimation and validation module needs at least two
unique assignments of model labels to object nodes for pose
estimation. Also, when only two features are available for pose
estimation, the module makes sure that their orientation vectors,
such as surface normals or cylinder axes, are not parallel. When
more than two features are available, this check is not carried out
explicitly, because in this case the validity checks described later
in this subsection would report failure if there is not adequate
independent information contained in the pairwise associations
of scene and model orientation vectors.

This module reports failure if the number of scene nodes that
possess unique assignments in the assignment-consistency table
is less than two, or when the number is two but the orientation
vectors are nearly parallel, or when one of the validation criteria
described below is violated.

The mathematics presented in Appendix B and in [6] and
[12] for pose estimation computes an optimum pose transform,
optimum in the sense that the computed pose minimizes the
mean-squared error between the extrinsic attributes of the scene
object and those of the model object. Since computations that
seck optimum values involve some kind of averaging over the
available data, it is possible that the resulting optimum pose
transform may not be valid. The computed pose transform may
also not be valid if the information supplied is not sufficiently
independent. For example, if we seek to compute the pose
of an object from, say, three separate but almost coplanar
surfaces, using their surface normals for the computation of the
rotation matrix, the information supplied to the algorithm for
the computation of the pose transform may not be sufficiently
linearly independent, leading to an unreliable pose transform
matrix. The validity of the computed pose is checked by applying
the pose transform to each of the extrinsic attributes for each
feature that contributed to the computation of the transform; in
assessing the results, we treat different types of features and
different types of attributes separately. We make distinctions
between the following types.

1) We compare the surface normals of the corresponding

planar surfaces in the scene and the model by computing
the following metric

1
dnormals = 5(1 - (Rvs) ‘ vm)

where R is the rotational component of the computed pose
and v, and v,, are, respectively, the normals associated with
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Fig. 13. (a) An object surface that is not completely visible due to occlusion. (b) The metric dp_centroid_perp COmPputes the perpendicular distance between
the model surface and the scene surface as transformed into the model coordinate frame. (c) As shown here, even if the perpendicular displacement
dy is zero, the transformed scene surface still has three degrees of freedom with respect to the model surface. To constrain these three remaining

degrees of freedom, we use the metric dy centroid_total-

corresponding scene and the model planar surfaces. The
metric d,,,rmas €qual 0 when R is free of errors. On the other
hand, it equals 1 for a scene surface whose normal after
transformation is exactly opposite to the model normal.

2) The centroids® of the corresponding planar surfaces in the
scene and the model are compared by using the following
metric

dy_centrod_perp = | TP, - ROs = P - 0,0

where T is the computed pose transform, of which R is the
rotational component, and p, and p,, are the centroids of the
scene and the model surfaces, respectively. The subscript
p_centroid_perp signifies the use of this metric for planar
surfaces only. The geometric significance of this metric is
illustrated in Fig. 13, where, in Fig. 13(a), we have shown
schematically a scene surface which is only partially visible
due to some occlusion. The important point to note here
is that for a planar surface any occlusion will affect only
the location of the centroid in the plane of the surface and
not the perpendicular to the surface. In other words, the
equation of the scene surface, which is characterized by
the surface normal and the perpendicular distance of the

9 Actually, any pair of points, one on the model surface and the other
on the corresponding scene surface, would lead to the same value for the
dy_centroid_perp Metric, as long as the transformed version of the scene surface
is parallel to the model surface. (It is this freedom with regard to the choice
of the locations that makes the metric insensitive to occlusion.) We use the
centroids simply to ensure that the points are not too close to the boundaries of
the surfaces where the computations of the surface attributes are more prone
to error.

surface from the origin, is not altered by occlusion. The
metric shown above gives us the distance d1 illustrated
in Fig. 13(b). If this metric exceeds a threshold, the pose
transform T is rejected. It is of course true that as illustrated
in Fig. 13(c) the metric shown above will constrain the pose
transform with regard to only one degree of freedom—the
direction normal to the model surface; the other degrees
are constrained by the application of the following metric,
which measures the total distance between the model
surface and the scene surface centroids,

dy centroid_total = [Tp, — P,

Note that the metric d,, centroia_perp Must be applied for the
acceptance or rejection of the pose transform T before the
MEtiC d,, centroid_tota 1 applied for the same purpose because
of the occlusion dependency of the latter and because, even
in the absence of occlusion, the latter metric is incapable
of providing a constraint on just that displacement between
the surfaces which is perpendicular to the surfaces. Despite
its dependency on occlusion, we have found it necessary
t0 use the d, centroid_totar Metric during verifications of pose
transforms of objects that show some symmetry. To reduce
its occlusion dependency, we use a variable threshold for
the metric, as given by

area,
thresh_dist’ = thresh_dist .

s

where thresh_dist is a user supplied threshold and where
area, and area,, are the areas of the scene and the model
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Fig. 14. The cylindrical surface at upper left is as found in a scene.
This surface is transformed by the pose-transformation matrix to yield the
corresponding cylindrical surface in model coordinates, as shown by the
dashed lines at the upper right. The exploded view at the bottom illustrates
the distances d, d;, and de_centroid-

surfaces, respectively. If this threshold is exceeded by
@y centroid_total> the pose transform is rejected.

3) We compare the corresponding cylindrical surfaces by
computing the d,;, metric, which gives us a measure of
angular error between the direction of the axis of the
cylindrical surface in the scene and direction of the axis
of the corresponding cylindrical surface in the model, after
the scene has undergone the rotational transformation R.
The metric is given by

dusis = (1 — |(Rawis,) - azisy|)

where axzis, and axis,, are, respectively, the unit vectors
associated with the corresponding scene and the model
cylindrical axes. The metric d,,;, equals O when the axis
of the scene cylindrical surface is exactly aligned with that
of the corresponding model surface, or exactly opposite
to it. On the other hand, it becomes 1 when the axis
of the scene cylindrical surface, after transformation, is
orthogonal to the corresponding model surface axis. When
d,is exceeds some preset threshold, the candidate model
object is rejected.

4) The centroids'® of the corresponding cylindrical surfaces

10For lack of a better term, we are using the word centroid to designate
a point on the axis of a cylindrical surface, even when the surface is
only partially visible. Centroid will stand for the middle point of the axis
corresponding to the visible portion of the cylinder. However, as was the case
with planar surfaces, any two points, one on the axis of the scene cylinder
and the other on the axis of the corresponding model cylinder, would do, as
long as the two axes are parallel after the scene axis is transformed into the
model space.
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in the scene and the model are compared by evaluating the
following metric:

dc_centmid = Idl - d?l
where

d=Tp,-p,
dy = (dy - azis,,) azis,

where azis, stands for a unit vector along the axis of
the model cylinder. As shown in Fig. 14, |d,| corresponds
to the Euclidean distance between the scene centroid as
transformed into model coordinates and the model centroid,
and d, to the projection of d, on to the axis of the model
cylinder. The metric d, cenmoic Measures the orthogonal
distance from the transformed centroid to the model axis.
Clearly, a candidate model cylinder should be rejected if
de centroia €Xceeds a certain threshold.

5) For spherical surfaces, we compute the distance between
the centroid of the model sphere and the scene sphere
transformed by T.

6) For conical surfaces, the metric for comparing the direc-
tions of the axis is the same as was used for comparing
the surface normals in the planar case. Note that we could
not have used the d,;;; metric developed for the cylindrical
case because that metric was designed to accommodate
180° ambiguity in the direction of one axis with that of
the other. In that sense, the conical case is more similar
to the planar case, because there are no such ambiguities
to deal with.

7) While the metric in item 6 measures how the two conical
surfaces line up with regard to orientation of their axes,
the following metric measures the displacement that is ap-
proximately along the direction of alignment (it is exactly
so if the model axis is collinear with the transformed scene
axis). The metric is given by

e centroia = |{T apex, - Raxis, — apety, - azisy|

where azis,, and azis, are the axes, respectively, of the
model cone and the scene cone, and aper,, and apex,
are, respectively, the apex of the model cone and the apex
of the scene cone. In general, of course, the apex of the
scene cone may not be visible. However, its position can
be estimated using simple trigonometry if we can estimate
from the visible surface the slant angle of the cone and the
radius of the circle corresponding to at least one visible
point.

After a pose transform is verified, the next task is to dis-
ambiguate those rows of the assignment-consistency table that
contain more than one entry of “1”. Disambiguation is carried
out by applying the pose transform to the extrinsic attributes of
the scene nodes that correspond to these rows, and comparing
the results obtained with the extrinsic attributes of the candidate
model nodes. For example, for the assignment-consistency table
output by the pruning module and shown in Fig. 12—this table
corresponds to the scene object shown in Fig. 9and the model
object #11 in Fig. 6—a pose transform was computed from those
entries of the table that are characterized by the occurrence of
a single “1” in the rows. This pose transform was not rejected
during verification when we checked it separately against each of
the features that contributed to the estimation of the transform.
When the estimated pose transform was applied to the extrinsic
attributes of scene feature 9, the extrinsic attributes being surface
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Fig. 15. (a) A scene object in a random pose. (b) The corresponding model object with surface labels as shown. Many surfaces on this object have
identical intrinsic attributes; for example, surfaces a, b, ¢, d and e have identical areas. (c) The assignment-consistency table for the scene object of (a) and
the model of (b). (d) The assignment-consistency table as output by the Pruning Module. (e) The assignment-consistency table resulting from assigning
model label b to scene surface 2 and applying the processing steps in Fig. 16.

normal and centroid, we obtained best results with the extrinsic
attribute values of model node g. Therefore, the competing model
labels & and k were rejected for scene node 9.

Hypothesis Disambiguation and Pose Estimation for Objects
of High Symmetry: As the reader will recall, the filtering and the
pruning modules compare surface features on the basis of only
their intrinsic attributes, such as surface types, areas, number of
neighbors, etc. In addition to utilizing these criteria, the pruning
module also enforces certain relational constraints, but here again
the comparisons between the scene object and a candidate model
object do not utilize extrinsic attributes which are dependent
upon the pose of the scene object. As a result, if the scene
and the model objects possess many similar surfaces, a common
occurrence with objects of high symmetry, the assignment-
consistency table produced by the pruning module will possess
very few rows with single entries of “1” in them.

For example, for the scene and the model objects in Fig. 15(a)
and (b), Fig. 15(c) and (d) shows, respectively, the assignment-
consistency tables before and after the invocation of the pruning
module. As is clear from Fig. 15(d), only one scene feature has
a unique model label.

At first sight, the reader might fault our filtering and pruning
strategies for not yielding a larger number of unique assignments
for scene features than what is shown in Fig. 15(d). However,
it is important to note that the difficulty is caused not by any
serious shortcomings in the filtering and the pruning modules,
but by the fact that a pose is not uniquely defined for objects
of high symmetry, meaning that for such objects there can exist

many one—one assignments of scene features to model features,
each yielding a different but valid pose transformation. We will
now explain our procedure for extracting one such valid pose.
This we will do with the help of the scene and the model objects
shown in Fig. 15. The flow of control for this procedure is shown
in Fig. 16.

To estimate a pose from assignment-consistency tables con-
taining only a few unique model-to-scene assignments, we first
choose a scene node for which we have the least number of
permissible model labels under the proviso that this least number
exceeds unity. For the example in Fig. 15(d), scene node 2 will
be chosen first. (It will serve no purpose to select scene node 3.
which already has a single model label, since the subsequent
processing by the pruning module in Fig. 16 will leave the
entire table unchanged. Selecting the row corresponding to scene
node 2 and making all entries “0” except one introduces a
perturbation into the table that forces the pruning module to also
prune out some of the excess labels for the other scene nodes.)
We now assign to this node the first available model label, which
is b; we say “available” because if the currently selected label
does not work out from the standpoint of leading to a viable pose
transform, the system will select the next label. In other words,
if necessary the system must backtrack over the set of model
nodes in the second row.

"]t is important to appreciate the fact that even in the worst case the
backtracking does not have to be carried out over all possible model label
choices for the scene nodes. Backtracking is limited to a small subset of scene
nodes, only those that are needed for the computation of a pose transform. For



240 [EEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 13, NO. 3, MARCH 1991

Select a Model Label
for the Scene Node

Fail Invoke Pruning Module |

Succeed

Fail Pose Transformation

——

1 Succeed

) Transformation Verification
Fail

Using Features used for

Calculation of Transformation

Succeed

wform valid?

Succeed

Fail

Verified Object
Identity & Pose

Fig. 16. The processing steps and the flow of control which replace the
ambiguity resolution module in Fig. 8 for objects of high symmetry.

After we have assigned a model label to scene node 2, then
in accordance with the flow of control in Fig. 16 the pruning
module is invoked again so that only the compatible assignments
are retained for the other scene nodes. This action of the pruning
module is identical to that described before. The assignment-
consistency table as produced by this invocation of the pruning
module is as shown in Fig. 15(e).

For highly symmetric objects, the assignment-consistency ta-
ble, as produced by the pruning module (second block from
the top in Fig. 16), will still contain only a few unique model
label assignments for the scene features. In principle, one could
repeat the process of first assigning to scene nodes one of the
permissible model labels and then invoking the pruning module,
until one obtained a one—one mapping from scene to model.
However, our approach is different and, we believe, computa-
tionally more efficient. We send the assignment-consistency table
to the module for pose estimation. As was mentioned before,
the pose estimation and validation module will report failure
if it does mot get at least two scene nodes with nonparallel
orientation vectors, or if one of the validation criteria discussed
in the preceding subsection is not satisfied.

VI. EXPERIMENTAL RESULTS

We have tested our system on many scenes composed of single
and multiple objects. The model library for these experiments
consisted of the 12 objects shown in Fig. 6. The PADL system
[38] was used for the modeling of each object. PADL is a con-
structive solid geometry (CSG) based modeling system; an object

the example of Fig. 15, if no pair of model labels for scene nodes 2 and 3 lead
to a valid pose transform, then we could not possibly construct a complete
matching between the scene nodes and the model nodes, and therefore the
model would have to be rejected.

is represented by a composition tree whose nonterminal nodes
are regularized versions of the set operators, union, difference,
and intersection, and whose terminal nodés are the primitives
of the system, namely block, cylinder, cone, etc. The terminal
nodes also contain information on the placement and scaling of
the primitives, such information at each terminal node being in
the form of a 4 x 4 homogeneous transformation matrix. Jeffrey
Lewis at the Robot Vision Lab has modified the PADL software
to yield via an interactive mode the graph representations,
discussed in Section IV, for objects. It is interesting to note
that for constructing attribute frames, most of the attributes do
not have to be computed by the modeling software as they are
either user-specified or trivially computed from the information
supplied by the user. For example, the attributes axis and radius
for cylindrical surfaces must be supplied by the user at the time a
model containing a cylindrical surface is created, and the attribute
normal is easily computed from the user-supplied transformations
for the placement of the primitives in the composition tree. On
the other hand, there are three attributes, area, adjacency, and
edge_type, whose computation in the PADL framework requires
more effort. Some of the modifications carried out by Jeffrey
Lewis allow automatic computation of such attributes.

We will now report results on two of the many experiments
we have conducted successfully in our lab. These experiments
involved both single-object scenes and multiobject scenes with
varying degrees of occlusion. For the discussion to follow, we
have chosen one single-object scene and one multiobject scene.

A. Single-Object Scene Experiments

A single-object scene is shown in Fig. 17(a), its structured-
light scan in Fig. 17(b) and the corresponding preprocessed map
in Fig. 17(c).'*’® Since the preprocessor outputs the attribute
frames for each of the segmented surfaces in Fig. 17(c), it is
a-simple matter to construct from them a graph representation of
the type discussed in Section IV. This graph is then analyzed by
the method discussed in the previous sections.

For the scene of Fig. 17, all the models shown in Fig. 6 were
rejected except for model 10. Models 1-8, 11, and 12 were
rejected by the filtering module and model 9 by the pruning
module. For the model that eventually survives, model 10, the
assignment-consistency tables at various points in the control
flow diagram of Fig. 8 are shown in Fig. 18. The assignment-
consistency table input to the pruning module is shown in
Fig. 18(a), the assignment-consistency table after one iteration
of discrete relaxation in the pruning module is shown in
Fig. 18(b) and after two iterations in Fig. 18(c); no change from
Fig. 18(b) to (c) indicates convergence in only one iteration. In
the assignment-consistency table of Fig. 18(c), six of the scene
nodes have unique model labels. Scene node 6 has two labels for
very understandable reasons; the labels d and f (see model 10
of Fig. 5) correspond to the two planar parallel faces shown
in Fig. 17(c) and their intrinsic attribute values are identical.

12The light stripe image shown in Fig. 17(b) is from the camera viewpoint
and the preprocessed range map corresponds to the projector viewpoint. In
processing data from structured light scanners, it has become conventional
to show results from the stripe projector viewpoints, which is what we have
done here. Of course, it does not make any sense to show the stripe images
from the projector viewpoint because the objects would not be discernible in
such images.

13The preprocessor is discussed in [6]. The preprocessor first computes
surface normals from the range map and then uses a combination of range
and surface normal discontinuities in a region growing framework to segment
the range map into a set of analytically continuous surfaces. The preprocessor
also computes the values of the various attributes defined for the different
surfaces.
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Fig. 17. (a) A scene consisting of a single object in a random position and orientation in the work area of the robot. (b) A light-stripe image of the scene
made with a robot hand-held structured-light scanner. (c) The preprocessed range map showing segmented surfaces and the resulting graph representation of
the scene. (d) To domonstrate successfuly object identification and successful calculation of pose, this figure was generated by invoking the PADL solid

modeling system with the computed object identity and pose transofrm.

Since unique model labels are available for more than one scene
feature, the pose of the scene object is estimated and, in this
case, successfully validated. The pose transform computed from
the uniquely matched scene and model surfaces is shown in
Fig. 18(d). In accordance with the discussion in Appendix B,
the computed axis of rotation n and the angle of rotation 6,
both shown in Fig. 18(d), correspond to the two parameters, one
vector and one scalar, in the quaternion representation of a rigid
body rotation.

The ambiguity resolution module then takes over and resolves
the ambiguities present in the model feature assignment for
scene feature 6. The label d is rejected because, on the basis
of the pose transform, its surface normal is exactly opposite
to the transformed surface normal for scene surface 6; this fact
is discovered by the value of the mettic duomas €xceeding its
allowed threshold. The final assignments of model labels to scene
nodes are shown in Fig. 18(e). In Fig. 17(d) we have shown the
PADL generated model object after it is transformed by the pose
matrix in Fig. 18(d); the similarity of the pose with that of the
object in the scene is evident.

To give the reader some idea of the efficiency of the computa-
tions involved, on a SUN3 workstation it took only 0.1 s of CPU
time to compute the identity and pose of the object in Fig. 17
from the preprocessed map in Fig. 17.

B. Multiobject Scene Experiments

Since ultimately any strategy for object recognition and pose
estimation must work in the presence of occlusions, we have
investigated the application of our procedure to multiobject
scenes like those shown in Figs. 1 and 19. The latter scene will
be used for the discussion here.

As with single-object scenes, the range map of a multiobject
scene is first processed to yield surfaces and the edges between
them. Range discontinuity edges are then used to segment the
entire map into separate scene graphs, each possibly correspond-
ing to a model object. For the scenes of Figs. 1(a) and 19(a),
the various scene graphs constructed are shown, respectively,
in Figs. 1(c) and 19(c). The following labels will designate the
different scene graphs in Fig. 19(c):

G, =1{1,2,9,13,15,16,25}

G, = {22,24,29,31, 32,34}

G; = {26,28,30,33,38}.
For brevity, we will not list the surfaces in the other two graphs
that are shown in Fig. 19(c) because the system is not able to
find any model objects corresponding to them.

In general, due to the presence of a larger number of occlu-
sions, the quality of a range map for a multiobject scene will be
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Fig. 18. (a) Input to the pruning module consists of this assignment-consistency table for the scene of Fig. 17(a). (b) The assignmenl-consi.stency table
after one iteration of discrete relaxation in the pruning module. (c) The assignment-consistency table after two iterations of discrete relaxation. (d) The
computed pose transform. (e¢) The final assignments of model labels to scene surfaces.

inferior to that for a single-object scene. In order to cope with
such occlusions, we must use inequalities in the feature matching
criteria discussed in Section IV. Such inequalities, although
necessary, lead to the possibility that an occluded feature will in
general match many model features. For example, surface 25 has
a diminished value of area attribute due to occlusion, therefore,
this scene surface matches every model surfaces except e on
model 11 (see Fig. 6 for model surface labels). This fact is
illustrated by the last row of the assignment-consistency table
produced by Filter 3 for scene object G, as shown in Fig. 20(a).
Similarly, scene surface 38 has a diminished value of the area
attribute due to the poor quality of the range data in that part
of the scene. Scene surface 38 also suffers from the fact that
it is adjacent to only one other scene surface. If the reader will
recall the definition of node consistency, both these shortcomings
cause many model surfaces to be declared matchable with scene
surface 38, as illustrated by the last row of the assignment-
consistency table produced by Filter 3 for the scene graph Gj,
as shown in Fig. 22(a). As shown there, all the surfaces except
e on model 11 are declared matchable with scene surface 38.

Since the pruning module uses relational information and
since occlusions in multiobject scenes may prevent the discovery
of some of the relations between surfaces, the performance of
this module may also suffer. For example, when the pruning
module is invoked for the scene graph G;, the input assignment-
consistency table is as shown in Fig. 22(a) and the output as
shown in Fig. 22(b). As is clear from the output table, only two
scene surfaces, 30 and 33, get unique model surface assignments
after the pruning module has done its job. Compare this with
the results obtained for the scene graph G;. Its input and output
assignment-consistency tables for the pruning module are shown
in Fig. 20(a) and (b). In this case, through the action of the
pruning module, five of the seven scene surfaces acquire unique
model surface labels.

It is interesting to note that the surfaces that do acquire
unique model surface labels for scene graph G, are not capable
of generating a unique pose transform for the object and the
alternative implementation of the ambiguity resolution module
presented in Section V-D must be invoked. As shown in the
tables in Fig. 21(a) and (b), the scene surfaces 29, 32, 31, and 34
do acquire the correct model surface labels. However, since the
direction vectors associated with all these features are parallel,
no unique pose transform can be computed. In such an event,
in keeping with the presentation in Section V-D, one of the
applicable model surface assignments is given arbitrarily to one
of the other scene surfaces, such as scene surface 24. Now a pose
transform is computed and its verification made in accordance
with the discussion presented earlier.

The recognized objects, in their computed poses, are illustrated
in Figs. 1(d) and 19(d); these figures were generated by invoking
the PADL system with the computed pose transforms. In the
sequence of images in Fig. 2, we show a robot picking up one
of these objects. Only rudimentary grasp planning was used
for such manipulations. In the model coordinate frame for each
object, we identify a set of grasp points and associate with each
a gripper transform. This gripper transform is then multiplied
by the computed pose transform of the object to figure out
the destination transform of the gtipper for manipulating the
object. Evidently, in some cases the resulting manipulation is not
feasible due to the possibility of collisions with either the table
or other objects or due to the violation of kinematic constraints.
While some of these conditions can be discovered automatically,
others require the implementation of rather complex approaches
to collision detection and path planning, as has, for example,
been implemented in the HANDEY system [34]. Since the
focus of this research is not on grasp and path planning, in the
experiments reported here, in those cases where the commanded
manipulation was not flagged down automatically in the event
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Fig. 19. (a) Multiobject scene. (b) Light-stripe image of the scene made with a robot hand-held structured-light scanner. (c) The preprocessed range map

with segmented surfaces and the resulting graph representation. (d) This figure was made by invoking the PADL solid modeling package with the computed
identities and poses of some of the objects in the scene of (a).
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(a) The assignment-consistency table produced by the filtering module for scene graph G in Fig. 19(c). (b) The assignment-consistency table at the

output of the pruning module.

of an impending collision, the robot was brought to a halt
manually.

VII. CoNcCLUSION

We believe the computational approach we have presented
in this paper is particularly useful when the number of objects
in the model library is large and/or when the objects involved
possess a large number of surfaces; both these factors lead to
large search spaces for object identification and pose estimation.
In the flow of control discussed in Section V, the various filters
quickly eliminate those models that differ from the scene object

in gross details, such as the number and types of surfaces
involved, etc. Further pruning of the search space is rapidly
accomplished on the basis of relational considerations in the
pruning module, which uses a combination of discrete relaxation
and bipartite matching. Except for objects of high symmetry,
the labeling produced by the pruning module is unique for a
sufficient number of scene surfaces to allow us to generate a
possible pose transform for the scene object; this transform is
subsequently verified by the available labeling of the surfaces
that are used for pose-transform calculations. Of course, for
objects of high symmetry additional processing has to be invoked
since, for such objects, relational considerations invoked by the
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Fig. 21. (a) The assignment-consistency table produced by the filtering module for scene graph G in Fig. 19(c). (b) The assignment-consistency table at the
output of the pruning module.
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Fig. 22. (a) The assignment-consistency table produced by the filtering module for scene graph G in Fig. 19(c). (b) The assignment-consistency table at the
output of the pruning module.

pruning module can fail to produce a unique pose transform; this
additional processing is simple in that it requires that we select
from the available labels for a small number of scene surfaces,
calculate a pose transform from these labels, and then verify
the transform by using the labels available for the other scene
surfaces.

‘We have shown experimental results on single- and multiobject
scenes. For multiobject scenes we pointed out the difficulties
caused by occlusions. One of these difficulties translated into
the partially occluded scene features being declared matchable
with a larger number of model features. Also, when occlusions
caused some of the intersurface relationships to be missed, the
pruning module lost some of its effectiveness, leading to greater
backtracking during the pose-transform computation stage and
the verification of the transform.

APPENDIX A
IMPLEMENTATION OF BIPARTITE MATCHING IN POLYNOMIAL TIME

In this Appendix, we will explain how bipartite matching is
implemented in polynomial time. Although our exposition is
somewhat more tutorial, the algorithm presented here is similar
to the one discussed in [37]. Since bipartite matching is so central
to the work presented in this paper, we felt compelled to include
a discussion on its polynomial time implementation.

For the bipartite matching that is invoked by Filter 3 presented
in Section V-B, X will denote the set of nodes in the scene
graph and Y the set of nodes in a candidate model graph. On the
other hand, when bipartite matching is invoked by the pruning
module presented in Section V-C, X will stand for I'(x) and Y
for I'(y), where x and y are, respectively, the nodes from the
scene and the model graphs, the two nodes being under test
for local compatibility. For the latter application of bipartite
matching, in accordance with the explanation in Section V-C,
we also assume that each node in, say, ['(x) has “absorbed” the
attributes of the arc connecting the node with the node x. Noting
that this is the only difference between the two applications of

- e e

bipartite matching, in the rest of this Appendix we will simplify
the discussion by focusing on just the first application.

For the discussion here, the bipartite graph will be denoted
by Gg = (Npg,Ag), where the subscript B is intended to
differentiate this graph from model and scene graphs. We will
assume that bipartite matching is desired between the two disjoint
subsets X and Y that form a partition of Nj. Also, the set of arcs
Ap is such that every arc a € Ap connects a node z € X with a
node y € Y if x and y are node-consistent.'* ;

Note that our purpose in bipartite matching is merely to
discover whether or not there exists a one—one injective mapping
from X to Y; we do not care about the mapping itself. In other
words, through the mechanism of bipartite matching, we want
to make sure that for every node in the scene graph there
exists a distinct node in the model graph—which two nodes
from the graphs get paired up is not important. As we will
state more formally later, such mappings from X into Y will
be called complete matchings. Many authors have suggested
polynomial time implementations of solutions to the bipartite
matching problem [4], [8], [14], [24], [29]. We believe that the
oldest of these is the implementation by the Hungarian method
[31]." A more recent solution to the problem was advanced by
Hopcroft and Karp [24] and is based on network flow ideas [8].

Since in our system the nature of the assignment of a model
node to a scene node is binary in nature, the matching algorithms
most relevant to us are those for the Hungarian method and

14 At the risk of sounding repetitive, we must emphasize the fact that the
nature of the arcs here bears no relationship to the arcs in the graphs for scene
or model representation. For the bipartite matching invoked by Filter 3, two
nodes are connected by an arc whenever the nodes satisfy the conditions for
node consistency stated in Section IV. For the bipartite matching invoked by
the pruning module, a scene node is connected by arc to a model node provided
there is a “1” in the corresponding position in the assignment-consistency table
and provided the “absorbed” arc attributes are the same, as per the discussion
in Section V-C.

15In a somewhat more general problem formulation, when weights are
assigned to the different possible pairing from X and Y, we may not insist on
a complete matching, but an optimal matching that maximizes the sum of the
weights. Such a problem may be solved by the Kuhn—Munkres method [4].
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the one proposed by Hopcroft and Karp. For reasons having
to do with the programming effort required, we chose to start
with the Hungarian method, even though the complexity of
this method, being O(min(|X|, [Y]) - |As|), exceeds that of the
method proposed by Hopcroft and Karp, the time complexity

of the latter method being O(+/(|X]|+ |Y]) - |Ag]|). For our
application, if we assume that X corresponds to scene graph
nodes, with the understanding that only a single object is present
in the scene, and Y to model graph nodes |X| < |Y|, the
complexity of the Hungarian method becomes O(|X| - [Ap]). It
is important to realize that the worst-case time complexity of the
Hungarian method is not that different from that of the Hopcroft
and Karp algorithm, since in the worst case each node in X will
be consistent with every node in Y, implying Ag = | X||Y|. We
use the phrase “worst case” for only discussing the comparative
behavior of the two algorithms; of course, if each node in the
scene graph is consistent with every node in the model graph, it
would be trivial to discover a complete matching.

We need to define a few terms before we present the algorithm.

* A match M is a list of node-consistent ordered pairs
{(zi,y;)}, = € X, y; € Y, such that (z;,y;) € Ap.
Clearly, M C Ap, with the property that no two edges
in M share the same node. In the bipartite graph shown in
Fig. 23(a) the set of arcs {(1,¢), (3,a) ---} constitutes a
matching M. Note that this M is not unique.

* A node x; or y; participating in M is called M-saturated;
otherwise, a node of Gy is M-unsaturated or just exposed.
Given the match M in Fig. 23(b), in the bipartite graph of
Fig. 23(a) the nodes in the sets {1,2} and {a,b} are M-
saturated, whereas the nodes in the sets {3,4} and {c,d}
are M-unsaturated.

* An M-alternating path in Gp is a path whose arcs are
alternately in M and Az — M. The set of arcs {(3,a), (a,1),
(1,¢)} displayed in Fig. 23(c) constitutes an M-alternating
path with respect to the M shown in Fig. 23(b) and for the
bipartite graph in Fig. 23(a).

* An M-augmenting path is an M-alternating path whose
origin and terminus are M-unsaturated. The M-alternating
path in Fig. 23(c) is also an M-augmenting path.

* For any set S of nodes in X, we denote by N(S) the set of
nodes from Y that are in node consistency with the nodes in
S. For example, for the graph of Fig. 23(a), for the nodes
{2,4} in X, N({2,4}) is given by {a,b,c}.

* During the process of pairing up consistent nodes from X and
Y for the purpose of constructing a match M, we may reach
a point where no further pairings are possible. At that point,
M is called a maximal match. In other words, a maximum
matching is a matching M to which no further arcs from A,
can be added. For example, the matching {(1,a),(2,b)} is
a maximal matching for the Gz shown in Fig. 23(a); this
maximal matching is pictorially depicted in Fig. 23(b). No
further arcs from Ag shown in Fig. 23(a) could be added
to this M without violating the one—one injective mapping
condition on M.

It is most important to realize that a given maximal matching
may not posses maximum cardinality; in other words, there
may exist maximal matchings of higher cardinality. Again for
the case of Gy shown in Fig. 23(a), the maximal matching
{(1,¢), (2,b), (3,a)} is of higher cardinality than the maximal
matching {(1,a), (2,b)}. A necessary and sufficient condition
for a maximal matching to be of maximum cardinality is given
by the following theorem, whose proof can be found in [4].
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Fig. 23. Procedure for finding a maximal matching. (a) Arcs denote node
consistency. (b) An initial maximal matching M. (c) An augmenting path
P; with respect to the maximal matching My starting from node 3. (d) The
maximal matching, M1, obtained by applying the EXCLUSIVE-OR operator to
the arcs in (b) and (c). M1 = My @ Py. (¢) An augmenting path P, with
respect to the matching M starting at node 4. (f) The maximal matching M
obtained by applying the EXCLUSIVE-OR operator to the arcs in (d) and (e).
My = M1 & Ps.

Fig. 24. Bipartite graph in which a complete matching cannot exist.

Theorem 1: A matching M in Gy is the largest maximal
matching if and only if G contains no M-augmenting path.

We will now introduce two more characterizations of match-
ings.

* A matching is perfect when every node in Gj is M-saturated.
Clearly, unless |X| = {Y| is true, a matching will not be
perfect.

+ When we match scene graphs with model graphs, the
condition |X| < |V is usually satisfied, if we assume that
X represents the nodes in the scene graph and Y the nodes
in the model graph. In such bipartite graphs, the notion of
complete matching becomes important. A matching M is
complete when every node in X is M-saturated.

A necessary and sufficient condition for the existence of a
complete matching in a bipartite graph was given by Hall [4]
and is presented below without proof.

Theorem 2: Gy contains a complete matching if and only if

IN(S)| > |S| forall S C X.

This theorem says that a complete matching of X into Y exists
if and only if every subset S of the nodes in X is “collectively
connected” to | S| or more nodes in Y. This condition is not satis-
fied in Fig. 24 because the subset {1,2,4} from X is connected
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to {b,e}, a subset from Y whose cardinality is lower than that
of the subset from X.

While the condition of the above theorem sounds simple, its
implementation directly as stated is not, since that would require
exponential time, there being 2!X! — 1 nonempty subsets in X and
the condition must be tested for each subset [7]. We presented
Theorem 2 not because it leads to any useful computational
strategies, but because it states the most well-known condition
for the existence of a complete matching in a bipartite graph and
for that reason is the method most workers think of implementing
when first getting started with the notions under discussion here.
A computationally efficient way to discover the existence of a
complete matching is via the previously mentioned Hungarian
method and the Hopcroft and Karp algorithm, both intended
for finding the largest maximal matching in a bipartite graph.
Clearly, if the cardinality of the maximal matching found by one
of the procedures is less than |X|, we do not have a complete
matching.

This brings us to the heart of this Appendix: the algorithm for
finding a complete matching in a bipartite graph. The algorithm is
based on the lemma that if M is a matching and P an augmenting
path relative to M, then by combining M and P via an EXCLUSIVE-OR
operation we obtain another matching, denoted by M & P, whose
cardinality exceeds that of M by one. Two important points to
note about this lemma are 1) the path P does not have to be the
shortest possible path, and 2) the matching M does not have to
be a maximal matching. In our use of the lemma in the procedure
presented below, we will only deal with maximal matchings.

The algorithm is iterative at the top level. It starts out with an
initially constructed maximal matching, which is then refined
in subsequent iterations, until either a complete matching is
discovered or failure declared. Of course, a separate procedure
must be implemented to discover an initial maximal matching;
this procedure can be based on a direct comparison of each X
node with those Y nodes that have not been already matched,
until no more X nodes can be paired up.

The algorithm for complete matching may now be described
by the following steps. We will assume that we have available
to us a maximal matching already and that we now want to
discover a maximal matching of larger cardinality; we terminate
the process when the cardinality of the maximal matching found
equals that of X.

STEP 1: If the cardinality of the current maximal matching M
is equal to | X|, we are done; otherwise go to STEP 2.
Select an exposed node in X and starting from this
node construct an M-augmenting path that alter-
nately uses arcs from Az — M and M. As was shown
in [37], the complexity of this operatior is O(|Ag|).
This measure of complexity is based on the fact that
we can select any exposed node from X and, if we do
not find an augmenting path starting from that node,
then there simply does not exist an augmenting path
with respect to the given matching. An algorithm
for finding an augmenting path with respect to a
given matching is described in [4] and [37]. If an
augmenting path cannot be found, declare failure.
Form a new maximal matching by combining the
current maximal matching and the augmenting path
found in the previous step via an EXCLUSIVE-OR
operation. By EXCLUSIVE-OR operation we mean that
we eliminate those arcs that are in both the matching
and the augmenting path.

STEP 4: Go to Step 2.

STEP 2:

STEP 3:

APPENDIX B
CALCULATION OF THE POSE TRANSFORM

It is interesting to note that when the pose transform T is
expressed as a 4 x 4 homogeneous matrix, at least theoretically
the elements of the matrix could be computed by a knowledge
of the coordinates of three noncollinear points on the object
in the scene and their corresponding locations in the model;
these three points could, for example, be vertices, centroids
of surfaces, etc. Whereas the three points translate into nine
equations, six additional equations are generated by the orthonor-
mality constraint on the 3 x 3 upper left submatrix of 7' which
corresponds to rotation. This constraint implies that each column
of the submatrix be of unit magnitude and orthogonal to the
other two columns. These 15 equations can be used to solve for
only 12 unknowns since any solutions must also obey rigid body
constraints which say the distances and/or angles between the
points must not change when the object is tranformed by T; that
is, if p!, p?, and p? are the three scene points and pl,, p?,, and
p?, their model counterparts, the rigid body constraints could
take the form of three equalities like |pi — p?| = |pt, — p7, |-
As it turns out, 12 equations are sufficient to compute T since its
last row will always have elements that are known already for
rigid body transformations. While, owing to its straightforward
nature, this approach to the computation of T is attractive, it does
suffer from two difficulties. The first difficulty has to do with the
fact that in the presence of occlusion it may be impossible to
precisely locate points such as the centroids of surfaces, etc. The
second difficulty has to do with the estimation of the components
of T in the presence of noise, since in that case the solutions
must be obtained by some sort of optimization in a fairly high-
dimensional space spanned by the equations.

For these reasons, the pose-transform matrix is estimated
most frequently by first decomposing T into its rotational and
translational parts and then estimating each separately. Separate
computation of the two parts is justified particularly by the
fact that the rotational part can be computed more robustly
from directional vectors, such as surface normals, directions
of axes of cylinders, etc., leaving the problem of estimation
of the translational part, for which a single point will suffice.
Unfortunately, in practice, in the presence of occlusions, it is
often difficult to reliably locate even one known point for the
computation of the translational part and one must resort to the
method discussed later in this Appendix. It is important to bear
in mind that the decomposition of a pose-transform matrix into
rotational and translational parts is not unique in general. As
a matter of fact, there are infinite combinations of a rotation
followed by a translation or vice versa that would take a rigid
body from one pose into another. However, if we constrain
the axis of rotation to always pass through the origin of the
coordinate system, then the decomposition of T is unique.

Let R and ¢ be, respectively, the rotational and the translational
parts of the pose transform. Then given a directional vector v,
from the scene and its correspondent v,, from the model, we have

R.-vi=v,, i=1,---,N. (B1)

Similarly, if we have established correspondence between a point

ps in the scene and a point p,, on the model, we have

R-p, +t=p,. (B2)

We will now discuss the procedures used for the computation
of R and ¢
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A. Computation of the Rotation Matrix

Given a set of directional vectors v!,v2, -, v, their corre-
spondents v, ,v2 -+, v’ and the following set of relationships
between each pair of correspondents:

R-vi =4, (B3)
we want to estimate an R that minimizes
N
D IRv -, (B4)
i=1

One might be tempted to solve this minimization problem by
first casting the N equations that are represented by (B1) into the
following composite form:

R[’U}zvviv"”] = [”3117”37."',1 (BS)
which is more compactly represented by
RV, =V, (B6)

where V, and V,, are 3 x N matrices, and then invoking the
pseudo-inverse approach for solving such equations to yield for
the solution

R=V, VT [Vv.vI]™ (B7)

where the superscript T means the transpose operation. Unfortu-
nately, such a solution will, in general, prove to be erroneous for
the following reason. The solution in (B7) could be considered
to be a consequence of setting the following derivative to zero:
i(vm -RV,)(V,.-RV,) =0 (B8)
SR
However, the minimization implied by setting the derivative
shown to zero makes no intuitive sense because the argument
given to the derivative operator is not a scalar error metric
but a 3 x 3 matrix. Clearly, we cannot expect to obtain an R
that would simultaneously minimize all nice elements of this
matrix. One could get around this hurdle by recasting (B6) in
a matrix—vector form by using, for example, a lexicographic
recoding to express R as a vector. We would now be able to
use a single error metric and the resulting solution obtained
by the pseudo-inverse approach would represent an attempt at
a minimization of this error metric with respect to the nine
components of R. But, such a minimization is really not valid
since the nine components of R are not independent; as a
matter of fact, they are highly interdependent considering that
R possesses only three degrees of freedom.

Several approaches have been advanced for solving the equa-
tions in (B3) for R [1], [5], [6], [9], [11], [12], [17]. Grimson and
Lozano-Perez’s approach {17] is based on the notion that given
a pair of correspondents (v, v! ), the rotational axis must lic on
the perpendicular bisector plane of the line joining v and v',.
For example, in Fig. 25 the axis for the rotation that takes v}
into v¥, must lie on the plane denoted by L'. Therefore, given
two pairs of correspondents (v’,v!,) and (v’,v? ), we can find
the axis of rotation as the line corresponding to the intersection
of the two bisecting planes, as demonstrated by the intersections
of the two planes L' and L’ in Fig. 25. This amounts to setting
the axis of rotation to

(vi —vl) x (v] - vl,) (B%)
for two pairs of corresponding directional vectors. This scheme
obviously will not work when the two difference vectors vi — vi,
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Fig. 25. If the model directional vector v, corresponds to the scene
directional vector v}, then the axis of rotation of the object must lie on
the bisecting plane L?. The intersection of two such bisecting planes L* and
L’ defines the axis of rotation.

and v} — v’ are parallel, a not unlikely situation to arise in
practice. As shown in Fig. 26, the rotation of the cube gives rise
to (v!,v},) and (v?,v?,) which leads to exactly the situation
where the two difference vectors are parallel and not usable
for the calculation of the axis of rotation. This approach also
cannot be used for a scene directional vector if it is parallel
to the corresponding model directional vector. In the method
of Grimson and Lozano-Perez, when more than two scene
directional vectors from a scene are available, the axis of rotation
is computed for each pair of them and the result averaged.

Fan, et al.’s approach [9] is identical to the one by Grimson
and Lozano-Perez except for the final computation of the axis of
rotation from multiple pairs of scene directional vectors. Instead
of just averaging the results for each pair of scene directional
vectors, they compute the sum of the angles between the axis of
rotation for the pair and the axes of rotation for all other pairs.
They retain that axis of rotation which leads to the smallest
value for this sum. In the approach advanced by Arun et al
[1], a set of corresponding points from the scene and the model
is used for computing first the rotation matrix and then the
translation vector. If this approach were to be used by us, the
scene object would first be rotated around the mean of all the
points to be used for the calculation of the pose transform,
and the rotation would be such as to make the orientation of
the scene object similar to the orientation of the model object.
The translational component is then computed by bringing into
coincidence by a translation the rotated mean of the scene points
and the mean of the model points. This approach is not suitable
for our application for one of the reasons mentioned at the
beginning of this Appendix regarding the use of points for the
computation of a pose transform: the difficulty associated with
correctly identifying and locating point features in the presence
of occlusions.
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The approach we have used in our work is based on the
derivation originally advanced by Faugeras and Hebert [11], [12]
and subsequently used in our lab in the work reported in [6].1
This derivation uses the quaternion approach to minimize the sum
of the squared errors between the rotated scene directional vectors
and the corresponding model directional vectors by solving the
following equations:

5 - o
ﬁg |R-’0:—‘U:n|220.
=1

A quaternion is a 4-tuple, frequently expressed by a combination
of a scalar and a 3-D vector. For example, as shown in [6] and
[12], a rotation through angle 8 around an axis whose direction is
given by the unit vector a is given by the following quaternion:

6 . 8
Qr = (cos 7 8in —2—a).

Now, an ordinary directional vector v would be represented in
the quaternion form as (0, v), and its rotation by Qx would result
in the quaternion (0, R - v), where

(0,R-v) =Qp*(0,v) * Qp.

The symbol “*” here denotes a multiplication between two
quaternions, as defined by the following expression for two
quaternions, Q = (f,a) and Q' = (¢',a’):

QxQ = (00 —a-a',axa +0a +8a)

. (B10)

(B11)

(B12)

(B13)

By substituting quaternions for the various quantities in the left-
hand side of (B10), it can be shown that that equation is identical
to

)
5(Qr-A-QF) =0 (B14)
where A is given by
N
A=) B.B’ (B15)
i=1
where
0 -c —c¢, —c
e o b =¥
B = d b 0 biy (B16)
c. b b, 0
and
b =vl + o,
¢ =0 ~v . (B17)

The quaternion Q that minimizes the argument of the derivative
operator in (B14) is an eigenvector of matrix A. If we denote an
eigenvector of A by the 4-tuple (o, 3,7, §), then it follows from
(B11) that the rotation angle # associated with the rotational
transform is given by

6 = 2cos™! (a). (B18)

Again, from (B11), the axis of rotation would be given by

a=(B,v,9) / sin (g)

1Reference [6] also contains a more tutorial rederivation of the result
derived originally by Faugeras and Hebert. )

(B19)

— e — .

These calculations for & and a are made under the constraint
that the magnitude of the eigenvector (a, 3,7, §) is normalized
to unity. Also, the eigenvector chosen for the calculation of 6
and @ must correspond to the minimum eigenvalue.

An important question from the standpoint of implementation
is: What is the least number of directional vectors required for
the computation of R? For each i, (B3) really gives us not three
equations, but only two, since the directional vectors are unit
vectors and, therefore, one of their components can be predicted
from the other two. Since R contains three independent variables,
two for the unit vector representing the axis of rotation and one
for the angle of rotation around this unit vector, we therefore need
at least two equations of the type in (B3) for the computation of
R. As was mentioned in [6], two equations like (B3) do not really
translate into four independent equations for the three unknowns
in R since the directional vectors must also satisfy the rigid body
constraint v: - v! = vl - vl .

B. Computation of the Translation Vector

If it is possible to identify at least one point correctly in
the scene, knowledge of the rotation matrix can be used in the
following equation, obtained from (B2), to easily compute the
translational component of the pose transform:

(B20)

where p; is the point in the scene and p,, its correspondent on
the model. Of course, as was done in [6], if it is possible to
identify more than one such point in a scene, the vector ¢ can be
computed by minimizing the following error norm:

t=p,—R-p,

N
> Iph. — R-pi —tf

i=1

(B21)

where p!,p?,---,pY are the point features from the scene
and p! ,p?,,---,p~ the corresponding point features from the
model. Minimizing this expression by taking a derivative with
respect to ¢ and setting the derivative to 0 yields the following
solution for ¢

N N

t=3 p.-R-) pi. (B22)
=1 =1

As the reader can see, the optimum solution for ¢ is nothing more

than a translation of the rotated mean vector associated with the

scene points to the mean vector associated with the model points.

In dealing with scenes containing occlusions, often it is not
possible to identify any robustly detectable point features at all
with an object. By robustly detectable point features we mean
points such as vertices where three or more planar surfaces come
together, apexes of conical surfaces, etc. There are other point
features that one could use, such as centroids of planar surfaces,
etc., but their identification and location is more prone to the
deleterious effects of occlusion. For these reasons, one would
like to use nonpoint features for the estimation of the translation
vector. Following Faugeras and Hebert [11], [12], we will now
present 2 method for doing so.

The pose estimation formalism of Faugeras and Hebert uses
visible portions of surfaces to set up an error metric whose min-
imization leads to the best possible solution of the translational
vector. The rationale behind this approach is best explained with
the help of Fig. 27. Let’s say that AB is the visible fragment of
a scene surface whose model correspondent is the surface CD.
To compute the translational vector ¢, we first rotate the scene
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Fig. 26. (a) A model object and the corresponding scene object rotated about the vertical axis. (b) Although there exists a unique axis of rotation for this
case, one would not be able to compute it by using (B9) because the difference vectors vy — v;, and v} — v}, are parallel.

surface AB by the rotation matrix R around the origin of the
coordinate system, the result being the surface fragment A'B’.
We now construct a vector, denoted by f., from the centroid of
the model surface CD to the centroid of A’B’ and then project this
vector onto the surface normal to CD. This projection is equal
to perpendicular distance PQ between the rotated scene surface
and the model surface. The length of PQ is given by

PQ=t. v, (B23)
where v,, is normal to the model surface. If p,, and p, denote,
respectively, the centroids of the model surface and the surface
fragment in the scene, the equations of the two surfaces are given
by

pm cUm = dm
p, v, =d, (B24)
where v, is the measured normal to the scene surface and d,, and
d, are the perpendicular offset distances to the two surfaces. It
is clear that if the scene surface is rotated around the origin so
that its orientation is the same as that of the model surface, the
distance P(Q should equal

PQ=d, —d.. (B25)
By comparing (B23) and (B25), we obtain
t. v, =d,—d. (B26)

As the occlusion of the surface of which AB is a fragment
is varied, the location of the centroid of what is visible will
also change, leading to a different .. However, regardless of
occlusion, all £’s will obey the above equation. Therefore, it
stands to reason that if we have many planar surfaces in a scene
belonging to the same object, we should seek a ¢ which minimizes

the following error criterion:
N )
S (vl - (d - di))’

where superscript i refers to the ith planar surface in the scene
and its model correspondent. The solution to this minimization
is given by

(B27)

t=DVI(V, V1) (B28)

where V,, is the 3 x N matrix
Vo= [U;,vi,,---,v;:i]
and D is the column vector
D= [di «d}n,df—di,---,df’ -—d,’i].

Clearly, this method for the determination of the translational
vector can only be applied to a collection of planar surfaces on an
object. For nonplanar surfaces, one has no choice but to resort to
point feature based methods discussed earlier. If no distinguished
points, such as vertices, can be identified, in some cases it is
possible to use imaginary points formed by intersecting the axes
of cylindrical or conical surfaces with the planes representing the
flat bases on which such nonplanar surfaces might be mounted.

C. Testing Direction Vectors for Sufficient Information

The scene surfaces chosen for the minimization of the error
metric in (B27) should be such that their orientation vectors,
as given by w!,v%,---,vY are not all parallel. When these
directional vectors are parallel, so will be their model corre-
spondents v}, v?,, -+, vly; as a result there will not exist a
unique translational vector ¢ for the object. Fig. 28 illustrates this
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Fig. 27. (a) AB represents the visible fragment of a surface in the scene and CD the model correspondent of the surface. The distances ds and d, are,
respectively, the perpendicular distances of the two surfaces from the origin. (b) To compute the translational component of the pose transform, we first
rotate AB in such a manner that its orientation becomes identical to that of CD, as shown here.
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Fig. 28. There is not sufficient information contained in surfaces 2,4, and
6 of this staircase object for computing the translational component of the
pose transform.

point. If we only use the surfaces 2, 4, and 6 in the minimization
in (B27), the translational vector will only be constrained with
respect to the z axis of the coordinate frame. In other words, there
will not be sufficient information in (B27) for the computation
of the other two components of . Also, taking surface 1 into
account will provide us with another constraint but will still leave
t unspecified with respect to one degree of freedom.

It is clear that before using a set of surfaces for the computation
of the translational vector, we must examine them for sufficiency
of information. One simple approach for doing this would consist
of taking triple scalar products for all combinations of three
directional vectors and insisting that for at least one combination
the product be nonzero. We have not used this approach.

We will now present our approach for ascertaining that there
is sufficient directional information contained in the directional
vectors. Basically, we want to make sure that the dimensionality
of the space spanned by the directional vectors is three. In matrix
algebra, this amounts to saying that if we construct a matrix
whose rows are the directional vectors available to us, then the
rank of this matrix should equal 3.17 The rank of such a matrix
could easily be obtained by counting the number of nonzero
rows in a Gauss-reduced form or the row-echelon form of the
matrix, since these nonzero rows constitute basis vectors of the
space spanned by the directional vectors. However with noisy
directional vectors, this method does not yield reliable results.

Our strategy is based on the fact that if V denotes the matrix
whose rows are the directional vectors; then the rank of V is the
same as the rank of V7V. Since V'V is a square matrix of size

17The reader should note that for a nonsquare matrix, the maximum rank
cannot exceed the minimum of the number of rows or columns.

3 x 3, its determinant exists and will be nonzero only if the rank
equals three. Of course, in the presence of noise the determinant
may not equal zero even when the rank is less than three, so
it is best to use a threshold for making this test. In using this
method, one must bear in mind that the determinant is the product
of the eigenvalues of the matrix V'V and that each eigenvalue
represents the “support” for the corresponding eigenvector in the
directional vectors data. In other words, if a majority of the
directional vectors are lined up with, say, the z axis, then one
of the eigenvectors would be nearly parallel to the z axis and
its eigenvalue would take a value much larger than the other
two. Therefore, even when we have directional vectors spanning
3-space, the product of the three eigenvalues can be small if the
“support” for one or two of the basis vectors is relatively low in
comparison to the support for the rest.

In our implementation, we have used a slight variation on this
method of checking the value of the determinant of V'V, We
carry out an eigenvector analysis of the V7V matrix and we then
examine the eigenvalues individually. If all three eigenvalues
exceed an acceptance threshold, then the rank of V7V is clearly
three and we are done. On the other hand, if only two eigenvalues
exceed the acceptance threshold, then we do not have sufficient
information for the computation of ¢ using (B27). However, we
can still use the directional vectors for the computation of R and,
in some cases, depend upon other methods for the computation of
T, one of these other methods being the calculation of T by using
centroids of surfaces, especially if by comparing areas it can be
determined that the extent of occlusion is small. In other cases,
it might be possible to use the centroids of cylindrical surfaces
in a similar manner, such centroids being defined as points on
the axes of cylinders, as was done in Section V-D.
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