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Deforming virtual objects
interactively in accordance with

an elastic model

HoSeok Kang and Avi Kak

We show how interactive deformations of a virtual 3D object
can be carried out by using a hierarchical implementation of
the finite element method (FEM). Basing deformations on
the concepts of elasticity gives the human a measure of
predictability when deciding where to apply forces to the
object so that a desired shape would ensue. As is well known,
one of the most powerful tools for analysing elasticity is the
FEM, but the computational burden associated with a
straightforward application of FEM to the problem at hand
would make it too slow for any interactive process on even
the fastest workstations. We have therefore developed a
method in which the computational burden of FEM is allevi-
ated by carrying out the FEM analysis at two different
resolutions; a coarse resolution for a 3D calculation of the
deformations and, subsequently, a finer resolution for just
the surface layers of the object for a better (and smoother)
delineation of the object shape. For the case of analysing the
surface layers using the finer resolution, we show how a
plate-theory version of FEM can be employed.

Keywords: virtual reality, interactive modelling, computer
graphics, cap, FEM, solid modelling, elastic deformation

INTRODUCTION

In this paper we show how a human can interactively
deform an object that exists only in the memory of a
computer. We are interested in deformations that do
not grossly violate the basic principles of elastic theory,
meaning that the deformations are not allowed to be
arbitrary for given applied forces, although computatio-
nal expediency may necessitate approximations that
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might cause small departures from the ideal. We use
the familiar finite element method (FEM) for calculat-
ing the actual deformations but do so with a difference
to alleviate the heavy computational burden associated
with this approach. We use FEM in a two-resolution
format. Initially, a coarse resolution is used for calcu-
lating gross deformations at a set of points in the
object. Subsequently, the surface layers are analysed
using a plate theory version of FEM for both a smoother
determination of the surface shapes and for what is
known as surface detailing.

In order to conform to a theory of elasticity, the
deformations produced must be in response to forces
applied to the object. In other words, the user must
specify what forces to apply where. In our system, the
applied forces may be specified either with the help of
a mouse or with the help of a special force-input device
we have built. The principal advantage of our force-in-
put device over an ordinary mouse is that our device
permits simultaneous and immediate specification of
both the magnitude and the direction of an applied
force. In this manner, via our force-input device, the
applied forces can be made to be either longitudinal, or
shear, or a combination of the two. The force-input
device, shown with a power supply and an
M68HCI11EVB control board on the left in Figure I,
consists of four spring-loaded potentiometers, one at
each comer of a pressure pad. The output of the
potentiometers, proportional to the applied forces, is
digitized and fed into a Silicon Graphics Personal Iris
workstation for the virtual deformation experiments.
As we shall explain later in this paper, the digitized
signals are interpreted in different ways, depending on
the mode chosen by the user.

To motivate the reader, we want to show at the very
outset some results obtained with our interactive ap-
proach. The objects shown in Colour Plate I were
generated by repeated applications of forces from dif-
ferent sides to a cubic virtual stock. Another set of
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Power Supply MG6SHC11EVB Board Force Input Device

Pressure Plate

Figure 1 On the left is shown the microprocessor interface to the
SGI workstation and on the right the force input device. The side of
the force input device that is facing the reader consists of a pressure
plate that is connected to four spring-loaded potentiometers

objects generated in a similar fashion from a cylindrical
virtual stock is shown in Colour Plate 2. A more com-

L shape

Plate

Face Curved

Colour Plate 1 Objects created by deforming a cube-shaped stock
using coarse resolution. The total computation time (CPU time)
needed for any of these objects ranged from 1 to 8 s on a SGI
Personal Iris 4D /35 workstation. This CPU time corresponds to 2-5
interactive cycles that are needed for these objects. The total session
time for any of the objects was under 5 min. The objects were
displayed after bi-cubic spline interpolation of the coordinates of the
deformations generated by our system

Fat pencil Ball

Human leg Chair leg

Anvil Straw

Colour Plate 2 Same as for Colour Plate ] except that these shapes
were created from a cylinder-shaped stock using coarse resolution.
The CPU times and the session times are again the same as for the
objects in Colour Plate 2

plex shape, which may be thought of as a ghost-like
face, generated from a cube-shaped stock, is displayed
in Colour Plate 3. The CPU times and the session times

Colour Plate 3 This ghost-like face was created from a cube-shaped
stock using the two-resolution implementation of EEM. Total CPU
time here was under 2 min on SGI Personal Iris 4D /35. This shape
required 16 interactive cycles and the total session time was roughly
15 min



Colour Plate 4 Shapes synthesized by constructing Boolean combina-
tions of some of the simple objects shown in Colour Plates 1 and 2

needed for these objects are indicated in the figure
captions. Shown in Colour Plate 4 is a Boolean combi-
nation constructed from some of the more primitive
objects shown in Colour Plates 1 and 2.

In response to the applied forces, the deformations
themselves are computed by using the finite element
method (FEM). However, two major issues arise when
applying FEM for virtual and interactive deformations.
The first has to do with the computational burden of
FEM. As will be stated in greater detail later, we have
resolved this by using a two-resolution approach to the
representation of objects and for the implementation
of FEM. The second major issue has to do with the
demands placed by FEM on a human user. Using FEM
requires that the shapes of the elements into which the
object is divided be specified,"and then the user must
somehow identify the nodal points, these being the
junctions of the elemental shapes. Finally, in the tradi-
tional applications of FEM, the user is provided with
some input/output facilities for specifying the forces
applied to the object. As the reader can imagine, for a
user to specify applied forces and boundary conditions
textually requires that the user maintain in his/her
mind the associations between the different nodal in-
dices and the physical locations of those nodes on the
object. All this makes using FEM a daunting task,
expecially so for the non-specialist.

In this paper, we will describe a graphical system that
hides all of the user-unfriendly details associated with
the use of FEM. Our system displays on a screen all
the nodes on the visible surfaces of an object and the
user can select with mouse clicks the nodes for the
application of the forces. During the first phase of
interaction, the forces are used for the calculation of
volumetric deformations using a coarse-resolution im-
plementation of a volumetric FEM. Subsequently, in
the second phase, the surfaces of the object are
remeshed at a higher resolution. Forces applied subse-
quently yield displacements at the old nodes and, via a
plate-theory based FEM, at the newly created surface
nodes. Finally, in the third phase, surface detailing for
fine deformations can be affected by imagining the
surface nodes to exist on their own, without any con-
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nections to the interior, and by applying just the plate-
theory based FEM to these surface nodes.

In what follows, we present on overview of the re-
lated literature. Next we very quickly go through some
relevant concepts from finite element analysis. We
then discuss the force-input device. Subsequently we
discuss how volumetric FEM is coupled with a plate-
theory based FEM, the former employing coarse spa-
tial resolution for the delineation of overall shape and
the latter finer resolution for creating more detailed
surface effects. Finally, the overall graphical system is
presented, followed by a summary and conclusions.

RELATED LITERATURE

Despite all the progress that has been made in the
graphics modelling of the more geometrical industrial
objects, the modelling of objects with free-form shapes
remains a daunting task. This is not for lack of any
published literature on the subject, since much has
been published in recent years on how objects may be
deformed interactively by displacing pre-designated
control points or points on the surfaces’™® Although
evidently pioneering, these approaches are somewhat
limited in their utility because, for complex free-form
objects, the number of control point displacements
needed for a desired shape can be too large and
therefore inconvenient for a user. We have therefore
declared our allegiance to physics-based methods. Here
also there have been many pioneering publications®~1°,
but more in the area of the dynamics of elastic objects.
In the rest of this section, we will discuss in greater
detail those previous contributions that have some in-
tersection with our own work.

Barr’s approach to modelling free-form deforma-
tions"? is based on global and local transformations of
superquadric surfaces. The concept of deformations by
global transformations cannot be used directly for what
we have in mind since the effects produced tend to be
highly stylized and mostly symmetrical and therefore
not suitable for our purposes. Sederberg and Parry?
immerse the undeformed object in a coordinate frame
in which a lattice of points, called the control points, is
defined. The coordinates of the lattice points, espe-
cially after they are moved by a user to new locations,
serve as coefficients of Bernstein polynomials that are
used to determine the deformed positions of the object
points. An object can be given an arbitrary deformation
by displacing the control points to desired locations,
the smoothness of the deformation of the object, vis-d-
uis these displaced control points, is then ensured by
the Bernstein polynomials. The work of Sederberg and
Parry has been extended by Coquillart* by the use of
non-rectangular lattices for control points, and by La-
mousin and Waggenspack® by the use of NURBS. These
approaches evidently have much merit when virtual
sculpting is used as a metaphor for free-form geometri-
cal modelling of shape, although manipulation of the

- control points can be daunting for complex shapes.

Forsey and Bartels® have presented a B-spline based
approach to the deformation of objects. We find this
work interesting inasmuch as it is also hierarchical, in
which a low-resolution mesh is used for generating an
initial surface that for local refinements is subsequently
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augmented with higher-density meshing wherever de-
sired. A different and more direct approach to free-form
deformation has been presented by Hsu, Hughes and
Kaufmann’ and Yamashita and Fukui®; in these two
works the user is allowed to manipulate the surface
points directly, as opposed to the control points. All of
these methods, using either the manipulation of control
points or of the surface points directly, can give the
~ user better control of a deformation but at the expense
of requiring a large number of inputs from the user.

Yet another approach to virtual sculpting captures in
a computer the notion of a sculptor using a tool to
move around and shape chunks of clay. This approach,
pioneered by Galyean and Hughes?, represents objects
by voxels that can be squeezed out of a tube, cut away,
melted away, sanded, etc., by an assortment of tools
made available to the user in a manner similar to the
use of ‘paintbrush’ for drawing and editing 2D imagery
on personal computers.

All the methods mentioned above are devoid of any
considerations pertaining to elasticity. What that means
is that it would be possible to deform an object in a
manner that would be physically impossible. These
approaches lack connection between the deformations
produced and the underlying physical reality.

In the second category are papers where the authors
have tried to conform to the laws of physics, in the
sense that the deformations do not violate elastic and
plastic constraints. This type of work was pioneered by
Terzopoulos and co-workers’ ™3, They define elastic
and inelastic energy functions and solve them using
finite difference methods. Using this approach they are
able to simulate elastic, viscoelastic, plastic and frac-
ture effects. A variation on this theme consists of using

superquadrics that undergo parameterized global de--

formations in response to applied forces and boundary
constraints'* '°. Most recently, Terzopoulos and Qin'™
have proposed the use of dynamic NURBS for interactive
sculpting. While NURBS is a purely analytical descrip-
tion of a surface?, in dynamic NURBS one associates
mechanical properties with these surfaces so that their
deformations can be studied by using dynamical equa-
tions.

Pentland and his co-workers'”!® take a different
tack at physically-based modelling of free-form defor-
mations and show how precomputed low-order vibra-
tional modes for certain pre-designated primitives can
be used for this purpose. In the ThingWorld system
that has ensued from this approach, elastic equations
governing the deformations are diagonalized to result
in 2nd-order time-dependent equations describing the
various natural modes of vibration of an object. This
approach therefore expesses an object deformation,
produced in response to applied forces or forces of
collision, as a linear sum of the natural modes of
vibration. While the ThingWorld system appears ideal
for deformations that have a certain global flow to
them, we do not believe the system would be very
efficient for deformations that are very local to a
particular region of the object. For example, while
ThingWorld can straightforwardly simulate pinching
that is in the middle of a cylinder — this will generate
shape perturbations primarily in the low-frequency
modes — it would have a much harder time if one
were to pinch asymmetrically one end of the cylinder.
In that case, the user will have to decompose the

asymmetric force into a sum of modal forces, which is
non-trivial. On a slightly different but related note,
Sclaroff and Pentland" use implicit functions and dis-
placement maps for deformations. They represent an
object with an implicit function and each point on the
surface generated by that function can be displaced
additionally by the value in the displacement maps.

All of these physically-based methods for deforming
surfaces appear to be ideal for the generation of ani-
mation sequences. But if the goal is merely to create a
static (but free-form) shape, there is less of a com-
pelling reason for solving dynamic equations and the
alternative approach presented by us in this paper
might suffice. This is probably a good place to mention
that all of the above physically-based approaches use
only surface points; in other words the objects are
considered to be hollow. On the contrary, our approach
uses both volumetric and surface points; this can give a
larger elastic coupling between distant points on and in
an object, an immediate advantage being that a force
application can result in a more pervasive global shape
change.

FINITE ELEMENT METHOD: A BRIEF
REVIEW

The principal goal of this paper is to deform virtual
objects by the application of external forces. Evidently,
this requires that the relevant equations, relating the
displacements inside and on the surface of an object to
the applied forces, be solved subject to whatever
boundary conditions are appropriate. During the last
couple of decades, a powerful tool called the ‘finite
element method’ (FEM) has gained much currency for
solving such problems®?*, Basically, FEM divides the
object in question into a large number of discrete
elements. Then, speaking figuratively, the applied forces
are propagated through all the elements, via the nodes
that connect the elements, in a manner that is consis-
tent with the material properties of the object and the
boundary conditions on the elements. The deformation
of an object depends on its geometry, on the mechani-
cal properties of the material, and on the appled force.
Stress represents the intensity of force while strain
represents the intensity of deformation. Usually, stress,
strain, and displacement are related® 2. In the rest of
this section, we will first provide the reader with a brief
introduction to FEM; this we do because FEM plays a
central role in our system and we believe it is incum-
bent upon us to tell the reader how objects are meshed,
how boundary conditions are satisfied, and what sort of
equations are solved — issues that taken together form
the art and science of FEM. Next we will discuss, again
only briefly, the plate-theory based version of FEM. As
we mentioned earlier, the volumetric and the plate-the-
ory based FEMs constitute our two-pronged approach
to creating object deformations.

VYolumetric FEM

If we use only the linear terms in the displacement
components while neglecting the higher order terms,
the simplest relations between the components of the
strain and the displacement components u, v, and w at
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where {e} and {u} are the strain and displacement
vectors, respectively.

For linear, isotropic, and elastic materials, the rela-
tions between the components of stress and strain can
be represented by using only two independent elastic
constants: Young’s modulus E and Poisson’s ratio .
They constitute the following specialization of the gen-
eralized Hook’s law:
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Equation 2 may be written more compactly as

{o} =[DNe} 3
where {o} and {€} are the stress and strain vectors,
respectively.

Based on the above equations, we can set up a finite
element system to compute displacements from force
inputs. Consider, for example, a meshed object that is
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subject to some external force and we wish to compute
the displacement at each of its nodes. A typical FEM
first ‘assembles’ the material properties that exist in
each of the elements into a large matrix called the
global stiffness matrix. Next, the unknown displace-
ments at all the nodes are ‘assembled’ into a large
vector. Subsequently, the forces applied to the nodes of
the object, either externally or internally, are ‘assem-
bled’ into a single global force vector. And, finally, a
vector—matrix equation is set up relating all of these
composite vectors and matrices:

[KHQ} = {F} )

where {K} is the global stiffness matrix, this matrix in
general being symmetrical and banded, {Q} the global
displacement vector, and {F} the global force vector.
The resulting Equation 4 is then solved subject to
whatever boundary conditions exist with regard to how
the object is anchored, etc. '

Before the FEM method can be invoked, it is neces-
sary to select a mesh for the initial stock. Once a mesh
is chosen for the stock, it remains with the object
through all its deformations. In our work, the stock is
either a cube or a cylinder. Consider first the case of a
cube-shaped stock. It is usual to divide the stock into
cubic cells as shown in Figure 2a. The finite element
equations for cubic meshing may be derived either
directly from a discretization of the elastic fields on the
mesh or by taking into account the fact that a cubic
mesh lends itself to the representation of each cubic
cell by a union of five tetrahedral elements. If we
assume that each tetrahedral element is small enough
so that linear interpolation may be used to relate the
displacement at any interior point to the displacements
at the nodes of the tetrahedron, it is possible to derive
a stiffness matrix that relates the nodal displacements
to the forces applied to the tetrahedral element. As-
sembling all the nodal displacements into a single vec-
tor and doing the same for the nodal forces then yields
the overall FEM equation, such as Equation 4 above.
For details, the reader is referred to References 23 and
26.

It should be obvious to the reader that how the
nodes are indexed in a given mesh should have an
important bearing on the structure of the matrix [K] in
Equation 4. As an extreme case, suppose we assigned
indices randomly to the nodes, in that case the matrix
[K] may not possess any regularity or symmetry that
could be exploited computationally. On the other hand,
if the nodes are assigned indices in the fashion shown
in Figure 2a, we end up with a banded form for [K], as
shown in Figure 3. An alternative way of indexing is
shown in Figure 2b. The indexing of Figure 2a yields
the tightest banding of the stiffness matrix and was
therefore used for the work reported here for cube-
shaped stocks.

In Figure 4 we have shown what we believe is a novel
meshing of a cylinder in terms of hexahedral elements.
Because of its similarity to the meshing for a cube-
shaped stock, both the cubic meshing and the cylindri-
cal meshing can be described using only three parame-
ters, ¢, r, p. In cubic meshing, ¢, r and p are the cell
divisions of the stock along the three axes that define
the stock. For cylindrical meshing, as shown in Figure
4, c is the number of layers in what we will refer to as

nee
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Figure 2 Different node indexing schemes for cubical meshing; (2) node indexing by sequential nodes, (b) node indexing by sequential cells

the cubic core, r the number of layers in the cylindrical
outside, and p the number of layers in the axial direc-
tion. Note in particular that what we refer to as the
cubic core of a cylindrical stock of unit dimensions is
no different from a cubic stock shown in Figure 2a. For
either the cubic stock or the cylindrical stock, all a user
has to do is to specify the three parameters, c, r, and p.
The system then automatically calculates the node
coordinates from those parameters and indexes them
appropriately. Table 1 displays the expressions that
yield the number of nodes, the number of faces, and
the number of cubic elements for a given ¢, r, p for
both cubic stock and cylindrical stock.

Matrix elements
guaranteed to be zero
63 64 192

Main diagonal j

1 2 34356

A s oW o
[ £
A

Bandwidth

\|
N \ 192
128129 ) 192

192 [

Matrix elements >
guaranteed to be zero

Matrix elements
may or may not be zero

Figure 3 Symmetric and banded matrix [K] for the case of a cubic
stock divided into 3 X 3 X 3 cells

Plate-theory based FEM

We will now give the reader some insight into the
fundamental assumgtions that underlie the plate-
theory based FEM* 2. This discussion here will
parallel our treatment of volumetric FEM.,

For figuring out the deformations of thin plates, a
_plate of thickness 4 is considered to be a body that is
bounded by two parallel planes, called its faces, whose
lateral dimensions are large compared to the separa-
tion between these planes (Figure 5a). The plane paral-
lel to and equidistance from the faces is called the
midplane, or the median plane, of the plate.

The simplest and the most widely used plate theory
is the classical plate theory, also known as the Kirchhoff
plate theory. In this theory, a plate is assumed to be
loaded transverse to the plane of the plate. It is as-
sumed that the material points in the midplane can

Cubic core
" o=2 layers
(inside) 2c x 2¢ x p elements

Cylindrical layers

r=2 layers
(outside) ge x r x p elements

. Axial direction
* p=2 layers

|

Figure 4 Cylindrical meshing



Table 1 Number of nodes, faces and cubes in a mesh
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Cube

Cylinder

Number of nodes
Number of faces
Number of cubic cells

c+DXG+Dx(p+1)
(eXr+rXp+pXec)x2
cXrXp

(P+DXEXBXc+Q2Xc+DX2Xc+1)
8XcXp+2XrXx8Xc+2X4XcXe
8XcXrXp+4xXcXeXp

only be displaced along the transverse (or z) direction,
so the midplane is a neutral plane (no stretch, no
contract, no strain). It is also assumed that the straight
material line elements that are perpendicular to the
midplane in the undeformed state, such as correspond-
ing to the line L in Figure 5a, remain straight and
perpendicular to the midplane in the deformed state as
the L' in Figure 5b, and that there is no thickness
stretch of the plate. Further, it is assumed that the
stresses normal to the midplane of the plate are neglible
in comparison to the stresses in the plane of the plate,
and the slope of the deflected plate in any direction is
small. Since our interest in plate theory is confined to
its use for the calculations of small deformations needed
for surface detailing, etc., these assumptions are easily
satisfied.

Let us consider the state of stress in a plate with an
arbitrary small deflection w(x, y) at a point P in a
plane at a distance z from the midplane. The slopes of
the midplane are §,= 3% and S, =% so that the
components of displacement vector u, v, w are given by

Iw
u=—z-——
ax
ow
V= —Z2—
gy
w=w(x, y) Q)

In terms of the displacements, the strains are given by

Ju *w
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L
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Figure 5 Deformation of a thin-plate; (a) plate before deformation,
(b) plate after deformation
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in keeping with the assumptions listed previously.
The strains ¢, €,, €, are related to the stresses o,
g, T, by the relations
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where E is Young’s modulus, v the Poisson ratio and
G the shear modulus. Therefore, we can infer the
following relationships between the stress components
and the displacements:
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These stresses vary linearly through the thickness of
the plate and are equivalent to moments per unit
length acting on an element of the plate. Thus,
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where the flexural rigidity D of the plate is defined by
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and M,, M, and M, are the internal plate stresses or
the bending moments. Note that because of the equal-
ity of complementary shears 7., and 7, it follows that

M, =M, (12)

Based on these relations, we can set up a system of
equations relating displacements at a set of mesh points
and the forces (and moments) in a manner similar to
what was done for the volumetric case.

INTERPRETATION OF FORCE INPUTS

Although the user has the option of using the mouse
for specifying forces, with regard to their locations,
directions, and magnitudes the interaction with the
SGI machine is much facilitated if the user uses our
force-input device. Although simple in construction, it
permits simultaneous specification of force magnitudes
and directions in a couple of different modes. This
device basically generates four scalar numbers in re-
spounse to the user pressing on a pressure plate mounted
on four position-sensing elements. It is possible to
interpret these four scalar numbers in different ways
for the purpose of deforming the object. In our experi-
ments, the user can choose from three different inter-
pretation modes.

In the first interpretation mode, the four scalar num-
bers are thought of as forces applied at four different
mouse-selected points on an object face, the direction
of the forces assumed to be perpendicular to the face,
as illustrated in Figure 6. In part a of the figure, the
four force values output by the device are assumed to
be applied perpendicularly on face F at node points A,
B, C, and D that are selected by the user with mouse
clicks. The force values actually fed into the finite
element algorithm are obtained from the four device-
generated values by linear interpolation, as shown in
part b of the figure. This capability, meaning the ability
to apply non-uniform forces on the pressure plate,
allows the system to simulate the application of shear
forces. The applied force is assumed to be normal to
the selected points or faces. The normal direction of a
face is computed from the four edges in the face using
well-known formulas and the normal direction associ-

Figure 6 Shown here is the first of the three modes in which it is
possible to interpret the output of the signals produced by the
force-input device; (a) the four values produced by the device, (b) the
interpolated values

Force Direction

= Normal of
least squares fitted plane

least squares fitted plane

Figure 7 Shown here is another mode for interpreting the values
output by the force-input device. Force direction now is a resultant of
the four values output by the device

ated with a point is the average of the normals of all
the faces to which that point belongs. The latter defini-
tion is important for object points that are on the
boundaries between different faces.

In the second interpretation mode, the four scalar
numbers spit out by the force-input device are used for
not only specifying the magnitude but also the direc-
tion of the force with respect to the local normals.
However, the applied force is now assumed to be
uniform over a mouse-selected cluster of nodes. To
explain further, as shown in Figure 7, we interpret the
four values as vectors perpendicular to the face at four
neighbouring points surrounding a node. Using a
least-squares fit, a plane is then drawn through the tips
of these vectors. The normal to this plane into the
object is considered to be the direction of the applied
force, and the force itself considered constant in value
over a selected cluster of nodes. Therefore, while the
first interpretation allows us to simulate shear effects,
the second allows application of deformation forces
along arbitrary directions to a selected face.

In the third interpretation, the user mouse-selects a
set of points that encircle the object. For example, if
the user wishes to pinch a cylinder symmetrically around
the axis, the user would select a set of point on a circle
around the cylinder. The four signals generated by the
force transducer are now averaged and this average is
construed as a uniform force applied at all the mouse-
selected points, the direction of the force at each point
being along the local normal.

In each of the interpretaion modes, it is necessary
that the user also mouse-select some of the nodes as
boundary nodes where either no displacements are
allowed or where the displacements must equal certain
pre-set values. (If no nodes are specified as boundary
nodes in this manner, the object will simply translate as
opposed to deform in reponse to applied forces.) Since
the user is allowed to rotate the object about any of the
axes during this interaction process, the nodes that
might otherwise be occluded in some view can also be
selected for either force application or as boundary
nodes by merely rotating the object.

As stated earlier, the force-input device is made up
of four spring-loaded potentiometers attached to the
four corners of a pressure plate. Each potentiometer of
the device is connected to a different channel of the
A/D converter on the M6SBHC11EVB board. On each



channel, the analogue voltage output by the poten-
tiometer is converted into a digital number by taking
four samples and averaging them. Four digital numbers
from each channel are then transmitted from a serial
port on the M6BHC11EVB board to an SGI Personal
Iris workstation. The four maximum numbers, one for
each channel, are recorded and used as force input
values for computation as explained previously. By
calibrating the springs in the device with a scale, cor-
rect force scale is computed and multiplied to the force
input values.

The user applies pressure on the pressure plate of
the device; the user is free to press non-uniformly at
the four corners of the pressure plate. As mentioned
before, the resulting four signals may either be inter-
preted as four separate pressure values applied at four
mouse-designated points on a mouse-selected face of
the object, or as denoting the magnitude and direction
of a uniform force applied to some mouse-selected
cluster of nodes.

. TWO-RESOLUTION IMPLEMENTATION
OF FEM

The interactive nature of our research effort requires
that the calculation of the deformations proceed on a
real-time or near real-time basis. That rules out the use
of many of the approaches for deformation caliculations
that have been published during the last several years
in the graphics community. What has worked well for
us is a two-resolution implementation of the time-
honoured finite element method. As will be discussed
here, we first use coarse resolution and a volumetric
version of FEM for calculating the gross displacements
of the nodes of the mesh. Then we use a finer resolu-
tion for the surface layers of the object and a plate-the-
ory based version of FEM to determine the surface
shape more precisely. The plate theory version of FEM
can also be used for applying further forces to the
object for what is known as surface detailing. For those
readers who are not that conversant with FEM, our
two-resolution implementation of FEM is necessitated
by the fact that the usual volumetric FEM requires
processing 3(N)* X 3(N)® matrices for an NXNXN
meshing of an object. Notwithstnading the sparseness
of these matrices, experience tells us that for real-time
calculations N cannot be allowed to become large on
typical laboratory sized workstations.

More specifically, the following steps outline our
basic computational strategy for the calculations of the
deformations:

Step 1: Mesh the stock at a coarse resolution.

Step 2: Set boundary conditions and apply forces to
the object via a force-input device and calcu-
late the gross deformations using volumetric
FEM.

Step 3: Repeat Step 2 until the coarse shape is as
desired (Figure 8).

Step 4: Remesh each group of surfaces of the de -
formed stock at a higher resolution*.

Step 5: Apply further forces as needed and use the
low-resolution volumetric FEM to calculate
the displacements at each of the low-resolu-
tion nodes. And, then, use the plate-theory
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version of FEM to calculate the displacements
at the denser array of points on the face on
which the forces are applied. Use linear inter-
polation for the other faces.

Step 6: Repeat Step 5 until the shape is as desired
(Figure 9).

Step 7: For final surface detailing, assume the object
is made of just the surface nodes. In other
words, the object is now a shell consisting of
many deformed faces. Apply additional forces
as necessary to any desired face and use the
plate-theory based FEM to calculate at high-
resolution the deformations of that face (Fig-
ure 10).

Our two-resolution approach, with volumetric FEM
applied at a coarse resolution and a plate-theory ver-
sion of FEM applied at a finer resolution, raises the
issue of ‘connecting’ the two separate solutions. Fortu-
nately, this is not a real problem because the displace-
ments produced by low-resolution computations are
used as boundary conditions for the plate-theory based
FEM calculations carried out at the finer resolution.

THE OVERALL SYSTEM

As shown in Figure 11, the overall system contains four
modules: mesh generator, matrix builder, solver and dis-
play. The mesh generator accepts parameters from the
user regarding the cell decomposition and then gener-
ates an appropriate mesh. The user is also allowed a
choice of predefined meshes. In this way, we can start -
the deformation from not only the cubic or cylindrical
meshes but also somewhat arbitrary meshes. Then the
user chooses material properties and geometry. Using
this information, the mesh generator and the matrix
builder modules are then fired to build the mesh and
the stiffness matrix of Equation 4. 3D views of the
object and the mesh are then displayed in different
windows. Next, the user mouse-selects nodes for force
application and for boundary conditions. The user then
deforms the object by pressing on the pressure plate of

boundary
condition

low resolution mesh for volumetric FEM

Figure 8 First phase of deformation corresponding to Steps 1-3

*It is important to note here that while the deformation of Step 2
will result in a single planar face deforming into what could be
approximated by many planar faces, the original nodes are still
grouped according to the original face assignments. Therefore, when
we talk about remeshing a face at a higher resolution, we are
referring to one of the original faces.

"N
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boundary condition

force application at low resolution

for volumetric FEM

N

boundary conditions

boundary conditions

same force used at high resolution

for plate theory based FEM

Bl computed by volumetric FEM

® computed by plate theory based FEM

O computed by interpolation

Figure 9 Second phase of deformation corresponding to Steps 4-6. On the left are the low resolution nodes, shown as black squares, whose
displacements are obtained by solving volumetric FEM equations. The displacements at the higher resolution nodes, shown as black dots on the
‘right, are the outputs of the plate-theory based FEM using as boundary conditions the displacements of the low resolution square nodes. At all
" the other nodes, shown as open circles, linear interpolation is used for the calculation of the displacements

the force-input device. The screen dump in Figure 12
shows on the left the main menu available to the user.
The lower right portion of the screen shows an infor-
mation block that contains the values of various and
sundry parameters. Parameter values are set by clicking
on the menu items and choosing an appropriate value
from a window that appears to the left of the informa-
tion block. For example, the view direction is selected
by using the sliders in the pop-up window labelled
‘Moving Direction’.

In keeping with our earlier discussion, the overall
computation proceeds in three phases. The first phase
consists of Steps 1-3 listed earlier, the second phase of
Steps 4-6, and the final phase of Step 7. In the first
phase, the phase in which gross displacements are
calculated using a coarse resolution representation of
the object, the user can apply forces to any node in any
face. In the second phase, while the forces are still
applied to the surface nodes corresponding to coarse

Force Application| ' -

All nodes on these dashed lines are boundary nodes for this front face

Figure 10 Final phase of deformation corresponding to Step 7

nen

resolution, the deformation calculations are carried out
at both the coarse resolution for the entire object and
using plate-theory based FEM for just the face to
which the force was applied, the latter calculation using
as boundary conditions the surface deformations ob-
tained at the coarse level. During this phase, while the
plate-theory based equations are not directly used for
the other faces, at these other faces linear interpola-
tion is used to calculate the deformations at the nodes
corresponding to the finer resolution. Finally, in the
last phase the calculations proceed under the assump-
tion that the object is just a shell consisting of only the
surface nodes. The user is allowed to apply additional
forces to the high-resolution representation for one
face at a time and the deformations of the nodes in
that face computed again by using plate-theory based
FEM.

Each interactive force application is recorded into a
script file that can be used to reproduce the same
object later by executing the file as a batch job. Since
each deformation is a function of the material proper-
ties used, we can create different objects very easily by
just changing the material properties. Each object is
also represented by 3D coordinates for each of the
nodes in the mesh. The boundary representation of the
outside surfaces is computed from these nodal coordi-
nates for the surface nodes. By using bi-cubic spline
interpolation on the surface nodes, the system can
create smoother surface models. When the system ini-
tially creates a mesh, the surface nodes are grouped by
six general viewing directions; top, bottom, left, right,
front and back. This group of six surface nodes is
interpolated separately. For creating smooth surfaces
for polygonal objects, the system can also use natural
bi-cubic splines if supplied with zero 2nd-order deriva-
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Figure 11 Overall flowchart for our system

tives on the boundary edges for each of the surfaces. CONCLUSIONS

For objects that are meant to round all around, spe-
cially computed 2nd-order derivatives at the boundary
edges of the surfaces are used by the interpolation
routine.

After creating deformed objects, if desired, these
boundary representations can be melded together
through Boolean combinations for creating more com-
plex objects (Figure 13). This procedure is very similar
to actual object creation in real world: first make small
parts and then assemble those parts into a larger and
more complex object.

Figure 12 Shown here is a screen dump of our system. The main
menu is in the column on the left. The top-left window displays a 3D
view of the object. The top-right window displays the mesh of the
object. The user can mouse-select nodes from this window. An
information block in the lower-right shows the values of some of the
more important parameters. The block between the main menu and
the information block depends on which item is selected from the
main menu. The block displayed here illustrates the sliders that can
be used for viewing the object from different directions

We demonstrated a computationally feasible approach
for interactive deformation of virtual 3D objects. We
chose the framework of elastic theory to govern the
deformations. This gives the human operator a com-
forting edge of predictability when deciding where to
apply forces to the object so that a desired shape would
ensue. Basing deformations on elastic theory necessi-
tated that our computational approach be centred on
finite element methods. Unfortunately, FEM ‘as pre-
sented in the literature could not be used directly due
to its enormous computational burden for mesh sizes
that would be of interest for what we had in mind. We
therefore developed a two-resolution approach that
combines the volumetric version of FEM using coarse
resolution with a plate-theory based FEM at a higher

Figure 13 Shown here is a sample screen from our interactive solid
modelling system showing how Boolean combinations are composed.
The user can select two objects and conmstruct their Boolean
combinations interactively
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resolution. Linking the two solutions did not present
any difficulties as we used the deformations produced
by the volumetric FEM as boundary conditions for the
plate-theory based deformations of the surface nodes.
For fine surface detailing, we employed a third phase
of computations in which the object is considered to be
a shell consisting of just the surface nodes; now only
the plate-theory based FEM was used for shape effects
at a local level on the surface.

The reader might ask why not just use the plate-the-

ory version of FEM. Although computationally that
would certainly be feasible, it would alter fundamen-
tally the nature of interaction between the system and
the user and it would also prolong the length of time
needed for creating a certain shape. If the object is
considered to be merely a shell, as it will have to be for
the plate-theory based FEM, the deformations pro-
duced by a force applied at any point on the surface
would result in rather localized surface undulations.

For examples of our final results, the reader’s atten-

tion is drawn again to Colour Plates 1-4. The informa-
tion pertaining to the total CPU time needed and the
session time is mentioned in the figure captions.
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