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Incorporating Season and Solar Specificity into
Renderings made by a NeRF Architecture using

Satellite Images
Michael Gableman and Avinash Kak

Abstract—As a result of Shadow NeRF and Sat-NeRF, it is possible to take the solar angle into account in a NeRF-based framework
for rendering a scene from a novel viewpoint using satellite images for training. Our work extends those contributions and shows how
one can make the renderings season-specific. Our main challenge was creating a Neural Radiance Field (NeRF) that could render
seasonal features independently of viewing angle and solar angle while still being able to render shadows. We teach our network to
render seasonal features by introducing one more input variable — time of the year. However, the small training datasets typical of
satellite imagery can introduce ambiguities in cases where shadows are present in the same location for every image of a particular
season. We add additional terms to the loss function to discourage the network from using seasonal features for accounting for
shadows. We show the performance of our network on eight Areas of Interest containing images captured by the Maxar WorldView-3
satellite. This evaluation includes tests measuring the ability of our framework to accurately render novel views, generate height maps,
predict shadows, and specify seasonal features independently from shadows. Our ablation studies justify the choices made for network
design parameters.

Index Terms—NeRF, Satellite Imagery, Image-based rendering, Time-varying imagery

✦

1 INTRODUCTION

OUR goal in this paper is to extend the NeRF formalism
to render season-specific images with correct shadows

from multidate and multiview satellite images. What we
seek to accomplish is exemplified by the results shown in
Fig. 1 in which the columns represent different seasons,
and the eight rows are the eight different Areas of Interest
(AOIs) we tested from the 2019 IEEE GRSS dataset [1].
These rendered images are from viewpoints, solar angles,
and times of the year not used for training the NeRF.
The examples shown in Fig. 1 use the time of the year to
alter the seasonal features while keeping the viewing and
solar angles constant. In addition, we provide an animated
example of changing viewpoints with fixed time of year and
solar angle on our GitHub page1, where our code is also
available. Furthermore, the figure shows that the seasonal
features in the rendered image correlate with the time of the
year given as input.

The original NeRF formulation, presented by Mildenhall
et al. [2], did not have mechanisms to account for changes
in an image unrelated to changes in viewing angle. This
restriction on NeRFs was relaxed by Martin-Brualla et al.
[3] and by Derksen and Izzo [4]. Both works accounted for
non-viewing angle image changes by introducing additional
input into the NeRF. NeRF in the Wild (NeRF-W) [3] accom-
plished this by using two learnable embeddings for each
training image. One embedding captured the appearance of
the image, in essence, the information that could explain
alterations in the manifestation of objects in the scene.
The other embedding captured the transient portions of the
image. These portions of the image contain moving objects
that should not appear in a rendered image. To avoid a

1. https://github.com/EnterpriseCV-6/Season-NeRF.git

trivial solution where every point in every image is deemed
transient, NeRF-W uses the Bayesian learning framework of
Kendall et al. [5]. More details on NeRF-W are provided in
Section 2.

Derksen and Izzo [4] noted that a large amount of image
variation in satellite images is caused by changing light
conditions and factored this observation directly into the
NeRF model. They used the twin concepts of solar visibility
and sky color as two additional outputs of their NeRF frame-
work, known as Shadow NeRF (S-NeRF). The solar visibility
computes the amount of direct sunlight at each point in the
model, and the sky color accounts for global light conditions
and models the background illumination. To compute these
additional outputs, S-NeRF takes a solar angle as input to
the network. S-NeRF limits the influence of the solar angle
by only allowing it to influence the rendering in a manner
consistent with how light interacts with surfaces. More
details on how S-NeRF uses solar visibility and sky color
are provided in Section 2. In addition to outputting solar
visibility and sky color, S-NeRF replaces the computation of
color with the computation of albedo color.

What has motivated the work reported in NeRF-W [3]
and S-NeRF [4] is exactly our motivation as well. Satellite
images of the same scene may be captured months apart. As
a result, two satellite images may exhibit different seasonal
features and shadows while containing transient objects. We
seek to create a NeRF framework capable of accounting for
the seasonal features and shadows while simultaneously
discarding portions of the training images containing tran-
sient objects. Transient objects, such as cars moving along
a road, appear in only a single image and should not be
allowed to influence the final rendering. Seasonal features
manifest themselves differently during different times of
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Fig. 1. Results of generating images on eight regions. Each view is
generated at 26 degrees off-nadir with a 45-degree azimuth angle.
The solar angle is at a 50 degrees elevation and 135-degree azimuth.
Images in the same columns have the same time input.

the year. For example, images may contain large swathes
of green foliage from late spring to early fall. However, it
is common to see snow and brown foliage from late fall to
early spring. Shadows are caused by objects occluding light
rays from the sun to a world point.

The framework we present in this paper, which we
call Season-NeRF, computes the seasonally adjusted albedo,
density, sky color, and solar visibility as a function of po-
sition within the model, solar angle, and time of the year.
The solar angle and the time of the year are provided in
the metadata associated with the satellite image. We wish
to ensure that any changes in the time of the year only
change the seasonal features, and changes to the solar angle
only change shadows. Without limitations, the time of the
year and solar angle can manipulate the rendering in ways
unassociated with their respective features. To constrain the
use of the additional inputs, we only allow the time of the
year to alter the value of the seasonally adjusted albedo,
and we only allow the solar angle to alter the values of the
sky color and solar visibility. We also limit how much the
time of the year can alter the seasonally adjusted albedo and
how solar visibility and sky color interact with seasonally
adjusted albedo. More details on how the time of the year
influences the albedo color are provided in Section 3.1, and
we describe the computation of shadows in Section 3.2.

Accurate placement of shadows within an image and
correct novel view rendering require an accurate density
estimation. To encourage accurate density estimation, we
provide a height map to Season-NeRF during the early
stages of training. Our use of structural information is
similar to the technique used by Deng et al. [6]. In a depth-
supervised NeRF, traditional computer vision methods ex-
tract 3D world points. These points are used to provide
depth supervision during training. We use this height map
to guide the density computation in the early stages of
training. In the later stages, we stop using the height map as
the map is noisy, and the partially trained Season-NeRF can
provide more accurate structural estimations. More details
on our use of a height map are provided in Section 3.4.

In addition to solar and seasonal variation in images,
we also account for transient objects. Transient objects are
moving objects that appear in single images and should be
excluded from the final model. NeRF-W uses learned image-
specific embeddings to compute the network’s uncertainty
of the predicted color. The network learns to assign regions
with transient objects a higher uncertainty. We propose an
alternative that removes the need to learn image-specific
embeddings. The loss proposed by Barron [7] allows the
network to reduce the influence of transient objects auto-
matically. This loss allows us to use a simpler architecture,
removes the need to compute and account for an uncertainty
field, and simplifies the rendering process during training.

When evaluating Season-NeRF’s performance, we show
that Season-NeRF can render high-quality images, stably
render seasons, and correctly specify seasons and shadows.
Due to the limited data, we can only withhold four images
from each region for testing. Of the four images withheld
for testing, we ensure that three of these images span unique
seasons. The fourth image is selected to ensure that the set
of testing images in each AOI spans a reasonable range of
solar and viewing angles. The quality of the rendering is
determined by comparing the testing images with rendered
images at the same viewing and solar angle. In addition to
image similarity, we generate a height map of the region
and compare that to the lidar data associated with the AOI.
The accuracy of our estimated shadow masks is computed
by comparing the estimated mask to the exact mask Season-
NeRF computes. Stably rendering a season means that the
seasonal features should only change due to changing the
time of the year, not because of changes in the solar or the
viewing angles. To measure this, we render images across a
wide range of viewing angles and solar angles. The extent
of the change introduced by altering the viewing and solar
angle is measured against the extent of the change intro-
duced by altering viewing time. Correctly specify seasons
(i.e., getting a winter image for a time input during the
winter or a spring image for a time input during the spring)
is confirmed by rendering images across the entire year and
visually confirming the correct seasonal characteristics.

The remainder of this paper is organized as follows,
Section 2 discusses works related to our approach. In Section
3, we provide details on the specifics of our approach.
Section 4 contains the results of Season-NeRF when applied
to eight different regions and an ablation study. We break
our analysis into three subsections. In Section 4.1, we show
how Season-NeRF can render novel views. Then, in Section
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4.2, we show how Season-NeRF can generate a height map
and predict shadows, and in Section 4.3, we show the sea-
sonal stability and specificity of Season-NeRF. In addition,
within each subsection, we show how different components
contribute to the accuracy of the final model. Our results
and conclusions are summarized in Sec. 5.

2 RELATED WORKS

Neural Radiance Fields (NeRFs) have become a popular
tool for novel view reconstruction since they were used by
Mildenhall et al. [2]. Since this work, NeRFs have been used
with success in many situations. Work with NeRFs generally
falls into three categories, improved novel view generation
[3], [4], [8], [9], [10], [11], [12], [13], [14], reduced reliance on
camera parameters [15], [16], and faster model generation
[6], [17], [18], [19]. While all these areas are relevant to un-
derstanding NeRFs, we are primarily interested in improved
novel view generation, specifically for satellite images.

A NeRF computes a density, ρ2, and a color, C , for every
point within a 3-dimensional world space. This computation
is carried out by a neural network trained on pixel-ray
pairs. Every pixel has a known color, and its corresponding
ray is the preimage of the pixel in the world space. The
NeRF uses a ray to render a pixel’s color by considering
the color and density of every point along the ray. This
computation requires integration along the ray. However,
such an approach is not practical, so the quadrature rule is
used to approximate the integral along the ray. The rendered
color of a pixel with a preimage ray χ containing points
X⃗0, X⃗1, · · · , X⃗n is

Col (χ) =
∑
X⃗i∈χ

C
(
X⃗i

)
PS

(
χ, X⃗i

)
, (1)

where PS is the probability that X⃗i is a surface point for
ray χ, C is the color output by the NeRF at X⃗i, and Col
is the rendered color of the pixel. A point on a ray is the
surface point for the ray if the point exists (that is, the
space is occupied) and the point is visible along the ray.
Furthermore, a point on a ray is visible along the ray if no
prior points along the ray exist. Thus,

PS

(
χ, X⃗i

)
= PE

(
X⃗i

)
PV

(
X⃗i, χ

)
, (2)

PE

(
X⃗i

)
= 1− e

−ρ(X⃗i)δX⃗i , (3)

and

PV

(
X⃗i, χ

)
= e

−
i−1∑
j=0

ρ(X⃗j)δX⃗j (4)

where δX⃗i
is the distance between the points X⃗i and X⃗i+1

and ρ is the density at X⃗i
3. Initial work by Mildenhall et al.

[2] suggested using a weighted stratified sampling scheme
for determining points along a ray; however, Mari et al. [9]
use a uniform stratified sampling scheme. We are not aware

2. In [2], σ is used for density instead of ρ, however in this paper σ is
used to indicate the sigmoid non-linearity function.

3. The symbols PS and PV are analogous to wi, Ti from [2], however
as w⃗ is used for solar angle and T is associated with time in this work,
we introduce new notation.

of any work comparing the two schemes and use uniform
stratified sampling throughout our work.

The work of Derksen and Izzo [4] provided a means for
a NeRF to account for shadows in a scene. They accounted
for shadows by expanding NeRF’s outputs to include solar
visibility (Svis) and sky color (sky), which were computed
by considering the solar angle. Their variant of NeRF is
known as S-NeRF. Rather than outputting color, S-NeRF
outputs albedo color (A). S-NeRF also modifies the render-
ing process to incorporate the new output terms. The color
portion C from Equation 1 is replaced with

C
(
X⃗, w⃗

)
=
(
Svis

(
X⃗, w⃗

)
+
(
1− Svis

(
X⃗, w⃗

))
sky (w⃗)

)
∗A

(
X⃗
)
,

(5)

where w⃗ is the solar angle. For S-NeRF to correctly render
shadows, the model trains with two types of rays, image
rays and solar rays. Image rays are associated with a pixel
from the training data and a solar angle. They are used to
ensure the network accurately renders scenes. Solar rays
are not associated with the training data, and the solar
angle associated with a solar ray is negative one times the
direction of the solar ray. Solar rays are used to ensure that
the solar visibility output by the network is consistent with
the density output of the network. By adding these mod-
ifications, S-NeRF can account for shadows and changing
solar conditions during training and evaluation. Allowing
the sky color to vary with the solar angle allows S-NeRF
to account for changes in the image’s appearance caused
by different atmospheric effects. Furthermore, S-NeRF uses
sinusoidal representation networks (SIRENs) as described
in Sitzmann et al. [20].

Another method for accounting for changes in appear-
ance was suggested in Martin-Brualla et al. [3]. They created
a modification to NeRF known as NeRF-W. In NeRF-W,
each training image is associated with a learned embedding.
The network uses this embedding to output a density and
color adjustment for each image, which is used during
training to account for features unique to the training image.
The density and color adjustments are ignored during the
evaluation. Furthermore, NeRF-W outputs an uncertainty
estimate β in addition to the color and density adjustments.
Drawing from the work of [21], this uncertainty changes the
loss from Mean Squared Error (MSE) loss to

L =
||CGT − CEst||22

2β2
Σ

+
log
(
β2
Σ

)
2

(6)

where
βΣ =

∑
X⃗i∈χ

PS,T

(
χ, X⃗i

)
βi (7)

where CGT is the ground truth color, CEst is the estimated
color, and PS,T is the transient probability that X⃗i is the
surface for χ. The model learns to assign transient objects a
higher uncertainty than non-transient objects. This results in
the model lowering the contribution of the transient objects
to training loss.

In addition to incorporating ideas from S-NeRF and
NeRF-W, Mari et al. [9] used bundle adjustment to refine the
parameters modeling the relationship between pixels and



4

rays. Their model, known as Sat-NeRF, directly utilizes the
Rational Polynomial Coefficient (RPC) approximation of the
satellite camera model when determining rays associated
with pixels. The RPC model is described in Grodecki, and
Dial’s work [22]. The RPC model for satellites is a popular
model used to approximate the physical satellite camera
model. Sat-NeRF also uses the 3D points extracted during
bundle adjustment to apply the depth supervision technique
described in Deng et al. [6]. Like NeRF-W, Sat-NeRF learns
embeddings for each image and outputs uncertainty to ac-
count for transient objects. However, they forgo the image-
specific density and color modifications in NeRF-W.

As an alternative to the method used in [3] and [9]
to account for transient objects, we use the loss function
described by Barron in [7]. This loss function is defined as

Lα,c (x) = − log

(
1

cZ (α)
exp (−f (x, α, c))

)
, (8)

f (x, α, c) =
|α− 2|

α

( (x/c)
2

|α− 2|
+ 1

)α/2

− 1

 , (9)

and

Z (α) =

∞∫
−∞

exp (−f (x, α, 1)) dx. (10)

In the above equations, x refers to the difference between the
predicted and actual values, and α and c are both learnable
parameters. In Equation 9, if |x| < c, the function behaves
like the MSE loss. For values of |x| > c, Equation 9’s
behavior is determined by α. As α approaches two, the loss
behaves like the MSE loss, and as α approaches zero, the loss
behaves like the Cauchy loss. Thus the larger the value of α,
the larger the contribution to the gradient for errors when
|x| > c. Theoretically, α can be any real number, and c can
be any positive number; however, in practice, α is forced
to remain in the range (0, 2) and c remains in the range
(0, 1). Note that Equation 8 is the negative log-likelihood of
a probability density function created from the normalized
form of Equation 9. Using Equation 8 instead of Equation 9
prevents the network from converging to a trivial solution
by minimizing α.

3 METHOD

Season-NeRF, like all variants of NeRF, computes the den-
sity and color of every point within the world. Season-NeRF
uses the time of the year and the location within the world
to determine the color of world points. These input terms
allow our approach to account for seasonal variation within
the image set. Season-NeRF uses solar angle and location
within the model to compute solar visibility. Solar angle
alone is used to compute the sky color. The solar visibility
and sky color of points along a ray are used to compute a
shadow adjustment term for rendered pixels. By using the
loss function proposed in Barron [7], we attempt to reduce
the influence that transient objects in the training images
have on the model.

3.1 Seasonal Variation Adjustment
To account for the seasonal changes, we alter the compu-
tation of the albedo color by adding a seasonal adjustment

term. We refer to the new term as the seasonally adjusted
albedo. The seasonal adjustment term is a function of posi-
tion within the model and the time of the year (t). The sig-
moid non-linearity is not applied to the seasonally adjusted
albedo until after the albedo color has been merged with the
seasonal adjustment term. Applying the non-linearity after
the combination of the albedo color and seasonal adjustment
allows the combined term to take on any value before the
non-linearity. After the non-linearity has been applied the
color will fall in the valid color range of [0, 1]. Thus the
seasonally adjusted albedo is expressed as

At

(
X⃗, t

)
= σ

(
A∗
(
X⃗
)
+ Ta

(
X⃗, t

))
(11)

where A∗ is the albedo color before the sigmoid non-
linearity, σ, is applied and Ta is the seasonal adjustment
term.

To compute the seasonal adjustment term, we use two
intermediate terms, which we refer to as temporal class and
temporal adjustment, TC (t) and TA

(
X⃗
)

. Temporal class is
dependent on the time of the year, and temporal adjustment
is dependent on the position within the model. The temporal
class is a N × 1 matrix, where N is a hyper-parameter de-
scribing the number of different seasonal classes the model
can render. We use softmax to ensure the values in TC form
a discrete probability distribution over the seasonal classes.
The temporal adjustment is a C × N matrix, where C is
the number of output channels in the rendered image. The
seasonal adjustment is

Ta

(
X⃗, t

)
= TA

(
X⃗
)
× TC (t) . (12)

Intuitively, the ith position of TC (t) represents the proba-
bility that time t corresponds to season i, and the columns
of TA

(
X⃗
)

represent the seasonal adjustments for each
seasonal class. This results in Ta being the expected seasonal
adjustment given the probability of each seasonal class TC .
If N is too large (that is, the model can generate too many
possible seasons), shadow effects will be absorbed into the
seasonal adjustment. If N is too small, the model lacks the
descriptive capability to render every season. We let N = 4
for our tests, resulting in a good balance between solar and
temporal changes.

Our model only allows t to change the value of the
seasonally adjusted albedo, leaving density, solar visibility,
and sky color constant with respect to t. The limitation that
a region’s density cannot change over time is an unrealistic
assumption, as changes in vegetation can cause the density
to change. However, we do not allow our model’s density
to vary over time for two reasons. First, limiting the com-
putation in this way prevents the model from using t to
change the density within the world or shadows within
rendered images to account for purely visual changes of
objects with fixed densities, such as buildings. Second, each
region contains a single ground truth height map, making
accurate evaluation of the quality of changing height maps
caused by changing densities difficult. The seasonally ad-
justed rendered color is

Colt (χ, t) =
∑
X⃗i∈χ

At

(
X⃗i, t

)
PS

(
χ, X⃗i

)
(13)
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and is used instead of Equation 1.
To compute the seasonally adjusted rendered color, we

must input the time of the year into the network. Rather
than directly sending the day and month to the network,
we encode the time as

t = (cos (2πtp) , sin (2πtp)) (14)

where tp is the fraction of the year completed. Given two
times of the year, t0 and t1 = t0+δ, the L2 distance between
the two encodings is 2 |sin (πδ)|. The L2 distance achieves
its maximum value at δ = 1/2, corresponding to the day
at the opposite end of the year. This approach also ensures
that days at the beginning and end of the year have similar
encodings.

3.2 Shadow Adjustment

Like S-NeRF, Season-NeRF outputs Svis

(
X⃗, w⃗

)
and sky (w⃗)

however we do not apply these terms directly to the sea-
sonally adjusted albedo. Instead, we use these terms to
compute a shadow mask, which measures the probability
that a rendered pixel is not in shadow. The equation that
describes the shadow mask is

M (χ, w⃗) = σ

κ

µ+
∑
X⃗i∈χ

PS

(
χ, X⃗i

)
Svis

(
X⃗i, w⃗

) ,

(15)
where w⃗ is the solar angle, Svis is the solar visibility from the
network, and σ is the sigmoid activation function. Note that
M (χ, w⃗) is the probability that the the surface of χ is visible
from the sun. Therefore, 1 − M (χ, w⃗) is the probability
that the surface of χ is in shadow. The hyperparameter κ
controls the rapidity of the transition between non-shadow
and shadow. The hyperparameter µ controls the threshold
where this transition occurs. We let κ = 30 and µ = −.2, as
we found these perform well for shadow generation.

Given a shadow mask and a seasonally adjusted ren-
dered color, the shadow-and-seasonally adjusted rendered
color is

ColSA (χ, w⃗, t) = Colt (χ, t) ∗
(M (χ, w⃗) + (1−M (χ, w⃗)) sky (w⃗)) .

(16)

Equation 16 assumes that Colt (χ, t) is the color of the pixel
in direct sunlight and sky (w⃗)Colt (χ, t) is the color of the
pixel when the pixel is in shadow. The value of M (χ, w⃗) is
the probability that the rendered pixel is in shadow. Other
sources than direct light from the sun may still illuminate
regions in shadow. As such, we allow ||sky (w⃗)||2 to be
greater than zero to ensure regions in shadow are partially
lit.

3.3 The Loss Function and Network Architecture
We pass solar and image rays through the network during
training. As with S-NeRF, our loss function behaves differ-
ently for solar and image rays. The loss function associated
with image rays consists of three terms. The first term
applies Barron’s loss to the absolute difference in the RGB
color of the rendered pixel and the ground truth pixel. We
use Barron’s loss to reduce the effect of transient objects
on the training process. The second loss term encourages

at least one channel in the seasonally adjusted rendered
color to be above a user-defined threshold. By encouraging
the model to have at least one large channel in Colt (χ, t),
we avoid using the seasonally adjusted albedo in place of
shadows to describe dark regions. The second loss term is

LA

(
C⃗
)
=

1

n

3∑
i=1

1−
min

(
C⃗i,A

)
A

2

(17)

where A is a hyperparmeter such that A ∈ (0, 1]. We use
A = 0.2 as most non-shadow regions of our images have at
least one channel above this value. Even with this loss term,
our network tended to ignore shadows by setting the sky
color to one. To avoid this, we added a third loss function

Lsky (sky) =
3∑

i=1


0 skyi ≤ S (18a)(
1

S
∗ skyi − 1

)2

skyi > S, (18b)

where S is a hyperparmeter such that S ∈ (0, 1]. We use S =
0.5 because this will encourage areas in shadow to reduce
the seasonally adjusted albedo color by at least 50% while
still allowing some indirect light to illuminate the region.
Given an image ray

(
χ, w⃗, t, C⃗GT

)
, the total loss associated

with that ray is

LIR =Lα,c

(
C⃗GT − ColSA (χ, w⃗, t)

)
+ LA (Colt (χ, t)) + Lsky (sky (w⃗)) .

(19)

We shall now describe the training loss associated with
solar rays. The loss function associated with solar rays
consists of two terms. The first term minimizes the MSE
between the estimated solar visibility, Svis (w⃗, χ) and the
exact solar visibility computed by Equation 4. The second
term is the loss described in Equation 18. Applying Equation
18 to solar rays ensures the sky color is appropriate, even if
the input solar angle is far from the solar angles from the
training set. The total loss for a solar ray is

LSR =Lsky (sky (w⃗))+

1

K

K∑
j=1

(
Svis

(
X⃗j , w⃗

)
− PV

(
X⃗j , χ

))2
.

(20)

Unlike S-NeRF, we do not use an absorption term for solar
ray loss. The accuracy of Season-NeRF’s shadow mask is
limited by the accuracy of its density computation because
the training process uses the density output of the network
to determine the solar visibility.

We shall now describe the architecture of Season-NeRF.
Season-NeRF consists of SIREN fully connected layers.
Some of these layers include batch normalization, despite
batch normalization being non-standard with NeRFs and
SIRENs, as we found this gave improved results, as shown
in Table 14. Table 1 uses the Structural Similarity Index
Measure (SSIM) to measure image quality and Mean Abso-
lute Error (MAE) to measure the quality of the height map.
Furthermore, the inputs of our network undergo positional

4. Our tables employ the symbol ↑ to represent metrics where larger
numbers signify superior results and ↓ for metrics where smaller
numbers signify superior results. In addition, we use to indicate
the result with the best score and to indicate the worst score.
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X⃗ h∗ h∗ h∗ h∗ h∗ h∗ h∗ h∗ h∗

2 X⃗∗

1 ρ

3 A∗

h
2

h
2

h
2 1 Svisw⃗

h h h 3N TA

ht h N TC

h
4 3 sky Merge

At

h
4 3

Outputs:
ρ: Density, R
Svis: Solar Visibility, R
sky: Sky Color, R3

At: Seasonally Adjusted Albedo, R3

h
2

h
2

h
2 1

Sine

Sigmoid

Solftplus

Softmax

None

Pos. Encoding

Inputs:

X⃗: Position, R3

w⃗: Solar angle as vector, R3

t: Time of year, R

Intermediate:
X⃗∗: Encoding of Position, as created by the network
A∗: Albedo color, without activation function
TA: Temporal Adjustment
TC : Temporal Class

h Updates for Solar Rays onlyh h FC output size h

h Updates for all raysh h∗ FC and batch norm

h Updates for Image Rays Only h FC with SIREN init.

Fig. 2. Season-NeRF’s network architecture where, X⃗ is the input’s
spatial coordinates, w⃗ is the solar angle, and t is the time of input. The
model predicts density, seasonally adjusted albedo, solar visibility, and
sky color. The Merge trapezoid indicates the effect of Equation 11 and
does not contain any learnable parameters.

encoding, as described in [2], before being processed. We
provide a network diagram of Season-NeRF in Fig. 2. We
set the layer width of the network to 512. During training,
we use 512 image rays and 1024 solar rays per batch, with
all rays sampled at 96 points. When backpropagating the
loss for image rays, we freeze weights within the model
used only to compute solar visibility. Also, when backprop-
agating the loss for solar rays, we freeze weights within the
model that are not used exclusively for the computation of
sky color or solar visibility. We use the One Cycle Learning
Rate Scheduler described by Smith and Topin [23] during
training with a maximum learning rate of 1.5e−4. We train
our network for 50000 steps, which takes approximately 7
hours on an Nvidia GeForce GTX 1080 Ti GPU.

3.4 Multi-Phase Training

We train Season-NeRF in two phases. The first phase ac-
counts for 20% of the training and uses a height map to
jump-start the training process. As noted in Deng et al.
[6], we can use the height information to speed up the
training and accuracy of a neural radiance field. We acquire
a height map via space carving [24] and use it to modify the
computed density during the early stages of training. The
height map used for depth supervision are created from the
same images used to train the NeRF. The images used for
evaluating the NeRF and the ground truth height map are
not used during the construction of the height map used for
training. In the first phase of training, we replace ρ with ρm,
which is

ρm
(
X⃗
)
= Γρ

(
X⃗
)
+ (1− Γ) ρH

(
X⃗, δX⃗ , H

)
, (21)

where Γ linearly increases from 0 to 1 during the first phase,
and ρH is the density required for the neural radiance field
to match the height map.

The value of ρH depends on the height map H , the
location within the model X⃗ , and the distance between X⃗

and the next point along the ray, δX⃗ . It is

ρH
(
X⃗, δX⃗ , H

)
=
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δX⃗
X⃗ is at or below H (22a)

0 X⃗ otherwise. (22b)

From Equation 3, it is evident that ρH encourages each point
at or below a surface to have a PE ≈ 1.0. In addition to ρm,
we add a prior approximation loss

Lp

(
X⃗
)
= Lα,c

(
e−ρ(X⃗)δX⃗ − e−ρh(X⃗,δX⃗ ,H)δX⃗

)
. (23)

Equation 23 ensures that the ρ will be updated in the early
stages of training despite having minimal impact on the
rendered color when Γ is near zero.

The second phase accounts for the remaining 80% of
training and ceases using ρm. Furthermore, we no longer
use the prior loss defined in Equation 23 as the errors in
our prior height map cause ρH to be less accurate than ρ. In
addition, height maps cannot represent overhangs that may
be present in the scene.

3.5 Hyperparamter Tuning

The method we employ for hyperparameter tuning involves
two parts. In the first part, we manually adjust hyperpa-
rameters to create decent results. In the second part, we
employ Bayesian optimization as described in [25] to refine
the hyperparameters. This process was run on OMA 248,
which is not included in the results sections. We excluded
OMA 248 as the hyperparameter tuning process involves
feedback from the ground truth lidar, and thus all of the
data associated with OMA 248 becomes training data.

To evaluate the performance of a set of hyperparameters,
we must combine the results of multiple metrics, measuring
different qualities. To this end, we combine the SSIM, MAE,
and seasonal stability into a single score, which is maxi-
mized during Bayesian optimization. This score is

Score =
SSIM

SSIMB
− MAE

MAEB
+

{
1 EM < EMB

0 else
(24)

where SSIMB , MAEB , and EMB are the scores corre-
sponding to the manually tuned parameters. In Equation
24, EM refers to the worst earth-movers distance found
after applying the seasonal stability process described in
Section 4.3. Creating and evaluating Season-NeRF for a set
of hyperparameters takes approximately eight hours. To
speed up this process, we reduce the number of training
steps from 50000 to 5000 and down-sample the images to
keep the number of epochs consistent with the number of
epochs when using 50000 steps. As a result, the training and
evaluation for a set of hyperparameters is reduced to about
30 minutes.

4 TESTS AND RESULTS

We analyze the performance of Season-NeRF on areas of
interest from the 2019 IEEE GRSS Data Fusion Contest [1],
which contains images captured by Maxar WorldView-3 be-
tween 2014 and 2016. WorldView-3 captures 8-band visible
and near-infrared images; however, [1] provides provides
pan-sharpened RGB images. Images used in Season-NeRF
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TABLE 1
Comparison of results with and without batch normalization.

Region SSIM, SA ↑ MAE ↓
Case: With Batch Norm No Batch Norm With Batch Norm No Batch Norm

OMA 042 0.562 0.562 2.357 2.496
OMA 084 0.529 0.514 3.769 4.684
OMA 132 0.704 0.709 1.279 1.524
OMA 163 0.527 0.518 2.073 2.311
OMA 203 0.696 0.691 1.429 2.586
OMA 212 0.679 0.670 1.102 1.212
OMA 281 0.618 0.617 2.296 3.476
OMA 374 0.473 0.474 4.211 5.095
Average 0.599 0.594 2.314 2.923

undergo top-of-atmosphere correction to remove most of
the variation caused by daily changes in atmospheric condi-
tions. The images are of the city of Omaha, Nebraska, USA
and are RGB images of size 2048 by 2048 pixels covering
an area of approximately 580 by 580 meters. However, we
downsample the images to be 512 pixels by 512 pixels for
training. Table 2 contains a summary of each region.

TABLE 2
Overview of data. For each area, four images are reserved for testing.

Area Index Num. Imgs. Height Range (m)
OMA 042 39 38.3
OMA 084 26 61.1
OMA 132 41 31.9
OMA 163 40 40.1
OMA 203 43 51.7
OMA 212 38 34.6
OMA 281 41 67.3
OMA 374 30 59.4

Given a set of images, we withhold four for testing
purposes and use the remaining for training. Three of these
images represent prototypical seasons, and the fourth is
selected to ensure a wide range of viewing and solar angles.
The prototypical seasonal images are selected to ensure each
testing set contains an image with large amounts of snow,
green foliage, and brown foliage. The prototypical images
are shown in Fig. 3 with an example distribution of the
training data shown in Fig. 4. We use bundle-adjusted RPCs
acquired by the method described in [26] with initial height
maps acquired by the space carving process propounded in
[24].

4.1 Novel View and Seasonal Variability Tests

To evaluate the quality of our model’s novel view render-
ings, we use the Peak Signal-to-Noise Ratio (PSNR) and
the Structural Similarity Index Measure (SSIM) [27] and
compare generated images with images withheld from the
training process. In addition to applying these metrics to
the output using the exact times provided in the satellite

image’s metadata, we also perform seasonal alignment.
These results are shown in Table 35.

Seasons can change rapidly, and weather events some-
times occur unusually early or late in a season. These
sudden seasonal changes can cause the network to render
an image containing seasonal characteristics that are valid
for the time of the year but do not match the exact charac-
teristics shown in the ground truth. Seasonal alignment is
accomplished by finding the time of year and the sky color
such that the MSE between the rendered image and an im-
age containing the desired seasonal features is minimized.
Examples of rendered images are shown in Fig. 3. OMA 084,
OMA 212, and OMA 281 are times when seasonal alignment
is very beneficial.

Examining the rendered images and image similarity
scores provides evidence that Season-NeRF can construct
images at novel view angles. Selecting a wide range of
seasons for the testing images allows us to check that sea-
sonally independent features persist in the rendered images.
Objects, like buildings and roads, have their appearance
modified by seasonal events throughout the year but are
still visible and identifiable. Additional evidence of this
capability is provided in Sec. 4.3.

We consider five cases to examine the effectiveness of
Season-NeRF’s components. These cases are the entire im-
plementation of Season-NeRF (Case A), Season-NeRF using
S-NeRF’s form of shadow prediction (Case B), Season-NeRF
replacing Barron’s loss with MSE loss (Case C), Season-
NeRF without using a height map to guide the early stages
of training (Case D), and Season-NeRF with only a single
temporal class available (Case E). An example of how the
inclusion of multiple temporal classes alters the output is
shown in Fig. 5. From visual similarity scores shown in Table
3, we conclude that allowing a model to account for multiple
seasons drastically improves the quality of the rendered
images.

4.2 Height Map and Shadow Mask Tests
To evaluate the height map, we compute the mean absolute
height error (MAE), as described in [28], relative to lidar.
Examples of the height maps rendered by Season-NeRF

5. For tests involving more than two cases, we include multicolored
indicators. The amount of green shown in the indicator is proportional
to the distance to the best result for the metric.
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Fig. 3. The left hyper-column contains ground truth images, the center hyper-column contains rendered images with direct time input, and the right
hyper-column contains rendered images after seasonal alignment.

Fig. 4. Distribution of viewing angles, solar angles, and times for OMA 042. The satellite and solar angle graphs are on a polar scale, with distance
from the origin measuring off-nadir and elevation angles. The rotation from the positive x-axis measures the azimuth angle. The time plot uses
rotation to reflect the time of the year. Distance from the origin indicates the sum of the solar and viewing angle difference between the training point
and the closest testing point in terms of days apart. The smallest summed rotational difference is 23.4 degrees, and the largest is 187.0 degrees.
The walking points occur at multiple times and viewing angles and are represented by a line, indicating that views near and far from the training
points are used.

process are shown in Fig. 6. Table 4 contains a quantitative
comparison of our height maps with lidar data. We con-

sidered the same cases as in Section 4.1 for the evaluation
of the height map. As with image quality, the inclusion of
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Fig. 5. This image is an example of how a single season limits the ability of NeRF to render novel views. Despite generating a high-quality rendering
with accurate buildings and roads, the seasonal features in the single-season output are incorrect. Attempting seasonal alignment allows the sky
color to change and the model to turn part of a forest into shadow (area circled in red) but does not allow the season to change due to the limitations
of how shadows can affect the rendering. However, the multi-season approach generates an image with the correct buildings, roads, and seasonal
features for a winter scene. Seasonal alignment improves these results by allowing the network to generate a winter scene with closer seasonal
features to the ground truth. Also included on the far right is an image generated with seasonal features similar to the single-season model as
evidence that the multi-season approach can generate multiple seasons with a single model.

TABLE 3
Results of comparing rendered images with testing images. Included are directly rendered images and scores after seasonal alignment (SA).
Case A: Full Model. Case B: Full Model, S-NeRF Solar loss. Case C: MSE Loss. Case D: No Height Map. Case E: No Seasonal Adjustment.

Region PSNR ↑ SSIM ↑
Cases: A B C D E A B C D E

OMA 042 19.35 19.43 19.30 19.22 17.45 0.60 0.60 0.60 0.59 0.48
OMA 084 19.17 18.46 19.00 19.12 16.85 0.55 0.52 0.54 0.53 0.35
OMA 132 19.82 19.84 20.12 20.12 17.59 0.62 0.61 0.64 0.63 0.51
OMA 163 18.65 18.78 19.36 18.61 17.60 0.52 0.54 0.56 0.52 0.46
OMA 203 21.02 21.21 21.34 20.39 18.80 0.65 0.65 0.65 0.63 0.55
OMA 212 17.79 18.12 18.46 17.65 15.93 0.57 0.59 0.59 0.56 0.51
OMA 281 19.74 19.96 20.36 19.91 19.08 0.60 0.61 0.61 0.60 0.55
OMA 374 20.48 20.33 20.55 20.20 18.91 0.52 0.53 0.54 0.52 0.45
Average 19.50 19.51 19.81 19.40 17.78 0.58 0.58 0.59 0.57 0.48

Region PSNR, SA ↑ SSIM, SA ↑
Cases: A B C D E A B C D E

OMA 042 19.73 19.85 19.83 19.65 17.46 0.60 0.60 0.60 0.60 0.48
OMA 084 20.32 20.25 20.46 20.04 16.96 0.57 0.56 0.57 0.54 0.35
OMA 132 21.21 21.45 21.27 21.18 17.60 0.67 0.67 0.67 0.67 0.51
OMA 163 19.82 19.76 19.80 19.59 17.61 0.59 0.57 0.58 0.56 0.46
OMA 203 21.44 21.67 21.63 21.23 18.83 0.66 0.66 0.65 0.64 0.55
OMA 212 20.26 21.09 20.47 20.32 16.20 0.61 0.64 0.63 0.61 0.51
OMA 281 20.99 21.19 21.16 21.03 19.15 0.64 0.64 0.63 0.62 0.55
OMA 374 21.28 21.44 21.43 20.91 18.95 0.53 0.54 0.54 0.53 0.45
Average 20.63 20.84 20.75 20.49 17.85 0.61 0.61 0.61 0.60 0.48

seasonal variation resulted in a substantial improvement
to the height map. In addition, the inclusion of a prior is
a significant factor in the quality of the final height map
generated by Season-NeRF.

To measure the quality of our predicted shadow masks,
we compute an exact shadow mask using Equation 15 by
replacing V

(
X⃗i, w⃗

)
with the exact solar visibility computed

along the ray by Equation 4. In theory, we could always
use the exact value to compute the shadow mask instead
of using a network to approximate it. However, this is not
practical as using the exact computation to render a ray with
n points is O

(
n2
)
. Instead, if the approximate computation

is used, rendering is a O (n) operation. Examples of the
predicted shadow mask and the exact shadow mask are

shown in Fig. 10 with numerical results shown in Table 5.
In addition Fig. 7 shows an example of the shadow mask
from Equation 15 before applying the sigmoid function. In
Fig. 9, we show an image before and after the shadow mask
has been applied. We compare the estimated shadow mask
to the exact shadow mask instead of the shadow mask from
the lidar DSM as shadows are predicted entirely based on
the model density. Errors in the model density will result in
errors in the shadows and create ambiguity regarding the
performance of the estimated shadow mask, as it is unclear
if a loss in accuracy is due to poor approximation of the
exact shadows or problems in the density model.

As with [6] and [9], the inclusion of prior height in-
formation drastically improves the quality of the model
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generated by Season-NeRF. However, we also compare the
quality of the model learned with the prior height map
with the quality of the prior height map itself. We note
that in most cases, Season-NeRF results in a height map
superior to the one provided during training. As shown
in Fig. 8, Season-NeRF initially learns height information
from the prior height map, including some of the errors
in the prior height map. However, in the later phase of
the training, when the prior height map is no longer being
used, the training process can correct the errors in the prior.
Correcting these errors results in a superior height map from
the NeRF compared to the prior provided to the NeRF for
training.

4.3 Seasonal Specificity and Stability Tests

Seasonal specificity refers to the capability of Season-NeRF
to render seasonal features that are expected based on
provided time of the year. Seasonal stability refers to these
features’ invariance when changing viewing and solar an-
gles. The ideal method for measuring a model’s ability to be
specific and stable is to generate images across all reasonable
viewing angles, solar angles, and time combinations. These
images could then be compared to ground truth images to
show that the quality does not vary and the rendered images
have the desired seasonal properties and shadows while
still accurately capturing properties invariant to seasons
and shadows. While it is possible to render images for all
different input configurations, we are extremely limited in
the available ground truth data. As such, we must determine
an alternative method to test the specificity and stability of
Season-NeRF approach.

To determine that Season-NeRF can render a specific
season, we render 180 images, each approximately 6 days
apart, spanning Spring (Fig. 11), Summer (Fig. 12), Fall (Fig.
13), and Winter (Fig. 14). We can visually confirm the ability
of Season-NeRF to render images with the expected seasonal
features and correct seasonally independent properties. The
rendered images contain expected seasonal features for
Spring, Fall, and Winter. In Winter (Fig. 14), snow melts
and returns in several regions, and in late fall (last columns
of Fig. 13), some images have snow, and others do not, as
some regions had an early snowfall and others did not. In
Spring (Fig. 11), we can see brown foliage becoming green;
however, in the last column, certain regions seem to revert
to winter. This pattern continues in Summer (Fig. 12), where
we see snow appear. However, we attribute this strange
behavior to the lack of data during the summer months,
which explains why our model could not correctly predict
the appearance of these seasons. Despite the lack of data
from summer, giving the model a time of the year during
summer does not result in a distorted image. Instead, it
results in a valid image with incorrect seasonal features but
correct seasonally independent features. Thus, Season-NeRF
can accurately specify the season, assuming training data is
available during the desired season.

To measure the stability of the images generated by
Season-NeRF, we measure the Earth Mover’s Distance
(EMD) [29] between images rendered at the same time of
the year but with different viewing and solar angles. Shifts
in the location of structures within the image caused by

Fig. 6. Height maps of lidar data, where available (left), prior height map
(center), and Season-NeRF’s height map (right).

changing the viewing angles should have minimal impact
on the image’s histogram. Therefore, shifts in viewing an-
gles should not significantly influence the EMD since EMD
is a histogram-based image similarity metric, and we are
not using a variant of EMD that considers pixel position.
As seasonal shifts generally affect the entire image, these
changes should provide the bulk of the distance measured
by EMD. However, viewing and solar angle changes would
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TABLE 4
Quality of height maps relative to lidar data. Highlighted in green is the best score per metric for each region. Case Prior: Space Carved Height

Map. Case A: Full Model. Case B: Full Model, S-NeRF Solar loss. Case C: MSE Loss. Case D: No Height Map. Case E: No Seasonal Adjustment.

Reg MAE ↓ RMSE ↓
Prior A B C D E Prior A B C D E

042 2.92 2.47 2.37 2.41 2.43 2.79 4.08 3.56 3.44 3.47 3.42 3.79
084 3.34 2.82 3.11 2.90 3.94 6.22 5.06 4.13 4.60 4.39 5.14 7.95
132 1.20 1.22 1.26 1.23 1.46 1.67 2.13 2.02 2.10 2.07 2.06 2.44
163 1.80 1.43 1.68 1.88 2.04 2.42 2.75 2.31 2.69 2.61 2.77 3.10
203 1.37 1.17 1.44 1.07 2.02 1.87 2.61 1.92 2.45 1.81 2.82 2.82
212 0.64 0.94 0.84 0.91 1.11 1.13 1.44 1.76 1.59 1.69 1.99 1.96
281 1.77 1.46 1.51 1.61 2.79 2.65 3.32 2.46 2.52 2.67 3.86 3.66
374 5.27 4.44 4.29 4.52 5.22 5.91 6.75 5.88 5.77 5.90 6.49 7.32
Avg 2.29 1.99 2.06 2.07 2.62 3.08 3.52 3.01 3.14 3.08 3.57 4.13

Reg Percent within 1 m ↑ Median Error ↓
Prior A B C D E Prior A B C D E

042 0.17 0.26 0.30 0.31 0.31 0.25 2.22 1.61 1.55 1.63 1.71 2.16
084 0.34 0.30 0.28 0.32 0.16 0.13 2.27 1.82 2.06 1.68 3.14 4.90
132 0.67 0.61 0.60 0.63 0.47 0.47 0.63 0.73 0.75 0.69 1.08 1.10
163 0.41 0.57 0.48 0.37 0.35 0.28 1.17 0.84 1.04 1.41 1.55 2.07
203 0.56 0.65 0.56 0.68 0.38 0.46 0.86 0.64 0.89 0.61 1.44 1.12
212 0.85 0.73 0.76 0.76 0.67 0.65 0.25 0.45 0.41 0.49 0.68 0.70
281 0.54 0.54 0.54 0.50 0.27 0.26 0.90 0.89 0.91 0.99 2.02 2.04
374 0.12 0.18 0.21 0.14 0.13 0.09 4.21 3.23 3.11 3.31 4.39 5.06
Avg 0.46 0.48 0.47 0.46 0.34 0.32 1.56 1.28 1.34 1.35 2.00 2.39

TABLE 5
Quantitative overview of EM distance when time is constant. Case A: Full Model. Case B: Full Model, S-NeRF Solar loss. Case C: MSE Loss.

Case D: No Height Map. Case E: No Seasonal Adjustment. While Case D contains the best shadow prediction, it also performs poorly for height
map quality.

Region Accuracy ↑ Sun F1 ↑
Cases: A B C D E A B C D E

OMA 042 0.94 0.94 0.93 0.97 0.91 0.97 0.97 0.96 0.98 0.95
OMA 084 0.94 0.95 0.94 0.98 0.94 0.96 0.98 0.95 1.00 0.91
OMA 132 0.94 0.94 0.94 0.98 0.91 0.97 0.97 0.96 0.99 0.97
OMA 163 0.94 0.95 0.95 0.98 0.92 0.97 0.98 0.98 0.99 0.97
OMA 203 0.95 0.93 0.96 0.98 0.91 0.96 0.96 0.96 0.99 0.95
OMA 212 0.97 0.98 0.97 0.99 0.93 0.98 0.99 0.99 0.99 0.97
OMA 281 0.97 0.96 0.98 1.00 0.93 0.97 0.96 0.97 0.99 0.94
OMA 374 0.95 0.92 0.95 0.98 0.92 0.96 0.95 0.97 1.00 0.94
Average 0.95 0.95 0.95 0.98 0.92 0.97 0.97 0.97 0.99 0.95

Region Shadow Precision ↑ Shadow Recall ↑
Cases: A B C D E A B C D E

OMA 042 0.77 0.84 0.78 0.80 0.65 0.47 0.37 0.32 0.49 0.42
OMA 084 0.77 0.70 0.74 0.91 0.61 0.53 0.41 0.49 0.85 0.71
OMA 132 0.82 0.82 0.76 0.87 0.71 0.48 0.33 0.41 0.56 0.28
OMA 163 0.79 0.88 0.81 0.89 0.62 0.47 0.31 0.31 0.58 0.41
OMA 203 0.76 0.66 0.72 0.81 0.64 0.54 0.38 0.54 0.63 0.44
OMA 212 0.80 0.91 0.90 0.89 0.65 0.68 0.64 0.49 0.73 0.49
OMA 281 0.78 0.66 0.78 0.87 0.60 0.66 0.60 0.63 0.76 0.62
OMA 374 0.67 0.52 0.75 0.75 0.58 0.60 0.40 0.44 0.69 0.56
Average 0.77 0.75 0.78 0.85 0.63 0.55 0.43 0.45 0.66 0.49

still result in a non-zero EMD.

To estimate the expected EMD between two seasonally
different images, we consider the EMD between the pro-

totypical testing images. The EMD between prototypical
testing images provides a value for the expected EMD
between images with different season features. The thresh-
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Fig. 7. Example of application of Equation 15 (bottom), as well as the
image before sigmoid, scaling via κ, and shifting via µ are used (top).
Both images are in the range of [0, 1].

Fig. 8. Lidar data of OMA 281 (left). Intermediate height map generated
by Season-NeRF at the end of depth supervision (center). Final height
map generated by Season-NeRF (right). Note the gauge (circled in
red) from the depth supervision and the fuzzy building border (in pink
rectangle). These errors in the height map are from the prior, and the
training process corrects them after depth supervision stops.

olds for seasonal changes between prototypical images are
summarized in Table 6, and Table 7 provides an overview
of the EMD across 660 different combinations of view angle,
solar angle, and time. Each test case is computed at one of
five solar angles, eleven viewing angles, and twelve viewing

Fig. 9. Example of shadow rendering on OMA 374. Results of rendered
images without shadow mask (left) and with shadow mask (right). Re-
gions circled in red contain shadows that are not rendered until after
applying the shadow mask.

times. These points are shown in Fig. 4. We are primarily
interested in Cases A and B, given that Cases C, D, and
E have inferior performance in other areas. However, we
include all cases in Table 7 for completeness.

We compare the results of our method for rendering
shadows with those of S-NeRF’s method of rendering shad-
ows in Figs. 16 and 15. In Fig. 16, we show the image pairs
from each region with the largest EMD when the time of the
year is constant. We provide a histogram of the EMD of all
the image pairs we tested in Fig. 15. Based on the histogram
in Fig. 15 and rendered images in Fig. 16, we conclude
our shadow rendering process results in a seasonally stable
network, where solar and view angle do not alter seasonal
features. Using the solar approach from S-NeRF does not
ensure that the seasonal features are independent of the
solar angle. We conclude this because a significant portion
of the image pairs rendered with S-NeRF’s shadow method
had an EMD above the threshold set by the prototypical
images, indicating a change in the seasonal features.

TABLE 6
Baseline EMD for seasonal effects

Baseline Scores Min Median Max
OMA 042 13.23 16.30 19.18
OMA 084 8.76 23.07 23.25
OMA 132 9.18 18.83 23.95
OMA 163 9.65 16.64 19.76
OMA 203 6.01 23.43 24.47
OMA 212 17.88 25.50 33.95
OMA 281 11.19 11.39 12.05
OMA 374 5.48 17.83 18.01
Average 10.17 19.12 21.83

4.4 Analysis of Barron’s Loss Compared to MSE Loss
A comparison of visual quality scores in Table 3 and height
map quality in Table 4 models trained using Barron’s
loss perform almost identically to those trained with MSE
loss. However, the models have different performances in
shadow prediction, with Barron’s loss improving shadow
recall by an average of 13%. The change in performance is
unexpected, as shadow prediction never uses Barron’s loss.
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Fig. 10. Examples of estimated shadow masks (right) compared to
exact shadow masks (left)

TABLE 7
Quantitative overview of EMD when time is constant. Case A: Full

Model. Case B: Full Model, S-NeRF Solar loss. Case C: MSE Loss.
Case D: No Height Map. Case E: No Seasonal Adjustment.

Reg Median ↓
A B C D E

042 1.60 3.21 1.81 1.54 2.28
084 2.24 12.16 1.78 1.44 3.01
132 1.49 7.40 1.76 1.35 1.76
163 1.76 8.28 1.47 1.43 2.20
203 2.46 6.28 2.35 1.86 2.52
212 1.43 1.51 1.33 1.52 1.52
281 2.42 6.86 2.56 2.24 4.94
374 2.45 4.59 1.77 1.25 2.18
Avg 1.98 6.29 1.85 1.58 2.55

Reg 95% Quantile ↓
A B C D E

042 3.57 8.55 3.99 3.08 4.72
084 5.39 24.37 3.85 2.66 5.41
132 3.07 15.17 3.91 2.46 3.32
163 3.38 17.31 3.02 2.89 4.16
203 4.82 13.29 5.17 3.46 4.91
212 2.54 8.91 2.43 2.72 2.89
281 6.03 9.69 7.14 5.25 8.14
374 7.69 32.26 4.77 2.17 7.64
Avg 4.56 16.19 4.29 3.09 5.15

Reg Max ↓
A B C D E

042 5.74 12.29 6.53 5.31 6.49
084 8.79 27.88 6.68 3.33 7.52
132 4.75 19.31 6.41 4.04 4.27
163 5.40 20.74 4.59 4.02 5.50
203 7.24 16.64 7.82 4.45 6.57
212 3.94 10.98 4.44 3.80 5.41
281 9.25 12.55 10.34 8.71 10.24
374 10.21 36.49 6.83 7.10 9.04
Avg 6.92 19.61 6.71 5.10 6.88

Determining an explanation for this phenomenon is an area
for future work.

4.5 High Resolution Results
We also consider how increasing the resolution of the im-
ages used to create Season-NeRF affects the performance.
To accomplish this, we do not down-sample the images;
however, we must reduce the size of the regions we consider
from 500 by 500 meters to 250 by 250 meters. We consider
using parameters tuned for large area low-resolution images
and parameters tuned for small area high resolution. The
results are shown in Table 8, with example renderings in Fig.
17. Unsurprisingly, tuning the parameters results in superior
performance. We show the changed parameters in Table 9.

5 CONCLUSION

Given multidate and multiview satellite images of a scene,
we can render novel views with specific solar and seasonal
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Fig. 11. Images rendered approximately six days apart during March, April, and May. They approximate the spring season.

Fig. 12. Images rendered approximately six days apart during June, July, and August. They approximate the summer season.
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Fig. 13. Images rendered approximately six days apart during September, October, and November. They approximate the Fall season.

Fig. 14. Images rendered approximately six days apart during December, January, and February. They approximate the Winter season.
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TABLE 8
Results on small regions. Case A: Full Model on Full Region. Case F: Full Model without downsizing and parameters tuned for small regions. Case

G: Full model without down-sampling default parameters.

Region SSIM, SA ↑ MAE ↓
Case: A F G A F G

OMA 042 0.602 0.586 0.562 2.473 1.957 2.357
OMA 084 0.571 0.566 0.529 2.823 2.442 3.769
OMA 132 0.674 0.702 0.704 1.219 1.040 1.279
OMA 163 0.585 0.532 0.527 1.431 1.466 2.073
OMA 203 0.656 0.705 0.696 1.171 0.987 1.429
OMA 212 0.610 0.711 0.679 0.939 0.889 1.102
OMA 281 0.636 0.634 0.618 1.461 1.312 2.296
OMA 374 0.533 0.464 0.473 4.436 4.216 4.211
Average 0.608 0.613 0.599 1.994 1.789 2.314

TABLE 9
A summary of the initial and best hyperparameters found as a result of the hyperparamter tuning process. LR: learning rate, λSC weight for solar
correction terms, λDS weight for depth supervision terms, n: number of seasonal classes κ: scale for shadow mask µ: Shift for shadow mask S:

Maximum sky color A: Minimum color without shadows

Region log10 (LR) λSC λDS n κ µ S A SSIM MAE
Low Res -4.84 0.03 1.00 4 30.00 0.20 0.50 0.20 0.53 2.52
High Res -4.37 0.46 2.63 8 37.91 0.10 0.73 0.15 0.57 1.70

Fig. 15. A histogram of the EMD amongst images with varying views and
solar angles but a fixed time of the year.

TABLE 10
Summary of the performances for each of the variations of

Season-NeRF. Case A: Full Model. Case B: Full Model, S-NeRF Solar
loss. Case C: MSE Loss. Case D: No Height Map. Case E: No

Seasonal Adjustment.

Cases: A B C D E

Seasonal Variation X X X X

Seasonal Stability X X X X

Accurate DSM X X X

Good Shadow Recall X X

features using a NeRF. Since seasonal features are obviously
linked to the time of the year, Season-NeRF uses the time
of the year to compute seasonally adjusted albedo colors.
In addition, Season-NeRF uses the viewing and solar angles
to determine which regions of the rendered image contain
shadows. The network architecture of Season-NeRF ensures
the time of the year can only alter the seasonal features
by limiting the time of the year to change the seasonally
adjusted albedo and leaving other outputs independent
of the time of the year. While the method for rendering
shadows described in S-NeRF [4] works well, it allows the
solar angle to influence the seasonal features unduly. To
discourage the network from using the seasonally adjusted
albedo to explain shadows, we alter how shadows are
computed and modify the loss function. We expand the
loss function to punish the network for outputting dark
colors via the seasonally adjusted albedo. Furthermore, we
punish the network for using trivial sky colors. Finally, we
freeze parameters not used in the computation of the solar
visibility or sky color when training the network with solar
rays and freeze parameters used only in the computation of
solar visibility when training with image rays. The ability to
render seasonal features can also cause the network to learn
less accurate densities. To balance this tendency, we provide
a height map to our model as a guide for the early stages of
training.

The primary purpose of Season-NeRF is to account for
seasonal changes within satellite images. To this end, we
introduced temporal adjustment capability into our NeRF
process. In addition to this, Season-NeRF uses a novel
approach for depth supervision that utilizes a height map
rather than a set of 3D points as is used on [6]. In the
future, we would like to compare the performance of NeRFs
using different depth supervision techniques with varying
quality of prior information. In addition, we would like to
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Fig. 16. Examples of the image pairs with the largest EMD for each
region. The EM distance between the two images is on the right side of
each column.

incorporate the findings of [30] to improve the performance
of transient object removal for Season-NeRF.

We show the performance of Season-NeRF in eight AOIs
from the 2019 IEEE GRSS Data Fusion Contest [1], which
contains images captured by the Maxar WorldView-3 satel-
lite between 2014 and 2016. We show how, by including
seasonal variation, we can improve the quality of the ren-
dered image as measured by PSNR and SSIM. By including
a height map, we can improve the mean altitude error over
every region by an average of .6 meters. Using Barron’s loss
function, we can improve the average shadow recall by 13%.
However, Barron’s loss does not have a discernible impact
on the quality of the height map or rendered image. As
summarized in Table 10, each aspect of the Season-NeRF
framework contributes to the capabilities of the radiance
field. Our method for computing shadows allows solar fea-
tures to remain independent from seasonal features despite
a limited amount of training data. As a result, we can specify
solar and seasonal features for novel view renderings of
scenes captured by satellite images.

Fig. 17. Results with high resolution images on small regions.
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