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This exposition is a tutorial on how object-oriented programming (OOP) in LISP can be
used for programming a blackboard. Since we have used Common L1sp and the Common
LisP Object System (CLOS), the exposition demonstrates how object classes and the
primary, before, and after methods associated with the classes can be used for this
purpose. The reader should note that the different approaches to object-oriented pro-
gramming share considerable similarity and, therefore, the exposition should be helpful
to even those who may not wish to use CLOS. We have used the radar tracking problem
as a ‘““‘medium’’ for explaining the concepts underlying blackboard programming. The
blackboard database is constructed solely of classes which act as data structures as
well as method-bearing objects. Class instances form the nodes and the levels of the
blackboard. The methods associated with these classes constitute a distributed monitor
and support the knowledge sources in modifying the blackboard data. A rule-based
planner is used to construct knowledge source activation records from the goals residing
in the blackboard. These activation records are enqueued in a cyclic queueing system.
A scheduler cycles through the queues and selects knowledge sources to fire. © John
Wiley & Sons, Inc.

I. INTRODUCTION

The blackboard (BB) approach to problem solving has been used in a
number of systems dealing with a diverse set of applications, which include
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speech understanding,' image understanding,>- planning,®’ high-level signal
processing,®!! distributed problem solving,? and general problem solving.!>!
Usually, a blackboard system consists of three parts, a global database, knowl-
edge sources (KSs), and the control. The global database is usually referred to
as the blackboard and is, in most cases, the only means of communication
between the KSs. The KSs are procedures capable of modifying the objects on
the blackboard and are the only entities that are allowed to read or write on the
blackboard. Control of the blackboard may be event driven, goal driven, or
expectation driven. Events are changes to the BB, such as the arrival of data
or modifications of data by one of the KSs. In an event-driven BB, a scheduler
uses the events as the primary information source to schedule the KSs for
invocation. A goal-driven BB system, on the other hand, is a more refined
computational structure, which uses a composite mapping from the events to
goals and then from goals directly to KS activations or indirectly from goals to
subgoals and then to KSs. This refinement permits a more sophisticated planning
algorithm to choose the next KS activation. By using goals, one can bias the
blackboard or generate other goals to fetch or generate other components of
the solution.?” Note that if goals are isomorphic to the events, then a BB is
essentially event driven.

As was eloquently pointed out by Nii, ! there is a great difference between
understanding the concept of a blackboard model and its implementation. Imple-
mentation is made all the more difficult by the lack in the current literature of
a suitable exposition on how to actually go about writing a computer program
for a blackboard. A blackboard is a complex computational structure, not
amenable to a quick description as an algorithm. To program a blackboard, one
must specify data structures for the items that are posted on the blackboard,
explicitly state the nature of interaction between the data on the blackboard and
the KSs, clearly define how the high-level goals get decomposed into lower-
level goals during problem solving, and so forth. The purpose of this tutorial
exposition is to rectify this deficiency in the literature, at least from the stand-
point of helping someone to get started with the task of programming a black-
board.

For this tutorial, we have used the radar tracking problem (RTP) to illustrate
how object-oriented programming (OOP) in LisP can be used to establish the
flow of control required for blackboard-based problem solving. The RTP is
defined as follows: Given the radar returns, find the best partition of these
returns into disjoint time sequences that represent the trajectories of craft or
any other moving body. For craft flying in tight formations, we will associate a
single trajectory with each formation. Each trajectory, whether associated with
a single craft or a formation, will be called a track. Since craft may break away
from a formation, any single track can lead to multiple tracks. Shown in Fig-
ure 1 is a flight of three craft. Originally, their tight formation results in a single
track. But as the flight progresses, one of the craft breaks away to the right,
and then we have two tracks. The RTP problem then consists of assigning a
radar return to one of the existing tracks or allowing it to initiate a new track.
This problem is not new and has been solved with varying degrees of success
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SET OF HITS

Figure 1. Shown here are radar returns from a flight of three craft. The circles represent
the returned echos. Initially, the three craft are in a tight formation and form a single
track. But subsequently, one of the craft breaks away to the right, the result being two
tracks.

and implemented in numerous systems. In fact, a blackboard solution of the
RTP may already exist, although it is probably proprietary. In fact, there is
indication®!"'6 that TRICERO has a radar tracker embedded in it.

On the basis of the criteria advanced by Nii,! it can be rationalizd that the
RTP problem is well suited to the blackboard approach. We will now provide this
rationalization in the following paragraph; the blackboard-suitability criteria, as
advanced by Nii, will be expressed as italicized phrases.

The radar returns vary widely in quality. Returns may have high signal-to-
noise ratio (SNR) in uncluttered backgrounds but may also be noisy, cluttered,
and weak. Obviously you design for the worst case that includes noisy and
unreliable data. While it is true that tracks can legitimately cross, merge, and
split, noise and clutter can also induce these as anomalies in the actual tracks,
in addition to, of course, causing the tracks to fade (Fig. 2). Track formation in
a noisy environment requires not only significant signal processing but, in
general, also requires forward and backward reasoning at a symbolic level.
For example, backward reasoning can verify a track by a hypothesize-and-test
scheme that may invoke procedures requiring higher spatial resolution and
longer signal integration times for hypothesis verification. In other words, under
noisy conditions we may use coarse resolution and forward reasoning to form
track hypotheses, and then invoke backward reasoning to verify strongly held
hypotheses. So, there is a need to use multiple reasoning methods; combined
forward and backward reasoning steps can be easily embedded in a goal-driven
blackboard. In addition to multiple reasoning methods, the system must also
reason simultaneously along multiple lines. For example, when track splits
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Figure2. While it is true that tracks can legitimately cross, merge, and split, low signal-
to-noise ratios can also induce these as anomalies in the actual tracks. Note noise can
also cause the tracks to fade.

occur, it may be desirable to watch and maintain several alternative track
solutions before modifying the track information. Multiple lines of reasoning,
as can be easily incorporated in a blackboard system, can play a natural role in
searching for the optimal solution under these conditions. Itis generally believed
these days that tracking systems of the future will be equipped with multisensor
capability. Therefore future target tracking systems will have to allow fusion of
information from diverse sensors, not to speak of the intelligence information
that will also have to be integrated. With these additional inputs, the solution
space quickly becomes large and complex, necessitating modularized computa-
tional structures, like blackboards, that are capable of handling a variety of
input data.

In addition to using the above rationalization for justifying a blackboard-
based solution to the RTP problem, one must also bear in mind the fact that the
use of blackboards can simplify software development. The blackboard system
solves a problem subject to the constraint that the processes, as represented by
KSs, are independent enough so that they interact only through the blackboard
database. This independence among processes has the advantage of allowing for
independent development. There is, however, a price to be paid for maximally
separating the KSs with respect to the BB database—overhead. For example,
if there is no shared memory, the cost of data transfer between the BB and KSs
can be very high in terms of real time, not to mention software design time.
While for research and development this may be a small price to pay, in real-
time environments this may not be acceptable. Also, the opportunistic control
made possible by a blackboard architecture may be ideal from a conceptual
viewpoint and may increase solution convergence, but, because opportunistic
control is difficult to model mathematically, it can lead to unpredictable behavior
by a BB under circumstances not taken into account during the test phase of
the system. Yet, in spite of these drawbacks, it is probably inevitable that BB
systems will work their way into system designs of the future.
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Figure 3. Architecture of radar tracking blackboard (RTBB).

Our radar tracking blackboard (RTBB), the subject of this tutorial exposi-
tion, is constructed in CLOS (Common Lisp Object System)!-! with KSs
written either in Common L1sP?2 or in c. The overall organization of RTBB
is shown in Figure 3. The database part of RTBB consists of two panels, the
data panel and the goal panel, each containing three abstraction levels. Time-
stamped radar returns reside in the form of beam nodes at the lowest level of
abstraction in the data panel, the hit level. Spatially adjacent returns are grouped
together into segments and reside as segment nodes at the next level of data
abstraction. Finally, segments are grouped into track-level nodes at the highest
level of abstraction in the data panel. A track-level data-panel node is capable
of representing a formation of craft; multiple formations will require multiple
track-level nodes. The data abstraction hierarchy is shown in greater detail in
Figure 4. On the goal side in Figure 3, goal nodes at the hit level are simply
requests to generate time-stamped radar returns. Goals at the segment level
are more varied: there can be goal nodes that are requests to assign incoming
radar returns to already existing segments, goals to deal with the problem of
fading in radar returns, and so forth. Goals at the track level are also varied:
goal nodes may request that new segments be merged with existing tracks or
be allowed to form new tracks, or goal nodes may spawn subgoals to verify
that the currently held segments in a track indeed belong to the track if the
track is deemed to be a threat. The ability to decompose a goal into subgoals
is a special benefit of a goal-driven BB. A rule-based planner maps the goals
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Figure 4. Shown here is the data abstraction hierarchy in greater detail. Hits that are
spatially adjacent are grouped into segments. And segments that are approximately co-
directional and spatially adjacent are grouped into tracks.

into either subgoals or knowledge source activation records (KSARs). A KSAR
is simply a record of the fact that a goal node is ready with the appropriate
data for firing a KS. RTBB enqueues all the KSARs and the scheduler then
cycles through the queues and selects the KSs to fire. The main BB process
runs in LISP, and the KSs are either children of the main BB process or are
threaded into the BB process itself. The database, BB monitor, and the sched-
uler are all part of the main BB process. All the processes run under the UNIX®
operating system. Each level and each node on the BB is an instantiation of
some object class. These class instantiations are method-bearing data structures
that are part of CLOS. The methods associated with BB nodes act as local
monitors, collectively forming a distributed BB monitor, or as scribes for the
KSs in updating the BB information, or even as information agents for the rule-
based planner. After-methods written for the data nodes trigger after a node is
altered and report the changes to the goal BB. This implementation of the
monitor using CLOS is one of the more interesting aspects of RTBB.

In the rest of this tutorial, we will start in Sec. IT with a brief introduction
to CLOS. As we mentioned in the Abstract, the different approaches to object-
oriented programming share considerable similarities, and therefore even a
reader who does not use CLOS should find this tutorial useful; such a reader
may want to browse through Sec. II if only to become familiar with some of the
main data structures used for RTBB. In Sec. III, we describe the different
abstraction levels used in RTBB. Section IV briefly discusses the different KSs
used. Control flow and scheduling are presented in Sec. V. Finally, Sec. VI
contains the conclusions. We have also included an Appendix, where we have
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discussed four examples of increasing complexity. After a first pass through the
main body of this article, we believe the reader would find it very helpful to go
through the examples in the Appendix for a fuller comprehension of the various
aspects of the blackboard. For those wishing to see the source code, it is
included in the technical report cited in Ref. 23.

II. THE REPRESENTATION PROBLEM—CLOS

The representation problem is central to problem solving in general and the
implementation of a chosen representation requires suitable data structures. In
RTBB, to represent the nodes at the different levels of the blackboard, we first
define a generic node called node. The objects obtained by instantiating a node
will be the simplest possible and probably not very useful data entities. The
more useful object classes that would represent the nodes on the three levels
of the right-hand side of the blackboard shown in Figure 3 are then defined as
subclasses of the generic object class node, as shown in Figure 5. The subclass
corresponding to the beam-level nodes is called bnode, the one corresponding
to the segment-level nodes snode, and the one corresponding to the track-level
nodes fnode. With this hierarchical organization, those properties of all the
nodes that are common to all three levels can now be assigned to the generic
node node and those properties that are unique to each of the three classes
individually can be so declared. To see how this can be done in CLOS, we
now show how the generic class node is created by the defclass macro.

(defclass node ()

(level :initarg :level :accessor level)
(event~time :initarg :event-time :accessor event-time)

(:documentation "The node is superclass of all data data classes")

)

Figure 5. Organization of the node classes. The data abstractions used in RTBB are
subclasses of the generic class node.
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This generic class has only two slots, level and event-time. For data nodes, the
value of the level slot designates the level at which the nodes reside. The slot
event-time is the clock time, in the sense that will be defined in Sec. IV. For
each of the slots, the symbols :initarg and :accessor are called the slot options.
The option declaration :iritarg :level allows the slot level to be initialized with
a value at the moment an instance of the class node is created and for the symbol
:level to be used as the key word. The option declaration :accessor level makes
it possible to read the value of this slot by the generic function (level node-
instance) and to change the value by the function call (setf (level node-instance)
new-value). The slot options for the slot event-time are treated in a similar
manner.
The sublcass trnode is now defined in the following manner:

;; The class tnode is for track level data nodes. This class corresponds
;: to the highest data abstraction on RTBB.

(defclass tnode (node)

(checklyst :initarg :checklyst :initform nil :accessor checklyst)
(check :initarg :check :initform nil :accessor check)
(cpa-bracket :initarg :cpa-bracket :accessor cpa-bracket)

(threat :initarg :threat :initform nil :accessor threat)

(snode :initarg :snode :initform nil :accessor snode)
(last-velocity :initaxg :last-velocity :accessor last-velocity)
(last-coord :initarg :last-coord :accessor last-coord)

)

(:documentation "The tnode class is for track level data nodes")

The argument node in the first line of this defclass macro asserts that the tnode
class has node as its superclass, in accordance with Figure 5. Because the class
node is a superclass of the class tnode, the latter inherits all the slots of the
former, together with the read and write accessor functions, if any. We will
explain in the next section the semantics of the seven local slots defined explic-
itly for the class tnode. What we wish to point out here is the new slot option
sinitform that appears in four of the local slots. This option permits us to give
a default initial value to a slot, these being all nil for the four slots carrying
this option. Without the :initform option and an associated default value, the
value of a slot is left unbound at the time an instance of a class is created,
unless the :initarg option allows a value to be assigned at that time. If the value
of a slot for an object instance is unbounded, and if an attempt is made to read
the values of such slots, CLLOS will signal an error.

An instance of a node at any level of the blackboard may be created by
using the generic function make-instance in the following manner:

(setqg trackl (make-instance 'tnode :event-time 2222 :threat ‘true))
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which would bind an instance of class tnode to the symbol trackl. For this
instance, the value of the slot event-time would be set to 2222 and the value of
the threat slot to true. Note that this initialization of these two slot values would
not have been possible if we had not used the :initarg option for the slots event-
time-and threat.

Besides the notion of object classes that can inherit characteristics from
other classes, the other most significant notion in object-oriented programming
deals with endowing objects with behaviors by the use of methods. Since
methods, defined for specific classes, can also be inherited, CLOS provides
what are called generic functions for controlling the flow of inheritance of
methods. Before explaining more precisely the purpose of generic functions,
we would like to mention the following important facts: (1) a primary method
defined for a class will be inherited by all its subclasses; (2) an inherited primary
method from a superclass may be adapted to better serve the needs of a class
by defining an after-method; and (3) a before-method may be used to carry out
setup work for a primary method. Methods are invoked for execution by calls
to a generic function. By matching the parameter list in the generic function
called with the parameter lists of all the methods, CLOS collects together
all the applicable before-, primary, and after-methods and sequences them
appropriately for execution; this is done by what is called a generic dispatch
procedure. When a sequence of before-, primary, and after-methods is executed
in response to a generic function call, the value returned by the generic function
is the same as the value returned by the primary method; the before- and after-
methods can only produce side effects. In the event there are multiple primary
methods available for a given class owing to the existence of multiple super-
classes, the generic dispatch procedure invokes rules of precedence that select
that procedure which corresponds to the most specific superclass.

Since an after-method may be invoked automatically after initializing or
altering critical slots in a node, it is possible to have such specialized methods
report the changes to a queue or another portion of the BB. In an event-driven
BB the changes are reported to an event queue and in a goal-driven BB the
changes are reported to either a buffer in a centralized monitor or directly to
the goal side of the BB. Since RTBB is a goal-driven blackboard, any changes
in the data are reported directly to the goal panel of the BB by after-methods
associated with classes defining the data objects. One can think of these after-
methods as constituting a distributed monitor. The methods may also be visual-
ized as being part of the KSs or as a shared utility of these KSs for reporting
changes in the data. The reader should note, however, that there do exist
alternatives for designing monitors. For example, polling techniques along with
change bits or variables in the class instantiations could be used to create a
centralized monitor. As another alternative, KSs themselves could report all
the changes to a centralized monitor since KSs are the only entities allowed
to alter the blackboard.

The following definethod is an example of an after-method that places a
node in the goal panel after-the event-time slot has been given a value by a
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primary method.* In the definition of the after-method, the role of the method
is declared by the qualifier keyword :after. The primary method to which the
defined method is an after-method appears immediately before the keyword
:after; in this case the primary method is (setf event-time), which is the generic
writer function for altering the value of the slot event-rime. Note in particular
the lambda listt of this after-method: (new-slot-value (ele tnode)). When this
after-method is invoked for execution, the first parameter, new-slot-value, is
instantiated to the new value of the slot eveni-time. (Recall, it is the change in
the value of this slot to whatever will be instantiated to new-slot-value that
causes this after-method to be invoked in the first place.) The second parameter
in the lambda list is the symbol ele, short for element, which has a specialization
constraint placed on it. This specialization constraint, implied by the form (ele
tnode), says that the parameter ele can only be bound to an object of class
tnode. In other words, the after-method is only defined for track-level nodes on
the blackboard. As is evident from its definition, this after-method first makes
an instance of the class bbgoal and then deposits this goal instance at the track
level (how precisely that is done will be explained later). With regard to the
values given to the slots when an instance of bbgoal is created, the event-time
slot takes on the value bound to the symbol new-slot-value that is the updated
value of the slot event-time in the tnode object bound to the symbol ele. The
slot source is set to the name of the tnode object that invoked the method. The
slot purpose is set to 'change to reflect that the goal was caused by changing
the event-time value, in contrast with, for example, a goal node that might be
created by subgoaling. The slot initiating-data-level takes the value ’track since
the formation of the goal node was caused by a change in a data node at the
track level. The slot threat inherits its value from the tnode that caused the
method to be invoked. The value of the slot snode is a list of pointers to the

*The reader who is already somewhat familiar with RTBB may be puzzled by this
defmethod since it creates a track-level goal node from a change in the track level on the
data panel. Usually, a track-level goal node will be created by the addition of a segment
on the data panel, the purpose of the goal being to either merge the segment with one of
the existing tracks or to start a new track with the segment. However, RTBB also needs
facilities for creating track-level goals directly from changes in the tracks because of the
need for verification and possible subgoaling if the track is a threat, meaning if the
average velocity vector representing a track is aimed directly at the origin of the coordi-
nate system. The verification consists of making sure that all the segments are similar in
the polynomial sense discussed in Sec. IV. When a track fails verification, subgoals must
be created that check each segment against the average properties of the track, and if a
segment is found to be too different, it must be released from the track and allowed to
participate in or initiate a new track. The defmethod shown here could lead to the
formation of KSARs that could produce these subgoals.

TA lambda list is a list that specifies the names of the parameters of a function,
sometimes loosely called the arguments of a function. Strictly speaking, the arguments
are what you provide a function when you call it; you name the parameters of a function
when you define it.!8
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snodes that support this track node. Finally, the slot duration is set to ’one-
shot; this causes only one attempt to be made for this goal node to be satisfied.
The reader should note that in the syntax of a defmethod, function calls such
as (snode ele) are accessor functions, in this case a reader function that retrieves
the value of the slot snode from the object bound to the symbol ele.

i

7; This after-method automatically generates a goal node at the track
7: level whenever there is change in the value of the slot event-time
77 of a track-level data node (such goals are needed for the initiation
;s of the threat verification process).

b

(defmethod (setf event-time) :after (new-slot—value (ele tnode))

(sendpushgoal

(make-instance ’bbgoal
i source ele
ipurpose : ‘change
:initiating-data-level ‘track
revent—-time new-slot-value
tthreat (threat ele)
:snode (snode ele)
:duration ' one-shot)

tracks)

The sendpushgoal macro used above is a procedure that pushes an instance of
the class bbgoal onto the track level of the goal panel. In other words, this
macro creates a new track-level goal node. The macro is defined in the following
manner:

ii
;; This macro pushes a goal object into the goal panel at the track level.
;; Note that left refers to the left side of the BB, the goal panel.

(defmacro sendpushgoal (object level)
‘(setf (left ,level)
(push ,object (left ,level) )))

So the set of goals on the track level of the goal BB is just a stack of these class
instances. As mentioned before, this after-method is invoked after a change has
been made to the event-time slot of a track node on the data panel. This occurs
whenever a track node is updated. The message that triggers this change will
look something like (setf (event-time tnode__object) new-event-time)).

When only one or two methods are associated with each node type, itis a
simple matter to write one method for each slot. However, as the number of
slots associated with each node class on the blackboard increases, this becomes
cumbersome. Seth Hutchinson suggested using a macro to generate these auto-
matically and actually wrote a macro that did this using flavors.? The following
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. version is a modified version of that macro designed for a goal driven BB using
CLOS.

1 (defmacro newclass

2 (class goal-level slot-list monitor-list super-list &rest options)

3 (cons ‘progn ;; progn runs the sequence of programs created by macro

4 (cons ;; cons command program into the gigantic lisp program

5 *(defclass ;; first construct the defclass

6 ,class ;: class name in the defclass macro

7 , super-list ;7 the list of inherited classes or mixing classes

8 , (do* ;; do loop to construct all the accessors and initforms

9 (
10 (wlyst slot~list (cdr wlyst)) ;; cdr down the slot-list

11 (op (car wlyst) (car wlyst)) ;7 op is the next slot to be done
12 (mylyst nil) ;; mylyst is list of slot options
13 )

14 {(null wlyst) (return mylyst}) ;¢ return the slot-specifier list
15 (setq mylyst ;7 construct each slot-option list
16 (cons ;; make defining list for slot

17 *(,op :initarg , (keywordize op);; put "op" in keyword package

18 tinitform nil ;; default value for slot is nil
19 iaccessor ,op) ;; for read-write functions

20 mylyst))) ;7 stuff this in the slot options
21 . Qoptions) for options like documentation
22 (do* ;; generate one after-method for each slot named in monitor list
23

24 (worklyst monitor-list (cdr worklyst)) ;; cdr down monitor list

25 (op (car worklyst) (car worklyst)) ;; choose next candidate

26 (mlyst nil) ;: construct list of methods

27 ) ;; return method list

28 ({null worklyst) (return mlyst)) ;i when monitor-list is empty
29 (setqg mlyst ;; construct list of defmethods
30 (cons *(defmethod ;; cons defmethod into list

31 (setf ,op) :after ;; make an after-method writer
32 (new-slot-value (ele ,class)) ;; construct lambda list

33 (sendpushgoal ;; make body of after method

34 (make-instance ’'bbgoal

35 :source ele

36 ipurpose ‘change

37 :initiating-data-level (level ele)

38 :coord (coord ele)

39 :number (number ele)

40 ievent-time (event~time ele)
41 sduration ‘one-shot

42 )

43 sgoal-level)) ;; specify level to push goal on
44 mlyst) ;; put methods into list

45 1))

In this macro, a class instance is created of type class with slots whose names
are supplied in the list slos-list. When this macro is invoked, the parameter
super-list is bound to the list of superclasses of class. The first do loop, in lines
8 through 20, repeatedly executes the code in lines 17 through 19 and generates
slots of form (slot-name :initarg :slotname :initform nil :accessor slotname) for
each slot name in the list bound to the parameter slot-list. Subsequent execution
of the defclass in line 5 then creates the appropriate class. The do loop in lines
22 through 43 creates an after-method of the type shown previously for each
slot name in the list bound to the parameter monitor-list. Therefore, whenever
the value of each slot named in monitor-list is updated, a goal node is automati-
cally created and deposited at the datalevel of the blackboard. The reader
might note in particular that the newclass macro uses the macro keywordize, a
procedure used to intern the name bound to the symbol op into the keyword
package. Here is an example of how newclass is called:
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;i .
;; The class snode is used to form segment level data node.
i:

(newclass snode tracks (

coord ; note this is a coordinate list

number ; number of points the the segment

cpa ; closet point of approach a vector

linear ; (position velocity)

tnode ; ptr to a track node

threat ; true or false -- updated by tnode
)

(number) (node)

)

This call to newclass will create the subclass snode for segment-level data nodes
on the blackboard (see Fig. 3) and will do so in such a manner that an after-
method will be automatically generated for the slot number. This after-method
will automatically deposit a goal node at the track level any time the value of
the slot number for an snode is changed. The call to newclass recognizes the
fact that, in accordance with Figure 5, the class snode is a subclass of the
superclass node. If we did not use the macro newclass, we would have to
separately define the class snode by using defclass and then add explicitly the
following after-method:

(defmethod (setf number) :after (new-slot-value (ele snode))

(sendpushgoal

(make-instance ’bbgoal
: source ele
:purpose ‘ change
:initiating-data-level ’segment
:coord (coord ele)
:number (number ele)
tevent-time (event-time ele)
:duration ' one-shot)

tracks)

The newclass macro is an illustration of the power of macros and the ease with
which one can create an impressive array of methods automatically in a BB
shell.

So far in this section we have talked about object classes for representing
the nodes at the different levels of the blackboard and about the methods
associated with these object classes. We will now focus on the representation
of the levels themselves. Each level of the blackboard is itself an instance of
the following class:

s

(defclass bblevel ()
(

(up :initarg :up :accessor up)

(left :initarg :left :accessor left)

(right :initarg :right :accessor right)

(down :initarg :down :accessor down)

)
(:documentation " The bblevel class is used for constructing the bb levels.")
)
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The values for the slots, up and down, determine the level on the blackboard.
For example, the segment level in Figure 3 would be created by making an
instance of the above class by setting up to tracks, and down to hits. At each
level, all the data nodes are stored in a list that is the value of the slot right,
and all the goal nodes in a list that is the value of the slot left. This corresponds
to the left, right organization of the blackboard shown in Figure 3. For illustra-
tion, the following code fragment creates the segment level of the blackboard:

(setq segments
(make-instance ‘bblevel :up tracks :down hits :left nil :right nil))

The fact that we can store all the data nodes at each level in a single list that is
the value of the right slot for that level proves very convenient if one is trying
to apply the same function to all the nodes at that level. For example, if we
want to apply the same function to all the data nodes at the segment level, we
can simply mapcar the function to the list of nodes retrieved via the (right
segments) generic reader call.

When slot values are allowed to be lists in the manner explained above,
such lists may be used either as queues or stacks for the purpose of deciding
which objects should be processed first. Here, we use the word queue in a
generic sense and associate with it three components: its arrival process, its
queueing discipline, and its service mechanism. The arrival process is character-
ized by an interarrival time distribution for items stored in the queue. The
service mechanism is composed of servers and the service time distribution;
note there can be multiple servers (e.g., processors) catering to a queue. The
queueing discipline describes how an item is to be selected from those in the
queue. Items arriving at a queue may be enqueued (stored) until serviced, or
the items may be blocked (discarded) if no server is free at that time. This makes
it possible for us to use the generic term queue to mean any queueing system,
such as a LIFO queue (stack), a FIFO queue, or some prioritized queue. For
an extensive discussion on queueing concepts, the reader is referred to Ref. 25.

III. REPRESENTATION OF THE ABSTRACTION LEVELS

As shown in Figure 3, the RTBB consists of two panels, each containing
three abstraction levels. The lowest abstraction level in the data panel consists
of bnodes for beam nodes, also called hit nodes.* The bnode class is defined
as follows:

*For this blackboard, hit nodes and beam nodes are treated the same. In practice,
a beam of information is more primitive than a hit since the latter is a time-integrated
sequence of beams.
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(defclass bnode (node)

(coord :initarg :coord :accessor coord)
(number :initarg :number :accessor number)

(:documentation "The beam node is the lowest data abstraction level on the bb.")

where coord is a list of coordinates (x, y, z) of a time-stamped radar return,
which consist of a set of echoes received during a single scan of the entire search
space. The time stamp of such a set of echoes becomes the value of the event-
time slot inherited from the superclass node. The slot number contains the
actual number of distinct returns in the set of echoes. Another slot inherited
from the superclass is level, whose value is set to kit for nodes of brode class.
Such nodes are generated every nth clock cycle, where at present 7 is set to 8.

We will now show an after-method, defined for the object class brode, that
creates a goal every time a new set of hits is received; in other words a goal
node is created for each new beam node. In comparison with the after-methods
shown in the preceding section, the one shown below first does some computa-
tion before creating the goal node. The goal represented by the goal node seeks
to assign the new hits in the beam node to the existing segments, if possible, or
to create new segments. The computation that is carried out before the creation
of the goal node determines the number of hits in the bnode. Here is the after-
method:

AR R R RN RN RN NSRS NSNS

;; This after-method first updates a slot of bnode and
;i then creates a segment level goal node.

s7

1 (defmethod initialize-instance :after ((ele bnode) skey)

2 (with-accessors ((num number) (crd coord) (evt event-time)) ele
3 (setf num (length crd))

4 (sendpushgoal

S (make-instance "bbgoal

6 1 source ele

7 ipurpose ’ change

8 :initiating~-data-level ‘hit

9 1coord crd

10 :number num

11 tevent-time evt

12 :duration ‘ one~shot
13 )
14 segments) ;; the level on which the goal node will be deposited
15 3

This after-method also demonstrates the use of the with-accessors macro in
CLOS. From a logical standpoint, it is convenient to think of the with-accessors
macro as creating a ‘‘handle’’ into each of the slots named for the object bound,
in the case above, to the symbol ele in line 2. The slots named in line 2 are
number, coord, and event-time, and we may think of the symbols num, crd, and
evt as handles into these three slots, respectively. Each handle may be used for
either reading the value of a slot or for writing a new value into it. For example,
the form (crd coord) will bind the value of the slot coord to the symbol crd.
Note that the call (setf num (length crd)) will first calculate the length of the
list bound to crd and will subsequently write an updated value into the slot
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number of the object bound to ele. The reader should have already noted that
the method defined above is an after-method to the initialize-instance method,
which is native to CLOS. The behavior of this method should become obvious
from the fact that the make-instance method has to call initialize-instance in
order to create an instance from a class. Therefore the after-method defined
above will be invoked every time an instance of class bnode is created by a
call of the form (make-instance 'brode :coord coord) where the argument coord
is the list of hits with the same time stamp. As the reader can tell from line 5,
the goal node created is an instance of class bbgoal introduced in the preceding
section.

The alteration of the slot number in a bnode by the above after-method
may seem at variance with the usual viewpoint that, in an ideal conceptualization
of a BB architecture, only KSs should be allowed to alter information in the BB
database. Actually, what has been accomplished with the above method is not
at a great variance from the ideal because that aspect of the definethod which
updated the value of number could have been incorporated in the KS that
created the bnode in the first place. One can view this data refinement aspect
of methods either as constituting extensions of the KSs or making the KSs more
distributed. One advantage of such methods is that they simplify the coding of
interfaces between the BB process and the KSs. The goal node slots in the
after method will be defined when we discuss goal nodes in greater detail.

The next level of abstraction on the data panel is the snode, which stands
for segment nodes. Segments are defined for convenience and represent a small
number of hits (a fixed number chosen by the designer) that can be adequately
modeled as linear segments. By fitting linear segments to the returns, we reduce
the sensitivity of the system to noise spikes. Segments that are approximately
collinear are grouped together to form tracks (more on tracks later). A track
will not be started unless a segment is longer than a certain minimum number
of points, usually two. In addition, if the most recent hit in a segment is older
than 10 time units, it is automatically purged from the BB database. If a track
consists of only one segment and that segment is purged due to the time recency
requirement, the track would also be purged. The definition of the segment node
class using the newclass macro was presented in the preceding section; we
repeat the definition here for convenience:

77

;7 This class is for segment level nodes.

(newclass snode tracks (

coord ; list of time-sequenced hits
number ; number of points in the segment
cpa ; closet point of approach

linear ; the pair (position velocity)

tnode ; ptr to the track node

threat ; true or false -~ updated by tnode
)

(number) (node)
)

When a segment object is created from this class, the slot coord contains a list
of the coordinates of the hits that constitute that particular segment. Note in
particular that whereas the similarly named slot for bnodes contains a list of
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hits for the same time stamp, the slot here has a time-sequenced list of hits
constituting a geometrical segment in space. In other words, the coordinates in
the slot coord are grouped on the basis of spatial continuity, as opposed to the
temporal continuity used in bnodes. The value of the slot event-time, inherited
from the superclass node, is the list of event-times corresponding to the hits in
the slot coord. In order to clarify the access discipline used for processing the
lists in the slots coord and event-time, both lists are treated as stacks. The value
of the slot ¢pa is the closest point of approach if the segment were to be extended
all the way to the radar site, assumed to be located at the origin of the (x, y, z)
space. The value for the slot cpa is calculated by an after-method using the
position and velocity information contained in the slot linear, the reference here
being to the position and velocity of the target computed from the two most
recent hits in the segment. More specifically, the value of the slot ¢pa is the
perpendicular distance from the origin to a straight line that is an extension of
the two most recent hits in the segment. The slot threat is set to true if the value
of cpa falls within a small region around the origin; otherwise it is false. The
extent of this region is e times the last-coord (a slot for track level nodes to be
discussed later), the comparison threshold being dependent on the distance
since greater directional uncertainty goes with more distant craft (this point will
be explained further in the discussion on the GETTRACK KS). While the
computation of the value for cpa occurs when a segment node is first created,
determination of whether threat is true or false does not occur until a track-
level node is updated with the segment.

The highest data abstraction consists of track nodes. As mentioned before,
a track node is a grouping of approximately collinear segments. Two segments
belong to the same track if the following two conditions are satisfied: First, we
must have cos~18 > 0.9, where 4 is the angle between the velocity vectors for
the two segments, the velocity vectors being contained in the slot linear for the
segment nodes; and, second, the faster of the two craft must be able to reach
the other in one unit time. The second condition is made necessary by the fact
we do not wish to group together segments for aircraft flying parallel trajectories
that are widely separated. In general, there will only be a single track node for
a single formation of aircraft, no matter how large the formation. Of course, if
a formation splits into two or more formations, the original track would split
into correspondingly as many tracks. The track nodes are defined as follows:

;; This is the class for track level nodes.

(defclass tnode (node)

{

(last-coord :initarg :last-coord :accessor last-coord)
(last-velocity :initarg :last-velocity :accessor last-velocity)
(threat :initarg :threat :initform nil :accessor threat)

(snode :initarg :snode :initform nil :accessor snode)
(cpa-bracket :initarg :cpa-bracket :accessor cpa-bracket)

(check :initarg :check :initform nil :accessor check)

(checklyst :initarg :checklyst :initform nil :accessor checklyst)
)

(:documentation "The tnode class represents objects at the track level.")
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.....................................................................
;

....................................................................

(defclass bbgoal (goal-attributes-mixin goal) ;; mixing superclass

(coord :initarg :cooxrd :accessor coord)

(number :initarg :number :accessor number)

{threat :initarg :threat :initform nil :accessor threat)
(snode :initarg :snode :initform nil :accessor snode)
(ksarptr :initarg :ksarptr :accessor ksarptr)

(:documentation "This is a subclass of the generic class goal. ")
)

As implied by the definition, the class bbgoal derives its behavior partly from
the superclass goal and partly from the mixin class goal-attribute-mixin. We
have already explained the semantics of the slots of the class goal. About the
slots inherited from the mixin class, the slot source points to the node on the
data panel that resulted in a particular goal node. For example, the creation of
a bnode is followed immediately by the creation of a segment-level goal node
whose purpose is to use the hits in the bnode for either extending the existing
segments or starting new segments. In this case, the value of the source slot in
the goal node will be the identity of the bnode that instigated the formation of
the goal node. For another example, if a track-level datum is considered to be
a threat, before the threat is accepted the tnode is tested for spatial grouping by
applying some tests to each of the segments that constitute the tnode. The
testing of each segment is carried out by forming a separate subgoal for that
segment. For such subgoals, the value of the slot source is set to the identity of
the tnode that failed the grouping test.

The inherited slot duration has a very important role to play in the control
of the blackboard, a fact that will become more obvious in Sec. V. The slot
duration refers to the length of time the goal is allowed to stay on the blackboard.
For example, a one-shot duration means there is only one opportunity for the
planner to test a node against the rules to see if it matches any of the antecedents;
if the match fails, the goal node is discarded. Most goal nodes are of one-shot
type; for example, the goal to update a tnode with new segments is of one-shot
type. Only one KSAR for this goal node, which contains a pointer to the
segment that should be used for updating, will ever be formed by the rule-based
planner. The goal node is purged as soon as the KSAR is formed. Therefore, if
this KSAR fails to satisfy the goal node, the goal node will not be there to
reattempt updating of the tnode with the same segment.

In addition to the one-shot type, RTBB also contains a recurrent goal node.
A recurrent goal node is disabled after it satisfies the antecedent of specific
rules, and then is reenabled after a KS is fired from the subsequently generated
KSAR. Recurrent goal nodes are never removed from the blackboard. The job
of the recurrent goal node that is curently in RTBB is to first locate old segments
(these are segments whose most recent returns are between 3 and 10 time units
old) and to attempt to join these segments with more recent segments. Sup-
pose the database at the segment level contains an snode composed of the hits
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(hly, . . ., hl,), and let us say the time stamp of hl,is 7, of h1, 8, and so on.
Also, assume that there exists another snode made up of hits (h2,, h2,, h2,)
where the time stamp of 425 is 3. Then the job of the recurrent goal node will
be to merge the two segments because the time stamp of 42, is so close to that
of h1,. The actual merging, carried out by the MERGE-SEGMENTS KS, will
only take place if the extension of the 42 segment to the time instant correspond-
ing to the beginning of the 41 segment is within an acceptable circle.

About the slots that are defined locally for the class bbgoal, the value of
the slot ksarptr is set to nil for one-shot goals; for the recurrent goal, it is set to
the internal identity of the KSAR that is generated by the goal node. While the
ksarptr slot maintains this value, the recurrent goal node is inhibited from
launching another KSAR. (The instantiation of ksarptr is reset to nil by the
termination of the execution of the MERGE-SEGMENT KS.) For a goal node
at the segment level, the value of the slot coord is set to the list of coordinates
of the hits that have to be assigned to segments. When a track-level goal node
is launched by a tnode, then coord is left uninstantiated. For segment-level goal
nodes, number is set to the number of hits in the radar return that are yet to be
assigned; for track-level goal nodes, it is left uninstantiated. The instantiation
for threat takes place by mechanisms explained earlier; basically this variable
is set to ¢ or nil or the list of pointers corresponding to the snodes that compose
the track.

The goal nodes at all three levels are created by making instances of the
bbgoal class. Note the important distinction between the data and the goal
panels: While on the data side we have a separate class for each abstraction
level, on the goal side a single class is used, the reason being that the goal nodes
at all the levels form together a database for the rule-based planner and therefore
their similarity is a convenience.

Given that the reader is now familiar with the organization of RTBB, the
overall method for solution formation is restated, hopefully in a more precise
manner. All the radar returns or hits generated on a scan of the search space
are given the same time stamp. The list of hits occurring in one scan is contained
in a class instance on the hit level of the data panel shown in Figure 3. Arrival
of a new list of hits triggers the distributed monitor to place a goal node on the
segment level of the goal panel. This goal node represents a desire or a request
to use the new list of hits to update existing segments. If no existing segment
can be found to match a particular hit, a new segment is started with the new
hit.

The segment nodes on the data panel are supported by the hit nodes. The
segment nodes are, in turn, grouped into track nodes. To drive the segment
nodes to a higher abstraction level, that is, to push segments into tracks, one
needs to express this desire by establishing goal nodes at the track level of the
goal panel. These goals point to segment nodes, which need to either extend
existing tracks or establish new tracks. Tracks are not established from segments
unless the segments are at least two points long (actually any length threshold
may be chosen since this is a constant parameter). A track may be thought of
as a running segment that provides some buffering against spurious noise re-
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sulting in false segment starts. However, a track is more than an extended
segment; it may represent many segments so that if several craft are in tight
formation, these craft would be represented as one track, with the track being
characterized by an average position and velocity vector.

To process, say, a track-level goal for extending a track by a new segment,
a KSAR would be generated for the goal node at the track level. In this case,
the KSAR generation is accomplished by the firing of a rule in the rule-based
planner. This rule requires that the value of the initiating-data-level slot of the
goal node be segment, that the goal node have more than one data point, and
that the value of the action slot be change. If all these -antecedent conditions
are satisfied then the create-ksar function is called and a KSAR is created to
either extend a track by the segment or to use the segment for starting a new
track. The function create-ksar uses the information in the goal node to select
the correct class instantiation for the KSAR.

In general, a goal can only be satisfied by activating a KS via a KSAR. So
a goal node must activate a KS directly via an appropriate KSAR, or indirectly
through subgoals generated from the goal. The priority of the KSAR generated
by a goal node will determine its position within the KSAR queue, as further
discussed in Sec. V.

IV. KNOWLEDGE SOURCES

There are six KSs that are part of RTBB. Each KS is a specialist solving
a small portion of the problem and each concentrates on a blackboard object.
The following is a list of these KSs and a short description of their purpose.

A. Hit Generation (GETBEAM)

This KS is written in ¢ and simulates the trajectories for the various craft.
Trajectories are generated by using Bezier curves in 3-space.?® A Bezier curve
is specified by a trapezoid formed by four vectors, denoted by ry, ry, r,, and r,
in the following formula in which r(z) represents the position of a craft at
normalized time u:

r(u) = (1 — w)ry + 3u(l — wr, + 3u*(1 — wr, + u’r;,

where it is assumed that time is normalized such that 0 = u = 1 for the entire
flight of the craft. Every nth clock cycle (currently » = 8) a goal node is placed
on the hit level of the goal panei, the goal being to fire the GETBEAM KS. A
KSAR is then formed directly from this goal node by the rule-based planner.
The scheduler uses the KSAR to invoke the GETBEAM KS. For the case when
a single craft is being tracked, the KS will create a bnode composed of r(x) and
its associated time stamp and then deposit this bnode on the hit level of the data
panel. The step size of the trajectory thus generated is controlled by the step
size of u, which is stored as a constant within the ¢ program. When more than
one trajectory is desired for simulating the flight of a formation, a separate
Bezier curve must be specified by designating its 4 X 3 parameter matrix for
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each craft in the formation, and upon each call the GETBEAM KS returns the
coordinates of all the craft in the formation.,

B. Assignment (GETASSIGNMENT)

After a set of radar returns with the same time stamp is received, one of
the following actions must be taken:

(1) extend an existing segment,
(2) start a new segment,

(3) merge two existing segments,
(4) terminate an existing segment.

The GETASSIGNMENT KS handles the first two cases. Merging is done by a
separate KS and termination of atrophied segments handled directly by the rule-
based planner.

The problem of assigning hits to segments is akin to the consistent labeling
problem in which one seeks to assign a set of labels to a set of objects, each
object taking one and only one label. Although, clearly, a metric is needed to
compare hits against the segments—the metric could be a function of how far
apart a hit is from a segment spatially and temporally—assigning hits to seg-
ments is made complicated by the fact that after one such assignment has been
made, that segment is no longer available for the other hits. Our current solution
to this problem uses a branch and bound procedure (a special case of A*
search’” implemented via a best-first search algorithm; see Refs. 22 and 28 for
implementation of best-first search. Further discussion on the complexities of
the assignment problem, also called the data association problem, can be found
in Ref. 29,

C. Track Formation (GETTRACK)

This KS groups segments or linear fits by average trajectory. More pre-
cisely, the KS groups together segments that are close in both coordinate and
velocity space; such groups are then represented by ‘“‘average’ trajectories
called tracks. ““Close” in coordinate space means within one time unit of travel
for the fastest craft. That is, if the fastest aircraft turned directly toward the
other craft, the former would intersect the latter within one time unit. The
velocity vectors are “‘close’” if they are parallel or nearly so (i.e., the cosine of
the angle is greater than 0.9). Other conditions may be added to ensure that the
velocity vectors are more similar. This KS is written in Lisp and compiled,
loaded, and saved using dumplisp.

This KS also evaluates the threat of a track to the region near the origin by
using a threat-assessment algorithm. The two quantities needed for this are the
current position, given in the slot linear, and the value of the slot cpa. (Recall
that these two slots are defined for the snode class and that a tnode points to
the snodes that form a track.) The cpa, which stands for closest point of
approach, is computed by extending the velocity vector of the aircraft and then
computing the closest distance from the origin to this extended vector. An error
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vector Brr = & X (f — cpa) is formed, where ¢ = 0.1 in the current implementa-
tion. The magnitudes of the x, y, and z components of this error vector, |Err,|,
|Ert, |, and |Err,|, are then used to define an uncertainty box centered at the
cpa point. If any of the coordinate axes passes through this uncertainty box,
the craft is considered to be a threat.

D. Spline Interpolation (GETSPLINE)

If the GETTRACK KS determines that a particular track does indeed pose
a threat to the origin, a verification of the ‘‘soundness’’ of the track must
immediately be carried out, since it is possible for the average parameters
associated with a track to give rise to a threat while the actual trajectories within
the track are nonthreatening or even diverging away from the origin. The
GETSPLINE KS does this verification by fitting a spline to each of the trajector-
ies within a track and comparing the trajectories on the basis of the spline
coefficients. This KS, written in c, is based on a spline routine in Refs. 26 and
30 and obtains a polynomial expression for the track between sample points
based on the coordinates and time stamps held in the segment nodes.

Periodic verification of threatening tracks are triggered by the rule base
control which checks the last time the tnode for the track was spline checked,
and initiates a spline check every time this interval exceeds the recheck-period.

E. Merge Segments (MERGE-SEGMENTS)

This KS detects moderate-length gaps in the trajectory data and then at-
tempts to extend the older segments to the appropriate current segments, thus
creating longer and more established segments. Of course, if a segment stays
faded for a long time (in the current implementation, more than 10 clock units),
the segment is eventually removed from the BB.

MERGE-SEGMENTS KS goes into action if the time at which a segment
was last updated and the beginning time of another segment is greater than 3
clock units and less than 10. For time separations of 3 or less, the GETASSIGN-
MENT KS is capable of assigning hits to segments directly. If an older segment
is eligible for merging on the basis of this time-window criterion, the older
segment is extended in time and space and then its predicted position is matched
with the more recent segment to see if merging can be carried out successfully.

The MERGE-SEGMENTS KS is implemented within the BB process itself
since it requires extensive access to the data nodes on the BB itself. (If shared
memory were available on the BB, one could implement the KS as a separate
process.) RTBB uses a recurrent goal node, at the segment level, to monitor
and schedule the MERGE-SEGMENTS KS, implying that a goal to invoke this
KS is placed permanently at the segments level of the goal panel. This goal
node is an instance of the class bbgoal; in this instance, the slot purpose is set
to ‘merge-segments,’ the duration to ‘recurrent,’ the initiating-data-level to
’segment, and the ksarptr to nil. When segments satisfy the rule to activate the
MERGE-SEGMENTS KS, a flag pointing to the generated KSAR is established
in the goal node. As was stated in Sec. I, this flag inhibits any further activation
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of the KS until the end of the execution of the KS. Once the KS has been
activated and its execution completed, the flag is removed and the rule base can
satisfy the goal again. In this manner, the MERGE-SEGMENTS KS is run on
a continuing basis and at a low priority. Example 4 in the Appendix demonstrates
how the merge-segments KS works.

F. The Segment Verify Knowledge Source (VERIFY)

This KS is used to verify that a segment still matches a particular track
after the GETSPLINE KS has failed, indicating that the segments are no longer
consistent. Implemented as a part of the main BB process, this KS merely
examines each segment composing the current track to determine if it still
satisfies the initial formation condition. The manner in which this is done is by
subgoaling. One subgoal is generated for each segment node in the track by the
rule base, the subgoal being for the BB to verify that the segment belongs to
the track. If a segment fails the verification test, the pointer to the segment from
the track and the pointer to the track from the segment are removed. The
segments thus released can reform new tracks at a later time,

The test conditions for verifying whether a segment belongs to a track are
the same as those needed to form the tracks in the first place. During this
verification period, the GETSPLINE KS, which initially detected the improper
- grouping of segments, is suspended. This is accomplished by marking the track
node check slot as failed and having the GETSPLINE KS check that condition
before the KS can be fired.

This ends the introduction to the various KSs in the system. To put the
KSs in a perspective, the GETBEAM KS drives the blackboard with radar
return samples. The GETASSIGNMENT KS maps these samples into linear
approximations of trajectories and the GETTRACK KS further groups these
linear segments into tracks. The GETSPLINE KS checks that the final trajec-
tory grouping makes sense, especially if the average parameters associated with
it are such that the track is considered to be threatening. The VERIFY KS is
used to break out tracks that fail the GETSPLINE KS test; the segments thus
released are allowed to form tracks later. The two KSs, GETSPLINE and
VERIFY, constitute a backward type of reasoning. And lastly, the MERGE-
SEGMENTS KS attempts to maintain track continuity across fades in trajec-
tories.

V. BLACKBOARD CONTROL

Ideally, the control of the blackboard should be opportunistic in nature,
that is, choose the KS that advances the solution the most.?! However, whether
or not control can be exercised in an ‘‘optimal’’ manner depends ultimately
on the programmer, who presumably has an understanding of the application
domain. In RTBB, data events are mapped into goal nodes, which in turn are
mapped either into subgoals or KSARs. The KSARs are enqueued into a priority
queueing system, the queueing discipline determining the order in which the
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KSARs appear in their respective queues. The scheduler then cycles through
the KSAR queues and selects KS to fire.

We will now describe various possible approaches to the representation
and processing of KSAR queues. Then, at the end of this section, the current
RTBB implementation of the KSAR queueing system will be discussed. Ideally,
the KSAR priorities should be dynamically determined based on the threat a
craft presents to the command and control center presumed to be located at the
origin of the coordinate system. For dynamic prioritization, the planner must
contain rules for assessing the relative severity and immediacy of a threat.
Furthermore, the scheduling of the threatening tnodes must allow the other goal
nodes in the system to be serviced often enough so that any future threats would
not be ignored. Evidently, designing a planner and scheduler for such dynamic
prioritization is a complex task and is not addressed in RTBB. We have chosen
a simpler approach to KSAR prioritization that has the virtue of allowing for
the main BB process to activate KS computations while the main process
attends to other chores. As we will show below, our approach is an approxima-
tion to what may be thought of as a desirable approach to KSAR prioritization
in which a separate KSAR queue is used for each KS and then, as shown in
Figure 7, each KSAR queue is visited once in a cyclic fashion, perhaps using
a FIFO access discipline.

Before describing the KSAR prioritization scheme actually used in RTBB,
we would like to mention that the rule-based planner for mapping goal nodes

into KSARs is a forward chaining system. Here is an example of a rule from
the planner:

PP I il IiIiiiiiiiiiiiNiiiiiiiiiiiiiiiiiiiiiiiiiii;
i

;7 PRule 5 creates a KSAR for invoking the MERGE-SEGMENTS KS if

;; appropriate conditions are satisfied by the goal node.

IR RN R SN RN RN E NN NN

(setq rule5
’ {(rule merge-segments

(if
(and
(equal (purpose gnode) ‘merge-segments)
(null (ksarptr gnode)) ; no merge-segment ksar currently active

(setq rvarl (find-oldest-segment))
(setq rvar3 (find-most-recently-started-segment-with-length-gt-y 1))

(setqg rvar2 (abs (- (car (event-time rvarl))
(car (last (event-time rvar3))}))))
(and (> rvar2 3) (<= rvar2 10)) ; is the age within proper range
})
:: --— rule attempts to patch fades in signal ---
(then
(progn ; this creates ksar and sets ksarptr to that ksar
(setf (ksarptr gnode) (create-segment-merging-ksar gnode))

1))}

The goal node, gnode, will be an instance of class bbgoal defined earlier. This
rule states that:

IF—the purpose of the goal node is ‘‘merge-segments’’
and there are no KSARs fired from this rule
and the difference between the end time of a segment and the start time of
- another segment is between 3 and 10 time units,
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KSN

Figure 7. This figure depicts a desirable KSAR queueing system.

THEN-create a KSAR to merge the two segments.

A condition for this rule to fire is that the value of the slot ksarptr of the object
gnode must be nil. Therefore this rule is disabled by the (setf . . .) statement
in the consequent of the rule; this call to setf invokes the generic write function
and sets the value of the ksarptr slot of the gnode object to the internal identity
of the generated KSAR.

The above rule creates a KSAR by a call to create-segment-merging-ksar
function, which simply first makes an instance of the KSAR class and then
pushes this instance into the KSAR queue. This function is fairly easy and is
shown below:

(defun create-segment-merging-ksar {gnode}
(sendksarpush
(make-instance 'ksar
ipriority 1
:ksar-id ‘merging
:postboot ’ (merge-segments)
:command ‘merge-segments
:cycle clock
:context gnode

ksarq)

The following is an example of a KSAR created by a call to the above function.
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#<ksar @ #x6269fe>
is an instance of class #<clos:standard-class ksar @ #x567bce>:

prelyst <unbound>
preboot <unbound>
anslyst <unbound>
arglyst <unbound>
command merge-segments
messenger <unbound>
channel nil

nodeptr <unbound>
postboot (merge-~segments)
context #<bbgoal @ #x577cee>
cycle 72

ksar-id merging
priority 1

This KSAR is constructed by making an instance of the following class, together
with the mixin class ks-protocol-mixin whose purpose should become clear
when we discuss distributed KSARs.

;; When the conditions on the blackboard are right for firing a
;; KS, that fact is stored in a knowledge source activation
;: record (KSAR). Defined here is the class for making KSAR objects.

(defclass ksar (ks—protocol-mixin)

(priority :initarg :priority :accessor priority)

(ksar-id :initarg :ksar-id :accessor ksar-id)

(cycle :initarg :cycle :accessor cycle)

(context :initarg :context :accessor context)

(postboot :initarg :postboot :accessor postboot)

(nodeptr :initarg :nodeptr :accessor nodeptr)

(channel :initarg :channel :initform nil :accessor channel)
(messenger :initarg :messenger ;accessor messenger)

)

(:documentation " The knowledge source activations records ")

)

In the above KSAR class definition, the slot priority needs some explaining.
We said earlier that ideally a separate KSAR queue should be created for each
KS. Although this is our goal, it has not been fully achieved yet. At this time
in RTBB, we have separate KSAR queues for only the GETBEAM and the
GETASSIGNMENT KSs. The queue for the GETBEAM KS is called beam-
queue and the one for the GETASSIGNMENT KS segment-queue. For reasons
that will be explained shortly, the KSARs corresponding to the GETBEAM
and GETASSIGNMENT KSs are said to be of distributed type. All the other
KSARs will be said to be of atomic type. All the atomic KSARs are enqueued
separately; this queue is called the atomic-queue. While the beam-queue and
the segment-queue are FIFO, as they should be, it would be unreasonable to
impose the same queueing discipline on the atomic-queue. The value of the
slot priority reflects the priority that should be accorded to the KSAR shown
in the atomic-queue. The ksar-id slot is used to enqueue the goal node in the
proper KS queue.

The slot cycle is set to the clock time at which the KSAR was created. The
slot context is set to the pertinent aspects of the context at the time of KSAR
creation. The value of this slot can be as simple as just the internal identity of
the bbgoal that caused the creation of the KSAR; or, in other cases, can also
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include information such as the latest time associated with an snode, the number
of hits of which the snode is composed, and so forth. The slot nodeptr is set to
the internal identity of the goal node that gave rise to the KSAR. The other
slots in the above KSAR will be explained after we define more precisely what
we mean by a distributed KSAR.

When a KSAR of the type shown above (see #(ksar @ #x6269fe)) is
selected and its corresponding KS executes, the control resides with the KS
until such time when the execution of.the KS is over. In other words, the
main BB process simply waits for the KS to finish up before focusing on any
other activity. KSARs that hand over control to their respective KSs are defined
to be of type atomic. In RTBB, atomic KSARs have been used for most of the
KSs. One advantage of an atomic KSAR is that because it allows the KS to
wrest control away from the main BB process, it implicitly freezes the context.
In other words, since the information on the BB cannot be altered during the
execution of the KS, no intermediate incorrect information can be returned by
the KS. Clearly, if the information on the BB was allowed to change during the
execution of the KS, it is entirely possible that what is returned by the KS may
not be relevant to the new state of the BB.

One major disadvantage of an atomic KSAR is that it does not permit
exploitation of parallelism that is inherent to problem solving with blackboards.
As we mentioned in the Introduction, one main attraction of using the BB
paradigm is that the KSs, if they represent independent modules of domain
knowledge, should lend themselves to parallel invocation. Although from the
standpoint of enhancing performance, parallel execution of KSs is highly desir-
able, the reader beware, however. Parallel execution also demands that atten-
tion be paid to the elimination of interference between the KSs, in the sense
that one KS should not destroy the conditions that must exist on the BB for the
results returned by another KS to be relevant. Researchers have proposed
methods for dealing with these difficulties; the methods consist of either locking
regions of the BB database or tagging different nodes with the identities of the
KSs that need them.* There is also the opinion that one should not bother with
the overhead associated with region locking or data tagging, and should simply
let the BB resolve on its own any inconsistencies that might arise due to
interference between the KSs.

, In addition to atomic KSARs, in RTBB we also have another type of

KSARs that permits parallel invocation of two of the KSs; we call the latter
type distributed KSARs. The KSs that can be invoked via distributed KSARs
are GETBEAM and GETASSIGNMENT. An instance of a distributed KSAR
is made from the same class that is used for an atomic KSAR. A most important
characteristic of a distributed KSAR is that it allows the BB database to interact
with the KS on a polling basis.

The KS corresponding to a distributed KSAR is executed in three stages.
The first stage sends a command to the KS containing all the information needed
to execute the KS. The format is just a list that represents a function call with
all the information as arguments. The KS then just eval’s the list. The second
stage occurs when the system first polls the KS port to see if the KS is finished.
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Note that this polling cannot be accomplished by pressing into service a regular
read function, such as the Common LISP read, because such a function would
simply wait for the data to appear or do something unpredictable, but that is -
not what we want. What we wished was that we be able to poll the KS every ’
few clock cycles, check for whether or not the KS had returned the results,
then read the results if available. In the absence of any results from the KS, we
wanted the system to move on to other tasks and to return to the KS at a later
time. Hence, the use of the Common LisP function listen for implementing a
nonblocking read which takes the KS resuits and stores them in the KSAR. The i
third stage occurs when the BB takes the answer returned from the KS and
modifies the BB accordingly. Between the stages, the BB is actively working
on other parts of the problem. The result is a speedup due to the parallel
processing carried out by the system.

An example of a distributed KSAR which seeks to invoke the GETAS-
SIGNMENT KS follows.

#<ksar @ #x66dcee> is an instance of class #<clos:standard-class ksar @ #x567bce>:
prelyst { (#<snode @ #x583aa6> #<snode @ #x583ab6> #<snode @ #x583acé>)
((3 97.68385 2.682486 0.0) (2 1.47 98.4704 0.0)
(3 97.68385 2.1825 0.0)) ((4 96.8832 2.88 0.0)
(4 96.8832 3.379968 0.0)) ((96.8832 2.88 0.0)
(96.8832 3.379968 0.0)) 4)

preboot (pre—assign-hits)
anslyst nil
arglyst (" ((3 97.68385 2.682486 0.0) (2 1.47 98.4704 0.0)

(3 97.68385 2.1825 0.0)) " ((4 96.8832 2.88 0.0)
(4 96.8832 3.379968 0.0)))

command getassignment

messenger #<messenger & #x577dle>

channel 1

nodeptr #<bbgoal @ #x659796>

postboot (post-assign~hits)

context ((event-time nil) (number #<bbgoal @ #x659796>) (coord 4))
cycle 36

ksar-id segment

priority 1

This KSAR is created by making an instance of the KSAR class shown earlier.
The mixin class ks-protocol-mixin that is a part of the KSAR class definition is
presented below:

IR NN RN R RN REE Ny

i
;; This is a mixin class called ks-protocol-mixin

PRSI iSI I i i iRV IRiriRiNiiiiiiiiiviviiiis

(defclass ks-protocol-mixin ()
(

(command :initarg :command :accessor command)
(arglyst :initarg :arglyst :accessor arglyst)
(anslyst :initarg :anslyst :accessor anslyst)
(preboot :initarg :preboot :accessor preboot)
(prelyst :initarg :prelyst :accessor prelyst)

(:documentation "This is a mixing-class")

As will be evident from the following definitions of the slots, the mixin class is
only useful for a distributed KSAR. Since all KSAR instances use the mixin,
the reader might wonder why we use the mixin class ks-protocol-mixin at all;
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after all, the slots in the mixin could have been incorporated in the definition of
the KSAR class. The reader should note that even when a mixin is always used
for defining objects, its separate definition allows the definitions of objects to
be expanded incrementally as the software is being developed. Also, one can
take advantage of the fact that mixin associated methods will be invoked in a
certain order depending upon the order of appearance of mixins, etc.

We will now explain the nature of the slots in the above distributed KSAR.
We have already explained the nature of the slots from priority through nodeptr
in connection with atomic KSARs. We will now define the other slots. The slot
channel takes on a value from the set {2, 1, -1, 0}. When the value is 1 (flow
of information outward), the KSAR is in the first phase, meaning that it is ready
to send a command to the KS that would initiate the execution of the KS; the
command itself is taken off the slot command and its arguments from arglyst.
After the command is transmitted to the KS, the value of channel is set to — 1
(flow of information inward), which is a signal to the BB process that it should
start polling the KS port for new results using nonblocking read. After the
results are read off the KS port, they are deposited in the KSAR at anslyst and
at that time the value of channel is changed to 0. The value 0 (information stays
in the BB process) for channel causes the function that is at postboot, in this
case the function is post-assign-hits, to take the results out of the KSAR and
deposit them at the appropriate place in the BB database, at which time the
KSAR ceases to exist. It is obvious that channel is being used for sequencing
in the correct order the initiation, execution, and results-reporting phases of KS
operation. In the above KSAR example, the slot arglyst already has a value, so
KSAR processing can begin in phase 1. While in some cases a value for arglyst
can easily be generated at the time the KSAR is formed by the planner—this is
the case when a KSAR is formed for invoking GETBEAM since the arglyst
here is nil—in other cases, some computational effort may have to be expended
for constructing the arguments. In the latter cases, arglyst is synthesized by
adding yet another phase to the three phases we have already mentioned. This
additional stage is specified by the setting the value of channel to 2. When the
scheduler sees this value, it puts out a function call which constructs the
arguments, the function call being held in the slot preboot. In the above example,
the value of arglyst was generated by a call to the function (pre-assign-hits)
during the phase when channel was set to 2. The preboot function, in this case
pre-assign-hits, not only synthesizes arguments for the function call to the KS
but also puts together, for diagnostic purposes, a list of all the BB database
items that were used for the arguments. The database items used are stored in
the slot prelyst.

A note of explanation is in order for the exact nature of arguments under
arglyst in the above example. The function pre-assign-hits examines all the
snodes in the BB database and yanks out of each snode the most recent hit.
This list of these most recent hits is the first of the two arguments in the slot
arglyst; the time-stamp corresponding to this argument is 2 or 3. The second
argument under arglyst, corresponding to time-stamp 4, is the list of hit nodes
that must either be assigned to the segments or allowed to form new segments.
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The GETASSIGNMENT KS then tries to assign each new hit to a segment
based on the spatial and temporal closeness of the hit to the most recent entry
in the segment.

The actual activation of a KS, for both the atomic and distributed KSARs,
is carried out by sending a write command to a class which acts as an input/
output (I/0) handler for the BB. The write command is synthesized by the
following method, which is defined for the ks-protocol-mixin class.*

; This method writes to the input port of the KS, which is the
; same as one of the output ports of the BB process.

e ve ve N

(defmethod write-ks ((ele ks-protocol-mixin})
(with-accessors
({com command) (alyst arglyst) (mess messenger)) ele

(format (write-port ; get output port name from messenger object
(messenger ele) ; get messenger name from variable
) "“a~%" (cons com alyst)) ; form function call
(setf (channel ele) ~1) ; change state of ksar to read

»)

Essentially it is a complex format statement that finds the correct input port to
the KS (which is the same as an output port of the BB process), constructs the
command sequence from the slot command and arglyst in the KSAR, and sends
the command to the port. Before exiting, the method also changes the state of
the KSAR chanrnel to reflect that the command has been sent to start KS
execution and that the KSAR is now ready to poll for an answer using the
nonblocking read.

We have not yet explained the purpose of the slot messenger in the distrib-
uted KSAR example we showed previously (see #(ksar @ #x66dcee)). To
understand the function of this slot, note-that we need to associate with each
KS an I/0 handler containing information such as the identity of the input and
the output ports associated with the KS. I/0 handlers are created by making
instances of the messenger class shown below.

ii
;7 This is the class messenger. Instances of this class are the I/O
;7 handlers associated with the KS’s.

(defclass messenger ()

(write-port :initarg :write-port :accessor write-port)
(write—fd :initarg :write-fd :accessor write—fd)
(read-port :initarg :read-port :accessor read-port)
(read-fd :initarg :read-fd :accessor read-£fd)
(pid :initarg :pid :accessor pid)
)
(:documentation "The messenger class allows us to establish I/O with KS’s.")

}

*Note that this method is neither an after-method nor a before-method. The method
that is shown here is a primary method that is invoked by calling the generic function
“‘write-ks’’ with an object, which will be bound to the parameter ele and that must be
of class ks-protocol-mixin.



LisP PROGRAMMING 649

The values of the slots write-port and read-port are set to internally generated
symbolic names that designate the two ports. Since they are both set to the
same bidirectional stream, the read-port and the write-port are really the same
in Allegro Common Lisp that we have used for this project. For example, for
the GETBEAM KS, this is done using a run-shell-command as follows:
(defun openports ()
(multiple-value-setq (beam error-beam beam-id)
(run-shell-command "path" :wait nil
rinput :stream :output :stream
terror-output :stream))

)

The function call (openports) produces a bi-directional stream with

beam set to #<excl::bidirectional-terminal-stream @ #x7bb96e>
error-beam set to #<excl::input-terminal-stream @ #x7bcbbé>
and beam-id set to 18476, the UNIX process id

The instantiation of the global variable beam is then assigned to both the write-
port and the read-port slots of the messenger object. The slots write-fd, read-
fd, and pid are not being used in this version of the blackboard. The slot
messenger in the distributed KSAR shown previously is instantiated to the
identity of that instance of the messenger class that is associated with the KS
that the KSAR seeks to invoke.

We will now address the subject of how the KSARs are queued in the
current implementation of RTBB. As mentioned before, to maximize the poten-
tial for parallel implementations of the KSs the system should construct separate
KSAR queues for each KS. However, the current implementation has separate
queues for only the GETBEAM and GETASSIGNMENT KSs, called beam-
queue and segment-queue, respectively; all the other KSARs are enqueued
into a single queue called the atomic-queue (Fig. 8). Each KSAR queue is
stored in the appropriate slot of an object that is an instance of the following
bbksarg class.

ATOMIC-QUEVE

SEGMENT-QUEUE

Figure 8. This is the actual KSAR queueing system currently employed in RTBB.
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7i:

;;: This class is used for creating ksar queues. The different slots
;;; of the singular object that is made from this class are used for
;;:; storing different ksar queues.

FPISFIIiFiiFRIIII IRl RINIGiiziiiiiNiiiiiiiiid

(defclass bbksarg ()
{

{(number :initarg :number :initform ’ () :accessor number )

(mask :initarg :mask :initform (1 1 1) :accessor mask)

(atomic—queue :initarg :atomic-queue :initform ’ () :accessor atomic-queue)
(beam—queue :initarg :beam-queue :initform ’ () :accessor beam-queue )
(segment—queue :initarg :segment-queue :initform ‘() :accessor segment-queue )
(track—queue :initarg :track-queue :initform ‘() :accessor track-queue )
(spline—-queue :initarg :spline-queue :initform ’ () :accessor spline-queue )
(merge—queue :initarg :merge-queue :initform ’ () :accessor merge-queue )

(:documentation "Only one object, called ksarqg, is made from this class.")

)

The slot number is set to the total number of KSARs held in all the queues.
Note that mask represents the status of the KSARs that are currently at the
head of the queues. The list that is the value of mask has a status entry for each
of the distributed-KSAR queues, and the interpretation to be given to each
entry in the list is the same as that given to the values for the slot channel in a
distributed KSAR. In the defclass, the initial mask values have been set to 1
for the head KSARs in both the beam-queue and the segment-queue, meaning
that if any KSARs are found at the heads of the respective queues, they are
in stage 1. Recall that the channel value of 1 corresponds to the write stage in
which commands are written out to the KSs.

A single instance of the above class is made and the resulting object is
called ksarq. The slot atomic-queue of this object, initially a null list, is set to
the list of all the atomic KSARs, the slot beam-queue to the list of all the
distributed KSARs that seek to invoke the GETBEAM KS, and, finally, the
slot segment-queue to the list of all the distributed KSARs that seek to invoke
the GETASSIGNMENT KS. The track, spline, and merge queues are not used
at this time, but are included in the definition for anticipated extensions of the
system.

The RTBB scheduler cycles through the three queues. It looks at the head
KSAR in each queue and services it in a manner that depends on whether the
KSARIs in the atomic-gueue or in one of the other queues. The macro mcpoptart
is the utility used in conjunction with the mapcar function for popping the head
KSARs off each nonempty KSAR queue. Before invoking mcpoptart, a list of
the names of the nonempty queues is constructed by examining the various
slots of the object ksarq. Via the mapping function mapcar, the macro mcpoptart
is then applied to this list, the result being the head KSARs in the various
queues.

(defmacro mcpoptart (gname) ;; gname bound to the name of KSAR queue
Y (let*
({(com (fdefinition ,qname)) ;; com is reader of queue gname

(comset (fdefinition (concatenate ’list (list ’'setf ,qgname))))
;: comset is writer of the same gname
(xx (funcall com ,’'ksarqg)) ;; xx is all the KSAR’s in the queue

(y (edr xx)) ;; y is the tail of the queue
(z (car xx})) ;; 2z is the head of the gqueue

(funcall comset y ,’ksarqg) 2z })) ;; the tail remains and head is returned
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For the atomic-queue the KS is threaded into the BB process before visiting
the other queues. On the other hand, for the beam-queue and segment-queue
the KS activation is executed in stages as described earlier so that the BB does
not wait for the KS to finish executing.

The following is an example of bbksarq during execution.

#<bbksarq @ #x56c386> is an instance of class #<clos:standard-class
bbksarg @ #x56d8fe>:

merge-queue nil

spline-queue nil

track-queue nil

segment—queue nil

beam-queue (#<ksar @ #x7b69%ee>)

atomic—-queue (#<ksar @ #x7bl38e> #<ksar @ #x7b3lae>)
mask (1 -1 nil)

number 3

Here the first item in the list that is the value of the slot mask represents the
status of the atomic queue (in the case shown here, the value is set to 1, a
meaningless number for atomic queues); the second item, pertaining to the beam
queue, is set to —1 and means that the KS is ready to read; and, finally, the
third item is set to nil since the segment queue is empty. The slot number is set
to the total number of KSARs held in the queueing system and is automatically
updated after every change by an after-method. As mentioned previously, the
track, spline, and merge queues are not being used at this time.

We will now comment on how the clock is used in the system. Each cycle
of the scheduler consists of going through all three queues. Each cycle of the
scheduler is followed by an invocation of the planner, which maps all the
previously unattended goals into either KSARs or subgoals. One cycle of the
scheduler followed by one invocation of the planner constitutes one control
cycle, and one control cycle constitutes one clock unit. When the BB process
is first started, the main control loop first deposits a goal at the hit level; this
goal for generating new hits is placed at the hit level every eighth clock unit.
The scheduler now looks at all the queues, finding all of them except the beam
queue. The scheduler then examines the beam-queue, where it finds a KSAR
generated by the planner from the hit-level goal. It services this KSAR according
to its stage status value as stored in the mask slot of ksarq. Finally, the scheduler
looks at the segment-queue, which it finds in the initialization stage. The process
then repeats, as depicted in Figure 8.

The main control loop that alternately runs the planner and the scheduler
is shown below:

;7 This is the main control loop for driving RTBB

{defun cloop ()
(catch 'cloop ;i throw-catch combination used to break out at right time
(do () ;; put into infinite loop
(0)

{(go~for—it ) ;2 limits cycles, throws control back for loop breakout
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{clock-update) ;; update the clock variable and place a goal at the
;; hit level every eighth clock unit.

(planner) ;7 this maps the goals into KSAR’sS; it calls planner

(scheduler) ;; run the scheduler which cycles through the three

;; KSAR queues held by the object ksarg
1))

VI. CONCLUSIONS

We hope we have succeeded in conveying to the reader a sense of how
LISP object-oriented programming can be used for constructing a blackboard.
In practically all the literature we have gone through, we have not encountered
much discussion on the programming aspects of a blackboard. We hope this
report has rectified that deficiency to some extent.

Evidently, our blackboard was meant more as a learning and training
exercise. Therefore our efforts should be judged less from the standpoint of
whether we succeeded in designing a system that could actually be used for
controlling a radar system and more from the standpoint of whether we suc-
ceeded in reducing the problem to manageable proportions, without trivializing
it, and whether we succeeded in elucidating adequately the important details of
our implementation.

RTBB is an evolving program and many aspects of it could be further
refined. For example, one of our future goals is to implement a separate queue
for each KS; that would enhance a parallel or multiprocessor implementation
of RTBB. We would also like all the KSARs to be of distributed type, which
would make it necessary that we somehow “‘split”’ those KSs that are currently
processed via atomic KSARs into pre, write, read, and post phases. The RTBB
rule-based planner is rudimentary at this point. A much more knowledgeable
planner could be created to better focus the control.

As was mentioned in the preceding section, a clock unit in RTBB consists
of the scheduler taking one pass through all the queues and one invocation of
the planner. This definition of a clock unit makes the programming easy, but it
does make the exercise somewhat artificial. If the blackboard had to run by a
real clock, provisions would have to be made to buffer the radar returns; the
BB could then take the hits out of the buffer whenever it was allowed to attend
to that task by the scheduler. Real-time implementation of RTBB remains a
future goal.

Seth Hutchinson’s expertise in Al programming was invaluable and our many
discussions with him about design decisions provided a sounding board that resulted in
a much better product. We also owe thanks to Ann Silva, Computer Scientist at the
Naval Undersea Warfare Center Division, for reading the manuscript carefully and
providing us with valuable feedback.

APPENDIX

We will now present four examples to illustrate the working of RTBB.
These examples, at increasing levels of difficulty, start with the case of a single
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Figure 9. Single trajectory generated via Bezier’s curve with every tenth point shown.
Defining trapezoid shown with curve.

track formed by a single craft in the first example; progress to two stable tracks
formed by three separate craft in the second example; further progress to the
case where initially three craft form a single track, but eventually form only two
tracks as one craft breaks away; and, finally, deal with the problem of fading
tracks in the last example.

Example 1

In this example, there is a single craft. Most of the class instances are
expanded out to illustrate the details involved at each step.

The first example illustrates the BB solution formation for a single trajec-
tory. The data that drives the trajectory is based on Bezier’s curve. For this
curve the trapezoid that defines the space curve is given by the four points
indicated in Figure 9. Note that the origin is one of the points so the trajectory
will go through the origin. The origin in these examples is a special point, in
the sense that it represents not only the origin of the coordinate system but
also the center of the air space around a hypothetical airport. The starting point
of the single trajectory is (100,0,0).

The data nodes on the hit level (the bnodes) are initiated by periodically
placing a goal node on the hit level of the goal panel. The goal node causes the
generation of a KSAR, which causes the hit generation KS GETBEAM to fire.
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Recall from the BB Control section that this KSAR is of distributed type

although no preboot function is necessary since the function call is so simple.
The KSAR is -

#<ksar @ #x7cl90e>
is an instance of class #<clos:standard-class ksar @ #x782556>:

prelyst <unbound>

preboot <unbound>

anslyst nil

arglyst nil

command fire

messenger #<messenger @ #x79734e> -
channel 1

nodeptr <unbound>

postboot {(getbeam)

context none

cycle 1 .
ksar-id newhit

priority 2

The postboot is the c-coded GETBEAM KS and its only command is a trigger
“fire.”” The KSAR causes the formation of a data node to be placed on the hit
level of the data panel. The data node looks as follows:

#<bnode @ #x64feae>
is an instance of class #<clos:standard-class bnode @ #x622116>:

event—time 1]

level hit

number 1

coord ((100.0 0.0 0.0))

Note the return count is given by number and it occurs at event-time 0 at the
coordinates coord at level hit.

The placement of this hit node on the data panel causes the placement of
the following goal node on the segment level of the goal panel:

#<bbgoal @ #x65c736>
is an instance of class #<clos:standard-class bbgoal @ #x6220ce>:

purpose change

event-time [¢]
initiating-data-level hit

source #<bnode @ #x64fcae>
duration one-shot

ksarptr <unbound>

snode nil

threat nil

number 1

coord ((100.0 0.0 0.0))

This goal represents the desire to match this data to the nearest segments. The
duration of the goal node is one-shot, that is, the rule-based planner gets only
one pass to satisfy it, and after that the goal node is removed from the goal
panel. The slot source contains a pointer to the data node responsible for the
creation of the goal node by the distributed monitor.

The rule-based planner uses the segment-level goal node to generate a
KSAR for matching the hit data to a nearest segment, if there is one. Otherwise,
it creates a new segment. The KSAR for this KS is distributed with a separate
preboot function which forms the arguments for the knowledge source. The
postboot function posts the results of the command to the KS. The command
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slot holds the main KS call function. Again, the ksar-id generally describes the
driving activity, in this case segment formation. The generated KSAR is

#<ksar @ #x6751lfe>
is an instance of class #<clos:standard-class ksar @ #x6220e6>:

prelyst nil

preboot (pre-assign-hits)
anslyst nil

arglyst nil

command getassignment
messenger #<messenger @ #x6255%e>
channel 2

nodeptr #<bbgoal @ #x65c736>
postboot (post-assign-hits)
context ({event-time nil) (number #<bbgoal @ #x65c¢736>) (coord 0}))
cycle 5

ksar-id segment

priority 1

The GETASSIGNMENT KS that is fired by this KSAR results in the creation
of the following segment-level data node:

#<snode @ #x6842ee>
is an instance of class #<clos:standard-class snode @ #x62209e>:

event-time (0)

level segment

coord ((100.0 0.0 0.0))
number 1

cpa nil

linear nil

tnode nil

threat nil

Most of the slots are initially nil since the segment is not long enough yet;
however, the slots do get filled in at a later time when the segment becomes
part of a track. In fact, at a later time the snode looks as follows:

#<snode @ #x61£616>
is an instance of class #<clos:standard-class snode @ #x56dd36>:

event—-time (1 0)

level segment

coord ((99.24255 0.7425 0.0) (100.0 0.0 0.0))

number 2

cpa (49.003643 49.990078 0.0)

linear ((99.24255 0.7425 0.0) (~0.7574463 0.7425 0.0))
tnode nil

threat nil

This segment data node, via an after-method from the distributed monitor,
creates the following track goal node, which represents the desire to form a
track from the segment:

#<bbgoal @ #x68£526>
is an instance of class #<clos:standard-class bbgoal @ #x56dd56>:

purpose change

event-time (1 0)
initiating-data-level segment

source ~ #<snode @ #x61£616>
duration one-shot

ksarptr <unbound>

snode nil

threat nil

number 2

coord ((99.24255 0.7425 0.0) (100.0 0.0 0.0))
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Note here that a data segment node was the source of this node and the coord
is the set of two consecutive coordinates that are used to form the segment and
the track. The event-time slot stores the sequence of times that support the .

formation of the track.

Again, the rule-based planner creates from this track goal node the following
KSAR, whose purpose is to form a track.

#<ksar @ #x780486>
is an instance of class #<clos:standard-class ksar @ #x567ade>:

prelyst
preboot
anslyst
arglyst
command
messenger
channel
nodeptr
postboot
context
cycle
ksar-id
priority

<unbound>
<unbound>
<unbound>
<unbound>
assign-tracks .
<unbound>

1

#<snode @ #x780b3e>

(assign-tracks)

((event-time nil) (number #<snode @ #x780b3e>) (ccord (1 0)))
17

track

0

Note that this KSAR is an atomic KSAR unlike the previous KSAR that
assigned hits to segments. The KS places the following track node on the data
panel at the track level:

#<tnode @ #x7953ce>
is an instance of class #<clos:standard-class tnode @ #x56dd46>:

event-time (1)

level track

last-coord (99.24255 0.7425 0.0)

last-velocity {-0.7574463 0.7425 0.0)

snode {#<snode @ #x780b3e>)

threat nil

cpa-bracket ((43.97975 54.027534) (45.065323 54.91484))
check nil

checklyst nil

The data node slot event-time contains only the current time. Slots last-coord
and last-velocity correspondingly store the position and the velocity. The snode
contains a list of pointers to the segments that form the logical support for the
tracks and the members of the formation. The confidence region which is called
cpa-bracket causes the threat slot to be flagged ¢ if it includes the origin. For
the node above, the track does not appear as a threat—yet!

The above nodes are the initial formation of the solution track. The solution
track structure is a tree with the base of the tree being the track node and the
branches being the segments nodes. In this example there is only one branch,
so the solution tree is very simple. The track coordinate history contained in

the tree expands as the track grows in length. As an example, consider a i
segment node at a still later time:

#<snode @ #x583a8e>

is an instance of class #<clos:standard-class snode @ #x56dd36>:

event-time
level
coord

number
cpa
linear
tnode
threat

(4 321 0)
segment
((96.8832 2.88 0.0) (97.683846 2.1825 0.0)

(98.4704 1.47 0.0) (99.24255 0.7425 0.0) (100.0 0.0 0.0))
5

(43.2293 49.62189 0.0)

({96.8832 2.88 0.0) (~0.8006439 0.6975002 0.0))
#¥<tnode @ #x77e006>
nil
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The cpa has been calculated and the linear slot contains the current position
and velocity so that the segment can be extended forward. The threat has been
evaluated and the track node that this segment node supports is stored in the
slot tnode.

After the segment information has extended to more than 14 points, the
list is truncated by dropping the oldest hits. This is accomplished with an after-
method so that after, say, 20 time units, the snode takes on the following
‘appearance: .

#<snode @ #x583a8e>
is an instance of class #<clos:standard-class snode @ #x56dd36>:

event—time (20 19 18 17 16 15 14 13 12 11 10 9 8 7)
level segment
coord ((82.4 12.0 0.0) (83.385445 11.5425 0.0) (84.3616 11.07 0.0)

(85.328156 10.5825 0,0) (86.2848 10.08 0.0)
(87.23125 9.5625 0.0) (88.1672 9.03 0.0)
(89.092354 8.4825 0.0) (90.0064 7.92 0.0)
(90.90905 7.3425 0.0) (91.8 6.75 0.0)
(92.678955 6.1425 0.0) (93.5456 5.52 0.0))

number 13

cpa (19.194233 41.343826 0.0) .
linear ((82.4 12.0 0.0) (-0.9854431 0.45750046 0.0))
tnode #<tnode @ #x5851d6>

threat nil

In the above snode, the maximum lengths of the coord and event-time slots are
now only of length 14 as fixed by a global variable. The truncation length may
be set to any fixed value but this threshold is not totally independent of the
other parameters. For example, a track may only be generated when the segment
length exceeds another fixed parameter. Certainly the truncation length must
exceed this minimum length needed to initiate a track; otherwise data will
truncated as soon as it is placed on the segment level.

The general sequence of KS calls is outlined in Figure 10. Here the order
of KS calls is numbered to push data nodes to higher levels of abstraction. The
order is not exact since several data nodes must be advanced to form a
track—but the general order required to push data through to support a track
solution is outlined. The first KS, corresponding to the transition 1 marked in
the figure, is the hit generation KS (GETBEAM); the second KS, corresponding
to the transition marked 2, is the GETASSIGMENT KS; and the third KS is
the track formation KS (GETTRACK). Methods from the distributed monitor
generate the goal nodes from the data nodes. The simple construction illustrated
is essentially data driven with goal nodes being isomorphically mapped to KS’s.
This example illustrates the operation of a goal-driven BB emulating a data-
driven BB.

Example 2

In this example there are three separate craft being observed. Three craft
generate returns, but only two tracks solutions are formed. This example illus-
trates the track formation process, especially the grouping of segments into
tracks.

Figure 11 shows a plot of the three trajectories. Two of these trajectories
are very close and logically form a track. The other trajectory forms a separate
track by itself. The plots of Figure 11 are mirrored in the data structures on
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Figure 12. The nodes on the BB for the 3-trajectory, 2-track example. Note the two
solution trees.

the blackboard panels. Since a tree represents a track, one tree will represent
two trajectories and the other will represent a single trajectory.

Figure 12 graphically traces the formation of the solution trees on the
blackboard. Notice the similarity with the formation of a single track. The
overall crisscrossing of the solution path on the blackboard panels from lower
levels of abstraction to higher levels is due to the data-driven nature of the
problem. The presence of the three distinct trajectories in the data causes the
formation of three distinct nodes at the track level of the goal panel. Each goal
represents the desire to use the segment data node as support for a track node.
By support we mean that the segment node supports the hypothesis that the
track node should contain that segment as part of the group that makes up the
track.

Let us look at some of the data nodes on the BB after the tracks are
established. The two tracks are represented by the following two tnodes:

#<tnode @ #x584£46>
is an instance of class #<clos:standard-class tnode @ #x56dc76>:

event-time (5)

level track

last-coord (96.07798 3.905423 0.0)

last-velocity (-0.8144531 0.6824701 0.0)

snode (#<snode & #x5838a6> #<snode € #x583886>)
threat nil

cpa-bracket ((36.18531 54.252422) (44.9477 55.14532))
check nil

checklyst nil
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#<tnode @& ¥x584£56>
is an instance of class #<clos:standard-class tnode § #x56dc76>:

event-~time (5)

level track

last-coord (3.6225002 96.125755 0.0)

last-velocity (0.6824999 -0.8144531 0.0)

snode (#<snode 2 #x583896>)

threat nil

cpa-bracket ((44.80412 54.91484) (35.91684 54.027534))
check nil

checklyst nil

Note #(tnode @ #x584f46) is the second track in Figures 11 and 12 with
two supporting segment nodes. The slot snode contains segment nodes instances
that form the branches of the solution tree and the logical support for the track
hypothesis. The other track node #(tnode @ #x584f56) has only one pointer,
which simply means only one branch and one supporting segment node. Neither
track is presently a threat to the origin, although the trajectory plot indicates
that this will not be true in the future.

The snodes contain parent pointers to the track which they support. The
snodes are

#<snode @ #x583886>
is an instance of class #<clos:standard-class snode @ #x56dc66>:

event-time .{(5 4321 0)
level segment
coord ((96.06875 4.062438 0.0) (96.8832 3.379968 0.0)

(97.683846 2.682486 0.0) (98.4704 1.969996 0.0)
(99.24255 1.242499 0.0) (100.0 0.5 0.0}))

number 6

cpa (41.62926 49.679947 0.0)

linear ((96.0687S5 4.062438 0.0) (-0.8144531 0.6824701 0.0))
tnode #<tnode @ #x584f46>

threat nil

#<snode @ #x583896>
is an instance of class #<clos:standard-class snode @ #x56dc66>:

event-time (543210)
level segment
coord ((3.5625 96.06875 0.0) (2.88 96.8832 0.0)

(2.1825 97.683846 0.0) (1.47 98.4704 0.0)
(0.7425 99.24255 0.0) (0.0 100.0 0.0))

numbexr 6

cpa (49.38652 41.385197 0.0}

linear ((3.5625 96.06875 0.0) (0.6824999 -0.8144531 0.0))
tnode #<tnode @ #x584£56>

threat nil

#<snode @ #x5838a6>
is an instance of class #<clos:standard-class snode @ #x56dc66>:

event~time (543210)
level segment
coord ((96.06875 3.5625 0.0) (96.8832 2.88 0.0)

(87.683846 2.1825 0.0) (98.4704 1.47 0.0)
(99.24255 0.7425 0.0) (100.0 0.0 0.0))

number 6

cpa (41.385197 49.38652 0.0)

linear ((96.06875 3.5625 0.0) (-0.8144531 0.6824999 0.0))
tnode #<tnode @ #¥x584£46>

threat nil

At a much later time both tracks are classified as threats. In fact, at time
41 the track nodes look as follows:

#<tnode @ ¥x584f£46>

is an instance of class #<clos:standard-class tnode @ #x56dc76>:
event-time (41) :
level track
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last~coord (60.09016 18.42884 0.0)

last-velocity (=1.1114502 0.14003944 0.0)

snode (#<snode @ #x5838a6> #<snode @ #x583886>)
threat t

cpa-bracket ((~2.437229 54.252422) (25.053728 55.14532))
check

checklyst nil

#<tnode @ #x584£56>
is an instance of class #<clos:standard-class tnode @ #x56dc76>:

event-time (40)

level track

last-coord (18.0 61.2 0.0)

last-velocity (0.15749931 -1.108448 0.0)

snode (#<snode @ #x583896>)

threat t

cpa-bracket ((25.350838 54.91484) (-2.030042 54.027534))
check nil

checklyst nil

By now both tracks represent threats to the origin and so the threar slot
holds the flag for true. Note that the confidence region contained in cpa-bracket
has one coordinate that straddles the origin. Although this threat detection
scheme is arbitrary and probably not a sharp criterion, it does illustrate the
detection via the rule-based planner.

Example 3

In this example there are three separate craft being observed. Initially
these three craft form one track. Subsequently, one craft breaks away from the
established track. This example illustrates the detection of the break away and
the subgoaling needed to establish two tracks.

Figure 13 shows three trajectories for the three different craft generating
radar returns. All of these trajectories are initially very close and form a single
track. However, as the track evolves in time, one of the segments supporting
the track formation obviously departs from the track itself. By ‘‘departs’ we
mean that if the track grouping were to be reformed, two tracks instead of one
track would be formed. A backchaining algorithm fitting splines to tracks is
designed to detect if the grouping of segments into a track is still logically valid.

One way to solve the problem of regrouping the tracks is simply to dissolve
the track node and keep the segment nodes on the data level after removing
their parent pointers to a track. The track formation algorithm would then pick
up these “‘uncommitted’’ segments and regroup the segments into tracks. This
solution is acceptable but not as desirable as maintaining the track history and
forming a new track from a subset of the segments of the original track. This
is implemented by subgoaling—an important technique that allows knowledge
sources to become more specialized in their competence and makes it easier
to incorporate more complex relationships between goals.

The nodes or solution tree should reflect the history of the trajectories.
Indeed, Figure 14 shows the correspondences between the physical trajectories
and data structures that represent these trajectories. First a tree that has only
one root, i.e., one trajectory with three branches representing the three distinct
craft, will form on the blackboard. Once the track is established and determined
to be a threat, the track grouping will be checked via the spline KS. When the
track grouping is not verified by the spline KS, subgoals for each segment are
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Figure 13. Shows breakaway craft 2 from the formation.

created and placed on the goal segment level. Each goal represents the desire

to determine if that segment is in the same formation as the average track

representing the root of the track. If the segment does not satisfy the grouping

criterion against the track, it is spun off as a segment with no parent pointers.

This means the BB will establish this segment as a separate track. The following

paragraphs will show the state of the nodes in this sequence of events.
Initially, the track node formed from the three segments is:

#<tnode @ #x7dS55ae>
is an instance of class #<clos:standard-class tnode @ #x56daaé>:
event-time

level track

last-coord {(99.34056 99.531265 0.0)

last-velocity (-0.65943915 ~0.8020681 0.0)

snode (#<snode @ #x78104e> #<snode @ #x781036> #<snode @ #x78101e>)
threat t

cpa-bracket ((-1.523449 21.468126) (-21.077364 3.9739904))

check nil

checklyst nil

Observe that there are three snodes or branches supporting this track. The three
segments supporting the trajectory are given below. Note that the track node
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Figure 14. This example illustrates the cancellation of the segment node support of the

track 1 hypothesis. Subgoaling triggered by the failure of the spline test is illustrated in
the goal panel.

pointers in these nodes are really the parent pointers or the edges of the graph
pointing to the root of the tree which represents the track:

#<snode @ #x7810le>
is an instance of class #<clos:standard-class snode @ #x56da%6>:

event-time (1 0)

level segment

coord ((99.24255 100.03494 0.0) (100.0 101.0 0.0))

number 2

cpa (12.826523 ~-10.067154 0.0)

linear ((99.24255 100.03494 0.0) (-0.7574463 -0.9650574 0.0}))
tnode #<tnode @ #x7d55ae>

threat nil

#<snode @ #x781036>
is an instance of class #<clos:standard-class snode @ #x56da96>:

event-time (1 0)

level segment

coord ((99.24255 99.09405 0.0) (100.0 100.0 0.0))

number 2

cpa (9.648041 ~-8.066505 0.0)

linear ((99.24255 99.09405 0.0) (~0.7574463 -0.90595245 0.0))
tnode #<tnode @ #x7d55ae>

threat nil

#<snode @ #x78104e>
is an instance of class #<clos:standard-class snode @ #x56da96>:

event-time (1L 0)

level segment

coord ((99.536575 99.464806 0.0) (100.0 100.0 0.0))

number 2

cpa (7.663826 -6.636101 0.0)

linear ((99.536575 99.464806 0.0) (-0.46342468 -0.5351944 0.0))
tnode #<tnode @ #x7dSSae>

threat nil
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This solution tree structure is the initial state of the track prior to the discovery
that the trajectory is a threat and prior to the departure of one of the craft from
the formation.

Almost immediately, at time 1, the track is determined to be a threat to the
origin and the spline KS (GETSPLINE) will now begin to check to see if the
composition of the track still makes sense. The following track node illustrates
the track node state just after it has been determined it is a threat.

#<tnode @ #x7d55ae> -
is an instance of class #<clos:standard-~class tnode @ #x56daa6>:

event-time (1)

level track

last-coord (99.34056 99.531265 0.0)

last-velocity (-0.65943915 -0.8020681 0.0) .
snode (#<snode @ #x78104e> #<snode @ #x781036> #<snode @ #x7810le>)

threat t

cpa-bracket ((-1.523449 21.468126) (~21.077364 3.9739904))

check nil

checklyst nil

After the spline test detects the breakaway of a track, it marks the track
node check variable as failed. A failed spline test automatically disables further
spline tests for that track until a track verification KS can be run. The rule-
based planner will detect a failed track in the goal blackboard, and then generate
a subgoal for each segment that supports the track. Each goal expresses the
desire to reevaluate the track formation grouping criterion of each segment
against the averaged track. The following are the subgoals generated by the
rule base:

#<bbgoal @ #x7ccb7e>
is an instance of class #<clos:standard-class bbgoal @ #x56dabé>:

purpose verify-track _
event-time 4)

initiating~data-level track

source #<tnode @ #x584e96>

duration one-shot

ksarptr <unbound>

snode #<snode @ #x583896>

threat nil

number <unbound>

coord ((96.767204 97.039505 0.0) (-0.8006439 -0.99399567 0.0))

#<bbgoal @ #x7ccl8e>
is an instance of class #<clos:standard-class bbgoal @ #x56dabé>:

purpose verify-track

aevent-time (4)

initiating-data-level track

source #<tnode @ #x584e96>

duration one-shot

ksarptr <unbound>

snode #<snode @ #x5838a6>

threat nil

number <unbound> -
coord ((96.767204 97.039505 0.0) (-0.8006439 -0.99399567 0.0))
#<bbgoal & #x7cbSe6>
is an instance of class #<clos:standard-class bbgoal @ #x56dabé>: v
purpose verify-track

event-time (1)

initiating-data-level track

source #<tnode @ #x584e96>

duration one-shot

ksarptr <unbound>

snode #<snode @ #x58323e>

threat nil

number <unbound>

coord ((96.767204 97.039505 0.0) (-0.8006439 -0.99399567 0.0))
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Each of these subgoals points to the parent track as the source and the support-
ing segment node as the snode. The KSAR generated from each of these
subgoals will activate the VERIFY KS. This KS is part of the blackboard
process—that is, it is not spun off as a separate process. If the segment is
reverified to be in the same track grouping, then nothing is done, except to
record the verification result by removing the node from the checklyst. If not,
then the KS does three things. First, KS removes the segment pointers in the
track node—that is, the pointer to this sibling or branch of the tree. Then it
removes the parent pointer in the segment node or the pointer to the root of the
tree representing the track. Lastly, it removes the pointer from the checklyst
from the track node.

The snode that becomes orphaned by the VERIFY KS is the following
segment node.

#<snode @ #x583896>
is an instance of class #<clos:standard-class snode @ #x56da96>:

event-time (87 6543210)
level segment
coord ((95.57696 95.99027 0.0) (96.215935 96.45725 0.0)

(96.83128 96.9341 0.0) (97.42249 97.42075 0.0)
(97.98912 97.91718 0.0) (98.530655 98.42336 0.0)
(98.4704 99.05997 0.0) (99.24255 100.03494 0.0)
(100.0 101.0 0.0))

number 9

cpa (—12.452843 17.039467 0.0)

linear ((95.57696 95.99027 0.0) (-0.63897705 -0.46697998 0.0))
tnode #<tnode @ #x585fce>

threat nil

After the blackboard detects the unmatched segment node, it constructs a
distinct track for this segment and the resulting solution consists of the two
track nodes given below. The first track node is the newly created node from
the unmatched segment node. The second track node is the old established track
node, which now contains only two supporting segment nodes. The solution of
the tracking problem is now two trees (and in general a forest of trees) represent-
ing two separate racks. The tnode corresponding to Track 1 of Figure 14 is

#<tnode @ #x585fce>

is an instance of class #<clos:standard-class tnode @ #x56daa6>:
event-time

level track

last-coord (95.64931 95.96082 0.0)

last-velocity (-0.63897705 ~0.46697998 0.0}

snode (#<snode & #x583896>)

threat nil

cpa-bracket ((-23.255823 4.3589487) (-2.2320776 24.93455))
check nil

checklyst nil

The tnode corresponding to Track 2 of Figure 14 is

#<tnode @ #x585fbe>
is an instance of class #<clos:standard-class tnode @ #x56daat>:

event-time (8)

level track

last~coord (93.55575 92.813065 0.0)

-last-velocity (-0.8540497 ~1.0287323 0.0)

snode (#<snode @ #x58323e> #<snode @ #x5838a6>)
threat t

cpa-bracket ((—27.750824 107.72498) (-21.077364 33.016785))
check S

checklyst nil
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been included in the current track since the segment nodes and hit nodes are
removed from the BB as soon as possible. However, a short history trail could
be easily added to the track node.
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