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Abstract. Immunohistochemical (IHC) staining highlights the molecu-
lar information critical to diagnostics in tissue samples. However, com-
pared to H&E staining, IHC staining can be much more expensive in
terms of both labor and the laboratory equipment required. This mo-
tivates recent research that demonstrates that the correlations between
the morphological information present in the H&E-stained slides and
the molecular information in the IHC-stained slides can be used for
H&E-to-IHC stain translation. However, due to a lack of pixel-perfect
H&E-IHC groundtruth pairs, most existing methods have resorted to
relying on expert annotations. To remedy this situation, we present a
new loss function, Adaptive Supervised PatchNCE (ASP), to directly
deal with the input to target inconsistencies in a proposed H&E-to-IHC
image-to-image translation framework. The ASP loss is built upon a
patch-based contrastive learning criterion, named Supervised PatchNCE
(SP), and augments it further with weight scheduling to mitigate the
negative impact of noisy supervision. Lastly, we introduce the Multi-
IHC Stain Translation (MIST) dataset, which contains aligned H&E-
IHC patches for 4 different IHC stains critical to breast cancer diagnosis.
In our experiment, we demonstrate that our proposed method outper-
forms existing image-to-image translation methods for stain translation
to multiple IHC stains. All of our code and datasets are available at
https://github.com/lifangda01/AdaptiveSupervisedPatchNCE.

Keywords: Generative Adversarial Network · Contrastive Learning ·
H&E-to-IHC Stain Translation.

1 Introduction

Immunohistochemical (IHC) staining is a widely used technique in pathology
for visualizing abnormal cells that are often found in tumors. IHC chromogens
highlight the presence of certain antigens or proteins by staining their corre-
sponding antibodies. For instance, the HER2 (human epidermal growth factor
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receptor 2) biomarker is associated with aggressive breast tumor development
and is essential in forming a precise treatment plan. Despite its capability to
provide highly valuable diagnostic information, the process of IHC staining is
very labor-intensive, time-consuming and requires specialized histotechnologists
and laboratory equipments [2]. Such factors hinder the general availability of
IHC staining in histopathological applications.

At the other end of the spectrum, H&E (Hematoxylin and Eosin) staining,
as the gold standard in histological staining, highlights the tissue structures and
cell morphology. In routine diagnostics, on account of its much lower cost, an
H&E-stained slide is prepared by pathologists in order to determine whether or
not to also apply the IHC stains for a more precise assessment of the disease.
Therefore, it is of great interest to have an algorithm that can automatically
translate an H&E-stained slide into one that could be considered to have been
stained with IHC while accurately predicting the target expression levels.

To that end, researchers have recently proposed to use GAN-based Image-to-
Image Translation (I2IT) algorithms for transforming H&E-stained slides into
IHC. Despite the progress, the outstanding challenge in training such I2IT frame-
works is the lack of aligned H&E-IHC image pairs, or in other words, the in-
consistencies in the H&E-IHC groundtruth pairs. To explain, since re-staining a
slice is physically infeasible, a matching pair of H&E-IHC slices are taken from
two depth-wise consecutive cuts of the same tissue then stained and scanned
separately. This inevitably prevents pixel-perfect image correspondences due to
the slice-to-slice changes in cell morphology, staining-induced degradation (e.g.
tissue-tearing), imaging artifacts that may vary among slices (e.g. camera out-of-
focus) and multi-slice registration errors. An example pair of patches is shown in
Fig. 1 and another pair with significant inconsistencies is shown in Fig. 2(a)(c).
In the latter, comparing the groundtruth IHC image to the input H&E image,
one can clearly see the inconsistencies – nearly the entire left half of the tissue
present in the H&E image is missing.

As a result, recent advances in H&E-to-IHC I2IT have mostly avoided using
the inconsistent GT pairs and instead have imposed the cycle-consistency con-
straint [6,8,13]. Moreover, existing approaches have also exploited using expert
annotations such as per-cell labels [9], semantic masks [8] and patch-level labels
[8,13]. As for the prior works that directly utilize the H&E-IHC pairs for supervi-
sion, a variant of Pix2Pix [4] that uses a Gaussian Pyramid based reconstruction
loss to accommodate the noisy GT is proposed in [7]. However, the robustness of
such approaches that punish absolute errors in the generated image to dealing
with GT inconsistencies remains unclear.

In this paper, we argue that the IHC slides, despite the disparities vis-a-vis
their H&E counterparts, can still serve as useful targets for stain translation. The
work we present in this paper is based on the important realization that even
when pairs of consecutive tissue slices do not yield images that are pixel-perfect
aligned, it is highly likely that the corresponding patches in the two stains share
the same diagnostic label. For example, if the levels of expression in a region of
the HER2 slide are high, the corresponding region in the H&E slide is highly
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likely to contain a high density of cancerous cells. Therefore, we set our goal to
meaningfully leverage such correlations to benefit the H&E-to-IHC I2IT while
being resilient to any inconsistencies.

Toward this goal, we propose a supervised patchwise contrastive loss named
the Adaptive Supervised PatchNCE (ASP) loss. Our formulation of this loss
was inspired by the recent research findings that contrastive loss benefits model
robustness under label noise [12,3]. Furthermore, based on the observation that
any dissimilarity between the patch embeddings at corresponding locations in the
generated and groundtruth IHC images is indicative to the level of inconsistency
of the GT at that location, we employ an adaptive weighting scheme in ASP. By
down-weighting the contrastive loss at locations with low similarities, i.e. high
inconsistencies, our proposed ASP loss helps the network learn more robustly.

Lastly, to support further research in virtual IHC-restaining, we present the
Multi-IHC Stain Translation (MIST) as a new public dataset. The MIST dataset
contains 4k+ training and 1k testing aligned H&E-IHC patches for each of the
following IHC stains that are critical for breast cancer diagnostics: HER2, Ki67,
ER (Estrogen Receptor) and PR (Progesterone Receptor). We evaluated existing
I2IT methods and ours for multiple IHC stains and demonstrate the superior
performance achieved by our method both qualitatively and quantitatively.

2 Method Description

2.1 The Supervised PatchNCE (SP) Loss

Before getting to our ASP loss, we need to first introduce the SP loss as a robust
means to learning from inconsistent GT image pairs. The SP loss was inspired by
the findings in recent literature that demonstrate the positive effect of contrastive
learning on boosting model robustness against label noise [12,3,14]. It takes the
same form as the PatchNCE loss as introduced in [11], except that it is applied
on the generated-GT image pair (instead of the input-generated pair).

The goal of the PatchNCE loss is to ensure the content is consistent across
translation by maximizing the mutual information between the input and the
corresponding output. It does so by minimizing a patch-based InfoNCE loss
[10], which encourages the network to associate the corresponding patches with
each other in the learned embedding space, while disassociating them from the
noncorresponding ones. Mathematically, the InfoNCE loss takes the form:

LInfoNCE(v,v
+,v−) = − log

[
exp (v · v+/τ)

exp (v · v+/τ) +
∑N

n=1 exp (v · v
−
n /τ)

]
, (1)

where v, v+ and v− are the embeddings of the anchor, positive and negative
samples, respectively. With InfoNCE, the PatchNCE loss is set up as follows:
given the anchor embedding ẑY of a patch in the output image, the positive zX

is the embedding of the corresponding patch from the input image, while the
negatives z̃X are embeddings of the non-corresponding ones, i.e. LPatchNCE =
LInfoNCE(ẑY , zX , z̃X).
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Fig. 1: Illustration of the PatchNCE loss from [11] and the Supervised PatchNCE
(SP) loss. The patch embeddings z are extracted by a shared network F .

As for the SP loss, given the embedding of an output patch ẑY as anchor,
we now designate the embedding of the corresponding patch in the groundtruth
image zY as the positive and the embeddings of the non-corresponding ones
z̃Y as the negatives. We then use the same InfoNCE-based contrastive learning
objective, i.e. LSP = LInfoNCE(ẑY , zY , z̃Y ). A depiction of both the PatchNCE
loss and the SP loss is given in Fig. 1. It is worthy to note that, although a similar
patchwise contrastive loss has been proposed in [1] for supervised I2IT, it is one
of our contributions in this paper to explicitly exploit the robustness of this
contrastive loss in the context of H&E-to-IHC translation where the GT pairs
can be highly inconsistent for reasons mentioned previously. We think that the
key factor behind the robustness of LSP towards inconsistent GT compared to,
say, the MSE loss, is its relativeness. Instead of using an absolute loss term that
may not work well on inconsistent groundtruth pairs, LSP punishes dissimilarities
between the anchor and the positive in a learned latent space, relative to those
between the anchor and the negatives.

2.2 The Adaptive Supervised PatchNCE (ASP) Loss

To learn selectively from more consistent groundtruth locations, we further pro-
pose to augment the Supervised PatchNCE loss in an adaptive manner. The key
idea here is to automatically recognize patch locations that are inconsistent and
adapt the SP loss so that the severely inconsistent patch locations will have lesser
effects on training. To measure the consistency at a given patch location, we use
the cosine similarity between the embeddings of the generated IHC patch and
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Fig. 2: (a) Input H&E image x, (b) generated IHC image ŷ, (c) groundtruth IHC
image y, and (d) heat map of the anchor-positive cosine similarities produced
by a trained network at corresponding locations: Cs = zs

ŷ · zs
y, where s is index

of the spatial location.

Fig. 3: (a) Histograms of the anchor-positive similarity values at different epochs;
(b) The weight h(·) as a function of Cs; (c) The scheduling function g(·).

the corresponding GT patch. In Fig. 2, we show an example pair of generated vs
GT IHC images that contain significant inconsistencies and their anchor-positive
similarity heat map. For pairs of embeddings produced by a trained network, a
high similarity value indicates good correspondence between the groundtruth
patches while a low similarity value indicates inconsistencies.

Directly motivated by this observation, we first propose a weighting scheme
for the SP loss. More specifically, we assign lower weights to patch locations
that have low anchor-positive similarity values to alleviate the negative impacts
the inconsistent targets may have on training. At training time t, the weight is a
function of the anchor-positive cosine similarity. Examples of the weight function
h(·) are shown in Fig. 3(b). The weight functions are monotonic increasing so that
the more confident patch locations are always treated with more importance.

In order to make the weighting scheme work in practice, we must also account
for the phase of training. The intuition is that, during the initial phase of training,
the network is not going to be able to discriminate between consistent patch
locations from those that are inconsistent. Additionally, as shown in Fig. 3(a),
the histograms of the anchor-positive similarity evolve rather slowly over the
training epochs. Therefore, it would not make sense to reinforce the weighting
function in the beginning of the training as much as near the end of the training.
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Fig. 4: Left to right: (a) Input H&E image; (b) Groundtruth IHC image; (c)
Generated image without LSP; (d) With LSP; (e) With L(lambda,linear)

ASP .

To that end, we further augment the weight so that it is also a function of
the training iterations. Such scheduling of the weights is done so that in the
beginning of the training, the weights are uniform in order not to wrongly bias
the network when the embeddings are still indiscriminative. And as training
progresses, the selective weighting scheme is gradually enforced so that the in-
consistent patch locations are treated with reduced weights. We call this gradual
process of shifting the learning focus weight scheduling. Let t denote the current
iteration and T the total number of training iterations. Then weight scheduling is
achieved by using a scheduling function g( t

T ). Various options of g(·) are shown
in Fig. 3(c). Subsequently, combining the weighting function with the scheduling
function, we can write the following formula for the final weight:

wt(v,v
+) =

(
1− g

(
t

T

))
× 1.0 + g

(
t

T

)
× h(v · v+). (2)

We refer to the new augmented Supervised PatchNCE loss as the Adaptive
Supervised PatchNCE (ASP) loss, which can be expressed as:

LASP(G,H,X, Y, t) = E(x,y)∼(X,Y )

L∑
l=1

Sl∑
s=1

wt(ẑ
l,s
Y , zl,s

Y )

W l
t

·LInfoNCE(ẑ
l,s
Y , zl,s

Y , z̃l,s
Y ),

(3)
whereW l

t =
∑

s w
l,s
t is a normalization factor that maintains the total magnitude

of the loss after applying the weights. Finally, the overall learning objective for
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Table 1: Quantitative evaluations on all three datasets using both paired and
unpaired metrics. The best values are highlighted. Ours is with L(lambda,linear)

ASP .

Dataset Method SSIM↑ PHVT=0.01↓ FID↓ KID↓layer1 layer2 layer3 layer4 avg.

BCIHER2

CycleGAN 0.4424 0.4264 0.3924 0.2610 0.7262 0.4515 63.5 10.7
CUT+LGP 0.4802 0.4263 0.3784 0.2364 0.7328 0.4435 65.0 10.9
Pix2Pix 0.4372 0.5121 0.4531 0.2953 0.7484 0.5022 100.0 44.6
PyramidP2P 0.5001 0.4531 0.3826 0.2618 0.7293 0.4567 113.6 79.4
Ours (LASP) 0.5032 0.4308 0.3670 0.2235 0.7210 0.4356 65.1 9.9

MISTHER2

CycleGAN 0.1914 0.5633 0.6346 0.4695 0.8871 0.6386 240.3 311.1
CUT+LGP 0.1810 0.5321 0.4826 0.3060 0.8323 0.5383 66.8 19.0
Pix2Pix 0.1559 0.5516 0.5070 0.3253 0.8511 0.5588 137.3 82.9
PyramidP2P 0.2078 0.4787 0.4524 0.3313 0.8423 0.5262 104.0 61.8
Ours (LASP) 0.2004 0.4534 0.4150 0.2665 0.8174 0.4881 51.4 12.4

MISTER

CycleGAN 0.1982 0.5175 0.5092 0.3710 0.8672 0.5662 125.7 95.1
CUT+LGP 0.2217 0.4531 0.4079 0.2725 0.8194 0.4882 43.7 8.7
Pix2Pix 0.1500 0.5818 0.5282 0.3700 0.8620 0.5855 128.1 79.0
PyramidP2P 0.2172 0.4767 0.4538 0.3757 0.8567 0.5407 107.4 84.2
Ours (LASP) 0.2061 0.4336 0.4007 0.2649 0.8205 0.4799 41.4 5.8

Note that KID values multiplied by 1000 are shown. CUT is from [11].

our generator is as follows:

Ladv + λPatchNCELPatchNCE + λASPLASP + λGPLGP, (4)

where LGP is the Gaussian Pyramid based reconstruction loss from [7].

3 Experiments

Datasets. The following datasets are used in our experiments: the Breast Cancer
Immunohistochemical (BCI) challenge dataset [7] and our own MIST dataset
that is now in the public domain. The publicly available portion of BCI contains
3396 H&E-HER2 patches for training and 500 of the same for testing. Note
that we have additionally normalized the brightness levels of all BCI images to
the same level. Due to the page limit, from the MIST dataset, here we only
present detailed results on HER2 and ER. For MISTHER2, we extracted 4642
paired patches for training and 1000 for testing from 64 WSIs. And for MISTER,
we extracted 4153 patches for training, and 1000 for testing from 56 WSIs.
All patches are of size 1024 × 1024 and non-overlapping. Additional results on
MISTKi67 and MISTPR are provided in the Supplementary Materials.
Implementation Details. For all of our models, we used ResNet-6Blocks as
the generator and a 5-layer PatchGAN as the discriminator. We trained our
networks with random 512 × 512 crops and a batch size of one. The Adam
optimizer [5] was used with a linear decay scheduler (as shown in Fig. 3(c)) and
an initial learning rate of 2 × 10−4. The hyperparameters in Eq. (4) are set as:
λPatchNCE = 10.0, λASP = 10.0 and λGP = 10.0.
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Table 2: Ablation studies comparing different adaptive strategies for the SP loss.
The best and second best values are highlighted. Note that LSP is L(zero,uniform)

ASP .

Dataset Method SSIM↑ PHVT=0.01↓ FID↓ KID↓layer1 layer2 layer3 layer4 avg.

BCIHER2

LSP 0.5094 0.4413 0.3771 0.2273 0.7202 0.4415 62.7 11.4
L(lambda,top)

ASP 0.5206 0.4411 0.3813 0.2282 0.7244 0.4438 62.1 12.8
L(lambda,lin.)

ASP 0.5032 0.4308 0.3670 0.2235 0.7210 0.4356 65.1 9.9
L(sigmoid,top)

ASP 0.5236 0.4503 0.3877 0.2331 0.7292 0.4501 65.9 12.3
L(linear,top)

ASP 0.4890 0.4327 0.3828 0.2305 0.7318 0.4445 61.9 9.8

MISTHER2

LSP 0.2159 0.4712 0.4243 0.2611 0.8129 0.4924 55.6 20.8
L(lambda,top)

ASP 0.2035 0.4451 0.4068 0.2554 0.8117 0.4798 51.2 16.7
L(lambda,lin.)

ASP 0.2004 0.4534 0.4150 0.2665 0.8174 0.4881 51.5 12.4
L(sigmoid,top)

ASP 0.2086 0.4655 0.4191 0.2581 0.8138 0.4891 45.2 11.5
L(linear,top)

ASP 0.1809 0.4766 0.4262 0.2667 0.8178 0.4968 68.8 28.9

MISTER

LSP 0.2236 0.4517 0.4117 0.2714 0.8208 0.4889 46.4 12.5
L(lambda,top)

ASP 0.2096 0.4388 0.4052 0.2676 0.8215 0.4833 42.4 8.1
L(lambda,lin.)

ASP 0.2061 0.4336 0.4007 0.2649 0.8205 0.4799 41.4 5.8
L(sigmoid,top)

ASP 0.2192 0.4376 0.3965 0.2684 0.8215 0.4810 43.6 8.1
L(linear,top)

ASP 0.1981 0.4581 0.4072 0.2706 0.8217 0.4894 46.9 10.7

Evaluation Metrics. We compare the methods using both paired and unpaired
evaluation metrics. To compare a pair of images, generated and groundtruth, we
use the standard SSIM (Structural Similarity Index Measure) and PHV (Per-
ceptual Hash Value) as described in [8]. As for the unpaired metrics, we use the
FID (Fréchet Inception Distance) and the KID (Kernel Inception Distance).
Qualitative Evaluations. In Fig. 5, we compare visually the generated IHC
images by our framework. It can be observed that by using either LSP or LASP,
the pathological representations in the generated images are significantly more
accurate. And by using LASP, such representations appear to be more consistent.
Quantitative Evaluations. The full results comparing existing I2IT methods
to ours are tabulated in Tab. 1. Overall, it can be observed that the proposed
framework with the ASP loss consistently outperforms existing methods across
all three datasets. Subsequently, in Tab. 2, we further provide results using differ-
ent weighting and scheduling functions in our proposed LASP. With LSP already
being a strong baseline, using different adaptive strategies can provide further
gains in performance. It is also worth noting that if reinforced prematurely,
adaptive weighting can lead to inferior convergence, e.g. L(linear,top)

ASP .

4 Conclusion

In this paper, we have proposed the Adaptive Supervised PatchNCE (ASP) loss
for learning H&E-to-IHC stain translation with inconsistent GT image pairs. The
adaptive logic in ASP is based on the intuition that inconsistent patch locations
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should contribute less to learning. We demonstrated that our proposed frame-
work is able to achieve significant improvements both qualitatively and quan-
titatively over the existing approaches for translations to multiple IHC stains.
Finally, we are making public our Multi-IHC Stain Translation dataset with the
hope to assist further research towards accurate H&E-to-IHC stain translation.
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5 Supplementary Materials

Table 3: Additional quantitative evaluations on MISTKi67 and MISTPR. Ours is
with L(lambda,linear)

ASP .

Dataset Method SSIM↑ PHVT=0.01↓ FID↓ KID↓layer1 layer2 layer3 layer4 avg.

MISTKi67

CycleGAN 0.3875 0.8274 0.8275 0.6081 0.9038 0.7917 343.9 317.9
CUT+LGP 0.1909 0.5426 0.4739 0.3160 0.8415 0.5435 76.1 43.5
Pix2Pix 0.1819 0.5468 0.4905 0.3415 0.8496 0.5571 147.0 142.4
PyramidP2P 0.2286 0.4533 0.4222 0.3360 0.8363 0.5120 94.4 78.0
Ours (LASP) 0.2410 0.4472 0.4001 0.2701 0.8128 0.4826 51.0 19.1

MISTPR

CycleGAN 0.2232 0.5334 0.5554 0.3867 0.8654 0.5852 96.1 96.6
CUT+LGP 0.2153 0.4656 0.4128 0.2724 0.8154 0.4916 54.6 20.1
Pix2Pix 0.1617 0.6027 0.5569 0.4043 0.8601 0.6060 183.8 148.1
PyramidP2P 0.2403 0.5078 0.4682 0.3509 0.8446 0.5429 98.8 59.5
Ours (LASP) 0.2159 0.4484 0.3898 0.2564 0.8080 0.4757 44.8 10.2

Note that KID values multiplied by 1000 are shown.

Table 4: Additional ablation studies on MISTKi67 and MISTPR.

Dataset Method SSIM↑ PHVT=0.01↓ FID↓ KID↓layer1 layer2 layer3 layer4 avg.

MISTKi67

LSP 0.2089 0.4631 0.4014 0.2686 0.8200 0.4883 41.3 8.3
L(lambda,top)

ASP 0.2078 0.4507 0.3938 0.2642 0.8103 0.4798 50.4 21.5
L(lambda,linear)

ASP 0.2410 0.4472 0.4001 0.2701 0.8128 0.4826 51.0 19.1
L(sigmoid,top)

ASP 0.2116 0.4403 0.3940 0.2634 0.8132 0.4777 41.4 11.0
L(linear,top)

ASP 0.1819 0.4483 0.4067 0.2762 0.8154 0.4867 49.5 21.4

MISTPR

LSP 0.2243 0.4511 0.3996 0.2682 0.8163 0.4838 50.7 11.2
L(lambda,top)

ASP 0.2169 0.4495 0.3940 0.2604 0.8130 0.4792 43.6 11.4
L(lambda,linear)

ASP 0.2159 0.4484 0.3898 0.2564 0.8080 0.4757 44.8 10.2
L(sigmoid,top)

ASP 0.2056 0.4725 0.4105 0.2703 0.8150 0.4921 48.6 11.6
L(linear,top)

ASP 0.2164 0.4569 0.4017 0.2655 0.8130 0.4843 45.5 10.9
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Fig. 5: Left to right: (a) Input H&E image; (b) Groundtruth IHC image; (c)
Generated image without LSP; (d) With LSP; (e) With L(lambda,linear)

ASP .
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