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Mining Concise Datasets for Testing Satellite-Data
Based Land-Cover Classifiers Meant for Large

Geographic Areas
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Abstract—Obtaining an accurate estimate of a land-cover clas-
sifier’s performance over a wide geographic area is a challenging
problem due to the need to generate the ground truth that
represents the entire area which may be thousands of square
kilometers in size. The current best approach for solving this
problem constructs a test set by drawing samples randomly from
the entire area — with a human supplying the true label for each
such sample — with the hope that the labeled data thus collected
captures statistically all of the data diversity in the area. A major
shortcoming of this approach is that, in an interactive session, it
is difficult for a human to ensure that the information provided
by the next data sample chosen by the random sampler is non-
redundant with respect to the data already collected. In order
to reduce the annotation burden caused by this uncertainty, it
makes sense to remove any redundancies from the entire dataset
before presenting its samples to the human for annotation. This
paper presents a framework that uses a combination of clustering
and compression to create a concise-set representation of the
land-cover data for a large geographic area. Whereas clustering
is achieved by applying Locality Sensitive Hashing (LSH) to
the data elements, compression is achieved by choosing a single
data element to represent a cluster. This framework reduces the
annotation burden on the human and makes it more likely that
the human would persevere during the annotation stage. We
validate our framework experimentally by comparing it with
the traditional random sampling approach using WorldView2
satellite imagery.

Index Terms—land-cover classifiers, performance evaluation,
satellite data representation, ground-truth annotation, big data.

I. INTRODUCTION

Constructing training and test sets for land-cover classifiers
that are effective over large geographic areas — areas that
may be as large as tens of thousands of square kilometers —
places a large burden on the human annotators for supplying
the ground truth. The most commonly used approach for
creating the datasets in such cases consists of drawing samples
randomly in a uniform manner from the entire geographic
region. More sophisticated approaches use a random sampler
based on the Metropolis-Hastings algorithm [1]. In this paper,
we compare our proposed concise-set representation method
with the traditional random sampling approach for testing
land-cover classifiers.

What is significant is that even with the best random
samplers, the datasets that are generated tend to be highly
redundant. As to what we mean by redundancy and diversity
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in the dataset, we illustrate these two concepts with a challenge
often encountered in creating a labeled dataset from a large
unlabeled dataset. Consider a human-computer interaction
involved in creating a labeled training/test set. As each new
sample is shown to a human annotator for its true label, it
is virtually impossible for the human to remember all of the
previously seen samples in order to determine whether the new
sample is merely redundant vis-a-vis all the samples collected
previously, or whether it really adds additional diversity to the
data already collected. Note that this challenge is exacerbated
by the fact that the human-computer interaction may last a
long time.

So if it is impossible to avoid redundancy in the datasets,
the reader may ask if that is really such a bad thing. Most
datasets that are out there for the training and testing of
machine learning algorithms carry no guarantee of being non-
redundant. What is most important for a dataset is whether or
not it captures all of the diversity in the data as it exists in the
real world. As long as this diversity constraint is satisfied, the
only price to pay for any redundancy in the data is that it may
take longer to train and test a classifier — but the classifier
performance would not be impacted by the redundancies.

Unfortunately, the consequences of redundancies in the
datasets collected from large geographic regions tend to be not
so benign. In light of the challenges created by the prolonged
human-computer interaction, it is difficult to guarantee that a
given redundant dataset would adequately capture the diversity
associated with the different classes. And when it is practically
impossible to assume that a dataset adequately captures all
of the diversity associated with the different classes, any
redundancies in the data may result in erroneous bounds on
the performance of the classifiers when such data is used
for testing them. We illustrate this effect with the following
simple example: Suppose we are creating a test set for a
binary classifier and that 80% of the data samples collected
happen to fall in a small neighborhood of the same point
in the feature space. With such a dataset, regardless of the
actual performance of the classifier on a “true” dataset, the
computed classifier performance would be controlled by the
two numbers, 20% and 80%. The classifier would have no
choice but to give the same class label to the 80% of the
data. If the class label chosen was correct, the computed
performance of the classifier could exceed 80% depending on
how the classifier performs on the rest of the data. On the
other hand, if the label given to the 80% was incorrect, the
computed performance of the classifier could be less than 20%,
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again depending on how the classifier performs on the rest of
the data. Therefore, it is particularly important to eliminate
redundancies from the datasets created from large geographic
areas for the purpose of designing and testing land-cover
classifiers.

A major focus of this paper is on how to sample a large-
scale scene to create a test set from the perspective of
minimizing the burden on the human annotator. Although
hierarchical sampling approaches such as stratified sampling
and multistage cluster sampling [2] are often used when
sampling from a large population, these methods may still
end up with large samples. In addition, multiple trials are
needed to compute the statistics. Therefor, these methods are
not practical for the purpose of creating a single concise
test set that is diverse and small. Active learning [3], on the
other hand, are also commonly used to select informative data
samples from a large population/dataset. Active learning is an
online sampling approach and needs real-time human-machine
interaction to be practical. Because its stopping criteria is often
based on the number of samples collected or the amount of
time elapsed, active learning may be “incomplete” in the sense
that it may not get to process the entire dataset.

Generating a concise representation from potentially hun-
dreds of satellite images covering a large geographical region
is made extremely challenging by two reasons: The first is,
of course, the sheer volume of the data. The second equally
important reason has to do with the fact that a pixel cannot be
shown in isolation to a human annotator for eliciting its class
label for creating the ground truth. It is now well known that
for reliable annotation, humans require both the pixel itself and
its immediate surround — which we refer to as its background
context. Therefore, any automated algorithm for creating a
concise representation for human interaction, must compare
the pixels both on the basis of the spectral signatures at the
pixels themselves and on the basis of whatever it takes to
represent the background contexts for the pixels.

A reader might ask: Why is it not sufficient for concise
representations to be created from just the pixels themselves,
without the need to also factor in the background context for
each pixel? Even for a computer algorithm, pixels considered
in isolation can result in their being considered similar when in
fact they are highly dissimilar. For example, the multispectral
signature for a pixel from a concrete road would be very
similar to the signature from any number of other structures
on the ground — building rooftops, water towers, bridges,
etc. Creating a concise representation from just the pixels,
without also including a portion of the background for each
pixel, would only create a frustrating experience for the human
annotators.

When you include the additional high-dimensional back-
ground context for each pixel, you end up having to deal
with voluminous amounts of high-dimensional data. The sheer
size of the dataset, which consists of all pixels, and its high-
dimensionality mean that we are dealing with what is loosely
referred to as a big-data problem. When it comes to data
clustering, such problems do not allow for exhaustive pairwise
comparison of the data elements for the purpose of establishing
data similarity. And, since the data dimensionality can still be

high even after applying dimensional reduction, such problems
also do not lend themselves to the use of spatial search
techniques such KD-trees, SR-trees, and cover trees [4]–[8]
because their time or space complexity degrades exponentially
with data dimensionality.

In addition to the issues created by the size of the data
and its dimensionality, we must also cope with the fact that
comparing pixels on the basis of their spectral signatures and
on the basis of their background context are two semantically
different actions. That is, it would make no sense to lump both
the background and the foreground for each pixel into a single
vector representation for creating a concise representation.

Yet another source of complexity arises from the fact that
similarity constraints for clustering data are generally not
transitive. To explain this point, a data element A can be
similar to another data element B because the magnitude of
the difference between their attribute vectors is below some
threshold. And, the data element B may be similar to another
data element C for the same reason. Yet, A may not be similar
to C. That is, if we were to directly measure the magnitude
of the difference between the attribute vectors for A and
C, it may exceed the threshold being used for establishing
similarity. Many clustering algorithms get around this problem
by assuming that the number of clusters, k, into which the
data must be partitioned is known a priori. Subsequently, a
clustering algorithm must find the optimum partitioning of
the data so that the average distance of every data element
from the center of the cluster to which the data element is
assigned is minimized. Deterministic variants of this approach
lead to the k-means and other such algorithms. And the prob-
abilistic variants of the same basic idea result in expectation-
minimization sorts of algorithms. One can loosen the need
for the a-priori knowledge k by testing for different k until
some overall quality metric is satisfied. Unfortunately, big-
data problems do not lend themselves to such experimentation.
In the absence of such logic, a blind application of similarity
checking, no matter how it is actually enforced, is highly likely
to result in all of the image data elements extracted from all
the satellite images to form a single similarity neighborhood.

This paper presents a solution to all of the issues we
have outlined above for reducing a large volume of satellite
data to relatively small number of similarity neighborhoods
in the underlying feature space and representing each such
neighborhood by an exemplar data element that the human is
asked to annotate. Subsequently, all of the data elements within
any given similarity neighborhood acquire the annotation of its
exemplar.

With a data abstraction we refer to as an image patch,
we represent each pixel by its foreground spectral signature
and a high-dimensional vector that captures its background
context. Subsequently, we first reduce the data dimensionality
of the background context and then use Locality Sensitive
Hashing [9] to compare the pixels on the basis of just the
background characterizations. That is followed by refining the
clusters obtained with foreground comparisons based on the
spectral signatures at the pixels themselves. However, before
we carry out the foreground comparisons, we get around the
difficulties created by the non-transitivity of the background
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similarity constraint by associating with each patch a similarity
neighborhood, which is the set all other patches that directly
satisfy the similarity condition with respect to the former
patch. These similarity neighborhoods are converted into what
we call a similarity graph. A concise set is derived from
the similarity graph after the enforcement of the foreground
similarity constraint.

What is particularly novel about the solution we propose
is the combination of ideas we have used to address the
big-data challenges in multi-satellite-image land-cover clas-
sification performance evaluation. With regard to the big-
data challenges, our work provides answers to the following
three important questions: (1) How does one handle all of
the data variability in a big data setting? We address this
question in Section IV-E where we show how LSH can be
used to create a concise-set representation of all of the data
in a given set of satellite images. (2) How does one cope
with the difficult logistical issues related to the generation
of the ground truth when you have hundreds of gigabytes of
data to contend with? We address this question in Section VI
where we show how to use our concise-set representation to
remove redundancies from a large dataset so that what the
human must annotate is a relatively small dataset. And (3)
What sort of similarity grouping logic can one use when it
is necessary to simultaneously use more then one similarity
measure to compare image patches? We address this question
in Section IV-C where we show how to apply two disparate
similarity constraints conjunctively to solve this problem.

In the rest of this paper, we start with Section II by
presenting a brief review of the relevant literature. Our main
contribution is presented in Section IV that starts by defining
the notation of a concise-set representation of the satellite
image data and subsequently describes the various stages
for its construction. The end of that section illustrates how
these stages are put together to create a complete workflow.
Section V describes how the algorithm parameters are set and
shows their values for the WorldView2 imagery. Subsequently,
we validate the effectiveness of our concise representation
in Section VI by comparing its performance with the tra-
ditional random sampling approach. Finally, we conclude in
Section VIII.

II. RELATED WORK

In addition to the straightforward Simple Random Sampling
(SRS) approach, researchers have also proposed “Stratified
Sampling” and “Systematic Sampling” for creating represent-
ing datasets from large populations. The systematic sampling
approach first sorts the population into a list and then sub-
samples from this sorted list. On the other hand, the stratified
sampling approach divides the population into homogeneous
subgroups and then samples within each subgroup using either
SRS or systematic sampling [2]. The authors of [10] have
proposed a complex 3-level stratified sampling approach and
make use of various prior knowledge about the dataset. In
their work, the first level of stratified sampling organizes the
mapped areas by their meta-data such as the mapping method,
remote sensing source, resolution, acquisition date, etc. The

second level uses prior knowledge about the content of the
mapped area (eg., road, building, green areas, etc). And the
third level uses finer features present in the mapped areas such
as the location of the individual object/inspection unit. On the
other hand, [11] proposes a simpler two-stage cluster sampling
approach based on the classification map. The approach we
present here can be considered to be a combination of the
basic notions in Stratified Sampling and Systematic Sampling.

With regard to land-cover classification, early classifiers that
could be employed over large geographic areas use only low
and medium spatial resolution imagery ranging from 8km to
15m per pixel [12]–[14]. Due to the low spatial resolution,
the datasets involved do not create a big-data problem for
these early works. However, during the last ten years, spatial
resolution in satellite images has improved rapidly. It is now
common to find satellite data at a very high resolution (VHR)
of 0.5m per pixel or better. Fortunately, during the same time
period, computer processors, memory, and storage all have
become faster and cheaper. Today, it is not uncommon any
longer for research labs to work on land-cover classifiers
involving large datasets [15] and VHR satellite images [16].

III. THE PROPOSED NEW WORKFLOW

Fig. 1 presents the new workflow for creating a concise-
set representation from multi-image satellite data. Each of the
steps of the workflow described below is explained in detail
in the various subsections of the next section.

1) Automatically collect all the image patches in the given
collection of satellite images. (See Section IV-A)

2) Extract both background and foreground features for all
image patches. (See Section IV-B)

3) Using FastMap, apply dimensional reduction to the
background histograms. (See Section IV-D)

4) Using LSH, create background similarity neighborhoods
for the entire population. (See Section IV-E)

5) Create the similarity graph by refining the background
similarity neighborhoods with the foreground similarity
constraint. (See Section IV-E)

6) Find dominant clusters within the refined similarity
graph and create the concise-set representation using
Algorithm 1.

7) Annotate the cluster representatives with the ground-
truth labels (See Section IV-H).

8) Calculate the ground-truth consistency using Eq. 3.
The goal of this workflow is to produce a maximally non-

redundant dataset for evaluating land-cover classifiers. The
greater the elimination of redundant image patches, the less
the burden on the human annotator.

IV. GENERATING A CONCISE REPRESENTATION

A. Representation of the Population: Content, Unit, and Size

The first issue to resolve when eliciting ground-truth an-
notations from a human is the content of each “unit” of the
data that is shown to the human. Even though the end-goal
of annotation elicitation is to collect the class labels for a
collection of pixels, a human observer is often not able to
make a judgment about the class label of an individual pixel
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Fig. 1. Workflow for generating the concise-set representation from a given
collection of satellite images that cover a large geographic area.

if it is shown as a single piece of data without any neighboring
pixels. Experience has taught us that it is best to show a pixel
along with its immediate surround, which we will refer to as a
patch, in order for a human to figure out what the ground-truth
label should be at the center of the patch. The human would
be asked to label only the central pixel in a patch, with all the
surrounding pixels merely providing a geographic context for
the pixel at the center.

B. Measuring Similarity Between Satellite Image Patches

To determine whether two image patches are similar, we
first represent each patch with two different feature vectors,
one for the color histogram that represents the background
pixels and the other for the spectral values at the foreground
pixel. For a patch to be considered similar to another patch, the
similarity criterion must be satisfied for both the background
and the foreground.

To compute the color histogram for the background pixels,
we first transform the RGB color space to the perceptually
uniform CIELAB color space. Then, we quantize that space
into b3 bins, where b is the number of bins along each of
the L*, a*, and b* axes. Note that some of these b3 bins will
always be empty since the RGB color space is a subset of the
CIELAB color space [17]. Representing this histogram with a
b3-dimensional vector, we subsequently reduce its dimension-
ality by, first, retaining only the valid L*a*b* histogram bins,
and, then, by applying FastMap as described in Sections V-B
and IV-D, respectively. We will use d to denote the retained
dimensionality for the color representation of the background
pixels.

To measure the similarity between any two background
histograms, we use the angular distance metric defined by
Eq. 1:

distAngle(~v1, ~v2) =
180

π
cos−1

(
~vT1 ~v2
|~v1| |~v2|

)
(1)

where ~v1 and ~v2 are the d-dimensional vector representations
of the two histograms, respectively. Generally, we normalize
the histogram vectors so that they are of unit magnitude, which
does away with the denominator in the above formula.

As for characterizing the foreground (ie., the center pixel of
the image patch), we use its spectral signature consisting of
the spectral responses measured at the corresponding surface
location on earth. For example, in a 4-band satellite image,
each pixel has 4 values, one per spectral band, and the spectral
signature is a vector consisting of these four numbers. To
measure the similarity between any two spectral signatures,
we use the “L1 distance metric”. Note that both the Cosine
distance metric for the histogram vectors and the L1 metric
for the foreground spectral vectors are fast to compute – an
important consideration in big-data processing.

C. Similarity Search

Since a patch is represented by two semantically different
characterizations — a d-dimensional vector for the background
color distribution and a 4-dimensional vector for the fore-
ground spectral values — that raises the question of how to ac-
tually form the similarity groups, especially because we want
to enforce the similarity constraint on the two characterizations
conjunctively. Note that, in our big-data context, we do not
have the luxury of comparing every pair of patches to decide
whether or not they belong to the same similarity group. If
it were possible to compare every pair of the patches, the
two similarity conditions could be enforced simultaneously in
each pair-wise comparison. Therefore, we are left with three
options:

Option 1: Concatenate the d-dimensional color-histogram
vector for the background with the 4-dimensional
spectral-property vector for the foreground to form a sin-
gle vector representation for a patch and then apply one
of several distance metrics to the vectors for comparing
the similarity of the patches.

Option 2: First cluster the patches with respect to just the
foreground pixels and then subject each of the clusters
thus obtained to further sub-clustering on the basis of the
similarity of the background color-histogram vectors.

Option 3: By reversing the two steps in the previous option;
that is, by first clustering the patches with respect to the
background color-histogram vectors and then further sub-
clustering those clusters on the basis of the similarity of
the foreground spectral vectors.

Despite its appearance to the contrary, the first option listed
above is not appropriate since it cannot guarantee conjunctive
enforcement of the two separate and distinct similarity con-
straints. And the second and the third options are logically
equivalent.

What is interesting is that while the second and the third
options are logically equivalent, they entail different degrees
of computational effort to arrive at the same final conclusion.
The main reason for that has to do with how the vectors
that represent the color histograms for the background are
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distributed vis-a-vis the distribution of the spectral vectors that
represent the foreground.

The distribution of the histogram vectors is such that with
the linear-time LSH algorithm applied to such vectors, it is
possible to implement a fast approximated solution for cre-
ating sufficiently small clusters so that a subsequent pairwise
comparison of the samples within each histogram-similarity
based cluster for enforcing the similarity of the spectral vectors
results in an overall computationally efficient structure for
the conjunctive enforcement of the two different similarity
constraints. The opposite approach would consist of first
applying a Euclidean-distance based LSH to cluster the entire
data on the basis of the similarity of the spectral vectors and
then subjecting the data elements withing each resulting cluster
to the histogram based similarity constraint. Unfortunately,
the clusters generated by the second approach tend to be
much loo large, making the overall computation relatively
inefficient. For the reasons explained above, we chose Option
3 for the conjunctive enforcement of the two different similar
constraints.

Permeating all three options listed above, including obvi-
ously our chosen Option 3, are the consequences of the non-
transitivity of the similarity constraints that we mentioned
earlier in the Introduction. As stated there, if we were to apply
any of the three options to the entire data set, we are highly
likely to end up with a single concise set, which is not a
very useful thing to happen. To get around this difficulty, we
introduce the notion of similarity graph in Section IV-E. A
similarity graph is generated by applying a pairwise spectral
comparison criterion to all the patches considered similar by
the LSH algorithm (on the basis of the background similarity
through the histograms associated with the backgrounds).
These pairwise comparisons yield what we call similarity
neighborhoods. Every patch in a given similarity neighborhood
is directly within the similarity distance of the patch for which
the similarity neighborhood was constructed. The collection
of all such similarity neighborhoods constitutes the similarity
graph. Note that it is likely that there would patches that would
be shared by different nodes.

In the rest of this section, we first describe how we reduce
the data dimensionality of the color-histogram vectors before
clustering them using LSH. Subsequently, we bring in the
spectral data vectors for the foreground pixels to further refine
the clusters.

D. Reducing the Dimensionality of the Histogram Represen-
tation for the Background Pixels in a Patch

As explained in Section IV-B, the background pixels in a
patch are represented through a three dimensional histogram
in the L*a*b* space. As we will show in Sections V-A and
V-B, the bin structure used for the histogram results in a vector
representation of the background that has 9024 elements in it.
This is obviously much too large a dimensionality. Fortunately,
with dimensionality reeducation, we can bring it down to
less than 100, depending on the data in the ROI (Region of
Interest).

There exist many dimensionality reduction strategies for
multidimensional data, however most are not appropriate for

the big data scenarios involving tens of millions of patches
extracted from satellite images. Consider, for example, what
is perhaps the most commonly used method for dimension-
ality reduction, PCA, which carries out an eigendecomposi-
tion of the covariance matrix of the data. In our case, the
data would consist of 9024-element vectors for the L*a*b*
color histograms, whose covariance matrix would be of size
9024 × 9024, a matrix with close to 100 million elements.
Now if we only had a small number of patches from which to
generate the reduced-dimensionality representation, we could
take advantage of the fact the rank of the covariance matrix
would not exceed the number of patches available and translate
that fact into a highly efficient algorithm for the eigende-
composition of the covariance matrix [18]. However, that is
not case with the work described in this paper — with the
number of patches running into millions, we have no hard
constraint on the rank of the covariance matrix. We run into
similar problems if we try to use the other methods, such as
Incremental PCA [19] and Sparse PCA [20]. In light of these
difficulties associated with the more traditional approaches, we
have chosen to use the FastMap [21] method for our work.

FastMap works by preserving, up to certain level of pre-
cision depending on the stopping criterion used, all pairwise
distances among the entire dataset while reducing the data
dimensionality as much as possible. The algorithm has time
complexity of O(d×n) where d is the number of dimensions
after reduction and n the size of the dataset.

The FastMap algorithm involves just three basic steps: First,
it takes the entire dataset and quickly finds the two furthest
points (ie., two furthest data elements) away from each other.
Then, taking the line joining these two points as the first axis
in the reduced dimensionality representation of the data, the
algorithm then projects all the data points onto this line to
calculate the first coordinate value of the points in the reduced-
dimensionality representation. Finally, the algorithm projects
all the data points into a hyperplane perpendicular to the axis
just constructed. These three steps are repeated with the data
projected into the hyperplane until the stopping criterion is
met. Fig. 2 summarizes these three basic steps.

As for choosing the stopping criterion, one could obviously
stop when the desired number of dimensions is reached. In
general, though, that is not likely to be a useful criterion since
one would not know the desired dimensionality in advance.
A more useful criterion consists of stopping the iterations
when the low-dimensional subspace retains a certain specified
fraction of the total variation in the data.

To elaborate, note that each axis is formed by a line segment
like the (Pa, Pb) segment shown in Fig. 2. The length of this
segment determines the range of data variation on that axis.
The data variation decreases in each iteration. Therefore, we
can stop when the segment length is less than some fraction
of the sum of the segment lengths encountered so far. More
formally, let Li be the length of the line segment at iteration
i, we stop when the following inequality is satisfied:

Ld∑d
i=1 Li

< T (2)
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Fig. 2. FastMap first finds pa and pb, two furthermost points (ie., data
elements) away for each other. This step takes 2× n comparisons, where n
is the number of data elements. It then maps all points onto the line segment
formed by this pair of points for estimating the first coordinate of all the points
in the reduced-dimensionality representation. Finally, it maps all points into a
hyperplane that is normal to the line passing through pa and pb. These three
steps are repeated with the points in the hyperplane. Each such repetition
adds one more dimension to the low-dimensional representation of the entire
dataset.

As for the value of T , we found that the value of 0.001 (which
is tantamount to retaining 99.9% of the total variation) limits
the pair-wise Cosine distance error to less than one degree.
Note that we obtained this result using our data, which are
normalized histograms.

E. Creating a Similarity Graph for the Image Patches

Keeping in mind that the vector representations for the
background color histograms can still reside in a high-
dimensional space after dimensionality reduction, even the
supposedly efficient algorithms that avoid exhaustive pairwise
comparisons, such as those based on nearest neighbor search
(NNS) with KD-trees, SR-trees, and cover trees [4]–[8] are
not appropriate for solving our problem of forming similarity
neighborhoods from the background color-histogram vectors
because their performance (either the running time or the
memory requirement) degrades exponentially as the data di-
mensionality increases.

Locality Sensitive Hashing (LSH) [22], [23], on the other
hand, has emerged as an attractive alternative to tree-based
nearest neighbor search algorithms for high-dimensional data.
Just like the tree-based approaches, LSH does not make
exhaustive pair-wise comparisons. Additionally, and most im-
portantly, LSH can be implemented to have constant average
search time, making it highly desirable for similarity based
searching in very large datasets. The only drawback is that
LSH is an approximated nearest neighbor (ANN) algorithm
and may not always find the exact nearest neighbor. Neverthe-
less, LSH is suitable for applications when datasets are large
and finding the exact nearest neighbor isn’t critical. It has
been shown that for high dimensional data, LSH significantly
outperforms SR-tree, a representative of tree-decomposition-
based indexing techniques [24].

To briefly review how LSH works, as its name implies, LSH
uses locality sensitive hashing for nearest neighbor search. A

hash function is considered to be locality sensitive if it places
“nearby” samples in the same bucket with a high probability,
and if it places “far apart” samples in different buckets, again
with a high probability. Two data elements are considered to
be “nearby” if the distance between them is at most d1 and
two data elements are considered “far apart” if the distance
between them is at least d2 = c × d1, where c > 1 is the
approximation factor. The quality of such a hash function is
measured by two probabilities p1 and p2, where the former
is the probability of collision for “nearby” samples and the
latter the probability of collision for “far apart” samples. For
obvious reasons, you’d want p1 to be as high as possible and
p2 to be as low as possible.

In practice, it is not possible to find a single hash function
with the property described above. However, it has been shown
that a large number of hash functions working together in an
AND-OR structure can possess this property [25]. One starts
out with a basic hash function that places nearby samples in
the same bucket with a high probability, but that, at the same
time, places any two far-away samples in the same bucket
with NOT a sufficiently low probability. Subsequently, one
can require that for any two given samples to be considered
similar they must be in the same bucket for a set of different
hash functions, these multiple hash functions being random
variations of the same basic hash function with respect to
at least one of its parameters. (We’ll use r to denote the
number of hash functions in such a set.) This is referred to
as enforcing an ’AND’ operation over r hash functions to
significantly decrease the probability of two far-apart samples
being considered similar. Since the ’AND’ operation can also
somewhat reduce the probability of nearby samples as being
considered similar, we take an ’OR’ b sets of r hash functions
to restore or further enhance that probability. Choosing r and
b in order to achieve desired values for p1 and p2 becomes a
design issue for any implementation of LSH.

Hyperplane LSH [26], a commonly used implementation
of LSH for similarity measure shown in Eq. 1, consists of
using randomly oriented hyperplanes for hashing. A hyper-
plane gives us a two-bucket hash table: When a numerical
data element is projected on a hyperplane perpendicular to a
hyperplane passing through the origin, the projection is either
in the positive half-space corresponding to that hyperplane
or the negative half space. By constructing b sets of such
randomly placed hyperplanes, with r hyperplanes in each set,
we can achieve the desired discriminations between nearby
and far-apart data elements.

Applying LSH on the background color-histogram vectors,
each patch p is associated with a set of patches that are directly
within the angular similarity threshold of p on the basis of just
the background color-histogram similarity. For each patch p,
the set of all similar patches thus discovered constitutes p’s
similarity neighborhood.

Subsequently, patches and their neighborhoods are con-
verted into a similarity graph by testing within each neighbor-
hood for patches having similar foreground spectral signatures
with respect to the associate patch. The output of this exercise
is represented by a similarity graph in which a pair of two
vertices, with each vertex corresponding to an image patch,
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share an edge if they are similar both with respect to the
background and the foreground contexts. Although the worst-
case time complexity of this algorithm is given by O

(
|V |2

)
,

where V is the number of patches, the worst case happens
only when the entire similarity graph is a clique (for which
the number of edges is quadratic on the number of vertices;
that is |E| = O

(
|V |2

)
).

F. Population Compression

We represent a pixel along with the image patch that pro-
vides its surrounding context by a vertex in the similarity graph
mentioned previously. When a particular vertex is selected
for inclusion in the concise dataset, all other vertices that
are similar to it are subsequently marked as redundant in
the similarity neighborhood of the selected vertex. The task
of data reduction is then to find a minimal set of vertices
that maximally cover the overall redundant set of vertices.
This optimization problem can be formulated as the “Set
Cover problem”, which is a well-known NP-Complete problem
[27]. The Set Cover problem is also closely related to the
Dominating Set problem in graph theory. An approximated
solution using greedy algorithm, as described in the subsection
that follows, can produce a solution that is guaranteed to be
within O (log |V |) factor of the optimal solution where V
is the set of vertices in the graph. In terms of algorithmic
complexity, the greedy algorithm runs in O (|E|) time, where
E is the set of edges in the graph.

G. Creating a Concise-set Representation of the Population

In the previous section, we mentioned using a greedy
algorithm to find an approximated solution to the Set Cover
problem. We now describe the algorithm in detail and show
how it returns a concise-set representation for the target
population.

Algorithm 1 Create a Concise-set Representation
Input: U = Set of all items. (eg., image patches)
Output: A concise-set representation of U

1: S ← {{LSH-GetItemsSimilarTo(e)}, ∀e ∈ U}
// S = Set of candidate similar-item sets (clus-

ters).
2: R← [ ] // Array of cluster representatives.
3: W ← [ ] // Array of redundancy weights.
4: C ← [ ] // Array of similar-item sets (clusters).
5: while SomeItemsNotCovered(U, C) == True do
6: (c∗, r∗)← GetMaxCluster(S) // Max cluster, c∗, and

its representative, r∗.
7: S ← RemoveAndUpdateClusters (S, c∗)
8: R← Append (R, r∗)
9: C ← Append (C, c∗)

10: W ← Append (W, |c∗|)
11: end while
12: return (R,C,W )

Algorithm 1 takes as input a set of indices representing
image patches IDs in the population. The algorithm outputs

a triplet, (R,C,W ), as the concise-set representation of the
population, where:

• R is the concise dataset that is an array of cluster
representatives, with one representative for each cluster
of vertices in the approximated similarity graph.

• C is an array of clusters. That is, for each i, C[i] is a
cluster represented by a set of vertices. Each vertex in
C[i] corresponds to an image patch that is similar to the
cluster representative, R[i].

• W is an array of cluster sizes. That is, W [i] is the size of
cluster C[i] for which R[i] is the corresponding cluster
representative.

H. Annotating the Concise Dataset

After we have created a concise-set representation of the
image patch population, we proceed to annotate the center
pixels (the foreground pixels) of the image patches retained
in the concise dataset. That is, a human annotator looks
at image patches associated in the R array, as returned by
Algorithm 1, and assign ground-truth labels to their center
pixels. The human annotator does not assign labels to the
surrounding pixels in the image patch. In keeping with our
earlier discussion, an image patch is modeled as containing
contextual pixels (ie., the background) surrounding the center
pixel (ie., the foreground) for which we want the human
annotator to supply a class label.

I. On Extending the Concise-Set Representative Label to the
Other Members of the Same Set

The most straightforward way to extend the human-supplied
annotation label for a cluster representative in the R array is
to simply assign the same label to all the other members in
same cluster.

However, it is possible to conceive of alternatives to the
obvious mentioned above that have ramifications regarding the
size of the overall representation created for a large dataset in-
volving hundreds of satellite images. One could, for example,
argue that since — seemingly — all the other members in a
cluster are redundant vis-a-vis the cluster representative for
constructing or evaluating a classifier, why not just retain only
the cluster representatives and discard the rest of the data.
The problem with that logic is that such a data reduction
could significantly impact the class probabilities associated
with different land types in a geographic regions and, conse-
quently, result in erroneous classification performance results
(regardless of the choice of the classifier).

To get around this difficulty, and, at the same time, to
benefit from the compression made possible by the R array,
we could associate the size of each cluster with each cluster
representative in R. This is indeed one of the options made
available by our concise-set framework when we generate the
final representation for the satellite data. We refer to this as the
“The Weighted Representative Method (WRM)” for creating
the final representation.

When not using the weighted representative method, the
system simply extends the human-supplied annotations for
each cluster representative in R to the rest of the rest of the
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Fig. 3. An example of the “weighted-representative” method: The similarity
graph shown here has two clusters depicted by the dashed circles. Each cluster
has a representative shown as a black dot. The classifier is applied to only the
cluster representatives and the classifier generated labels for the representatives
propagated to the rest of the cluster. Each vertex is shown with two labels,
one for the ground-truth and the other for classifier-generated, and, in each
case, they are both propagated from the cluster representative. In this example,
there are four vertices labeled “c1/c2” and therefore the corresponding “c1/c2”
entry in the estimated confusion matrix is 4. Similarly for the “c2/c2” entry.
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Fig. 4. An example of the “whole-cluster method”: The depiction here
parallels the one shown in Fig. 3 except for the fact that the classifier is
applied to every member of each cluster. For each vertex, the first label is
the ground-truth label as propagated from the cluster representative and the
second label is as produced by the classifier. In the example shown, there are
three vertices labeled “c1/c2” and therefore the corresponding “c1/c2” entry
in the estimated confusion matrix is 3. Similarly for the other entries in the
confusion matrix.

cluster members. In order to make a distinction with WRM, we
refer to this method as “The Whole Cluster Method (WCM)”.

Fig. 3 illustrates an example of estimating the confusion
matrix using the “weighted-representative” method, and Fig. 4
illustrates an example of estimating the confusion matrix using
the “whole-cluster” method. As the reader would expect, the
“weighted-representative” method is simple and fast, but it
tends to either overestimate or underestimate the classifier’s
true performance. On the other hand, the whole-cluster method
produces a better performance estimate, although at the cost of
doing more work. Note that the annotation effort is the same
for both methods.

J. A Quality Coefficient for Choosing the Best Value for the
LSH Similarity Threshold

It should be obvious to the reader that the validity of
the confusion matrices as produced by the two methods
presented in the previous subsection depends significantly on
the similarity distance threshold used in the LSH algorithm.
A similarity distance threshold that is too large would degrade
the quality of the concise dataset with regard to the following
two considerations: (1) We will have increased tendency of
the data samples from disparate classes to populate the same
clusters; and (2) The dataset may end up with fewer land-type
classes than there actually are in the satellite data.

At the same time, a similarity distance threshold that is
too small would generate too many small clusters, which
would increase the human burden associated with supplying
the ground-truth label for the representative of each cluster.
That leads to the question of whether there is any automatic
way to determine a good value to use for the similarity distance
threshold. As we discuss below, the answer to the above
question is yes.

Our answer presented in this section is based on the
following observation: Since the similarity neighborhoods
returned by the LSH algorithm consist of the vertices that
are hashed into the same bucket, it is possible for a similarity
neighborhood to intersect multiple clusters as returned by LSH
(see Fig. 5). When a vertex lies simultaneously in multiple
similarity neighborhoods, it may acquire a set of different
propagated class labels. As to the reason for may, first note
that LSH will form multiple distinct clusters for the same
ground-truth class label. LSH forms a cluster on the basis
of the approximate similarity of vertices. Subsequently, the
human annotator labels one cluster representative and then
that label is propagated to all the other members. For an
example of there being multiple clusters for the same ground-
truth class label, think of the pixels corresponding to the
label “road”. Since roads, in general, are made from different
materials — concrete, asphalt, gravel, or just plain dirt — any
automatic clusterer is likely to place the road image pixels
in different clusters that may or may not be overlapping.
Such different clusters for the same class label are NOT the
source of inconsistency we are talking about. For the sort of
inconsistencies we are talking about, consider the image pixels
that, through propagation from the cluster representatives,
simultaneously acquire two different labels such as “roof”
and “road”. This can easily happen since in many parts of
the world we have roofs, especially flat roofs, that are made
from the same materials that go into road construction. So,
human-annotated “road” pixels may get hashed into an LSH
bucket that also contains “roof” pixels and vice versa. Such
a vertex contributes to inconsistencies in the labeling of the
data. We claim that when all the propagated class labels are
consistent, we have chosen a good value for the similarity
distance threshold. So, if we can find a way to estimate the
number of the vertices with inconsistently propagated class
labels, we can assess the appropriateness of the value chosen
for the similarity distance threshold.

Let T be the total number of vertices and let I be the



9

AB

C

Fig. 5. In this example for illustrating the notion of consistency, while we
have three overlapping clusters in some feature space, two of the clusters,
represented by the cluster representatives B and C, carry the same propagated
ground-truth label. On the other hand, the cluster represented by A carries
a different propagated label. Note that true ground-truth labels are provided
only for the cluster representatives. We have a total of 18 vertices in the three
clusters. In the figure, small circular dots represent vertices that belong to
only one cluster while small triangles are vertices that simultaneously belong
to two or more clusters. We see that 7 of the 18 vertices have two or more
cluster memberships. However, on account of the equivalency of the class
labels for B and C, only three vertices have different class labels. Therefore,
the ground-truth consistency (See Eq. 3) is 1− 3

18
= 0.833.

number of vertices with inconsistent class labels in different
clusters, we define ground-truth consistency of the concise-set
representation as:

ground-truth consistency = 1− I

T
(3)

Note that the ground-truth consistency is only meaningful
when there are overlapping clusters.

V. SETTING THE EXPERIMENTAL PARAMETERS FOR
WORLDVIEW2 IMAGERY

Recall that at the heart of our approach for constructing a
concise-set representation of the data is the construction of
an approximate similarity graph with the help of LSH. As
mentioned in Section IV-F, each vertex of this similarity graph
represents a pixel along with the image patch that provide
geographical context for the pixel. When the vertices are tested
for similarity, it is done on the basis of both the spectral
signatures at the pixels themselves and the attributes of the
associated image patches. As mentioned earlier, each image
patch is represented by a histogram of the pixel “colors” in
the patch.

Therefore, as the reader can imagine, how many bins to
use for the patch histograms and what similarity thresholds
to use when comparing the histogram-based feature vectors,
etc., are some of the critical experimental parameters in our
approach. The goal of this section is to discuss how we choose
values for these parameters. Our parameter selection strategy
is conservative in the sense that we aim to minimize the
computation overhead while keeping the final concise dataset
small. Using these parameters, we will present our experiments
and the results in Section VI.

In this section, we will describe how we set the pa-
rameters mentioned above for WorldView2 satellite imagery.

Fig. 6. A typical region in the Chile ROI from our WorldView2 dataset.
Satellite image acquisition time: 2011-10-09 at 14:56:34 UTC

The WorldView2 data we use have four pan-sharpened spec-
tral bands that are ToA corrected. ToA stands for Top-of-
Atmosphere. This correction is a standard procedure for nor-
malizing satellite data taken at different angles and distances
relative to the earth’s surface being imaged. The four spectral
bands are Red (630-690 nm), Blue (510-580 nm), Green (450-
510 nm), and Near Infrared (770-895 nm). And the pan-
sharpened data have ground resolution of 0.5m per pixel. At
this level of resolution, it is possible for a human annotator
to identify typical narrow one-lane roads and alleys. In order
to apply our framework to this data, we must first set the size
for the image patches. We have experimentally determined that
patches of size 101 × 101 pixels give a good balance between
competing requirements. This size is large enough to provide
a reliable context for the labeling of the center pixel and small
enough that it does not include too much diversity within a
single patch. The preprocessing step involves cropping image
patches centered at all pixel locations in the satellite image.
This step results in a dataset consisting of image patches
totaling the number of pixels in the satellite images. We use
the sliding window approach to optionally control the size of
the dataset by allowing the sliding window to have the option
of skipping every few pixels, in addition to skipping the invalid
and border pixels.

For the purpose of exploring the best choices to make for
the parameters, we manually annotated a dataset from the
Chile ROI [1]. Fig. 6 shows a typical area in this ROI.
The visually recognizable different regions in this area that
are homogeneous in terms of the class labels are demarcated
with a graphical tool. Five major land-types are used in this
exercise: building, road, tree, water, and soil. The output of
this exercise is a set of pixels along with their image patches,
with each pixel along with its associated image patch serving
as a vertex in the similarity graph. The important thing to
remember is that every vertex created in this manner has a
human-supplied class label. Subsequently, we use this data to
investigate the power of our proposed formalism for creating
concise-set representations for the different choices for the
parameters of the framework.

We will show in Section VI that the parameters set in this
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manner from the data collected over Chile work effectively
in another part of the world that is significantly different
— Australia. That fact provided further validation for our
framework.

A. Color Spaces and Histogram Quantization

As mentioned earlier, we refer to the center pixel in an
image patch as the foreground and the rest of the pixels in the
patch as the background. And, as mentioned in Section IV-B,
we represent the background of an image patch by its color
histogram. In our experiments, we investigated both the RGB
and CIELAB color spaces for the histogram. The RGB space
results in b3 bins. Subsequently, the choice of b controls
the size of the generated histogram (ie., b = 4 results in
43 = 64 bins and, therefore, a 64-dimensional feature vector).
To reduce the number of bins in the histogram, we examined
the CIELAB color space and remove the invalid bins – those
bins that are not occupied by any color in the RGB space.
We showed the obtained histogram sizes for both RGB and
CIELAB in Table I. There is also another reason for using
CIELAB color space over other color spaces that are not
perceptually uniform. In our case, we want the image patches
to be grouped together according to human perception of color
similarity.

To determine the best value to use for b, we examined a
wide range of values between b = 4 to b = 64. Note that
there is no need to examine b ≥ 66 as it has been shown to
be the sufficient for CIELAB color quantization [28].

For each value of b, we constructed a similarity graph as
described in Section IV-E using the Chile dataset. Then, we
calculated the cardinality of each cluster and found average
cardinality over all the clusters.

Fig. 7 illustrates the effect of histogram size on the average
cardinality of the clusters for different similarity thresholds.
We observe a decrease in the average values between b = 4
and b = 8 followed by a gradual increase after b = 8. It seems
as the histogram size increases, more and more data become
similar to one another. We note that this phenomenon does
not always happen in general and can be attributed to data
distribution and quantization effect.

TABLE I
COLOR HISTOGRAM SIZES FOR RGB AND CIE-LAB COLOR SPACES.

b bins per axis RGB histogram size LAB histogram size
4 64 45
8 512 245
12 1728 652
16 4096 1388
20 8000 2490
24 13824 4080
28 21952 6228
32 32768 9024
64 262144 64508

B. Calculating the Best Value to Use for the Similarity Thresh-
old

In this section, we investigate the best choice to make for
the similarity threshold that is needed by the LSH algorithm.
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Fig. 7. Proportion of the data found inside the similarity neighborhoods
(clusters).
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Fig. 8. Plots of background Similarity Quality Coefficient (SQC) as a function
of similarity threshold.

Recall that we are talking about similarity between a pair of
vertices in the similarity graph, with vertex standing for a
pixel along with the associated image patch. In the previous
section, we concluded that even with the same similarity
threshold, how the data gets clustered changes when the data
dimensionality changes.

We use the following logic to evaluate the quality of a
similarity threshold: We examine each cluster and count the
number of vertices in the cluster whose human-supplied class
labels are the same as the human-supplied label for the cluster
representative. This count is normalized by the cardinality of
the cluster. The average of this ratio over all the clusters is a
quality coefficient for a given similarity threshold. We refer to
this coefficient as the “Similarity Quality Coefficient (SQC)”.
In Fig. 8, we show the dependence of SQC on different values
for the similarity threshold. Note, each plot corresponds to a
different histogram size.

We see in Fig. 8 that SQC values are greater than 50%
for similarity thresholds less than 20 degrees, regardless of
the histogram size. Therefore, in our experiment, we conser-
vatively set the similarity threshold at 10 degrees so that at
least 60% of the image patches found within a cluster can be
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Fig. 9. Plot of foreground Similarity Quality Coefficient (SQC) as a function
of similarity threshold.

expected to have the same ground-truth label as the cluster
representative. We could have picked any values smaller than
20, but a tighter similarity threshold increases the hashing
time in LSH. We pick 10 over 15 because we would like
to have higher SQC values while still keeping the hashing
computation low. As for the histogram size, we picked b = 32
(9024 dimensions) for our experiments (See Table I). We noted
from the study in [28] that b does not need to be more than 66
and thus b = 32 seemed like a good trade-off between color
fidelity and computational efficiency. We obtained the same
result when we repeated the similarity threshold study on the
lower-dimensional data described in Section IV-D

Fig. 9 shows the SQC plot for the image foreground (ie.,
the spectral signature of the center pixel). Using this plot,
we set the similarity threshold at 50 so that about 60% (ie.,
slightly over a majority) of the image patches found within
this threshold can be expected to have the same ground-truth
label as the cluster representative.

VI. VALIDATION

A most important aspect of the comparative results we
report in this section is that the datasets we used for these
results are drawn from a part of the world that is different from
what was used in Section V for parameter estimation. We refer
to these datasets as our “validation datasets”. We however use
the same parameters that we estimated in Section V to create a
concise-set representation of the validation datasets. What that
implies is that the parameters estimated in Section V possess
some measure of generality. The extent of this generality is yet
to be investigated. Whereas the dataset used in Section V came
from Chile, the validation datasets are from Australia. The left
half of Fig. 10 shows an example of the area from which the
validation datasets were drawn. The acquisition time for the
corresponding WorldView2 satellite image is 2013-08-06 at
00:25:40 UTC.

As we mention later here, the true human-supplied class
identity is known for every element in the validation datasets.
This allows us to calculate the “true” confusion matrix on a
validation dataset for any given classifier. We have chosen a
Support Vector Machine (SVM) classifier created using the

● building = yellow
● trees = green
● water = blue

● barren = brown
● road = pink

Total data pool with ground truth  = 1,240,590 pixels.

From Australia ROI

Fig. 10. Annotated data within a 1km by 1km region in the Australia ROI.

● building = yellow
● trees = light green
● water = blue

● barren = brown
● road = pink
● crop = dark green

From Australia ROI

Fig. 11. Classification map of a cropped 1km by 1km region in the Australia
ROI. The provided classifier from [1] is treated as a blackbox.

approach in [1] for this validation study since SVM-based
classifiers are commonly used today for land-cover classifi-
cation and require fewer training data [29]. Fig. 11 shows the
classification map obtained by applying the classifier on a 1km
by 1km region in the Australia ROI.

In this section, we will show that the confusion matrix
calculated from the concise-set representation of the validation
dataset is significantly closer to the true confusion matrix as
compared to the confusion matrix calculated by the traditional
random sampling method. In order to convince the reader that
the above stated result is not a chance result — that is, a result
that is specific to one particular random sampling of the data
— we repeat the traditional random sampling method multiple
times.

As we did for the parameter estimation dataset in Section V,
for the validation datasets used in this section, we manually
supply the class label for 1, 240, 590 pixels within a 1 km ×1
km area in the Australia ROI. Hence, the largest validation
dataset we can draw has 1, 240, 590 units. Note that each
unit in the dataset is represented by a 101 × 101 image
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patch centered at the annotated pixel. The manual annotations
were supplied with the graphical tools that we mentioned
in Section V. As mentioned there, these tools allow us to
quickly demarcate large sections of a satellite image that are
homogeneous with respect to a class label. This allows the
system to quickly assign a class label to large set of pixels, all
at the same time. Fig. 10 shows the demarcated regions and
their assigned class labels.

The following considerations go into calculating and com-
paring the confusion matrices produced by the concise-set
representation method and the traditional random sampling
method:

• To estimate the true confusion matrix from the concise-
set representation, we use the “whole-cluster” method
described in Section IV-I.

• To directly compare a pair of confusion matrices, we
first normalize the confusion matrices and then com-
pute the sum-of-squared-difference (SSD) between the
two confusion matrices being compared. A small SSD
value indicates a close match between the two confusion
matrices.

A. Concise-set Representation versus Random Sampling

We repeat SVM based classification using the traditional
random sampling approach 100 times and, for each trial,
compare the classifier performance individually with what is
obtained through the concise-set representation approach. The
plot in Fig. 12 shows the SSD values for the 100 random
trials. Here the SSD value quantifies the performance error
relative to the true performance obtained from the entire
validation dataset. The particular validation dataset used in
this experiment has 1000 units and is randomly drawn from
the 1, 240, 590 annotated data pool mentioned in the previous
section. We show the true performance, represented as a
normalized confusion matrix, in Table II.

TABLE II
TRUE PERFORMANCE OF THE CLASSIFIER UNDER TEST IS OBTAINED BY

TESTING THE CLASSIFIER ON THE ENTIRE VALIDATION DATASET AND
NORMALIZING THE RESULTING CONFUSION MATRIX BY THE SIZE OF THE
VALIDATION DASETSET. FOR THIS EXPERIMENT, WE LIMIT THE SIZE OF

THE VALIDATION DATASET TO 1000.

True \ Predicted Crop Barren Tree Water Building Road
Crop 0.0 0.0 0.0 0.0 0.0 0.0

Barren 0.005 0.002 0.0 0.0 0.0 0.001
Tree 0.125 0.0 0.705 0.0 0.0 0.0

Water 0.0 0.0 0.0 0.0 0.0 0.0
Building 0.001 0.031 0.013 0.005 0.018 0.074

Road 0.001 0.0 0.001 0.0 0.0 0.018

The size of the random sample in each trial is set to 126 to
match the size of the concise dataset. Note that we purposely
keep the validation dataset small for this experiment so that we
can run multiple trials within a short time. We study the effect
of larger validation dataset in Experiment VI-D. Tables III and
IV show the normalized confusion matrices obtained using
our proposed approach and the transitional random-sampling
approach. Comparing to Table IV, we see that the normalized
confusion matrices shown in Table II and Table III are more
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Fig. 12. None of the SSD values from the 100 random trials gives a better
performance estimate than the SSD value obtained using the concise-set
representation approach. Validation dataset size = 1000. Concise dataset size =
126. Random dataset size used for each trial = 126. Ground-truth consistency
= 0.997.

similar to each other as the SSD value between them is smaller.

TABLE III
THE ESTIMATED CONFUSION MATRIX USING OUR CONCISE-SET

APPROACH. THE SIZE OF THE CONCISE DATASET IS 126. THE SSD VALUE
BETWEEN THIS ESTIMATE AND THE TRUE CONFUSION MATRIX SHOWN IN

TABLE II IS 2.8× 10−5 .

True \ Predicted Crop Barren Tree Water Building Road
Crop 0.0 0.0 0.0 0.0 0.0 0.0

Barren 0.005 0.002 0.0 0.0 0.0 0.001
Tree 0.123 0.0 0.707 0.0 0.0 0.002

Water 0.0 0.0 0.0 0.0 0.0 0.0
Building 0.004 0.031 0.011 0.005 0.018 0.073

Road 0.0 0.0 0.001 0.0 0.0 0.017

TABLE IV
AN ESTIMATED CONFUSION MATRIX FROM ONE RANDOM TRIAL USING
THE TRADITIONAL RANDOM SAMPLING APPROACH. THE SIZE OF THE

RANDOM DATASET IS KEPT THE SAME AS IN TABLE III. THE SSD VALUE
BETWEEN THIS ESTIMATE AND THE TRUE CONFUSION MATRIX SHOWN IN

TABLE II IS 2.38× 10−3 .

True \ Predicted Crop Barren Tree Water Building Road
Crop 0.0 0.0 0.0 0.0 0.0 0.0

Barren 0.0 0.0 0.0 0.0 0.0 0.0
Tree 0.15 0.0 0.75 0.0 0.0 0.0

Water 0.0 0.0 0.0 0.0 0.0 0.0
Building 0.0 0.023 0.0079 0.0 0.015 0.039

Road 0.0 0.0 0.0 0.0 0.0 0.0079

We observe from the plot shown in Fig. 12 that none of the
SSD values from the random sampling approach is smaller
than the SSD value obtained using the proposed approach. As
for the ground-truth consistency estimate, the value in this case
is 0.997 (See Section IV-J and Eq. 3).

B. Concise-set Representation versus the Average of the Re-
sults Obtained with Randomly Drawn Samples

In this experiment, we average the confusion matrices
obtained by the traditional random sampling approach over
many trials and then compare it with the the confusion matrix
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Fig. 13. From the ”best” performance curve, we see that averaging over at
least 10 random trials is needed for the random sampling approach to have
any chance of outperforming the concise-set representation. Validation dataset
size = 1000. Concise dataset size = 126. Random dataset size used for each
trial = 126. Number of repeated experiments per trial = 100. Ground-truth
consistency = 0.997.

obtained through the concise-set representation approach. We
then repeat the averaging experiment 100 times and plot the
min, max, 5th, 50th, and 95th percentiles curves. These per-
centile curves give us additional insights into the effectiveness
of our concise-set representation approach.

As made evident by Fig. 13, the median (ie., 50th percentile)
curve in the figure indicates that taking the average of at
least 80 random trials is needed to achieve a more accurate
confusion matrix than the concise-set representation approach
50% of the time. We can draw similar conclusions regarding
the best-case scenarios from the “best” curve. We see that in
the best case, averaging of 10 trials are needed.

C. Concise-set Representation versus Random Datasets of
Different Sizes

The goal of this experiment is to examine the effect of
dataset size on the random sampling approach vis-a-vis the
results obtained with our concise-set representation. In par-
ticular, we wish to investigate how large a randomly drawn
dataset must be in order for it to outperform the concise-
set representation. We repeat the experiment 100 times for
each size and plot the values of the min, max, 5th, 50th,
and 95th percentiles as shown in Fig. 14. The figure indicates
that for the random-sampling approach to have any chance
of outperforming the concise-set representation, the size of a
randomly drawn dataset should be at least 4.7 times larger
than the concise dataset.

D. Larger Validation Dataset

In this experiment, we repeat Experiment VI-A but with a
larger validation dataset. The result shown in Fig. 15 indicates
that the concise-set representation approach still outperforms
the traditional random sampling approach.
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Fig. 14. Performance of randomly drawn datasets of different sizes. From
the ”best” performance curve, we see that a random dataset needs to be at
least 4.7 times larger than the concise dataset in order to have any chance of
outperforming the concise-set representation approach. Validation dataset size
= 1000. Concise dataset size = 126. Number of trials with differently sized
random datasets = 100. Ground-truth consistency = 0.997.
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Fig. 15. With a larger validation dataset (10000 units instead of 1000),
the concise-set representation approach continues to outperform the random
sampling approach. Concise dataset size = 379. Random dataset size used for
each of the 100 trials = 379. Ground-truth consistency = 0.9717.

E. Evaluations with Multiple Validation Datasets

To show that our approach works on other validation
datasets, we repeat the last experiment (Section VI-D) on 5
validation datasets, each containing 10000 random samples
drawn from the annotated pool described in Section VI.

Fig. 16 shows a bar chart consisting of five different valida-
tion datasets. The performance of each dataset is summarized
by three SSD ratios calculated from Eq. 4 for K ∈ [0, 5, 50]:

SSD Ratio =
K-percentile(100 random trials)

SSD from Concise-set rep.
(4)

Note that depending on the region, the minimum ratio can
be close to 1.0. For example, in a region where not much
diversity exists, the traditional random-sampling approach will
do just as well as the concise-set representation approach.
For another example, if the region is highly diverse, then the
concise dataset will be larger, as more clusters are formed.
In that case, the best performance by the random-sampling
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Fig. 16. Each group of three bars is a run of Exp4 (See Section VI-D) but on
a different validation dataset. The SSD ratios are computed by Eq. 4. When
the minimum ratio is above 1.0, it means that the concise-set representation
approach is better than the random-sampling approach in all of the 100 random
trials.

approach might improve due to the larger number of samples
used in its random dataset, which has the same size as the
concise dataset.

VII. ALGORITHM COMPLEXITY ANALYSIS

To understand how well our system scales to Big Data, we
must analyze all algorithms used in the system. In the next
three sections, we will analyze the run-time complexity of
three major algorithms we used in our system. These three
sections will help us understand the current limitation and also
provide potential future research directions.

A. Indexing the Dataset using Hyperplane LSH

In this section, we investigate the question pertaining to the
cost of using Hyperplane LSH to index the dataset. Recall
that the purpose of indexing the dataset is to support efficient
neighborhood querying. Ideally, given an item, we could like
to retrieve all of its neighbors in constant time. Two indexing
methods that supports this fast retrieval are the brute-force
method and LSH. The brute-force approach is not appropriate
because the number of comparisons it takes to generate the
index is a quadratic function of the size of the dataset. On the
other hand, the number of comparisons for the LSH approach
is linear in dataset size.

The cost of using LSH to index the dataset depends on the
size of the dataset as well as the number of hashes needed
to achieve the desired performance guarantee. When the num-
ber of hashes is large, due to desiring a high performance
guarantee (See Section IV-E), the cost of indexing the dataset
dominates the cost of data dimensionality reduction. Since
the cost of indexing a dataset with Hyperplane LSH is linear
in the number of data dimensions, a 100x reduction in data
dimension translates to two order of magnitude in speedup.

To show it with complexity analysis, let d and k be the
number of data dimensions before and after applying FastMap
(See Section IV-D). Then, the time complexity of FastMap is
O(d k n), where n is the size of the dataset. On the other hand,
the time complexity of indexing the dataset with Hyperplane

LSH is O(h d n), where h is the number of hashes per datum.
The total running times for indexing a dataset with and without
dimensional reduction is given in Eq. 7 and q. 5, respectively.
The speedup effect due to the reduced data dimensionality is
thus θ( dk ). As a result, when we reduce the data dimensionality
of the background color-histogram vectors from 9024 down to
about 100, we can expect to get about two order of magnitude
in speedup.

Twithout dimensional reduction = O(h d n) (5)
Twith dimensional reduction = O(d k n) +O(h k n) (6)

= O(h k n) when h� d (7)

With regard to the the appropriateness of using LSH for
large datasets, we note that when the dataset is small, indexing
the dataset with LSH actually takes longer time than the
brute-force indexing method. This is the case simply because
O(n) can grow faster than O(n2) for values of n below
some threshold. For Hyperplane LSH, this threshold is θ(h).
Therefore, in order to take advantage of Hyperplane LSH, the
dataset must be bigger than h. Otherwise, we might as well
use the brute-force indexing method. As an example, with the
LSH parameters set to: d1 = 15, d2 = 37.5, desired p1 = 0.99,
and desired p2 = 0.001, the value of h is 37278.

B. Sifting Through Neighbor Candidates in a LSH Bucket

In the previous section, we mentioned that LSH indexing
has O(h d n) time complexity. Here n is the size of the dataset,
h is a function of the LSH performance guarantee, and d is
the number of data dimensions. We stated that LSH indexing
is linear in n because in our case d is typically less than 100
and h is a constant that does not change.

Because LSH is an approximated method, the collection of
neighbor candidates inside the LSH bucket of a given input
query may include false positives as well as duplicates. In the
worst case, when every item is similar to all other items, it
will take O(n2) time to remove false positives and duplicates
from every neighborhood. This is the case because there are
n neighborhoods, one per datum, and each neighborhood
contains O(n) neighbor candidates in the worst case.

C. Extracting the Dominating Clusters/Neighborhoods

As we mentioned in Section IV-F, the greedy solution for
the Dominating Set problem runs in O (|E|) time where E is
the set of edges in the graph. In the worst case, when the graph
is dense, |E| = O(|V |2) the greedy solution takes O (|E|) =
O
(
|V |2

)
where V is the set of vertices in the graph. In our

application, the number of vertices in the similarity graph is
the size of the dataset. Therefore, extracting the dominating
clusters will take O

(
n2
)

time to run in the worst case scenario.
Here n is the size of the dataset.

D. Discussion

When the entire dataset is too big to be processed by a single
computing unit. Our approach is employing Map-Reduce pro-
cessing paradigm to distribute the computation across multiple
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computing units. With this approach, we mitigate the run-time
complexity issues mentioned in the previous sections.

When a O(n2) algorithm can not be avoid, our strategy is
to keep n small enough such that the algorithm can still finish
within a short time. If we break the entire dataset into small
chunks/partitions, then each chunk can be processed quickly
even though the complexity of the processing algorithm is
quadratic in the worst case. Furthermore, if we process all
chucks in parallel across many computing units, then the
overall processing time is the time it takes to process a single
chunk plus the time it takes to execute the subsequent merging
step.

Our current Python implementation can handle chunk size
of n = 250000. Further improvement in execution speed
requires using optimized programming language such as C++
and replacing any quadratic-time algorithms with linear-time
equivalents, if possible.

VIII. CONCLUSION

It can be mentally exhausting for human annotators to
generate the ground truth needed for evaluating land-cover
classifiers meant for large geographic regions covered by
hundreds of satellite images. Human annotators end up wasting
time by not realizing that new annotations may not be adding
any additional discriminatory information to those already
supplied. The work we have presented in this paper seeks to
alleviate the annotation burden by reducing redundancies in the
data through fast, albeit approximate, clustering by the LSH
algorithm. Subsequently, the human is asked to annotate only
the cluster representatives, in other words, the concise dataset,
with one representative per cluster. Given the fairly wide
range of the attributes derived from the spectral signatures
that are used in land-cover classification, LSH may represent
each land-type by hundreds of clusters. Nonetheless, providing
annotations for the cluster representatives takes far less work
than for the individual pixels in the satellite images that cover
a wide area.

What adds to the power of our proposed approach is our
demonstration that the approach is not overly sensitive to
the choice of the parameters for the LSH algorithm. In our
demonstration, we estimated the good values to use for the
parameters from the satellite images that cover Chile and then
used them to create a concise-set representation of the data in
Australia.

We validated our approach through a comparison with
traditional random-sampling based methods that are typically
used for large datasets. We showed that for the same annotation
effort, the concise-set approach to data representation outper-
forms the traditional random sampling approach in estimating
the true confusion matrix.
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