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1. INTRODUCTION

One way in which humans perceive depth is through a process called
binocular stereopsis or stereo vision. Stereo vision uses the images viewed
by each eye to recover the depth information in the scene. A point in the
scene is projected into different locations in each eye, and this difference
is called the disparity. Using geometric relationships between the eyes and
the computed disparity value, the depth of the scene point can be
calculated. Stereo vision, as used in computer vision systems, is similar.

While there are other techniques known for recovering depth, stereo
vision has the ad_\)antage of being a passive technique meaning that an
active sensor is not required. Historically, stereo vision has been used in
many areas including cartography, industrial object recognition, and mo-
bile robot navigation.

The stereo vision process can be summarized by the following steps:
(1) detection of features in each image, (2) matching of features between
the images under certain geometric and other constraints, and (3) calcula-
tion of depth using the disparity values and the geometric parameters of
the imaging configuration. While each of these steps is important in the
stereo vision process, the matching of features is generally thought to be
the most difficult step and can easily become the most time-consuming.

In the sections to come, we hope to inform the reader of the vast work
that has been accomplished in the area of stereo vision. We begin in
Section 2 by discussing the geometry of a camera and how a scene point is
projected into a camera. In Section 3, we describe the imaging configura-
tion used in a stereo vision system and how the difference in the projected
locations of a scene point yields a measurement called disparity. Also, we
discuss how the depth of a point can be calculated from its disparity
measurement. Section 4 contains the main contribution of this chapter.
Here we describe the different stereo vision systems that have been
developed paying particular attention to the issues of feature detection
and matching. To help the reader interpret the differences in many of the
existing stereo vision algorithms, we have classified them into the following
three categories: low-level-feature-based, high-level-feature-based, and ob-
ject-level-feature-based. In Section 5, we discuss resolution issues and the
factors that influence the selection of the various parameters that charac-
terize a stereo vision system. The topic of Section 6 is trinocular stereo
vision, where instead of two cameras, three are used in an attempt to
improve the results obtained by a binocular system. The effects of scene
ilumination are discussed in Section 7. Finally, in the last section, Section
8, the topic of error analysis in stereo vision is discussed.
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Figure 8.1. Illustration of the dependence of the view angle ¢ on the focal length f.

2. OPTICAL CONSIDERATIONS

Before discussing stereo vision itself, we first describe how the imaging
process works in a camera. The process involved in capturing a scene point
in the image is referred to as perspective projection and is mathematically
described by what is called a perspective transform. In this section, we
explain perspective projection and we also discuss a method of camera
calibration that yields the parameters involved in this projection.

2.1. About the Camera Lens

A camera unit consists of two major components: the sensor plane and
the lens. A typical sensor plane is 5.0 X 3.75 c¢m in size. The lens used is
characterized by its focal length or a range of focal lengths if it is a zoom
lens. As shown in Fig. 8.1, for a given sensor (image) plane size, the focal
length f will determine the view angle ¢. This angle determines the
region of the scene in the field of view.

Another characteristic of a camera is its depth of field. The depth of
field is defined as the range over which objects are in focus, meaning that
their details will be sharply captured in the image plane. The depth of
field is usually shallower in extent in the foreground and deeper in the
background. The depth of field depends on the distance o from the lens
center to the point at which the camera is focused and the size of the
aperture as follows:

2HN(m + 1)

’
mZ

Depth of field =
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where

H = permissible diameter of the circle of confusion

N = f-stop (aperture) number of the lens = f/A4, where 4 is the diame-
ter of the aperture

m = magnification = i /o, where i is the distance between the lens
plane and the image plane

A typical value for H is f/1000. Note that o, i and f are related by the
following equation:

Perspective Projection

We model the imaging process through the use of the pinhole model of
a camera, shown in Fig. 8.2. This model treats the camera lens as a
pinhole at a distance of f, the focal length, along the optical axis from the
center of the image plane. The line that is drawn through the image
plane’s center (u,,v,) and is perpendicular to the image plane is referred

Image Plane

/ Camera

U,V P Coordinate Frame
) ’ .
ine of Sight ¥ 8 Optical
A Axis
u, v 4
/!
v d
7 Scene Point
e .
World Coordinate Frame D=P-C

Figure 8.2. Perspective projection using the pinhole model of a camera.
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to as the optical axis. The camera’s 3D location is denoted by the vector C,
which represents the world coordinates of the camera’s focal point. The
camera’s orientation is descriAbed by the three vectors of the camera
coordinate frame denoted by &, 0, and 4. The image plane has two axes
denoted by u and v that are parallel to the & and 0 vectors of the camera
coordinate frame, respectively. Notice that the 4 vector is coincident with
the optical axis.

In terms of ﬁ, 0, and 4, any point on the image plane, (i, v), can be
described in world coordinates as follows:

C — fd + uh + vb.

We derive the perspective transformation equations for a given scene
point P and its corresponding image point (u,v) by comparing the
appropriate similar triangles in Fig. 8.2. The following is obtained:

D-h

D-g’

D-p

D-a&’

| =
| =

where D = P — C is the vector from the focal point to the scene point. An
image is represented in a discrete domain in terms of pixels. Thus we now
rewrite the above equation in terms of pixel coordinates, (i, j), instead of
the continuously valued points (u, v). We know that the following is true
where é6u is the horizontal sampling interval and Sv is the vertical
sampling interval:

u=(i—1i,)éu, v=(j—J,)év.

Note that i, j, is the center position of the image in pixel coordinates.
We can rewrite the perspective transformation equations as follows:

therefore

I J
f D4 f D-a&’ 1)
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where

H="h+i,a, V=i13+jod.
ov

We can rewrite Eq. (1) in matrix form as follows:

#1 [H H, H 0]P | |
_ D, R
Jl={"% v v o and i=—, j=—. (2)
D w w
W a, a, a, 0 z
1
Given D = P — C, Eq. (2) becomes
i H,_ H, H, -C.||% Py
P P
=% v . -Gl i=T"] (3)
a a, a —-C! P, P,
w X ¥ z z 1 1
where
H, H, H,
C'=RC and R=\|V. V, T,
a, a, a,

The pinhole model is accurate for fixed-focal-length cameras with high-
quality lenses. However, this model breaks down when a thick or poor-
quality lens is used. There are other methods of modeling a camera and, if
appropriate, they should be used (25).

2.3. Camera Calibration

As we will see later, the parameters of a camera, C, fz, b, a, f, du, dv,
i,, and j, can be calculated if the matrix T of Eq. (3) is known. In this
section, we will discuss a camera calibration procedure that calculates the
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matrix 7. The matrix T, commonly referred to as the camera calibration
matrix Or perspective transformation matrix, transforms a point in world

coordinates (x,,, y,,, Z,,) to the corresponding point (i, j, ) in the image
plane:
. X,
L T, T, Ty Ty p N
Jm | = Ty, Ty Ty Ty Yo > where i, = W_m s o Im T w—m
Z m
Win Ty Ty Ty Ty in m

(4)

Therefore, we have 12 unknowns (7};’s), which can be calculated if the
camera is shown at least six scene points whose 3D world coordinates are
known and whose corresponding image coordinates can be found. Each of
these correspondences will generate two constraints on 7' as described in
Eq. (1). Thus, a total of 12 equations will be generated. The form of these
equations can be expressed as follows:

C Tux t Tipyy + Tizzy + Ty

Tyx,, + T3y, + T3z, + Ty

i= Ty X + Toy + T3z, + Ty (6)
T Tayx,, + Ty, + Tyz, + Tay

To create a solution from this set of equations we arbitrarily set T, equal
to one (this can be thought of as merely a scaling factor). Therefore, Egs.
(5) and (6) can be rewritten as follows:

Ty + Ty, + Tisz,, + Ty + Ty(—i,x,,)

+ Top( =i ¥m) + Txa(—in2) = iy, (7)
Ty + Tpp¥ + T3z, + Ty + T5i(—JnX,)

+ Too( —Jm¥m) + Tas(—JmZm) =i (8)

Thus, given N correspondences we can write the constraints produced
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from Egs. (7) and (8) in matrix form:

Xy oz 10 0 0 0 —ixy —iy, —iz
0 06 0 0 x y; 2z 1 —jx —¥y ~i,z,
Xy ¥y ozy 10 0 0 0 —iyxy —iyyy —iyzy
0 0 0 0 xy yv zy 1 —jyxy —inVn _jNZN_
T,
.|
Ty h
T J1
T, Iy
X{ Ty | =172 | (9)
Ty
Ty, Iy
T31 ]N
Ty -
_T33._

or, equivalently, by the shorter form

where A is the 2N X 11 matrix shown at the left above, U the vector of
unknowns and B the vector of known pixel coordinates. If N is greater
than 6, we have an overdetermined system of equations, and thus an
optimal solution can be determined. A common optimization goal with
such equations is to find a solution that minimizes the squared error. The
squared error involved is defined as E = [ AU ~ B[ AU — B]. Minimiza-
tion of this error is equivalent to solving the normal equations, ATAU =
ATB. The resulting solution is

U= (A74) ' ATB.
‘This solution exists if 474 is invertible, which is the case when A has

linearly independent columns. Consequently, this stipulates that the world
points (x;, y;, z;) do not lie on a single plane.
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Other techniques for solving for U, including using the QR decomposi-
tions of A and the pseudoinverse method with subsequent nonlinear
optimization, are discussed in Lopez-Abadia and Kak (25).

2.3.1. Calculation of Camera Parameters from T

Using the matrix 7, the camera parameters can be calculated. The
relationships between the elements of T and the parameters can be shown
to be

(f/su)h, +ia,

Ty —C 2 ; (10a)
(f/8u)h, +i,a,
T, = , 10b
12 —C- L/Z\ ( 0 )
(f/du)h, +i,a,
T, = ~C 3 , (10c)
(f/6u)C-h+i,C-a
Ty=~ ¢ 7 : (10d)
(f/dv)v, +j,a,
T, = —c-a_ . (10e)
(f/8v)v, +j,a
Tp = e (10f)
(f/dv)v, +J,a,
Ty = —C -4 , (10g)
(f/6u)C-0+j,C-a
T24 = - —C . c,l\ 5 (10h)
a, .
T; = 7 (10i)
ay .
Ty, = “C-5’ (10)
aZ
T, = 1. (101)

These equations have all been scaled by T}, to account for the assumption
that T, = 1 (Eq. 101). A procedure to recover the parameters from Eqgs.
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(10a-1) was developed by Ganapathy (10). This method actually
solves for C, k, 0, 4, I, Jo» f/06u, and f/6v. If the sampling intervals (Su
and 8v) are known then f can be recovered. These sampling intervals are
typically given by the camera’s manufacturer. In the following derivations,
T, denotes [T;,T;,T;;]. Now, using Egs. (10a—c) the following is obtained:

frou (e Y
T,-T, = + . 11
Using the fact that ﬁ, 0 and @ are mutually orthogonal we can similarly
obtain
f/ev \? o\
T, - T,= + , 12
1= (o) (=] (12
1 2
i0
Ty Ty = m , (14)
Jo

From Eq. (13) we can compute C - 4, and using this and Egs. (14) and
(15), we can compute i, and j,. In addition, using Eqgs. (10i-k), the values
fora,, a,, a,, and @ can be determined.

Now, Egs. (11) and (12) are used to find the magnitudes of f/6u and
f/8v. We will now show how the signs of —C - &, f/8u and f/8v can be
determined. We can set —C - 4 and f/8u to have positive signs, and then
determine the appropriate sign of f/5v. Notice that the signs of f/6u and
f/6v depend on the polarity of the axes of the camera coordinate frame;
that is, the directions in which the row and column numbers of the pixels
(i, j) increase. Given that we have assumed a positive sign for both —C - 4
and f/8u, we will assume for a moment that f/8v is positive. Given that
we know —C - 4, f/éu, i,, j,, a,, a,, a,,and 4, we can determine &, s hy,
and 4, from Egs. (10a), (10b), and (10c), respectively. Similarly, v, , Uy, and
v, can be determined from Eqgs. (10e), (10f), and (10g) respectlvely Also
# can be obtained by using the relationship § = 4 X h. If the two vectors §
obtained by the different methods are the same then the choice of a
positive sign for f/8v was correct otherwise the sign must be reversed.

The components of the vector C can be recovered with the use of Egs.
(10d) and (10h). As mentioned above, the value of f can be calculated if
du or v is known.
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Object
pomt 1

Fixation
point

Figure 8.3. Object point 1 posses divergent disparity d = —0} + — 8} since it lies behind
the fixation point whereas object point 2 has convergent disparity, d = 9% + 0,%.

3. OVERVIEW OF THE STEREO VISION PROCESS

Binocular stereo vision or stereopsis is the process of matching features
in one image with the corresponding features in the other image and then
using these matches to derive the depth information in the scene being
viewed. Figure 8.3 depicts the human stereo vision system. At any one
moment a person’s perception is centered on one point in space, called
the fixation point. More specifically, the fixation point is the intersection of
the two optical axes for the two eyes. Projection of a scene point into each
eye’s retina takes place as described in Section 2. As shown in Fig. 8.3, an
object point will be projected into each eye’s retina in a different position
with respect to the directions of positive and negative movement from the
center point. This leads to the definition of disparity, which is the differ-
ence between these positions. From the disparity the depth of the object
point can be calculated by effectively inverting the projection process for
each eye. When an object point is nearer than the fixation point, the
disparity is called convergent or crossed and will be of a sign opposite to
the disparity value produced by an object point behind the fixation point;
the latter disparity is referred to as the divergent or uncrossed disparity.
The term crossed refers to the fact that the optical axes of the two eyes or
cameras will have to cross or converge further to fixate on the object point.
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Left focal pnt.

Right focal pnt.

Optical
Axis
Figure 8.4. The canonical stereo camera configuration where the point p is projected to
(x;, y) in the left image plane and (x,, y,) in the right-image plane.

In Fig. 8.4, we show a point being projected into the image planes of a
pair of stereo cameras. In this configuration, the optical axes are parallel
and are also perpendicular to the line (baseline b) connecting the center
of the image planes. In addition, the baseline is coincident with the
horizontal (x axis) axis of each image plane, meaning that the two camera
images are row registered; i.e., the nth row of the left image is collinear
with the nth row of the right image. We will henceforth refer to this
configuration as the canonical configuration. While other configurations
can also be used, we will initially assume this one for convenience in our
discussion of depth calculation. In any camera configuration, the disparity
of a projected scene point is defined as the difference between the
projected locations in the two image planes.

It is fairly trivial to compute depth from a disparity measurement given
that a few parameters of the stereo camera sctup are known. In our
canonical camera configuration, shown in Fig. 8.4, notice that the origin of
the world coordinate frame is located on the baseline half-way between
the image centers. From the geometry of the projections, it follows trivially

I A

X x+b/2 x, x—-b/2 y ¥, y
, / / ! Y e
z

where b is the length of the baseline connecting the two image centers and
[ is the focal length of each camera. These equations lead to the following
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expressions for the recovery of the coordinates of the scene point:

L b(x, +x,)/2 ) - b(y, +y,)/2 L bf (17)
(xl——xr) ’ (xl_xr) ’ (xl_xr)

where the disparity is equal to (x, —x,). Because we are using the
canonical camera configuration, a scene point will project into each image
so that the only difference in location is along the x axis. It is interesting
to note that depth (the z component) is inversely proportional to the
disparity and is proportional to both b, the baseline length, and f, the
focal length. In Section 5, we will discuss these relationships and how they
affect the design of an appropriate stereo camera configuration.

The geometry of the camera configuration influences not only how the
depth is calculated but also the efficiency of search for establishing
correspondences between the image features from the two cameras. Many
systems use what is called the epipolar constraint, which states that given
an object point p and its projection in the left image p,, then the
corresponding right image point p, must be located on the corresponding
epipolar line. As shown in Fig. 8.5, the epipolar line is formed by the
intersection of the epipolar plane with the right image plane. The epipolar
plane is defined as the plane that passes through the points p,, C,, and C,.
C,, and C, are the focal points of the left and right images, respectively.
This constraint is a direct result of the geometry of perspective projection.

Epipolar Plane

Optical
Axis

Figure 8.5. Illustration of epipolar plane and line. The corresponding right-image point
can lie anywhere along the epipolar line.
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It is interesting to note that the epipolar lines for a canonical camera
configuration fall on horizontal scan lines of the images.

While a canonical camera configuration is nice for describing how depth
values are calculated, its use may not be feasible for a particular set of
system requirements. For example, the depth of field required in a scene
at a certain depth z can result in the necessary use of a noncanonical
camera configuration. An example of a noncanonical, or convergent,
system is shown in Fig. 8.6. Generally, in a convergent system the cameras
are set up so that the cameras are symmetrically oriented with respect to
the y axis in Fig. 8.6. Here, for any scene point, the epipolar line will not
fall on a horizontal scan line of the image. Therefore, the search space
becomes complicated. In such cases, it is best to reproject the camera
images, or the feature points extracted therefrom, into planes that would
correspond to a canonical configuration, as illustrated in Fig. 8.7. This
reprojection process, referred to as rectification in the literature, described
below for each image, uses the position of the focal points of the cameras
in 3D space (C), and the perspective transformation matrices 7. Both the
matrices and the focal point positions are results of the camera calibration
procedure of Section 2. The goal is to reproject each image plane so that it
is coplanar with the other one and also is parallel to the line that connects
the two camera centers (focal points) in order to obtain epipolar lines that
are parallel to the horizontal axis of each image. In addition, the focal
points of the cameras should not move. The derivation of this method can
be found in Ayache and Hansen (1). We will denote the transformation
matrices of the two cameras as T; and T, and similarly the focal points as
C, and C,.

Optical
Axis

/

Right focal pn:.

Optical
Axis

Figure 8.6. A stereo camera configuration with nonparallel optical axes.
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Figure 8.7. Illustration of the actual camera’s rotation from a canonical camera.

For each point p = (u,v) in image i, p’ = (u',v’) is computed as
follows:

a u a b
b|=Ri|v and u=—, v=—,
W 1 w w
where the following are 3 X 3 matrices
t
[(C, X C,) X Cl]t I, X1y
R, = (C, X Cy)' Xt |,

[(C, = C,) x (C; Cz)]t Iy X1ty

where t; denotes the ith row of the matrix 7,

t

[(Cy X Cy) % Cz]t I, X 13
R, = (Cy X Cy)f Xt
[(Cl - Cz) X (C1 X Cz)]t I X1,

where t, denotes the ith row of the matrix 7,

As a result of this procedure on each image, the newly created images
have epipolar lines that lie on the horizontal scan lines of each image. In
addition, the reprojected images are row registered, meaning that the nth
- row of one image corresponds to the nth row of the other image.
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In the next section, we will discuss in detail various types of stereo vision
algorithms.

4. PARADIGMS FOR STEREOPSIS

4.1.

Historically, research in stereo vision can be described by two paradigms,
which we will refer to as low-level-feature-based stereo vision and high-
level-feature-based stereo vision. Initially, it was believed that recognition of
high-level features such as straight-line edges in each of the two images
must first be accomplished and then binocular matching of these features
would take place. This belief is the foundation of what we call high-level-
feature-based stereo. Then in 1960, Julez (18) performed a series of
random-dot stereogram experiments that revolutionized the field and led
to a new paradigm for modeling stereo vision, which we refer to as
low-level-feature-based stereo. These psychophysical experiments indicated
that humans in fact did not have to produce monocular cues before
binocular fusion could take place. Subsequently, Marr and Poggio (26)
advanced a computational theory, later implemented by
Grimson (11, 12), that explained the observations made by Julez.

Various researchers and different psychophysical experiments have sep-
arately supported each of the paradigms, and as such each paradigm can
be thought of as explaining different aspects of vision. The low-level-fea-
ture-based paradigm leads to a bottom—up procedure where the system
starts with low-level features. On the other hand, the high-level paradigm
results in a top—down or expectation-driven process because high-level
features are extracted and this implies the expectation that these high-level
features exist in the two images of the scene. Most recently, investigators
have been implementing hybrid systems that use both high- and low-level
features (23, 44). This we believe is currently the most robust method of
achieving good stereo vision performance. Following is a detailed discus-
sion of each paradigm in which the issues of feature extraction and
methods of establishing correspondences are emphasized.

Low-Level-Feature-Based Stereo Vision

“Low” and “high” are subjective descriptors in the English language,
and thus there are no set criteria for a feature to be classified as a low- or
high-level feature. Tradition dictates that image features that are semanti-
cally significant, such as long straight lines or curved lines possessing
particular attributes, be called “high-level” and the other semantically
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nonsignificant, such as zero-crossings of the derivatives of the image gray
levels, be called “low-level.” In this section, we will deal with stereo vision
using low-level features. We will start out with a discussion of what is
certainly the most famous algorithm founded on the low-level paradigm,
the Marr—Poggio—Grimson (MPG) algorithm.

4.1.1. The MPG Algorithm
4.1.1.1. Feature Extraction

The Marr—Poggio theory (26) proposes extracting point features by
filtering the images with a set of 12 orientation-specific filters where each
is represented by the difference of two Gaussian functions and then
extracting zero-crossing points. Marr and Hildreth (27) showed that inten-
sity changes occurring at a particular resolution may be detected by
locating such zero-crossing points. In Grimson’s implementation (11, 12)
called the MPG algorithm, a single circularly symmetric Laplacian-of-a-
Gaussian (LOG) filter is used. The use of a single filter is not only more
computationally efficient, but, as discussed in Mayhew and Frisby (30),
there is psychophysical evidence that humans may utilize a single circularly
symmetric filter.

The LOG operator is often referred to as a primal sketch operator
where a primal sketch can be defined as the representation of an image
that makes explicit the information about gray-level variations. As will be
illustrated below, the LOG is a smoothed second derivative of the image
signal. The LOG operator assumes the following form:

VzG(x,y) - fif_ﬁ_z_ — 2) exp(——(xi—_{:—y_i)_ , (18)

a? a?

where V2 is the Laplacian V2 = (82/8x2) + (8%/6y?) and G(x, y) is the
Gaussian function, which acts to low-pass-filter the image:

G 2 exp| —1Y0) 19
xX,y) =oc°exp| ————|.
(%,7) = 0% exp| — = (19)
Figure 8.8(A) shows the Gaussian function and Fig. 8.8(B), the LOG
function. The “width” of the LOG function is the diameter of the circle
formed by the ring of zeros of the function; this width is related to o as
follows: w,,, = V2 0.

Before continuing, let’s observe how a zero-crossing of the second
derivative of a signal can indicate a point of gray-level variation. For ease
of illustration suppose we have the 1D (one-dimensional) gray-level signal

of Fig. 8.9(A). Shown in Figs. 8.9(B) and (C) are the results of taking the
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Figure 8.8. (A) 2D Gaussian function at w,, = 8; (B) corresponding Laplacian-of-a-
Gaussian function (viewed from below the x—y plane).

first and second derivatives. [Actually, the results shown in Figs. 8.9(B) and
(C) are obtained by applying discrete approximation to the derivative
operators to the discrete signal in Fig. 8.9(A)]. Observe that the zero-cross-
ing of Fig. 8.9(C) is located at the center of the gray-level variation of Fig.
8.9(A). A left-to-right transition from a positive to a negative value at the
zero-crossing is referred to as a positive zero-crossing and indicates that
the corresponding gray-level variation is from low to high. Likewise a
negative zero crossing, which is a negative-to-positive transition in values
at the zero-crossing, indicates a gray-level variation from high to low.
-The LOG function takes the second derivative after low-pass filtering
with the Gaussian function, which is characterized by the width w, ),
Changing the width of the LOG function in effect captures gray-level
variations at different scales or resolutions. Figure 8.10 shows a gray-scale
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Figure 8.9. (A) Original 1D discrete signal; (B) first derivative of the signal; (C) second
derivative of the signal.

image and the results of LOG filtering at different widths. As w,,
becomes smaller, finer gray-level variations are retained. The LOG opera-
tor is defined in the continuous domain and, theoretically speaking, it
extends over the entire xy plane. The domain of the operator must
evidently be truncated for computer implementation. It is usual to use
only that piece of the LOG operator that is defined over the 2w, , X 2w,
patch, centered at the origin, of the xy plane. This portion of the LOG
function, appropriately sampled, will be referred to as the LOG kernel.
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Figure 8.10. (A) Original gray-scale image; (B) image convolved with LOG filter at
wyp = 4; (C) extracted zero-crossings for w,p = 4; (D) image convolved with LOG filter at
wyp = 8; (E) extracted zero-crossings for w,,, = 8; (F) images convolved with LOG flter
at w,p = 16; (G) extracted zero-crossings for w,,, = 16. Note that all Zero-crossing images
are displayed by gray-scale values that reflect the strength of the Zero-crossing, i.e., indicate
the difference in the gray values across the zero-crossing point.

After convolution with the LOG kernel, a simple algorithm such as the
following one from Tanaka and Kak (44) may be used to extract the
zero-crossings from the LOG filtered data.

1) Label all of the positive pixels in the LOG filtered
image with +1's

2) Label all of the negative pixels in the LOG filtered
image with 0's

3) The zero-crossing contours are extracted by following
the boundaries of the positive regions, where the
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boundaries are defined as the 4-connectedness neighbor
of negative regions.

During the contour extraction process, label each zero-
crossing as either 'p’ or ‘n’, depending upon whether or
not its immediate-1left neighbor is lesser or greater than
its immediate-right neighbor. If one of the neighbors in
this left-right comparison is a boundary pixel than the

\ ’

zero~crossing is classified as ‘o’ which stands for
‘other’. Notice that ‘p’ denotes a positive zero-crossing
and 'n’ a negative zero-crossing.

If subpixel accuracy is desired, the exact location of a zero-crossing can be
estimated by interpolating between the positive and negative values on
either side of the zero-crossing found above. Subpixel calculation is
feasible only in cases where the zero-crossings are fairly isolated.

As discussed by Grimson (13) there is support that the human visual
system uses data from five different-sized LOG filters where each applica-
tion of a LOG filter is commonly referred to as “passing the image
through a channel of width w,,.” Figure 8.11 illustrates the flow of
control in the MPG algorithm and shows the use of five channels with
differing widths. The larger-width (coarser) channels capture the larger
gray-level variations in the image, whereas the smaller width (finer)
channels capture fine variations. The use of multiple channels will be
explained in the next subsection on matching.

Besides the classification of a zero-crossing as either positive or nega-
tive, a zero-crossing point also has the additional attribute of orientation.
It is theoretically known that the output of a LOG filtered image will have
zero-crossing points that form continuous contours. Thus, the orientation
of a zero-crossing can be defined as the orientation of the locally con-
nected contour of zero-crossings passing through the point in question.
Examination of the zero-crossings that are neighbors of the point in
question can yield an estimate of the orientation using bit patterns as
discussed in Tanaka and Kak (44). Also, the ratio of local Sobel operators
applied to the original gray-scale image can be used to find the orientation
as described in Kak (20).

4.1.1.2. Matching

Before discussing the multichannel matching algorithm of the MPG
process, we will examine how matching is done for one channel indepen-
dently. As discussed before, the right-image correspondent of a left-image
zero-crossing point must lie on the epipolar line of the left image zero-
crossing point in question. If we assume a canonical camera configuration,
the epipolar line will lie on a horizontal scan line (row) of the right image.
Now, assuming that we know an estimate of the average disparity, d_., in

av?
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Figure 8.11. Block diagram of Marr-Poggio~-Grimson algorithm. In each channel box the
image is convolved with a Laplacian-of-a-Gaussian operator of width w, p,.

the image then the following steps are performed to find matches for a
left-image zero-crossing point, p = (x,, y,):

1) Search on the y; scan line of the right image in a 1D
window % w,, centered at the point (x; + d,,, y;) for the
possible candidate zero-crossing matches.

2) If a zero-crossing on the window is of the same sign
type and is of approximately the same orientation as
the left image zero-crossing in question then this
zero-crossing produces a match.

See Fig. 8.12 for step 1 above.
It should be clear to the reader at this point that the choice of w,,
determines the range of disparities that can be calculated in the scene as
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Figure 8.12, A search must take place in the right image to find all of the potential
matching points for a left image point. The search space is shown in the figure to span the
left-image point’s position in the right image by d,,, in both directions.

given by the following equation:
din = dyy — Wyp < disparity < d,, + w,p =d_.. (20)

Given a camera configuration, if the maximum disparity range in the scene
is known, then the w,, that should be used can be calculated. If d,, is not
known, then w,, must be set to equal the maximum absolute disparity
expected in the scene. Note that d,, could be an average over all of the
image or, if available, a function of the location in the image. An
important feature of using the +w,,, search window is that the number of
possible candidates is considerably reduced from the case of searching the
entire scan line. The reader should not be misled into thinking that this
choice of window size is arbitrary. Marr and Poggio (26) have shown that
there is a 95% probability that there will be only one right-image zero-
crossing in a window of size +w,,, /2. However, the choice of +w,, /2 is
too restrictive for practical use since, especially for large window sizes,
adjacent gray-level variations can cause a shift in the location of a
zero-crossing. Figures 8.13(A) and (B) show a pair of stereo images taken
from Tanaka and Kak (44), and Fig. 8.14 shows the graphs that illustrate
the shifts in the locations of zero-crossings along the PQ scan line for each
image in the stereo pair as a function of applying LOG operators with
different widths. Observe that there is more variation in the position of the
left-image zero-crossing, which is due to the presence of a shadow illumi-
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Figure 8.13. Stereo pair of images of a block on a flat background. A PQ scan line is
shown across each image: (A) left image; (B) right image.

nation pattern in the left image that does not exist in the right image. This
difference in illumination patterns between the images is due to the fact
that each camera is at a different viewing position. The size of the search
window is usually increased to +w,, in order to cope with the difficulties
caused by the shifts in the locations of zero-crossings. The disadvantage of
expanding the search window is that the probability of finding only a single
zero-crossing in this window decreases to 50%, and thus the number of
left-image zero-crossings with more than one possible match in the right-
image increases.

When the scene objects are opaque, there can be only one right-image
correspondent for each left-image zero-crossing. The MPG algorithm
assumes this uniqueness constraint. If the reader is interested in tech-
niques that work with transparent objects she is referred to Prazdny (38).

The processing of multiple channels in a coarse to fine sequence using
what is called vergence control allows for a more accurate determination of
the disparity values in the scene. In such multichannel systems, more
low-pass filtering is performed in the coarser channels than in the finer
channels. As a result, small variations in intensity disappear in the coarser
channels so that very accurate disparity calculations are not possible. In
addition, a coarse channel will produce a sparse disparity map. In a finer
channel, the positions of the zero-crossings will be more accurate since not
as much smearing of the intensity variations occurs, and thus a more
accurate disparity calculation can be achieved. However, a correct value of
d,, for the point in question in Eq. (20) is more critical for finer channels
because the search window is much smaller than the one used by a coarser
channel. This leads to the concept of vergence control, which is an
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Figure 8.14. (A) Gray-level variations across line PQ in the left image of Fig. 8.13;
(B) locations of left-image zero-crossings along PQ for different w,p; (C) gray-level varia-
tions across line PQ in the right image of Fig. 8.13; (D) locations of right-image zero-cross-
ings along PQ for different w, .

implementation of the idea that the disparities calculated from the coarser
channels can be used to locally bring regions of the right image into range
for appropriate matching to take place with the left image at the next finer
channel. More specifically, the disparities from the coarser channels will
be used to calculate the average disparity in a neighborhood of the
left-image point in question, and then this is used to shift the search
window [via d,, value of Eq. (20)] to the appropriate position in the right
image for matching to occur.

In Grimson’s implementation, for the w,,, = 9 channel a neighborhood
of size 25 X 25 is examined, and if less than 70% of the points in this
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region have matches, the region is considered to be out of the range for
fusion in this channel. For each region that does not pass this test, a
vergence shift must take place to bring the right-image region into the
range of fusion for this channel. In another implementation, vergence is
used everywhere the coarse channel produces disparity values without first
applying a threshold to the number of matches. The disparity calculated
for each matched pair of zero-crossings is stored in a buffer commonly
called a disparity map, or the 23D sketch. If there exists more than one
match at a zero-crossing point, the average of the corresponding dispari-
ties is stored. Notice that there is no theoretically correct size for the
region that must be examined to determine whether its points are within
the range of fusion for the current channel. However, this size should be a
function of the density of the zero-crossings in the images, which is
dependent on the scene being viewed. For example, in Kak (20) a
neighborhood of 10 X 10 and a threshold of 50% yielded superior results.
It is worth noting that vergence control is akin to humans observing a
scene in an unfocused manner, forming a crude idea of the locations of
the objects in the scene, and then fixating on each object of interest.

Instead of averaging the disparities when multiple matches occur for a
particular left-image zero-crossing, a unique match may still be established
by what Marr and Poggio (26) have termed as the “pulling effect.” The
pulling effect consists of enforcing some form of a continuity constraint
over the disparities in a region surrounding the left-image zero-crossing in
question. The validity of desiring that the disparities be continuous in
value in a local region comes from the assumption that the scene consists
of object points that vary continuously. There is no theoretically correct
choice for the size of the neighborhood to be used for the disambiguation
of multiple matches. However, in Kak (20) a 10 X 10 neighborhood for
256 X 256 images was used successfully. After disambiguation has taken
place, the disparity map is updated.

We will now discuss some important ancillary issues that would be
relevant to a modern-day implementation of the MPG algorithm. The first
one of these deals with the concept of vertical disparity. Psychophysical
experiments have demonstrated that when a pair of stereo images is not
row-registered, human subjects are still able to make the correct matches
when there is only a small amount of vertical difference (disparity) be-
tween the corresponding points. A similar capability may be given to a
computer implementation, which has the additional desired effect of
correcting for small vertical displacements of the images that can result
from less than perfect row registration. This can be accomplished by using
two-dimensional search windows spanning a few rows above and below the
apparent epipolar line.

Another issue is that of figural continuity that can be used to further
constrain the matching between the zero-crossings. Figural continuity is
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Figure 8.15. The match pair (A, B) will pass the figural continuity constraint but the
match pair (A4, B') will fail the figural continuity constraint: (A) left image; (B) right image.

derived from the notion that surfaces vary smoothly in a scene and thus
disparity values should be continuous (30). Its computer implementation is
based on the realization that the contours on a scene surface will project
into each image as continuous contours with approximately the same
shape. Although the exact nature of the implementation varies from
system to system, the common denominator consists of comparing the
shapes, say, by comparing chain codes, of the zero-crossing contours. The
idea is illustrated in Fig. 8.15. In order for the zero-crossing A in the left
image to be considered matchable to the zero-crossing B in the right
image, the figural continuity constraint demands that the shape of the
zero-crossing contour passing through A4 be similar to the shape of the
zero-crossing contour passing through B. A local shape comparison would
reject a match between the point 4 and the point B’ also shown in Fig.
8.15. Mayhew and Frisby (30) have advanced psychophysical evidence to
support the conjecture that the stereopsis in the human visual system also
uses a figural continuity constraint.

It is interesting to note that the region-based disparity continuity con-
straint and the figural continuity constraint play a complementary role in
the fusion process. For those regions of object surfaces that are away from
the boundaries, it makes intuitive sense to use a region-based disparity
constraint for disambiguation. However, such a constraint will serve no
purpose in the vicinity of depth discontinuities. Since figural continuity
constraint is applied only along contours, it is less sensitive to the prob-
lems caused by depth discontinuities. The reader’s attention is also drawn
to a recent contribution by Fleck (9) who has taken scene topology into
account and presented a generalization of the figural continuity constraint.

In addition to the region-based disparity and figural continuity con-
straints, it is also possible to apply what has been called a disparity
gradient constraint (37). Pollard et al. have shown that there is an upper
bound to the maximum difference in the disparities of two potential
matches as a function of their separation in the image space. Therefore,
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potential matches that violate this upper bound can be discarded. The
reader is referred to Baunegg (5) for a recent implementation of the MPG
algorithm that includes an implementation of the disparity gradient con-
straint.

4.1.2. Low-Level Features besides Zero-Crossings

At this point, the reader is probably wondering whether low-level
features besides the zero-crossings of the LOG output can be used for
stereopsis. Mayhew and Frisby (30) claim that, in addition to the zero-
crossings, points located at the peaks of the LOG-filtered images are also
necessary low-level features. They show psychophysical evidence that
humans use these peaks in binocular fusion to perceive the depth in some
scenes. If only LOG zero-crossings are used in such scenes, incorrect
depth perception results. Shown in Fig. 8.16(A) are the images of a stereo
pair. The brightness function along one row of the images is shown in Fig.
8.16(B). The output of the LOG operator for a single channel MPG
implementation is shown in Fig. 8.16(C) for each image. Figure 8.16(D)
shows the brightness values along one row in each of the images in part
(C). Figures 8.16(E) and (F) show the zero crossings and the peaks
detected along a single row of the images in (C). When a human subject is
shown the stereo pair of Fig. 8.16(A), the perceived depth profile is
approximately as shown in Fig. 8.17(A). The depth profile constructed
from just the LOG zero-crossings is presented in Fig. 8.17(B), while the
profile constructed by using just the peaks of the LOG output are shown
in Fig. 8.17(C). Finally, Fig. 8.17(D) shows the depth profile constructed by
using both the LOG zero-crossings and peaks. The similarity of this
computed depth profile to the perceived depth profile of Fig. 8.17(A)
lends credence to the claim of Mayhew and Frisby.

Besides the LOG operator, it is also possible to use other operators to
extract points of high gray-level variance. For example, the Movarec
interest operator has been used and also the Sobel, Roberts, and Prewitt,
along with other first-derivative operators, have been used for edge point
detection [see Rosenfeld and Kak (40) for a general discussion of edge
detection]. Marr and Poggio (28) and Medioni and Nevatia (31) suggest
the use of oriented masks to extract edge points. However, it is the
opinion of the authors that the extraction of zero-crossings from a LOG-
filtered image is in general a good choice because the circular symmetry of
the LOG filter is supported by psychophysical evidence (30) and because
convolution with a single LOG filter is computationally more efficient than
using multiple-oriented filters.
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Figure 8.16. (A) Left and right stereo images; (B) brightness function of each image in (A)
along a single row; (C) resulting images after convolution of filter with images in (A);
(D) brightness function of each image in (C) along a single row; (E) extracted zero-crossings
from each image in (C) along a single row; (F) extracted peaks from each image in (C) along
a single row. From Mayhew and Frisby (30), with permission from the authors and Elsevier

Science Publishers BV.
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Figure 8.17. Depth profiles: (A) perceived depth profile (along a single row); (B) depth
profile constructed from zero-crossings alone; (C) depth profile constructed from peaks
alone; (D) depth profile constructed from zero-crossings and peaks. From Mayhew and
Frisby (30), with permission from the authors and Elsevier Science Publishers BV.
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4.1.3. Other Matching Techniques for Low - Level Features

Other methods have been advanced for solving the correspondence
problem in stereo vision. In what follows, we will briefly review some of
the more prominent of the alternatives to the MPG algorithm.

4.1.3.1. Relaxation-Based Matching

Probablistic relaxation is a process whereby the probability of a candi-
date match is iteratively updated depending on the probabilities of other
neighboring matches. Thus, the disambiguation process in not performed
in one step but in an iterative fashion. As discussed in Marr and Poggio
(29) and Julesz and Chang (19), there is psychophysical evidence that a
cooperative process between local matches occurs, which is used to arrive
at a globally consistent set of matches. In addition, it has been shown that
the closer the disparity values are of two matches in a neighborhood, the
stronger will be their cooperation. The evidence of such cooperative
processes validates the use of relaxation techniques for the disambiguation
of multiple matches.

Most relaxation schemes for disambiguation will iterate a fixed number
of times or until the desired matching results are obtained. An example of
a desired result is that for each set of multiple matches, there exists one
match that has a probability measure greater than the other probability
measures by some fixed threshold. One of the nice features of a relaxation
based method is that the update procedure is a function only of the
probability values in a discrete neighborhood and thus can be imple-
mented in a parallel fashion. In this way, the computation involved in each
iteration can be greatly reduced.

The use of probabilistic relaxation in stereo was first advanced by
Barnard and Thompson (4). They use a region-based disparity continuity
constraint in updating the probabilities of the matches. For such schemes,
the situation where a region encompasses a physical discontinuity will
cause the same difficulty as it did for the original MPG algorithm. In a
more recent contribution, Kim and Aggarwal (21) have proposed a modi-
fication of the Barnard and Thompson algorithm in which both the initial
probabilities of the matches and the update procedures use the disparity
information along the local zero-crossings contour. We will next discuss
this algorithm.

Kim and Aggarwal’s stereo vision algorithm (21) begins with the detec-
tion of the zero-crossings of the LOG-filtered stereo images. Next, initial
matches are set up in the same manner as in the MPG algorithm for a
single channel, and each candidate match is assigned a weight value.
Suppose we are considering the ith zero-crossing in the left image, which
has n candidate matches in the right image. Let w,(d ;) denote the weight
assigned to the match of the ith left-image zero-crossing (x,, y,) and its
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jth candidate (xj, y;) in the right image where d ; is the corresponding
disparity. This weight is a function of how similar the left and right

zero-crossings are in terms of the local orientations of their zero-crossing
contours (w!) and an intensity gradient measure (w?) as follows:

wi(d;) = a*w'(d;) + b*w?(d;), (21)
where a and b are constants and

1
ld_ -
w4) = 175,

1
w(d.) = ,
) = T 6 G = G|
(22)

intensity( x; + 1, y;) — intensity(x, — 1, y,)

Gl(‘xi7 yl) = 2 >
intensity(x; + 1, y;) — intensity(x; — 1, y;)

G, (x;,y;) = .

2

where DP;; is a measure of the difference in orientation of the zero-cross-
ing contours that fall in the 3 X 3 neighborhoods of the zero-crossings of
the left image (x;, y;) and the right image (x 7» ), respectively. This can be
easily measured by looking at the zero-crossing patterns in each 3 X 3
neighborhood. Figure 8.18 shows some examples of possible zero-crossing
patterns that can occur. Assume that D(x, y) and D,(x, y) represent the
position of the first and second zero-crossings found in a counterclockwise
traversal starting in the east direction of a 3 X 3 neighborhood centered at
the zero-crossing (x, y) where the position assignments are shown in Fig.
8.18(I). For example, in Fig. 8.18(A) D, is 3 and D, is 7. The difference in
local orientations is measured as follows:

DP,; = DIFF, + DIFF,,
where

DIFF; =|Dy(x;, v;) = Dy(x;,9))|

DIFF, =|Dy(x;,%:) = Dy(x;, %)



8. Stereo Vision - 2n

"0
il
Ao

Figure 8.18. Parts (A)-(H) are examples of 3 X 3 zero-crossing patterns than can occur.
Part (1) illustrates the position assignmerit given to the neighboring zero-crossing points.

and

If ( DIFF, > 4) then DP,, = |8 — DIFF,].

So far, we have assumed that each neighborhood will have two zero-cross-
ings in it but, if that is not the case then the value of DIFF will be set to
20, which is a number large enough to ensure that the resulting weight w'
will be small, thus indicating that the matched zero-crossings do not have
similar surrounding zero-crossing patterns (i.e., orientations).

Next, initial probability values are assigned to each candidate match as a
function of the weight values that we calculated above as follows:

w.d.
Pio(d-)= () , d; = nomatch,d,,...,d
! w;,(no match) + L} _w,(d,) J

(23)

where w;(no match) is equal to 1 — max[w,(d j)]. Thus, the initial probabil-
ity of the jth candidate match of the ith zero-crossing in the left image is
the weight of this match normalized by the sum of the weights of all the
other candidate matches where there are n such candidates.

The iterative step of the relaxation-based matching procedure updates
the probability of each match with supporting matches that pass a regional
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disparity continuity constraint and a disparity gradient constraint. The
following equations describe the update procedure at the (k + 1)th itera-
tion:

P~k+l(d») — Pik+1(dj)
d Y 5 k+ 1 n pk+1 ’
P* (nomatch) + Z_ P**1(d,)
d; = nomatch,d,,...,d,, (24)
where
Pl*Y(d;) = PH(d)) + cF(PK(d;))P¥ — d P¥(d,)I( Pps) 2)
PF*Y(no match) = P¥(no match) (
and
Pf = max| Pf(d,; — 1), PK(d}), P}(d,; + 1)]
P.S{< = max[Psk(df - 1)’Psk(dj>’Psk(dj + 1)]
F{BA(d)] [P4(d,)] it 0.0<Pd)<05
B [PX(d)](1 - P¥(d;)) if 05 <PK(d;) <10
0 if PF+Pl+0
I(Ppg) = l ’ y

1 if PF+PE=0

Note that the subscripts f and s indicate the two zero-crossings found in
the 3 X 3 neighborhood of the left image zero-crossing in question where
f denotes the first zero-crossing found in the counterclockwise scan of the
neighborhood and s denotes the second zero-crossing found. Therefore,
Pkd ;) is the probability at the kth iteration that the second zero-crossing
in the neighborhood has a match of disparity d;. If there does not exist a
first or second zero-crossing, then probabilities involving them are set to
zero. The third term in Eq. (25) implements a disparity gradient con-
straint. The value I(Pg) is set to 1, which activates a decrease in support,
if both of the two neighboring zero-crossing produce a disparity gradient
with respect to the zero-crossing match in question that is larger than 1.
Because the two neighboring zero-crossings must lie on the same local
contour, this is much like the limit of one in the disparity gradient limit
constraint presented in Pollard et al. (37). The second term of Eq. (25)
increases the support of a match if a neighboring zero-crossing has a
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nonzero probability for disparities similar in value to the disparity of the
match in question. This is what the authors refer to as a “regional”
disparity constraint even though only a single neighboring zero-crossing
point is considered.

4.1.3.2. Dynamic-Programming-Based Matching

Dynamic programming is a problem solving technique that is commonly
applied to problems for which a recursive algorithm would tend to solve
many of the same subproblems over and over again. The basic idea is that
small subproblems are solved and their results are stored. Then larger
subproblems and eventually the problem itself are solved by looking up
the results of the smaller subproblems. Edge-point matching can be solved
using dynamic programming when the problem is viewed as finding an
optimal path through the set of all nodes where a node represents a
possible match of a left-image edge point and a right-image edge point.
Below we discuss an algorithm that is typical of the stereo algorithms that
utilize dynamic programming.

Ohta and Kanade (35) present an algorithm that uses dynamic program-
ming in a two-stage fashion for solving the stereo correspondence prob-
lem. The first stage finds the optimal set of matches along each epipolar
scan line pair. Each such intra-scan line search is interpreted as the
problem of finding a matching path on a two-dimensional (2D) search
plane whose axes are the left and right scan lines being searched. Figure
8.19 illustrates the search space where a vertical line represents an
edge-point position on the left-image scan line and a horizontal line
represents the edge-point position on the right-image scan line. For
convenience the Oth vertical and horizontal lines denote the leftmost pixel
of each scan line; the Nth vertical line of the search space represents the
right most pixel of the left image scan line and the Mth horizontal line
represents the right most pixel of the right image scan line. An intersec-
tion point of a vertical and a horizontal line is referred to as a node and
can be thought of as representing a potential match between the two
corresponding edge points. Now, the goal is to find an optimal path
between the nodes (0, 0) and (N, M) in Fig. 8.19, where every node on this
path represents an accepted match between two edge points.

Finding the optimal path from any node (p,, p,) to the starting node
(0,0) is considered to be a subproblem in their dynamic-programming-
based algorithm. However, to use dynamic programming there must exist
an ordering from smaller to larger subproblems: for the intra—scan line
search problem this is accomplished by the following constraint: When
considering the match of two edge points (p,, p,), the edge points that are
to the left of p; on the left-image scan line and the edge points to the left
of p, on the right-image scan line should have already been processed.
This constraint is referred to as the left-to-right ordering of matches. This
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constraint is valid if the objects and their edge points in the scene retain a
left-to-right ordering in the two stereo images and this will be true for
most scenes.

When we say that we want the optimal path, we mean that the cost of
this path is smaller than all of the other possible paths where the cost of a
path is defined to be the sum of the costs of its primitive paths. A primitive
path is defined as a link directly connecting two nodes. A link such as link
¢ in Fig. 19 represents a continuous interval of pixels along each scan line.
A measure of the cost of such a link is defined as how much the two
intervals {one on the left-image scan line and one of the right-image scan
line) are similar in terms of their gray-level values. Because the intervals
may be of different lengths, the cost is defined in terms of the average
gray-level variance of each interval with respect to the average of their
mean gray-level values as follows:

Suppose a,,. .., a, € left-image interval and
by,...,b, € right-image interval,

t

1{1 X 1
m= ._(— Yoa,+— 3 bi) = average of means,
2\ k5 L=

1{1 X 1 ¢
o? = > (;{— Yoa,—m?+ - Y b - mz) = average of variances wrtm,
i=1 .

ji=1

Cost of link = a?Vk? + t*. (26)

This cost measure will be smaller for smaller values of the variance .o?
that will occur for intervals of similar gray-scale content.

A cost measure of the optimal path from node (N, M) to node (0, 0) is
determined iteratively by adding the cost of each added primitive path to
the already known optimal partial path. To clarify the ordering of nodes
and how this iterative processing occurs, we define the distance of a node
(i, ) as being equal to i + j. At the first iteration, the optimal path to the
node (0,0) from each node that is at a distance of 1 is determined and
these paths will be primitive by definition. At the second iteration the
optimal path to the node (0,0) from each node at a distance of 2 is
determined using the partial optimal paths calculated at the previous
iteration. This iterative process continues until the (N, M) node is reached.
The italicized number next to each node in Fig. 8.19 is the distance from
the node to the node (0, 0).

Although an optimal path of matches for each scan line pair can be
found using the above dynamic programming procedure, the formation of
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Figure 8.19. This illustrates the 2D search plane used in intra—scan line search. Along the
top is a gray-scale profile of a row in the left stereo image, and along the right side is the
gray-scale profile of the corresponding row in the right image. The vertical lines indicate
positions of edge points in the left profile, and similarly, the horizontal lines indicate the
positions of edge points in the right profile. Intersections of these lines denote possible edge
point matches. Italicized numbers at intersection points denote their visitation order in the
intra—scan line search procedure.

these matches does not take into account the figural constraints that must
consider edge points across scan lines. To get around this shortcoming,
Ohta and Kanade propose a dynamic programming approach that inte-
grates intra—scan line search with inter—scan line constraints. Inter—scan
line search is interpreted as searching in a 3D space that is constructed
from stacking the 2D intra—scan line search spaces in order of the scan
line numbers. The goal now is to find an optimal surface of matches
(nodes) that minimizes the intra—scan line costs and at the same time
satisfies inter—scan line consistency. A similar left-to-right ordering of
edge contours of the two images is assumed and the reader is referred to
Ohta and Kanade (35) for details. _

The assumption of left-to-right ordering of edge points or contours in an
image is not valid for scenes where neighboring long thin vertical objects
exist at varying depths. In this case, the projections of these objects may
actually reverse position in a left—right sense between the two camera
images. For example, hold up your two index fingers in front of you at very
different depths but very close in terms of a projected distance along a
horizontal line (see Fig. 8.20). Now, alternate looking through your left eye
and your right eye and you will observe that the fingers project in a
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Figure 8.20. Scene where the reversal of the left-to-right ordering of the objects occurs
between the two stereo images.

different left-right order for each eye. This is one limitation of the
dynamic programming approach that the previous two matching paradigms
do not suffer from.

The advantage of using a dynamic programming approach is that an
optimal set of matches are obtained. The disadvantages are the large
execution time typically needed for dynamic programming algorithms and
the large amount of storage needed for the results of subproblems. In
Ohta and Kanade (36), an attempt is made to reduce the processing time
algorithm by implementing portions of the algorithm in hardware. A
reader interested in another stereo vision system that uses dynamic pro-
gramming is referred to Lloyd (24).

High-Level-Feature-Based Stereo Vision

As the reader should have surmised by now, one of the difficulties with
the use of low-level features for stereo, such as the zero-crossings pro-
duced by an LOG operator, is the problem of disambiguation, meaning
the difficulty associated with deciding which candidate match to accept if
there is more than one contender. This difficulty with disambiguation is
ameliorated when higher-level features are used. In the rest of this
section, we will review four contributions, by Medioni and Nevatia (31),
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Tanaka and Kak (44), Boyer and Kak (6), and Horaud and Skordas (16),
for matching straight line segments in two images. Another contribution
we will discuss after these is by Nasrabadi and Liu (34) on the matching of
curved segments. There is an interesting tradeoff between the use of
relational constraints in the matching process and the computational
efficiency of the algorithms presented in Tanaka and Kak (44) and Medioni
and Nevatia (31), on one hand, and those presented in Boyer and Kak (6),
Horaud and Skordas (16), and Nasrabadi and Liu (34) on the other. In
comparison to Tanaka and Kak (44) and Medioni and Nevatia (31), the
algorithms of Boyer and Kak (6), Horaud and Skordas (16), and Nasrabadi
and Liu (34) have a stronger relational flavor, but at the expense of
decreased computational efficiency. Algorithms that utilize relationships
between features come under the rubrik of structural stereopsis, and those
that do not, we will simply refer to as edge-based stereopsis.

4.2.1. Edge-Based Stereopsis

Medioni and Nevatia (31) propose an ‘iterative method for solving the
correspondence problem using straight line segments as features. These
features are composed of zero-crossing points and each feature is de-
scribed by its endpoints, orientation, and the average gray-level variation
across the line. Initially, all right-image lines that fall in the search space
for a given left image line and have similar attribute values with respect to
the attribute values of the left-image line are considered to be candidates
for matching (and vice versa). The search space is bounded in one
direction by the epipolar lines of the left-image line’s endpoints and in the
perpendicular direction by a span w, which is a function of the maximum
expected disparity in the scene. Every match, (/,, rj), where [, is a left-image
line and r; is a right-image line, is assigned a value, v(/,, rj), that measures
how well the disparity of the other line matches in neighborhoods of both
/; and r; agree with the average disparity d,;, computed along the matched
lines (/,, rj.). This evaluation function implements a region-based disparity
continuity constraint and is set up so that a small value indicates a better
match. The following algorithm describes the iterative scheme presented
in Medioni and Nevatia (31) that removes matches from the initial match
set using the measure v.

M={set of initially constructed matches}
V1, 0(1;)=initially constructed matches for 1,

Vr; O(r;)=initially constructed matches for r;
t=0
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Until (Termination_Condition)

{

Calculate Vt(li, r;) for all (li,rj)EM using only sur-
rounding matching segments in Q.

YV 1I;{ Eliminate any r; €0(1;) that does not form a
‘‘preferred’’ match }

V r;{ Eliminate any 1,€0(r;) that does not form a
‘breferred’’ match }

t++

}
where a match (l;,r;) is “‘preferred’’ if

V r, where (l1;, ry) €M and r, and Ir; overlap then
vi(l,r))<vi(1;, r,)

AND

V 1, where (I,,ry;) €M and 1, and 1; overlap then
Vt(li,rj)<vt(lh,rj)

A simple termination condition requiring the number of iterations ¢ to
be equal to three is used and the matches with the smallest v values are
accepted. An advantage of this method is that more than one preferred
match is allowed for a particular line segment. For example, line segment
; of the left image is allowed the following two matches ([, r;) and (I, r,)
1f r; and r; do not overlap. This capability handles the 51tuat10n where a
hne segment in one image corresponds to more than one line segment in
the other image. A drawback of this system is that the number of
iterations needed to totally disambiguate the match set is unknown and
stopping at a prechosen number will not guarantee that the results yield
the best match set. Another problem that can arise is a result of the
assumption that a region-based disparity constraint is desirable for line
features. Depending on the size of the neighborhood and the type of
objects in the scene this assumption can lead to incorrect results. For
example, consider the situation where neighboring lines are produced
from the physical edges of two nearby objects that are at very different
depths. These lines should produce very different disparities, and they will
incorrectly inhibit each other as valid matches using a regional disparity
constraint. It is our opinion that the use of relational constraints such as
collinearity and adjacency are more appropriate than region-based dispar-
ity constraints for use in segment feature matching systems.
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Tanaka and Kak (44) present a hierarchical stereo algorithm in which
one step of this hierarchy involves straight line feature matching. Like the
previous algorithm, this algorithm also allows an edge in one image to
correspond to multiple edges in the second image. Since the algorithm
does not take into account any relational constraints during the matching
of the line segments, it is computationally efficient. (Note that, unlike the
Nevatia—Medioni algorithm, not taking into account relational constraints
while matching straight line segments does not degrade the performance
of stereo fusion since the edge matching takes place in a larger hierarchi-
cal framework.) An outline of the algorithm follows (it is assumed that the
canonical camera configuration is used and the images are row-registered):

Feature Extraction

1) For each image extract straight line segments using
modified Freeman criteria so that each segment is S
pixels long. Represent a line longer than S pixels
by overlapping segments such that their starting
pixels are spaced s pixels apart. Segments that are
nearly parallel to epipolar lines are removed from
the image.

" Generate Initial Candidate Matches
2) Consider every right image line segment, R, to be a
candidate match for a left image line segment, L,
if:
Start_row(R)= Start_row{L)+t t
Start_col(R)= Start_col(L)i_,,
The value of t is 1. (t accounts for the possible
misregistration of the epipolar lines and perspec-
tive effects that can result from the fact that the
two cameras may not have truly parallel axes.) The
value of d_ ., is the maximum expected disparity.

Disambiguation of Multiple Candidates
3) Evaluate each candidate match (L,R) by comparing the
similarity of their orientations using chain code
descriptions of the line segments. Let L(i) and R(i)
be the i-th element of the chain codes along L and R. L is simi-
lar to R if

V i
i1f(L(i)= =R(1)) {similarity++}
if(L(i)= =R(1i—1)OR (L(i)==R(i+1))
{similarity= similarity + w}
The second test is needed in the case where the
chain codes of diagonal lines are being compared.
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Consider the two following chain codes:
1212121212... and 2121212121... which represent
lines at approximately 45°. These two segments would
be considered to have similar orientations by a hu-
man observer. The second test ensures that the algo-
rithm will also judge them as similar.

4) If similarity is larger than a threshold then accept
the match (L, R) and delete L from left image. If no
match for L, delete L from left image.

5) Go to step 2 until no more edges exist in the left
image.

Disparity Calculation ]
6) For every match (L, R) found, compute the disparity
values along the segments as follows: D(i)=Lg o (i) —
Reo1(1) where col indicates the column value of the
current chain code position.

In the work reported by Tanaka and Kak (44), the length parameter S
was set to 41 and s to 4 pixels; these choices were dictated by empirical -
considerations. Also, the threshold in step 4 was empirically chosen to be
50 pixels. It is assumed in this algorithm that dominant edges, meaning
edges that are long and straight, are few and will in most cases result in
unique matches. The scene lines constructed by fusing long edges then
serve as anchors for testing hypotheses regarding the presence or absence
of planar surfaces in the scene.

For scenes in which the objects have edges far apart in comparison to
d max» this algorithm will yield good results and do so in linear time with
respect to the number of edges in either image. As we will see in the next
two examples, it is possible to construct straight line and contour matching
algorithms that are capable of matching straight line edges even when they
do not obey the d,, separation constraint, but by entailing exponential
computational burden.

4.2.2. Structural Stereopsis

While the previous two approaches enforce constraints on the continuity
of disparity along line segments, the approaches described in this section
use the relationships between the line segments to improve the robustness
of stereopsis. In this way, the structure present in the images is explicitly
used; hence the name structural stereopsis.

Boyer and Kak (6) present a system that seeks to find a mapping
between the set of straight line edge segments in the left image to the set
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of straight line edge segments in the right image that best preserves the
relational constraints between the matched line segments. Each line
segment is described by attributes such as its length in pixels, and mean
orientation of the edge segment. The relationships used between two
segments are as follows: the orientation and the length of the line that
connects the centroids of the two segments in question, and the length of
the line that connects the closest pair of endpoints of the two segments in
question.

In the Boyer-Kak approach, a mapping from the segments in the left
image to those in the right image is constructed by minimizing a cost
function that has two components; the first component measures the
dissimilarity of the attributes of the matched segments, and the second
measures the inconsistency of the relations between the matched seg-
ments. The cost function is formulated using information-theoretic consid-
erations, which means specifying probabilities for the image-to-image
distortion of the attributes of the segments and their relations. Nilmap-
ping, which consists of assigning nils to the segments of the left image,
(necessitated by the fact that in the presence of occlusions there may not
exist a right-image correspondent for a left-image segment), plays an
important role in the discovery of a best-mapping function. The mapping
function itself is constructed by employing a backtracking search; the
structure of the search space is such that each level of the search tree
corresponds to one left-image segment and the different nodes at a level
represent the different possible right-image candidate segments. A princi-
pal shortcoming of the Boyer-Kak approach is that the system is inca-
pable of dealing with the fragmentation of segments. What that means is
that if a left-image segment shows up as two or more disconnected
segments in the right image, this system would be incapable of discovering
that fact. Another problem, which we will not describe here in any detail
for reasons of space limitation, is caused by large depths of field in a
scene. Both these shortcomings of the Boyer—Kak method have been
rectified in a recent contribution by Kosaka and Kak (22).

In Horaud and Skordas (16), structural stereopsis is implemented with a
graph-theoretical approach where straight line edge segments are used as
features. In graph-theoretic approaches, the set of line segments and their
relations in each image are represented by a graph data structure, in
particular the relational attributed variety. In general, a relational at-
tributed graph (RAG) is constructed for each image where a node of the
graph represents a segment and the arcs indicate relationships between
segments of the connected nodes. Each node in the graph has a set of
attributes that describe the structure of the edge segment assigned to the
node. The problem of establishing correspondences between the line
segments in the two images then becomes an exercise in finding the largest
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Figure 8.21. Example relational attributed graphs (RAGs) are constructed for a set of
stereo images: (A) straight line segments found in the left image; (B) straight line segments
found in the right image; (C) RAG of left image; (D) RAG of the right image. Note in (C)
and (D) the meanings of the labels on the links are as follows: j = junction, ! = left-of,
r = right-of, ¢ = collinear. Also note that for every link with label / (or r) there is another
link in the other direction with the label r (or /) that is not drawn.

double-subgraph isomorphism.! Note that “double” subgraph isomorphisms
are required rather than subgraph isomorphisms because a segment in one
image may correspond to more than one segment in the other image as a
result of occlusion, illumination differences, and so on that can occur
between the images and effect the extraction of segments. Another reason
for stating the problem as a double-subgraph isomorphism problem is that
a relation between a particular pair of segments in one image may be
different from the relation for the corresponding pair of segments in the
other image. For example, left-to-right ordering is a common relationship
used, and, as illustrated by Fig. 8.20, a reversal of this ordering can occur
for thin vertical objects that are spatially close in the image domain but
separated by a large depth.

Horaud and Skordas (16) use adjacency, collinearity, and intersection
for the relations. Adjacency is indicated by whether a line segment is
directly adjacent to another segment in a left or right sense. For a given
line segment, these left and right adjacencies are detected by scanning in a
direction perpendicular to the orientation of the segment and recording

'As stated in Ballard and Brown (3), the problem of solving “double” subgraph isomor-
phisms consists of finding all isomorphisms between the subgraphs of a graph and the
subgraphs of the other graphs.
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hits with other line segments. Collinearity is simply a measure that indi-
cates that two line features lie on the same line in the image plane.
Finally, an intersection point (junction) occurs when two line segments
intersect. Figures 8.21(A) and (B) show, for the purpose of illustration, a
schematic of line segments that could be the output of an edge detector
applied to the two images of a stereo pair. The arrowheads on the line
segments indicate the orientation of the underlying edges with respect to
the black-to-white transitions. Figures 8.21(C) and (D) are the correspond-
ing relational attributed graphs. As explained in the legend, the labels
correspond to the different relations.

Horaud and Skordas (16) solve the problem of finding the largest
double-subgraph isomorphism by using what they call a correspondence
graph (GC). A CG has a node for every feasible match between the lines
of the left and right images. Arcs are connected between two nodes in the
CG if they are compatible, meaning that all the relations concerning the
lines in question in the RAGs match or at least do not dispute each other.
For example, say we have two nodes of the CG called n, = (I, r,) and
n, = (l,, ry) then the two nodes are compatible if the relations (arcs in
RAG) between /; and /, exist between r, and r;, or at least do not conflict
and vice versa. Using the CG derived from a stereo pair of images, the
solution to the correspondence problem is to find the “best” maximal
clique.?

As Horaud and Skordas discuss, there may be more than one largest
maximal clique, and in practice even if there is a unique largest maximal
clique, it may not result in the best stereo matching. Thus, as presented
below, a benefit value is calculated for each node and the benefit of a
clique is the sum of the benefits of its nodes. Consequently, the “best”
maximal clique is defined as the maximal clique with the largest benefit.
The following steps outline the process of matching line features in their
system:

1) Create nodes of CG
for every 1, a line of the left image, find all of
the possible lines of right image, r, that can
match given the epipolar line, position and orien-
tation constraints. The search space for finding
candidate lines in right image is bounded by the
epipolar lines of. the endpoints of line 1. The po-
sition constraint delimits the span along the
epipolar line that a valid candidate right line
must be in and this is a function of the field of

A “clique” is a completely connected subgraph; each node is connected to all the other
~ nodes of the subgraph. A maximal clique is a clique that cannot be extended to include any
other nodes of the graph.
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views of the cameras (no expected disparity infor-
mation is used). The orientation constraint re-
quires that two matching lines be within 30° of
each other in orientation.

2) For each node=(l,r)€CG calculate its benefit:

min(C,,C,) min(L,,L,)
Benefit (node)=1/4 rE 1

max(C;,C,.) max(L;,L,)

min(®,,0,) min(N,,N,)
+ +
max(®ll®r) maX(NllNr)

where C;=contrast across line i.
L;=length of line i.
®,=orientation of line 1i.
N,=# of relations line i has with other lines of
same image.

3) Remove nodes with Benefit(node)<Threshold
Note that Threshold is empirically chosen.

4) Place arcs between nodes in CG that are compatible.
5) Find maximal cliques in CG.

6) Take maximal cligque with max Benefit(cligque)
where Benefit(clique)= 2: Benefit (node)

nodes € clique

An advantage of this system is that it allows one edge in an image to
match to two or more edges in the other image. The major drawback of
this algorithm is that finding all of the maximal cliques (step 5) in the CG
is an NP-hard problem, and as such this step will be of exponential time
complexity in terms of the number of nodes in the CG. For one example
of an office scene it took 26 minutes to run the line correspondence
algorithm on a 11/780 VAX. The authors attempt to reduce the actual
time spent in finding the maximal cliques by removing nodes in the CG
that have a low benefit value (step 3). There are also other heuristic
methods that possess smaller time complexities, however at the risk of not
finding all of the maximal cliques and therefore possibly not finding the
best stereo match.

Nasrabadi and Liu (34) present an approach, similar to the one pro-
posed by Horaud and Skordas (16), in which curve segments consisting of
zero-crossing points are used as features. Like the Horaud-Skordas algo-
rithm, this algorithm forms a correspondence graph and finds its maximal
cliques. Each curve segment is described by its centroid location, length,
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and Hough transform. The Hough transform is used here to describe the
shape of a curve segment. After a RAG is formed for each image a CG is
constructed, but only the distance between the curve segments’ centroids
is considered to determine whether two nodes of a CG are compatible.
Unlike the previous system, this system simply chooses the largest maximal
clique. Nasrabadi and Liu have implemented a coarse-to-fine processing
strategy using curve segments derived from zero-crossing contours gener-
ated by LOG operators at different scales. As was the case in the MPG
algorithm, the use of LOG operators also allows the authors to implement
vergence control.

Nasrabadi and Liu argue that using curve segments is better than
straight line segments since the extraction of straight lines via a piecewise
segmentation process can introduce problems with edge localization. They
extract semantically significant curve segments through a curve tracing
routine that traces only zero-crossings that are above a chosen gradient
threshold. Tracing is iteratively started at a maximum gradient zero-cross-
ing point and the current curve is ended when the next zero-crossing in
the trace is at an orientation® 10° different from the orientation of the
previously visited zero-crossing or if it has a gradient magnitude that is
below a certain threshold. The lengths of the extracted zero-crossings will
be a function of the gradient and orientation thresholds chosen. The
larger curve segments generally correspond to the physical edges of the
objects in the scene or significant (nonrandom) texture patterns on the
objects and therefore small curve segments are ignored.

In the algorithm reported in Nasrabadi and Liu (34), the disparities
along the matching curve segments are calculated after the largest maxi-
mal clique is found. The system attempts to resolve the ambiguity that
arises when part of a matching curve is occluded or when some of the
pixels on a curve are along the epipolar line by assigning the disparity of
these pixels to be equal to the disparity at the curve segment’s centroid.

4.3. Incorporation of Object-Level Information in Stereo Vision

There are two distinctive ways in which object-level information is used
in stereo vision systems. The first is in the use of very high level features in
matching such as vertices, junctions, and surfaces. The advantage of using
ultra-high-level features is that the probability of mismatches occurring is
very low because of the sparseness of these features in the scene. A
second use of object-level information is in the area of surface reconstruc-
tion where knowledge of the surface characteristics can be used to correct

*“Orientation” here refers to the direction of the maximum gray-level variation at the
zero-crossing point in question.
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mismatches. Surface reconstruction techniques are usually applied to
dense disparity maps that are produced from the matching of lower-level
features. Below we describe a few systems that illustrate each of the ways
in which object-level information is used.

4.3.1. Object-Derived High- Level Features

In the preceding sections, the goal of the stereo system has been to
recover the depth information of any type of scene. However, in this
section we relax this goal and now only wish to recover the depth
information of a particular type of scene, namely, one populated with
particular objects. In this sense these stereo vision systems will be
domain-dependent and will most probably not function well with a scene
from a different type of domain. We will describe two systems that differ
in the breadth of their domains. The first system is more specific in that it
is only for scenes of a particular set of objects. The importance of
discussing such a system is that it is very fast and tuned to the eventual
recognition of the objects in question, which is often the goal of many
industrial projects. The reader is also referred to Mohan and Nevatia (33),
which briefly discusses a stereo system that matches ribbons where a
ribbon is a surface-like feature that is extracted by the system using
perceptual organization techniques. The system of Mohan and Nevatia
(33) differs from the two systems presented in this section mainly in that it
uses perceptual organization techniques for feature extraction.

Currently, we are working on a stereo vision system for the recognition
and pose estimation of a set of industrial objects. There are four unique
types of objects, three of which are shown in Fig. 8.22(A). Because our
goal is very specific, we are able to adopt an object /domain-dependent
approach where we use object-derived high-level features for stereo
matching. The system takes on a hierarchical flavor in the sense that first
objects are monocularly recognized, then these objects are matched, then
the corners of each pair of matched objects are matchedz and these are
used to create a sparse disparity map. “Corners” are defined as the
physical vertices of the objects. Matching the objects takes place first
because there are only a few objects in the scene and the chance of
mismatching is very low. Subsequently, the matching of corners can take
place using constraints from the previous object-level matching. More
specifically, corners of a particular left-image object must match with
corners of the matching right-image object. This method works well for the
type of scenes we are dealing with and is much faster than a low-level-fea-
ture-based stereo vision algorithm. Figure 8.23 illustrates the processing
steps of this system.

Objects are monocularly detected through the use of their boundary
edges. These edges are detected via Sobel edge detection and thinning
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A

Figure 8.22. (A), (B) Original gray-scale stereo image pair; (C), (D) thresholded images
convolved with Sobel operator; (E), (F) results after thinning edges (Figure continues.)

and a skeleton tracing procedure. First, the stereo pair of images are
thresholded in order to remove the background noise. The results of
convolving the thresholded images with a Sobel operator are shown in
Figs. 8.22(C) and (D), and the output after thinning is shown in Figs.
8.22(E) and (F). The resulting images are passed to a skeleton tracing
procedure that removes skeletons that do not correspond to object bound-
ary edges. During skeleton tracing, the corners and their connecting linear
boundary edges are found where corners are defined to be points of high
curvature. Objects can be monocularly recognized from the information
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Figure 8.22. (Continued) (G), (H) results after skeleton tracing; (I), (J) corners found in
the images are marked by cross symbol, and the object centers are also marked.

gleaned during this processing step. At this point, each detected object has
three skeletons associated with it. The largest skeleton corresponds to the
object’s outside boundary edges, and the two smaller skeletons are the
bounding edges of the two grasping holes inside of the object. Figures
8.22(I) and (J) show the corners that are detected for our example.

Because the detected objects are large with respect to the image size,
both left-to-right and top-to-bottom ordering of the objects can be used to
make object matches between the images. Actually, the objects can be
matched with respect to their centers, where a “center” is defined as the
centroid point of the pixels in the object’s outside bounding edges. First,
all of the object center points must be reprojected so that the points lie in
image planes of the canonical camera configuration (see Section 3 for
discussion on reprojection). Now, a search window can be set up in the
right image surrounding each object center point in the left image with a
+d .« span along the horizontal direction and a +¢ span in the vertical
direction. As before, d_,, is the maximum expected disparity, and a small
value of ¢ such as 1 accounts for errors in the reprojection process. In our
scenes, there is only one candidate right-image object center in this
window. If this candidate is of the same object type, then the two objects
are considered to be matched.
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Hierarchical Matching
objects in left image -------- objects in right image
skeletons in left image ------- skeletons in right image

corners in left image ------- corners in right image

reprojection of matching feature point

Depth Calculation

Figure 8.23. Block diagram illustrating the processing steps in the high-level-feature-based
stereo vision algorithm for the eventual recognition of a set of industrial parts.

Each object has at most three skeletons associated with it, and each of
these skeletons can have at most four corners. Before corner matching can
occur, matching of the set of skeletons of each previously found pair of
matched objects must take place. It is very obvious that the two largest
skeletons that are the outside bounding edges of the matched objects must
match. Therefore, only the two inside skeletons of each object remain to
be matched, and this is easily accomplished with the use of a vector
comparison test that maintains the left-to-right and top-to-bottom order-
ing that exists for these skeletons. Vectors are created from the center of
each inside skeleton to the center of its object. Then a skeleton of the
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left-image object will match to the skeleton of the corresponding right-
image object whose vector is most similar in orientation. Because of the
very large difference in the orientation of these vectors, this scheme
efficiently captures the left-to-right and top-to-bottom ordering of the
inside skeletons. A similar matching scheme for the corners of each pair
of matched skeletons takes place, but this time the vectors are with respect
to the centers of the skeletons that contain them.

Lim and Binford (23) present a system that is in some ways similar to
the previous one in that it uses a hierarchy of scene features. While it is
true that the set of objects for which this system is geared is larger, we
believe that the system will perform best for polygonal objects that do not
occlude one another in the scene. The high-level features used are bodies,
surfaces, curves, junctions, and edgels. A “body” is a set of connected
surfaces in the scene and a surface is described by a set of boundary
curves that are connected at junction points. These curves are listed in
order of a directional traversal of the surface’s boundary. “Surfaces” can
be either open or closed. A closed surface is a surface whose boundary
curves form a closed loop. An open surface does not form such a loop and
can occur as a result of an occluding surface or breaks in the curves due to
noisy data or illumination patterns. “Curves” are either straight line or
conic edge segments and junctions are points where curves intersect.
Finally “edgels” are loosely defined here as short linear edge segments.

Monocular detection of the features in each image begins with the
detection of edgels, where an edgel is characterized by its direction and
position. Next, edgels are grouped into ordered sets that correspond to
extended edges and curves are fit to these sets where a curve can be either
a straight line or a conic section. Junctions are detected in the image as
points where more than two curves intersect; curves are broken up at
junctions. Now a curve tracing procedure takes place to find the surfaces.
Unlike the previous system, this tracing routine is not fine-tuned to any
particular set of objects, and thus surfaces can be found that are actually a
composite of more than one surface or only part of a surface in the scene.
Finally, bodies are detected as groups of surfaces that share edges, and as
such, a body may consist of more than one object in the scene.

Matching occurs in a top—down fashion in the following order: bodies,
surfaces, curves, junctions. The higher-levels of matching produce con-
straints for the lower levels that greatly reduce the number of match
candidates. The matching process begins by matching bodies according to
how similar they are in terms of the number of surfaces they contain, the
order of these surfaces, and the relative positions of the bodies in each
image. For each pair of matched bodies, their surfaces are matched on the
basis of characteristics such as the number of junctions and the relative
positions of the surfaces in the body. Finally, for each surface match, their
curves and junctions are matched according to ordering constraints. Dis-
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parity and depth values are computed at the matched curves and junc-
tions.

The authors mention that a subsequent step of surface interpolation
could take place on the sparse disparity map. However, this can happen
only if each surface can be recognized from its boundary curves along with
its pose, as was accomplished by the system described previously.

4.3.2. Surface Reconstruction Techniques in Stereo Vision

Surface reconstruction can be a process that is totally independent from
the matching process in stereo vision and takes place after an unambigu-
ous disparity or depth map has been produced. More recently, surface
reconstruction has been incorporated into the feature matching stage of
stereo vision systems and used to disambiguate multiple matches. This
integration of surface reconstruction obviously assumes that some types of
surfaces exist in the scene and as such utilizes object-level information. In
this section, we describe two systems that use surface reconstruction to
perform disambigution of multiple matches. The main difference between
the two systems lies in the fact that in the first, surface reconstruction
takes place only in selected local regions, whereas in the second, surface
reconstruction is attempted everywhere.

Surface reconstruction, also called surface fitting and surface interpola-
tion, is the process of finding the surface that most of the 3D points in
question will lie on or close to. In stereo vision systems, these 3D points
are either the points of the disparity map or its corresponding depth map.
It is important to note that fitting a particular type of surface to a set of
depth points is equivalent to fitting the same type of surface to the
corresponding set of disparity points. Commonly, planar or quadratic
surfaces, in mathematical terms called the first- and second-order surfaces,
are fit to the data. Higher-order surfaces are not used because accurate
fitting requires a larger density of data points, which seldom is available.

Tanaka and Kak (44) present a hierarchical stereo vision algorithm that,
unlike the systems described in Section 4.3.1, produces a dense disparity
map. The following is a list of the processing steps of this system in order
of their execution: (1) straight line matching, (2) application of geometric
constraints, (3) curve segment matching, and (4) zero-crossing point match-
ing. The denser disparity map is a result of the second processing step,
which we will discuss below, and the last step, where an MPG-type
algorithm is invoked for pixels in the disparity map that are not assigned
values from the previous three steps. We will now discuss the step of the
algorithm that deals with the application of geometric constraints. The
algorithm assumes that the surfaces in the scene are all planar and the
orientation of each planar surface is one of a known set of orientations.
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Evidently, this assumption severely limits any practical usefulness of the
algorithm, but the algorithm is of historical interest since it is one of the
first stereo algorithms that imposes top—down constraints on the stereo
fusion process. Here is a description of the algorithm:

For each #&€ {Finite Set of Assumed Orientations}
1) Grow/Fit a 16 pixel wide region to a plane of ori-
entation 6 that contains the pair of matched straight
lines in question.

2) The goodness of the fit is evaluated by matching
the zero-crossings in this 16 pixel region from the
finest channel. The disparity values corresponding to
the planar strip produced in step 1 are used to center
the search windows used in matching. The number of
zero-crossing matches is recorded.

The planar strip (#) that leads to the largest number of
zero-crossing matches is regarded as the best fit and the
corresponding disparity values are stored in the final dis-
parity map of the scene.

Hoff and Ahuja (15) describe a system that integrates low-level-feature-
based matching with surface reconstruction at every point in the image.
An MPG-type algorithm is used to produce zero-crossing matches at three
different resolutions and a coarse-to-fine matching strategy is used. All of
the multiple zero-crossing matches produced are kept, and surface fitting
is used for disambiguation where the points that lie on or closest to the
surface are kept. Both planar and quadratic surfaces are locally fit to the
data. In addition, a final global surface fitting operation takes place after
occluding and ridge edges in the scene have been detected.

First, a sparse grid is created at a spacing of w,,, which is the size of
the LOG operator used to find the zero-crossing points. A planar surface
is fit to a circular patch centered at each grid point with a radius in the
range of w,, to 2w, . The two best fit planes are kept. A fit is accepted
only if the number of unmatchable points in the region is less than an
empirically determined threshold and if the sum of the squared errors is
less than another empirically determined threshold. The squared error at
a point is the square of the distance from the point to the surface. Points
whose distances to the plane being fit are greater than what is commonly
called an “outlier distance” are considered unmatchable and are not
included in the sum of the squared errors.

One way in which a planar surface can be fit to a set of data points is
through the use of a least-squares method where all of the combinations
of points are tried for each surface fitting. The data set that has a planar
patch fit with the minimum squared error and passes the threshold tests
mentioned above is considered as the best-fitting plane. The total number
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of these combinations is exponential in the number of ambiguous points.
However, the system in Hoff and Ahuja (15) avoids this exponential
complexity by using a Hough transform of the data points as the surface
fitting procedure. A surface can be described by a set of parameters, as in
z =ax + by + ¢ for a planar surface. The 3D planar parameter space,
also called the Hough space, spanned by the parameters a, b, and c, is
discretized and a Hough transform is computed for all of the data points.
The maximum point in the Hough accumulator space yields the parame-
ters of the best-fitting plane. The amount of time it takes to find the best
planar fit using the Hough transform method is a function of the size of
the 3D Hough space, specifically, the coarseness of the discretization of
the parameters used. While using this Hough technique will decrease the
time spent in finding the best-fitting plane, it is also true that it is at the
cost of finding the best-fitting plane from only a discrete set of planes.

Next, for each grid point, a quadratic patch is fit to the points of the
planar patches at this grid point and the planar patches of neighboring
grid points. Therefore, the quadratic patches are fit to a larger local region
of the scene; this is acceptable since the previous fittings of planar patches
would have removed many of the ambiguous matches. This time a least-
squares method is used, but only the two most compatible sets of the
planes covering this larger region are used as input to the quadratic patch
fitting procedure. Two neighboring planar patches are compatible if the
differences in depth and orientation between them are less than empiri-
cally chosen thresholds. Only the two most compatible sets of planes in the
region are used, and consequently the exponential time complexity that
can occur for surface fitting is avoided. The quadratic patch with the
minimum squared error that also is less than an empirically determined
threshold is taken as the best-fitting quadratic patch. If the quadratic
patch with the minimum squared error does not pass the threshold test,
then no patch is fit to the corresponding grid point.

After quadratic fitting, all of the ambiguous matches are resolved.
Before a final global surface interpolation can take place, the occluding
and ridge contours in the scene must be detected. This is performed by
fitting bipartite circular planar patches to each grid point. Bipartite circu-
lar planar patches are formed by dividing a circular patch into two halves
by cutting along a diameter at a particular orientation. If the two planes
differ in depth or orientation by more than some threshold, then an
occluding or ridge edge may exist along the split circular patch’s diameter.
The final surface interpolation follows the calculation of a weighted
average of the surrounding quadratic surface points at each grid point
where the weights reflect the distance from the surrounding surface point
to the center grid point in question. This interpolation step does not cross
edges when averaging in the surrounding surface points.

The main disadvantage of using surface reconstruction techniques at
every point in the scene is the computational expense. For example, for
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the finest LOG channel for a 512 X 512 pixel image, it took this system
approximately 3 hours to perform planar patch fitting on a Sun 3 /160
workstation. The authors suggest special dedicated hardware to implement
the Hough transform as a way of significantly improving this time and
parallel processing techniques where each processor can be assigned the
task of a single planar patch fitting. In addition, this system also runs the
risk of spending too much time performing surface fitting in areas where
no surfaces exist or where background surfaces exist which may be
unimportant to the subsequent recognition tasks. As suggested by the
Tanaka—Kak system (44), it may be desirable to perform surface fitting
only over local areas that are most likely to contain semantically signifi-
cant object surfaces such as the areas surrounding straight line features.

5. DEPTH RESOLUTION AND DESIGN OF STEREO CAMERA CONFIGURATION

The process of designing a stereo camera configuration is a function of
many considerations such as the desired depth resolution, the typical
scene depths, and the portion of the scene you wish to capture. The
parameters of a stereo camera configuration are the baseline length b, the
focal length of the cameras f, the angle of the optical axes, and the image
sampling intervals in the images. We assume that the cameras have the
same focal length and sampling intervals simply because there is no reason
for these parameters to differ, and if they did, it would complicate feature
extraction and matching. In the following paragraphs, we will attempt to
elucidate the interdependencies of the system parameters with the task-
dependent considerations.

In Section 3, we briefly mentioned two types of configurations: the
canonical and convergent camera configurations shown in Figs. 8.4 and
8.6, respectively. In the canonical configuration, the optical axes are
parallel, whereas in the convergent configuration they are not parallel.
Before feature matching can occur for the convergent case, a reprojection
process must take place as described in Section 3. This reprojection
process utilizes estimates of the cameras’ positions and orientations and
because these are only estimates, errors can be introduced. Therefore,
whenever possible the canonical configuration should be used. Unfortu-
nately, for given b and f values chosen to achieve a desired depth
resolution, the cameras may be spaced too far apart to view enough of the
same portion of the scene for the particular task in question. In this case,
a convergent camera system must be utilized.

A design criterion, which often is the most important, is the desired
depth resolution. The depth at a point is defined as the z component of
the (x, y, z) value recovered from the corresponding stereo point match as
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described by Eq. (17). The depth resolution, which we will denote as Az,
is defined as the smallest detectable change in depth and is a function of
the smallest detectable change in disparity. The smallest displacement of a
point in an image is one pixel unless subpixel detection of points is
performed. Therefore, the smallest change in disparity, which we denote
as Ad, is equal to Su, the spacing between pixels, or in the case of
subpixel calculations, an appropriate fraction of du. Using Eq. (17), we
can solve for Ad as follows, where d = disparity:

b b
d=—f, d+ Ad = f ,

z z+ Az

b b

Ad = ! ——f,

z+ Az z

Ad(z + Az)z = bfz — bf(z + Az),

N 27
“T ot Adz (27)

Observe that the depth resolution is inversely proportional to b and f
and directly proportional to the square of the distance to the scene. This
last relationship leads to the fact that for a given b and f the depth values
computed for objects that are closer are more accurate than for objects
that are farther away. Another way to think about this is that closer object
points will project farther away from the optical axis of each camera and
thus produce a larger disparity (see Fig. 8.3). Therefore, it is not possible
to calculate the depth of distant object points whose disparities are less
than the smallest detectable disparity. Supposedly, this phenomenon is
also responsible for the observation that, through the mechanism of
binocular fusion, humans cannot perceive depth beyond approximately 60
m. Fortunately, in a camera-based system, we can set the b and f
parameters so that appropriate disparity resolution is achieved for the
perception of any depth; of course, some values of » and f may not be

practically feasible. Given that the maximum depth value z_,  is known,
the following equation describes the bounds on Az:
_Z[%IBX Au Zrznax Au
<Az < 77— (28)
bf + z . Au bf — z,.., Au

If either the baseline length b or the focal length f is increased, then
the two images will view less of the same portion of the scene. When
relatively large objects populate the scene and there is a task-specific
requirement that the objects be all viewable from both cameras, then
bounds must be placed on how large b and f are allowed to be. The
values of these two parameters are also limited by the extent of occlusion
acceptable to the system.
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In addition to depth resolution, there is also a similar notion of
resolution in the x and y directions. However, the constraints placed on
the parameters of the stereo configuration are usually not as strict as those
created by the desired depth resolution. This is especially true when the
x,y span of the objects is smaller than the depth of the objects.

Dhond and Aggarwal (8) derive a similar expression for Az for the
convergent camera configuration where the second camera’s optical axis is
rotated by a pan angle ¢ with respect to the optical axis of the first
camera. This expression is as follows:

Az 5
Lo = cos™(9 — B)[4 + B],
where
b — 2
B = tan‘l{y}, A= z—f and

B_bl_ZLle
_f{ bf]

Note that in this equation u, indicates the horizontal coordinate of the
point in image 1 for a particular match pair. Therefore, Az for the
convergent camera setup is a function of the coordinates of the pixels used
in a matched pair, besides, of course, being a function of z, b, f, and ¢. In
other words, for a given set of z, b, f, and ¢ values, Az will vary
according to the position of the edge point in image 1 that is being
matched.

6. TRINOCULAR STEREO VISION

Trinocular stereo vision is a relatively new technique for depth recovery.
It is similar in many ways to binocular stereo vision except for the fact that
now three cameras are used. The addition of the third camera helps to
reduce the ill effects of occlusion and adds additional epipolar constraints
that can be used to produce more robust disparity calculations. More
specifically, a third image may capture regions in the scene visible in image
1 but occluded in image 2, or vice versa. Also, the additional epipolar
constraints, discussed below, can be used to reject erroneous matches that
might otherwise be accepted by a binocular stereo algorithm.

Figure 8.24 illustrates a trinocular camera configuration. Notice that the
scene point P is projected into each of the three image planes at p,, p,,
and ps, respectively. Now, given the point p;, an epipolar line can be
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Figure 8.24. Illustration of a trinocular camera configuration.

drawn in each of the other image planes; these lines are denoted by L,
and Lj, for the second and third images, respectively. Given an initial
match between p; and p,, the epipolar constraints dictate that the
corresponding point in the third image should be located at the intersec- .
tion of the epipolar lines, L, and L,,. This extra set of epipolar
constraints can be used to find the point p, in the third image. If such a
point is found in the third image and the local properties of this point are
similar to those observed at p, and p,, then ( Dys P2, P3) can be accepted
as a triplet of candidate matching points.

An initially matched pair p,, p, is selected in a manner similar to how
matched pairs are formed for regular binocular stereo, that is, by using
local properties to establish similarity between the two points. If two
points p, and p, are strongly similar, one can go ahead and accept them
for disparity calculations. But, if for point p, there exist multiple candi-
dates in the second image, searching in the third image for the corre-
sponding point p, with similar properties can be used as a method of
disambiguation. In this way, trinocular matching can reduce the number of
mismatches that may result from a binocular stereo algorithm.

Given a triplet of matches, (p,, p,, p3), the depth of the corresponding
scene point is ideally recovered by finding the 3D intersection point of the
three lines of sight (see Fig. 8.24). A line of sight for the point p; is the 3D
line that goes through the point p, on the image plane and the focal point
C;. Because we are dealing with discrete images, the three lines may not
intersect at a single point. Therefore, the corresponding scene point is
taken to be the 3D point that minimizes the sum of the squared distances
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to the three lines of sight. Since we are using more than the two lines of
sights available to a binocular stereo vision system, it can be said that the
calculation of a 3D point in the scene will be on average more accurate.

In the next subsection, we present two trinocular vision algorithms, one
that utilizes edgels (edge points) and the other, which uses straight lines as
features. In the following subsection, we discuss the rectification of the
three trinocular images that result in the epipolar lines being parallel to
the axes of the image coordinate frames. In the last subsection, we will
discuss the added computational complexity of trinocular vision with
respect to binocular stereo vision and also discuss the quantitative im-
provement in depth recovery.

Example Trinocuiar Stereo Vision Systems

In this section, we present two algorithms that are indicative of the work
that has been accomplished in trinocular stereo vision. We present two
algorithms, one that uses low level features and the other, high-level
features.

1to and Ishi (17) describe a trinocular stereo vision system that uses
edgels (edge points) as features for matching. In this system, the edge
image extracted from one of the images is treated as a “base” image. The
goal is to recover the depth of all of the points in the “base” image.
Unlike the more recent trinocular vision systems, image rectification is not
performed, and thus the epipolar lines will generally not fall along the
scan lines of the images, as shown in Fig. 8.24. The next step in their
procedure is to determine all of the epipolar lines corresponding to the
edgels in the base image. Now, the matching procedure outlined below is
invoked where image 1 is the base image. In the following procedure, a
two-sided correlation coefficient of a candidate match between two points
p, and p, is defined as a function of the correlation of the gray-scale
information in the neighborhoods surrounding each point. A large correla-
tion coefficient indicates that the matched points have neighborhoods with
similar gray-scale content. Similarly, a one-sided correlation coefficient is
defined as a function of the correlation of the gray-scale information only
on one side of the neighborhoods that surround the candidate matching
points. The reader is referred to Ito and Ishi (17) for further implementa-
tion details.

1) For each p, €image 1 find all of the candidate matches,
ps, ., in image 2 that have 2-sided correlation coefficients
above a certain threshold.
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For each (pl,pzi)E{Matches to p;}

{
Find the corresponding point, p3i, in image 3 using
epipolar constraints. Compute the 2-sided correlation
coefficient of the points p; and p,’

}

Retain the triplet match (pl,pzi,p3i) which has the
largest correlation coefficient

2) For all unmatched p, € Image 1 find all of the candidate
matches, p,", in image 3 that have 2-sided correlation co-

efficients above a certain threshold.

For each (pbp3i)E{Matches top;}

{
Find the corresponding point, pzi, in image 2 using
epipolar constraints. Compute the 2-sided correlation
coefficient of the points p,; and P,

}

Retain the triplet match (p1,p3irpzi) which has the
largest correlation coefficient

3) Do the same as step 1 except use l-sided correlation
coefficients where necessary.

4) Do the same as step 2 except use l-sided correlation
coefficients where necessary.

5) For any points in image 1 that are unmatched, use a
binocular stereopsis algorithm with the other images to
produce matches. The search region along an epipolar line
is bounded using the information of the surrounding dispar-
ity values calculated from matches previously found in
steps 1-4.

It is interesting to note that through the actions of steps 3-5 the ill
effects of occlusion may be reduced. Consider the situation in Fig. 8.25,
where in image 1 the point D1, because of occlusion, can be compared only
in terms of one side of its neighborhood with one side of the neighbor-
hoods of the corresponding points D, and p; of images 2 and 3, respec-



300 Lynne L. Grewe and Avinash C. Kak

Image 1

-

Image 2 Image 3
3 |

Figure 8.25. In this scene, the neighborhood of point p; can only be compared on one
side of the neighborhoods of the points p, and ps.

~

tively. Steps 3 and 4, perform a one-sided correlational test that will result
in this triplet of points forming a match. Observe in Fig. 8.26, that the
point p; has a corresponding point in image 3 but none in image 2. This is
a result of occlusion and is handled by step 5 of the algorithm.

In (2, 14), a trinocular stereo vision algorithm is described that matches
straight line segments. This algorithm uses different combinations of the
images to set up the candidate matches. This helps to reduce the occur-
rence of missed matches that can result from the fact that one segment in
an image may correspond to more than one segment in another image as a
result of occlusion and other factors (14). Below is an outline of the
algorithm called, Trinocular.

Image 1

"
Image 2 Image 3

H

Figure 8.26. In this scene, the point p, has a corresponding point in image 3 but not in
image 2 because of occlusion.
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Trinocular

Matcher(1,2,3)

Matcher(2,1,3)

Matcher(3,2,1)
}

where

Matcher (i, j,k)

{
For each unmatched segment S; € image I
{
calculate |a;| where |a;| is the angle formed by S, and
the corresponding epipolar line in image j
if la,l>45°
Generate_Hypotheses (i,7,k,S;)
else
Generate_Hypotheses (i,k,j,S;)
}

}

Generate_Hypotheses (i,7,k,S;)

{

perform a search in image j for candidate matches with
s;.

if a match is found then check validity by looking for a
corresponding segment S, in image k.

Generate_Hypotheses (i, ], k,S,) is the procedure that finds the
candidate matches for the segment S, in image i. Basically, this procedure
operates by first calculating the midpoint, a;, of the straight line segment,
S; (see Fig. 8.27). Then any segment S; that intersects with the epipolar
line of the point a; in image j (denoted as Lﬂ-) and also has similar
geometric characteristics such as orientation and length with respect to S,
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Figure 8.27. Illustration of epipolar line constraints used in the matching of segment ;.

is considered to be a candidate match. For each candidate match (S, ),
the epipolar lines L,; and L,;, associated with points a; and a;, respec-
tively, are used to find point g, in image 3. This point should lie on the
corresponding segment in the third image. A neighborhood of 3 X 3 pixels
is searched and if a segment, which we will call S,, is found in this region
that also has similar characteristics with respect to §; and §;, then the
triplet (S, S;, S;) is kept as a candidate match.

As discussed in Hansen ez al. (14), before the procedure Trinocular
is invoked, the three images are rectified so that the epipolar lines become
parallel to the axes of the image coordinate frames. This allows for fast
epipolar line search. We will discuss this procedure in more detail in the
next subsection. :

Subsequent to the Trinocular procedure, the 3D line segments are
reconstructed from the triple segment matches. Because each pairwise
reconstruction of the 3D line from a triplet segment match will differ, the
3D line that minimizes the least-squared error is chosen. Actually, a
Kalman filter approach that computes a recursive weighted least-squares
solution is used. Finally, a comparison involving neighboring 3D segments
is invoked to remove erroneous matches.

6.2. Trinocular Image Rectification

An example camera configuration for a trinocular vision system is shown
in Fig. 8.24. Rectification of the three images is important because it
allows for fast epipolar search. It is best to reproject the camera images, or
the feature points extracted therefrom, into planes that would correspond
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Figure 8.28. Resulting images from a trinocular system after image rectification has been
performed.

to a trinocular canonical configuration (see Fig. 8.28). As a result of this
reprojection, the images will be coplanar and lie in the plane containing
the focal points of the three cameras. This reprojection process uses the
position of the focal points of the cameras in 3D space (C), and the
perspective transformation matrices 7. As a result, the horizontal scan
lines of images 1 and 2 will be row-registered; that is, the nth row of image
1 will be coincident with the nth row of image 2. In addition, the columns
of images 1 and 3 will be registered after reprojection. Therefore, the
following relations on the newly rectified images will be true where u/ is
the coordinate of a pixel along the horizontal axis of the ith image and v]
is the coordinate of the same pixel along the vertical axis of the ith image:

Consequently, the epipolar line of point (u),v}) in image 2 is the line
vy = v} and in image 3 is the line u} = ). In the following reprojection
process, we will denote the transformation matrix of camera i as 7, and
the focal point of camera i as C,.

For each point p = (u,v) in image i, the reprojected point p’ = (i, v")
is computed as follows:

a U a b
b|=R;v and u=—, v=—,
W 1 w w
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where

(Cioy X Ci)t I X 13
R; = (CiXCi+1)t i X
(C; X Cy+ Cy X Cy+ C3 X C) X t,

where ¢; denotes the jth row of the matrix 7. Note that in this procedure
i+1=1ifi=3andi— 1=3if i = 1. The reader is referred to Ayache

and Hansen (1) for details.
Comparison of Trinocular and Binocular Stereopsis

A quantitative analysis of the reduction in the number of stereo match-
ing errors for a trinocular system over a binocular system is performed in
(8). Both real digital elevation map (DEM) data and computer-generated
random-dot stereograms are used. The trinocular systems use an extra
image of each test scene besides the two images used by the binocular
system. A subset of the data peints for which ground truth is known is
processed by each stereo algorithm. The percentage of mismatched points
is argued by Dhond and Aggarwal (8) to be an estimate of the probability
of a mismatch occuring for a scene point with no a priori knowledge of its
true depth. The computational complexity of a generic trinocular stereo
algorithm and a generic binocular stereo algorithm are evaluated.

The error involved in a match for which the actual 3D point is known is
calculated as follows:

&= ldcalc - dtruth l

The value d,. is the disparity calculated by the stereo algorithm, and
d e 18 the corresponding disparity of the actual 3D point that is found by
using the perspective projections of the known 3D point into images 1 and
2 and measuring the resultant displacement. It is important to note that in
this study the disparity of a triplet match (p,, p,, p;), produced from the
trinocular algorithm, is defined to be the. disparity between points p, ‘and
p,. If the error ¢ is greater than a chosen threshold 7, the match is
considered to be erroneous.

Different values of the threshold = were used, and for values exceeding
5 pixels, the trinocular stereo algorithm cut in half the number of match-
ing errors produced by the binocular stereo algorithm. This was true for
both the DEM data and the random-dot stereograms. Even for smaller
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disparity thresholds, the trinocular stereo algorithm always produced a
smaller number of matching errors. It should be emphasized that the
depth in a trinocular stereo system is usually calculated using all three
points in the match triplet, and as such the error in the depth values may
be less on average than if only two of the points are used as was
performed in this study.

Dhond and Aggarwal (8) also evaluate the computational complexity of
a generic trinocular stereo algorithm and of a generic binocular stereo
algorithm in terms on the number of multiplications (M), additions (A),
and comparisons (C) for each matched point in image 1. The following
numbers were obtained: ' '

Binocular 76M, 130A, 110C

Trinocular 96M, 162A, 115C

Thus, in the worst case the increase in computational cost of the trinocular
algorithm over the binecular algorithm is approximately one-fourth.

In conclusion, if an increase in computational complexity of one-fourth
is acceptable, an decrease of up to 50% in the number of matching errors
can be obtained by using a trinocular stereo vision system. It should be
stressed that these performance measures were calculated using the par-
ticular trinocular and binocular stereo algorithms in Dhond and Aggarwal
(8) and that for other algorithms these values may change.

7. ILLUMINATION EFFECTS

In this section, we will briefly discuss the effects of scene illumination on
the stereo vision process. In addition, we will discuss the use of a special
lighting technique referred to as unstructured lighting.

The locations of the scene light sources will effect the edge information
that is extracted from a view of the scene. For example, consider Figs.
8.29(A-D), where the light sources used are placed at four different
angles. Each image in Fig. 8.29 shows only the strongest zero-crossings
detected in the image. Notice that a different set of ZET0-Crossing contours

“appear in each image. In some cases, contours exist in one image, but not
in another image. In other cases, the shapes of the corresponding contours
have altered between images. From the fact that different edge images will
result from the movement of the light sources, we can deduce that for
different views, different edge patterns in the commonly viewed scene
regions may result.
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Figure 8.29. Zero-crossings extracted from the same scene with the llumination sources
at different angles: (A) illumination 1; (B) illumination 2; (C) illumination 3; (D) illumina-
tion 4.

Most of the features used in stereo vision algorithms are constructed
from the edgels detected in the images of the scene. To produce dense
depth maps, it would be ideal to have features everywhere in the image.
Unfortunately, in areas of approximately uniform gray level, few edge
points will be detected. For example, consider Fig. 8.30(A), which shows a
gray-level image of a scene and notice that there is little gray-level
variation in the surfaces in the image. In Fig. 8.30(B), the corresponding
zero-crossing image is shown, and as we expect, there are very few
zero-crossings detected inside of the fairly uniform gray-level regions of
the scene.
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A

Figure 8.30. (A) Gray-scale imagé of objects against a black background; (B) zero-
crossings extracted from the LOG-filtered image with w,, = 8.

One lighting technique, called unstructured or textured lighting, can be
used to induce edge features in regions that would appear to have
constant gray levels under normal room lighting. Unstructured lighting of
a scene is accomplished by illuminating the scene with a randomly tex-
tured pattern of light. Such a textured pattern of light can be produced by
illuminating the scene with a slide projector where the slide is an image of
a random-dot gray-scale pattern. Figure 8.31(A) shows the scene in Fig.
8.30(A) but with unstructured lighting, and Fig. 8.31(B) illustrates the
resulting increase in the number of zero-crossings detected. Figure 8.32
shows the results of stereopsis on both the normal and unstructured
illumination of a scene. As in the previous example, superior results are
obtained for the unstructured lighting case.

Figure 8.31. (A) Objects of Fig. 8.30(A) illuminated with unstructured light; (B) zero-
crossings extracted from the LOG-filtered image with w,,, = 8.



308 Lynne L. Grewe and Avinash C. Kak

D E F

Figure 8.32. (A) Left image under normal illumination; (B) recovered depth map (for
pormal illumination case) rendered with Gouraud shading; (C) recovered depth map (for
normal illumination case) rendered with texture mapping; (D) left image under unstructured
illumination; (E) recovered depth map (for unstructured illumination case) rendered with
Gouraud shading; (F) recovered depth map (for unstructured illumination case) rendered
with texture mapping. Images were supplied by P. Siebert and C. Urquhart at the Turing
Institute Ltd. in Glasgow, UK (under the DTI project IED3/1/2109). See Siebert and
Urquhart (41) for a previous contribution from the authors on the use of unstructured
lighting.

8. CORRECTION AND ANALYSIS OF ERRORS

The errors that can occur in a stereo vision system can be classified into
three types. The first, which we will call gquantization error, is a conse-
quence of the fact that images are 2D discrete signals and thus a scene
point is projected to a pixel in the image. Thus, a scene point’s location
can be displaced by as much as + % pixel. The second type of error, which
we will refer to as camera distortion error, occurs as a result of camera
sensor and lens distortions. This type of error is difficult to model because
they are systematic and not random. More specifically, it is a function of
the particular camera or lens that is being used. The last type of error we
refer to as matching error, which results from incorrect matching of stereo
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features. In this section, we will discuss each type of error and its effects.
In addition, we discuss methods for correcting these errors.

8.1. Quantization Errors

Quantization error is defined as the change in the calculated depth
value at a point as a function of the corresponding change in the disparity
value on account of the quantization or digitization of the images. Equa-
tion (27) describes this relation, where Ad is the change in disparity and
Az is the quantization error. While Eq. (27) is useful, the quantization
error can also be modeled stochastically. In the next few paragraphs, we
present the stochastic model as derived in Rodrigues and Aggarwal (39).

We can consider Az to be a function of the random variables Ad and z
in Eq. (27). We assume a canonical camera configuration as shown in
Fig. 84. Thus Ad = Ax, — Ax,, where Ax, is the quantization error of
the x, position and Ax, is the quantization error of the x, position. We
assume that Ax, and Ax, are independent of each other and of z. This
assumption is true if the disparity (x, —x,) is not too small (39). In
addition, Ax, and Ax, are assumed to be uniformly distributed between
—du/2 and 6u/2, which corresponds to a displacement of up to + %
pixel. The probability density functions (pdf) of Ax, and Ax, are

ou ou
1 ou ou
fax(Ax,) = v for - > <Ax, < EX (29)

Using the fact that the pdf of the sum of two independent variables is the
convolution of their pdfs we can derive the following:

fAd(Ad) = fol(Axl) * for(Axr)

ou + Ad
——>5— —ou<Ad<0
(ou)
ou — Ad (30)
0<Ad < éu

(8u)’
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Next, using Eq. (27) and (30) we can show that the following is true:

N d(Ad)
fAZ( Z[Z) _fAd(Ad)’d(Az) '
ou + Ad
bf W —-ou <Ad <9
B (Z+AZ)2 S_L% 0 < Ad < du
U

Our goal is to find the pdf of Az, which we do using the above conditional
probability as follows:

f1:(82) = [ fu(8z12)f(2) &z

bf foo z?8u +z8ulz + bfAz
du/_o z(z + Az)3

g (2)f(z)dz -du<Ad<0

bf fw 226u+26qu—bfAz N(D)f2)ds 0<Ad <5
Su? g (z)f,(z)az < < du
dutt o z(z + Az)3
(31)
where
1 if —-du<Ad<0
: —Su Az + VoulAz? + 4bfSu Az
| gt (z) = equivalently z > 5 ’
0  otherwise
1 if 0<Ad<éu
. —dulz + \/5u2A22—4bf6qu
g (2) = equivalently z > S5
0 otherwise

Notice that f,(z) is the pdf of the random variable z and this is
domain-dependent. Assuming that the distribution of depth values in the

©
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scene is uniformly distributed between z,, and z__, the following is
true:

fz(z) = . . 4 Zmin <z SZmax‘
Zmax ~ Zmin

After plugging this into Eq. (31) and integrating, we obtain

ou
ForO0 <Az <z ———,
bf — z,,,0u

A ‘ o
fAZ( Z) - 26u2A22(zmax - Zmin)

4bfz — 26u Az? bfz? Az\|%

— 2+2bfln(1+—) L

z+ Az (z+ Az) z [z,

(32)
- ou
For —z2 ———— < Az <0,

"EDf + z,,, OU

A of
fAZ( Z) - 23u2AZZ(ZmaX - Zmin)
bfz? Abfz — 26u Az? Az )\ |?
5 — —2bfln(1+——) [
(z + Az) z+ Az z )|z
(33)
For Az = 0,
0 of 34
fAz( ) - m7 ( )
where

Zy = Zme and  zo=max{z,,,z"} and =z, = max{z,,,z"}
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Figure 8.33. Plot of the probability density function of the quantization error.

and

—buz + ouP Az* + 4bf Su Az
28u

—8uz + ou? Az’ — 4bf Su Az
26u

z =

Figure 8.33 is a plot of the pdf, fAz, where the following parameters were
used: b =538 cm, f=16 mm, z,, = 18749 cm, z_ . = 158.79 cm,
éu = 0.00153 cm.

In addition to the pdf of the quantization error, the expected value of
the magnitude of the quantization error was derived in Rodrigues and
Aggarwal (39). The following is an approximation to this expected value
under the assumption that the depth is uniformly distributed between z
and z

min

max "’

ou
E[ ]AZ|] - 9bf(zmm + me max max) (35)
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For the stereo parameters used to create Fig. 33, the expected value is
1.297 cm.

There are three ways to reduce quantization error. The first is to
perform subpixel detection of features. Unfortunately, subpixel detection
of features, as mentioned before, is appropriate only when the features
are relatively well separated. Second, as discussed in Section 5, the camera
configuration parameters can be altered, and if possible the cameras could
be moved closer to the objects in the scene. Finally, a practical solution
would be to use a high-resolution camera where the pixel size du is
smaller. In any case, there will always be some quantization error existent
in the system.

8.2. Camera Distortion Errors

We have defined this type of error to be a consequence of the distor-
tions present in the lens and camera sensors. This type of error will vary
from camera to camera and lens to lens. A practical solution to reducing
camera distortion errors is to buy a fine-quality lens and camera. One
place in which the effect of camera distortion errors can be reduced is in
the reprojection process of the stereo images that is performed for a
convergent camera configuration (see Section 3). The reprojection process
uses information derived in camera calibration. Typically most systems use
the pinhole model of the camera for calibration. However, other models
can be used, such as the one described in (45), which incorporates radial
lens distortion and therefore produces more accurate calibration results.
In practice, camera distortion errors in general do not contribute as much
to the total error as do the quantization and matching errors.

8.3. Matching Errors

Unlike quantization errors, the errors that result from mismatching have
not been adequately modeled since they can result from a number of very
different factors that are difficult to identify. Examples of these factors are
missing features in one image, and the local invalidity of the particular
matching constraints used such as a regional disparity continuity con-
straint. Therefore, instead of pursuing the difficult task of modeling the
statistics of these errors, researchers have attempted to develop algorithms
to detect matching errors. Often the goodness of a stereo matching
algorithm is evaluated by counting the number of incorrect matches
formed for different scenes.
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In some sense, one can think of the algorithms used for disambiguation
of matches as algorithms that detect and correct matching errors. How-
ever, in this section we will concentrate on methods that detect and
correct matching errors after a unique disparity map has been produced.

One method of detecting and correcting matching errors uses domain-
dependent knowledge in the guise of surface reconstruction. As discussed
in Section 4.3.2, if surface boundaries can be found (for either local
surface patches or entire surface regions) and the type of the underlying
surface can be recognized, surface reconstruction can take place in these
bounded regions. Points that are outliers with respect to the best-fit
surface are replaced by the corresponding disparity values of the fit
surface. An outlier is a point whose distance to the fitted surface is too
large, ostensibly a result of mismatching. In the same manner, holes in the
disparity map can be filled in. This procedure will work only if surfaces
exist in the scene and they can be detected, meaning that the physical
discontinuities of the scene should be detectable. In addition, the type(s)
of the surfaces must be predefined, and as such this method will work in
only some domains. The reader is referred to Cochran ef al. (7) and Sinha
et al. (42, 43) for details on some surface reconstruction techniques that
have been used on stereo data.

Another method is described in Mohan et al. (32) using the figural
continuity constraint to correct mismatches along contours. This algorithm
will work on the output of any low-level-feature-based stereo algorithm. It
is important to note that even if figural continuity is used as a constraint in
a low-level-feature-based algorithm, it will only be used locally and thus a
long contour can have some of its points mismatched. Mohan et al. (32)
classify matching errors along contours into two types. Type 1 errors
correspond to matching errors on a contour where the majority of matches
on this contour are correct. Type 2 errors on a contour indicate the
situation where the majority of the matches on the contour are incorrect.
On the basis of figural continuity alone, only type 1 errors can be detected
and corrected. Unfortunately, this algorithm runs the risk of trying to
correct type 2 errors and thus producing contours with an even larger
majority of erroneous matches.

In Mohan et al. (32), only linear segments are used. The fact that the
disparity along a pair of matched linear segments varies linearly in
proportion to the length of the segment is used as a constraint. First, the
linear segments in each image are detected. For each linear segment, a 2D
plot of all of its matched points is constructed. The disparity of each
matched point on the segment is plotted as a function of its distance to the
end of the segment. Next, for each such plot a straight line is fit to the plot
since it is known that in the absence of matching errors the plotted points
should form a straight line. This fitting is accomplished via a modified
Hough transform, and the reader is referred to Mohan e al. (32) for

o
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details. This best-fit line is then used to calculate with subpixel accuracy
the disparity at each point along the line, and these are the values retained
in the final disparity map.

One advantage of this method is that it has a linear time complexity,
O(N), where N is the number of line segments in the two images. A
disadvantage of this algorithm is that erroneous matches along straight
lines only will be corrected. In addition, the number of type 2 errors along
a contour may increase if originally a sufficiently large number of type 2
errors form a straight line in the 2D disparity-length plot.
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